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Abstract
We show explicit separations between the expressive powers of multilinear formulas of small-depth
and all polynomial sizes.

Formally, for any s = s(n) = nO(1) and any δ > 0, we construct explicit families of multilinear
polynomials Pn ∈ F[x1, . . . , xn] that have multilinear formulas of size s and depth three but no
multilinear formulas of size s1/2−δ and depth o(logn/ log logn).

As far as we know, this is the first such result for an algebraic model of computation.
Our proof can be viewed as a derandomization of a lower bound technique of Raz (JACM

2009) using ε-biased spaces.
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1 Introduction

The main aim of Computational Complexity is to understand as precisely as possible the
amounts of computational resources required to perform interesting computational tasks.
These resources could be of various kinds depending on the computational model under
consideration, e.g., time and space for traditional algorithms, size and depth for Boolean and
Algebraic circuits, the number of random bits for randomized algorithms, total communication
for communication protocols and so on.

A fundamental question regarding any given resource is if access to more of that resource
strictly increases the power of the underlying computational model. Classical theorems
in Computational Complexity theory such as the Time Hierarchy theorem [13] and Space
Hierarchy Theorem [18] answer this question (in the affirmative) for the resources of time
and space on multitape Turing Machines.

In this paper, we consider an analogous question for Algebraic formulas. Algebraic
formulas (and their variants such as Algebraic circuits, Algebraic Branching Programs etc.)
are the natural computational model for computing multivariate polynomials over some
underlying domain, usually a field F. Many natural problems, such as the Determinant,
Permanent, Matrix Multiplication, the Fast Fourier Transform etc. fit into this general
framework. Algebraic formulas compute multivariate polynomials from the ring F[x1, . . . , xn]
using the natural algebraic operations of sum and product.
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36:2 A Quadratic Size-Hierarchy Theorem for Small-Depth Multilinear Formulas

The size of an algebraic formula is the number of algebraic operations it uses and is a
measure of the efficiency of the formula (it roughly corresponds to the time in the case of
traditional algorithms). One can also consider the depth of the formula, which measures how
nested the algebraic operations in the formula are, and corresponds to how parallelizable the
underlying procedure is. In this paper, we consider the question of proving a Size-hierarchy
theorem for Algebraic formulas. Somewhat informally, we ask the following.

I Question 1 (The Size-Hierarchy Question). For any δ > 0, are there explicit families of
polynomials Pn ∈ F[x1, . . . , xn] that can be computed by formulas of size s(n) but not by
formulas of size less than s(n)1−δ?

(See Section 2 for the definition of “explicit”. We note that requiring explicit polynomial
families is necessary since counting arguments easily yield the existence of polynomials that
have formulas of size s(n) but not size s(n)1−δ for most reasonable functions s(n). However,
as is standard in Circuit Complexity, the interesting question is finding an explicit function
that witnesses this separation.)

As of now, the size-hierarchy question is far beyond the range of our techniques for most
non-trivial parameters. Indeed, we do not have techniques to prove any explicit strong lower
bounds for general algebraic formulas, let alone lower bounds for explicit polynomials that
further have algebraic formulas of some prescribed size s(n).

So, we restrict ourselves to the setting of multilinear formulas, which are algebraic
formulas that are required to compute a multilinear polynomial1 at each intermediate
stage of computation. Note that the most efficient formula for computing some multilinear
polynomial need not be multilinear (this is known to be true for small-depth multilinear
formulas [8]) and so this is indeed a restriction. Nevertheless, it is a reasonable restriction
for formulas that compute multilinear polynomials and has been the focus of a large body of
work [20, 22, 21, 24, 23, 25, 15, 11, 17, 8, 3, 7] with interesting upper as well as lower bound
results.

Therefore, it is natural to consider the size-hierarchy question in the setting of multilinear
formulas. It follows from the work of Raz [21] and Raz and Yehudayoff [24] that for
s(n) ≤ nO(1), there are explicit polynomial families that can be computed by multilinear
formulas of size s but not by multilinear formulas of size less than sδ0 for some positive, but
small, δ0. (One needs to mine the proofs for the exact value of δ0. The best value that we
could obtain for δ0 was less than 1/30.)

