339 research outputs found

    A Quadratic Size-Hierarchy Theorem for Small-Depth Multilinear Formulas

    Get PDF
    We show explicit separations between the expressive powers of multilinear formulas of small-depth and all polynomial sizes. Formally, for any s = s(n) = n^{O(1)} and any delta>0, we construct explicit families of multilinear polynomials P_n in F[x_1,...,x_n] that have multilinear formulas of size s and depth three but no multilinear formulas of size s^{1/2-delta} and depth o(log n/log log n). As far as we know, this is the first such result for an algebraic model of computation. Our proof can be viewed as a derandomization of a lower bound technique of Raz (JACM 2009) using epsilon-biased spaces

    On Computing Multilinear Polynomials Using Multi-r-ic Depth Four Circuits

    Get PDF
    International audienceIn this paper, we are interested in understanding the complexity of computing multilinear polynomials using depth four circuits in which polynomial computed at every node has a bound on the individual degree of r (referred to as multi-r-ic circuits). The goal of this study is to make progress towards proving superpolynomial lower bounds for general depth four circuits computing multilinear polynomials, by proving better and better bounds as the value of r increases. Recently, Kayal, Saha and Tavenas (Theory of Computing, 2018) showed that any depth four arithmetic circuit of bounded individual degree r computing a multilinear polynomial on n^O(1) variables and degree d = o(n), must have size at least (n/r^1.1)^{\sqrt{d/r}} when r is o(d) and is strictly less than n^1/1.1. This bound however deteriorates with increasing r. It is a natural question to ask if we can prove a bound that does not deteriorate with increasing r or a bound that holds for a larger regime of r. We here prove a lower bound which does not deteriorate with r , however for a specific instance of d = d (n) but for a wider range of r. Formally, we show that there exists an explicit polynomial on n^{O(1)} variables and degree Θ(log^2(n)) such that any depth four circuit of bounded individual degree r < n^0.2 must have size at least exp(Ω (log^2 n)). This improvement is obtained by suitably adapting the complexity measure of Kayal et al. (Theory of Computing, 2018). This adaptation of the measure is inspired by the complexity measure used by Kayal et al. (SIAM J. Computing, 2017)

    Robustly Separating the Arithmetic Monotone Hierarchy via Graph Inner-Product

    Get PDF

    A Super-Quadratic Lower Bound for Depth Four Arithmetic Circuits

    Get PDF

    Lower Bounds for Multilinear Order-Restricted ABPs

    Get PDF
    Proving super-polynomial lower bounds on the size of syntactic multilinear Algebraic Branching Programs (smABPs) computing an explicit polynomial is a challenging problem in Algebraic Complexity Theory. The order in which variables in {x_1,...,x_n} appear along any source to sink path in an smABP can be viewed as a permutation in S_n. In this article, we consider the following special classes of smABPs where the order of occurrence of variables along a source to sink path is restricted: 1) Strict circular-interval ABPs: For every sub-program the index set of variables occurring in it is contained in some circular interval of {1,..., n}. 2) L-ordered ABPs: There is a set of L permutations (orders) of variables such that every source to sink path in the smABP reads variables in one of these L orders, where L 0. We prove exponential (i.e., 2^{Omega(n^delta)}, delta>0) lower bounds on the size of above models computing an explicit multilinear 2n-variate polynomial in VP. As a main ingredient in our lower bounds, we show that any polynomial that can be computed by an smABP of size S, can be written as a sum of O(S) many multilinear polynomials where each summand is a product of two polynomials in at most 2n/3 variables, computable by smABPs. As a corollary, we show that any size S syntactic multilinear ABP can be transformed into a size S^{O(sqrt{n})} depth four syntactic multilinear Sigma Pi Sigma Pi circuit where the bottom Sigma gates compute polynomials on at most O(sqrt{n}) variables. Finally, we compare the above models with other standard models for computing multilinear polynomials
    • …
    corecore