In this paper, we prove a near-tight multilinear size-hierarchy theorem for small-depth
multilinear formulas. It is known [6, 5] that any multilinear formula of polynomial size s
can be converted to another of size at most s1+δ and depth O(logn) (for any fixed δ > 0).
Below, we consider multilinear formulas of smaller depth O(logn/ log logn). The main result
is the following.

I Theorem 2. For any fixed c ∈ N and δ ∈ (0, 1/2), there exists an explicit polynomial family
Pn ∈ F[x1, . . . , xn] that has a multilinear formula of depth 3 and size at most s = O(nc) but
no multilinear formulas of size less than s(1/2)−δ and depth ∆ < logn/100 log logn.

As such, our result is incomparable with the separation implied by [21, 24] since we
further assume that our formulas have small depth. However, in the setting of small-depth
multilinear formulas, our result improves on the separation of [21, 24] in two ways. The first
is that we obtain a separation of s versus s(1/2)−δ as opposed to the s versus sδ0 separation

1 Recall that a multilinear polynomial P ∈ F[x1, . . . , xn] is one in which each variable has degree at most
1.
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obtained by [21, 24]. The second is that the polynomials Pn that we consider have depth-three
formulas of size s. This is in contrast to the polynomials constructed in [21, 24], that have
formulas of size s but also depth Ω(

√
log s), which is considerably larger.2 Finally, our proof

technique is based on a derandomization of a special case of a lower bound technique of
Raz [22]. This derandomization leaves some scope for improvement: an optimal result along
these lines would resolve the size-hierarchy question optimally yielding a separation between
sizes s and s1−δ for any δ > 0. An optimal derandomization of the more general lower bound
technique of Raz would yield the same result for general multilinear formulas (without the
depth restriction).

1.1 Related Work
Our work is partially motivated by hierarchy theorems for Boolean circuits, which compute
functions f : {0, 1}n → {0, 1} using simple Boolean operations such as AND and OR.
Superpolynomial lower bounds have been known for constant-depth Boolean circuits since
the early 1980s [12, 1, 14]. However, a size hierarchy theorem in this setting was obtained
relatively recently by Rossman [26], who proved that for any constant k ∈ N, there are
explicit functions that have depth-two Boolean circuits of size O(nk) but not of size less than
nk/4. This was then improved by Amano [4] who showed that for any fixed k and δ there
are explicit functions that have depth two Boolean circuits of size O(nk) but no circuits of
size less than nk−δ.

Our proofs build on standard techniques for proving lower bounds for multilinear formulas.
While these ideas are essentially due to Raz [22], we use a high-level reformulation of this
argument that appears in the survey of Shpilka and Yehudayoff [28].

1.2 Proof Outline
Our proof can be seen as a derandomization of (a special case of a) technique of Raz [22] for
proving lower bounds for multilinear formulas. Here, we follow a well-known reformulation
of this proof that appears in [15, 28, 11].

Say we want to show that a multilinear polynomial P ∈ F[X] does not have a small-depth
multilinear formula of size s′. The proof strategy consists of two steps. The first step is a
decomposition lemma that says that any multilinear polynomial P that is computed by a
small-depth multilinear formula of size s′ can be written as a sum of s′ polynomials, each
of which is of the form f = f1 · f2 · . . . · ft where the fi’s are multilinear polynomials over
pairwise disjoint non-empty sets of variables X1, . . . , Xt that partition the variable set X.
Following [28], we call such a polynomial a t-product polynomial. Here, t is some growing
function of the number of variables n and the depth of the formula.

Thus, to show that P does not have a small-depth multilinear formula of size s′, it suffices
to show that it cannot be written as a sum of s′ many t-product polynomials for a large t.
This is the second step. To argue this, Raz used a rank-based argument. Specifically, we
partition the variables X into any two sets3 Y and Z and consider any polynomial P (X) as
a polynomial in the variables in Y , with coefficients from F[Z]. The dimension of the space of
coefficients (as vectors over the base field F) is considered to be a measure of the complexity
of P . The idea is that polynomials with small formulas will have low complexity and hence,
by choosing a P of high complexity we obtain a lower bound.

2 In fact, the polynomial families from [21, 24] do not have formulas of constant-depth and comparable
size. This follows from a later lower bound result of Raz and Yehudayoff [25].

3 Actually, the sets Y and Z also need to be of equal size. We ignore this for now for the sake of exposition.
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Unfortunately, this idea by itself is not enough to prove a strong lower bound. This is
because of the fact that given any partition (Y,Z), there is a small depth-2 multilinear formula
F(Y,Z) (which is also a t-product polynomial for large t) that has maximum dimension w.r.t.
this partition. To overcome this, we consider a random partition (Y,Z) and show that any
t-product polynomial will have low-rank w.r.t. this random partition with high probability.
Using a union bound, we then show that any sum of s′ many t-product polynomials must be
of low-rank w.r.t. some partition. If, on the other hand, our choice of polynomial P has high
rank w.r.t. every partition, we obtain a lower bound.

The crux of the matter therefore is to argue that given any t-product polynomial
f = f1 · · · ft as above, and a random partition (Y,Z), the polynomial f is low-rank w.h.p.,
w.r.t. this partition. Formally, for the union bound over s′ many such polynomials to go
through, we need the following criterion to hold.

Pr
(Y,Z)

[f does not have small rank w.r.t. (Y,Z)] < 1
s′
.

Raz [22] showed that this reduces to a combinatorial discrepancy question. Note that any
choice of partition (Y, Z) of X induces a partition (Yi, Zi) of each Xi (i ∈ [t]). To prove the
above bound, it actually suffices to show4 that

Pr
(Y,Z)

[|{i ∈ [t] | |Yi| − b|Xi|/2c odd}| is small] < 1
s′
.

But this is quite easy to argue. Since (Y,Z) is a random partition, each |Yi|− b|Xi|/2c is odd
with probability 1/2. Since the Xi (i ∈ [t]) are pairwise disjoint, these events are mutually
independent and hence by a Chernoff bound, it is easy to show that the probability of the
above event is 1/2Ω(t) < 1/s′ for the specific t that we obtain in the decomposition lemma
(this is where the small-depth assumption comes in). This completes the proof.

The derandomization. Our idea is to simulate the purely random partition argument of
Raz, but using instead a random partition from a small predefined set S = {(Y (1), Z(1)), . . . ,
(Y (s), Z(s))} of partitions. We would like to show that for a random j ∈ [s] and any product
polynomial f = f1 · · · ft as above, we similarly obtain

Pr
j

[|{i ∈ [t] | |Y (j)
i | − b|Xi|/2c is odd}| is small] < 1

s′
(1)

where Y (j)
i denotes the set Xi ∩ Y (j).

If we have a set S as above, we obtain a size-hierarchy theorem as follows. First, we
construct a multilinear formula FS of size roughly s that is full-rank w.r.t. each of the
partitions in S: this is done by simply taking a suitable linear combination of the formulas
F(Y (j),Z(j)) (j ∈ [s]) mentioned above. On the other hand, we know that given any small-
depth multilinear formula F ′ of size s′, (1) implies that F ′ cannot compute a polynomial
that is full-rank w.r.t. all the partitions in S, and in particular cannot compute the same
polynomial as F . This proves a separation between small-depth multilinear formulas of size
s and size s′. The question now is – how do we construct such a set S as described above
while keeping s as close to s′ as possible?

4 Raz in fact shows that it suffices to bound the probability that
∑

i∈[t] ||Yi| − |Xi|/2| is small. Here, we
only use the fact that for each i such that |Yi| − b|Xi|/2c is odd, we must have ||Yi| − |Xi|/2| ≥ 1/2.
This harks back to an earlier result of Nisan and Wigderson [20] who use a simpler parity argument to
prove a lower bound for set-multilinear formulas.
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Our construction of the set S follows two steps. We first show that it suffices to construct
a set that satisfies the following somewhat weaker condition.

Pr
j

[|{i ∈ [t] | |Y (j)
i | − b|Xi|/2c is odd}| = 0] < 1

2s′ (2)

We deduce (1) from (2) by adapting a combinatorial proof of the Chernoff bound that appears
in a result of Impagliazzo and Kabanets [16].

Finally, we show that for (2) it suffices to use Small-Bias spaces, which are a standard tool
in the derandomization literature [19]. Known explicit constructions of small-bias spaces [2]
yield sets S satisfying (2) of size roughly s = (s′)2. This yields a separation between size s
and size roughly

√
s as stated in Theorem 2.

We remark that non-constructively, we can show that there exist sets S satisfying (2) of
size roughly s′. Constructing such sets explicitly would improve our result to a near-tight
size-hierarchy theorem.

2 Preliminaries

Recall that a polynomial P ∈ F[x1, . . . , xn] is multilinear if each variable has degree at most
1 in P .

A family {Pn ∈ F[x1, . . . , xn] | n ≥ 1} of multilinear polynomials is said to be explicit if
there is a deterministic algorithm that given as input n and a monomial m over the variables
x1, . . . , xn, computes in time poly(n) the coefficient of the monomial m in Pn.

2.1 Multilinear formulas
For the detailed introduction to algebraic formulas, we refer the reader to standard resources
such as [28, 27]. Having said that, we do make a few remarks.

All the gates in our formulas may have unbounded fan-in.
The size of a formula refers to the number of gates (including input gates) in it, and
depth of the formula refers to the number of gates on the longest path from an input
gate to output gate.

An algebraic formula F computing a polynomial from F[X] is said to be multilinear if
each gate in the formula computes a multilinear polynomial.

We state below a decomposition lemma for small-depth multilinear formulas.
Define a polynomial f ∈ F[X] to be a t-product polynomial if we can write f as f1 · · · ft ,

where we can find a partition of X into pairwise disjoint non-empty sets Xf
1 , . . . , X

f
t such

that fi is a multilinear polynomial from F[Xf
i ].5 We say that Xf

i is the set ascribed to fi in
the t-product polynomial f . We use Vars(fi) (with a slight abuse of notation)6 to denote
Xf
i .
The following is easily implied by Lemma 3.8 in [28].

I Lemma 3. Assume that f ∈ F[X] can be computed by a multilinear circuit over n variables
of size at most s and depth at most ∆. Then, f is the sum of at most s · n many t-product
polynomials for t = Ω(n1/2∆).

5 Note that we do not need fi (i ∈ [t]) to depend non-trivially on all (or any) of the variables in Xf
i .6 Vars(·) is used to describe variables ascribed to gates in a circuit as well as to denote variables ascribed

to polynomials.
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36:6 A Quadratic Size-Hierarchy Theorem for Small-Depth Multilinear Formulas

2.2 Partial derivative matrices and relative rank
From here on, for the sake of simplicity, we will assume that n is even7.

Let X,W be disjoint sets of variables with X = {x1, . . . , xn}. Let F be any field. Let
G = F(W ) be the field of rational functions over F generated by set of variables W . Let Y
and Z be disjoint variable sets {y1, . . . , yn} and {z1, . . . , zn}. We consider injective maps
ρ : X → Y ∪ Z which we call partitioning functions.

We can index partitioning functions by elements of {0, 1}n as follows. Fix a ∈ {0, 1}n
be any vector. Let 1a = {i | a(i) = 1} and 0a = {i | a(i) = 0}, and thus, |1a|+ |0a| = n.
For a vector a ∈ {0, 1}n, define the partitioning function ρa by ρa(xi) = yi if i ∈ 1a and
ρa(xi) = zi otherwise, i.e. if i ∈ 0a. Let Img(ρa) denote the subset of Y ∪ Z that ρa maps
the set X to. Let Ya = Y ∩ Img(ρa) and let Za = Z ∩ Img(ρa). If the vector a is balanced8
then we also get that |Ya| = |Za| = n/2. For a balanced vector a, we call ρa a balanced
partition.

Note that given any a ∈ {0, 1}n and any multilinear polynomial f ∈ F[X,W ], the
partitioning function ρa defines by substitution a multilinear9 polynomial in F[Ya ∪Za ∪W ],
which we denote f |ρa . We will consider f |ρa as a polynomial in G[Ya ∪ Za].

For any disjoint sets of variables Y ′ and Z ′, let g ∈ G[Y ′∪Z ′] be a multilinear polynomial.
Define the 2|Y ′| × 2|Z′| matrix M(Y ′,Z′)(g) whose rows and columns are labelled by distinct
multilinear monomials in Y ′ and Z ′ respectively and the (m1,m2)th entry of M(Y ′,Z′)(g)
is the coefficient of the monomial m1 ·m2 in g. We will use the rank of this matrix as a
measure of the complexity of g.

We define the relative-rank of g w.r.t. (Y ′, Z ′), denoted relrk(Y ′,Z′)(g), by

relrk(Y ′,Z′)(g) =
rank(M(Y ′,Z′)(g))

2(|Y ′|+|Z′|)/2 .

The above notion is implicit in the work of Nisan and Wigderson [20] and Raz [22].
We note the following properties of relative rank.

I Proposition 4. Let g, g1, g2 ∈ G[Y ′ ∪ Z ′] be multilinear polynomials.
1. relrk(Y ′,Z′)(g) ≤ 1. Further if |Y ′| 6= |Z ′|, then relrk(Y ′,Z′)(g) ≤ 1/

√
2.

2. relrk(Y ′,Z′)(g1 + g2) ≤ relrk(Y ′,Z′)(g1) + relrk(Y ′,Z′)(g2).
3. If Y ′ is partitioned into Y ′1 , Y ′2 and Z ′ into Z ′1, Z ′2 with gi ∈ G[Y ′i ∪ Z ′i] (i ∈ [2]), then

rank(M(Y ′,Z′)(g)) = rank(M(Y ′
1 ,Z

′
1)(g1))·rank(M(Y ′

2 ,Z
′
2)(g2)). In particular, relrk(Y ′,Z′)(g1·

g2) = relrk(Y ′
1 ,Z

′
1)(g1) · relrk(Y ′

2 ,Z
′
2)(g2).

2.3 Explicit ε-biased spaces
The following notions are borrowed from [2]. For any a,b ∈ {0, 1}n, let (a,b)2 denote the
inner product of the binary vectors a and b modulo 2, that is, (a,b)2 =

∑n
i=1 a(i) · b(i)

(mod 2).

I Definition 5. Let S be a multiset in {0, 1}n. Let x = (x1, x2, . . . , xn) be chosen uniformly
from S. The multiset S is said to be an ε-biased space if for every b = (b1, b2, . . . , bn) ∈

7 If n is odd, everything will work as is with n replaced by n− 1.
8 A vector a ∈ {0, 1}n is said to be balanced if |1a| = |0a|.
9 The polynomial is multilinear by the injectivity of ρa.
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{0, 1}n \ {0}n, the random variable (x,b)2 is ε-biased. That is, for all b ∈ {0, 1}n \ {0}n,∣∣∣∣ E
x∈S

[(−1)(x,b)2 ]
∣∣∣∣ ≤ ε.

A standard probabilistic argument implies the existence of ε-biased spaces of size O(n/ε2).
Explicit constructions of size poly(n/ε) were first presented by Naor and Naor in [19]. We
use the following construction of Alon, Goldreich, Håstad and Peralta [2].

I Theorem 6 ([2], Proposition 3). There is a deterministic algorithm, which given as input
n ∈ N and ε > 0, produces an ε-biased set S of size O(n2/ε2) in time poly(|S|).

3 The hard polynomial and restrictions

3.1 Subspace-avoiding sets
I Definition 7. We say that a multiset S ⊆ {0, 1}n is (ε, k)-subspace avoiding if for any
affine subspace V of {0, 1}n (here identified with Fn2 ) with co-dimension k,

Pr
x∈S

[x ∈ V ] ≤ 1
2k + ε.

The above definition is quite similar to the notion of subspace evasive sets that have
been studied in the literature (see, e.g. [10]). However, there also seems to be a crucial
difference between the two settings, since in [10] the interest is in evading subspaces of small
dimension whereas we are trying to avoid subspaces of somewhat large but still relative
small co-dimension. In particular, it is not clear to us if [10] can be used to give better
constructions of subspace avoiding sets than the ones we obtain here.

The following fact is immediate from the definition above.

I Fact 8. If k = 10 log 1
ε and S is an (ε, k)-subspace avoiding set, then Prx∈S [x ∈ V ] ≤ 2ε.

It is a standard fact [19, 9] that ε-biased spaces are in particular (ε, k)-subspace avoiding.
We state this claim below. The proof is omitted for lack of space.

I Claim 9. Any ε-biased space S is also an (ε, k)-subspace avoiding set.

We will use the vectors from an (ε, k)-subspace avoiding set to define our hard polynomial.
For reasons that will become apparent, it is helpful to have the vectors in the subspace
avoiding set to be balanced, i.e. have an equal number of 0s and 1s. However, a priori, there
is no reason to assume that the vectors we obtain via some construction of such a set will be
balanced. In order to make them balanced, we will use the following trick.

For i ∈ [n], let αααi ∈ {0, 1}n denote the vector defined by αααi(j) = 0 if j > i and αααi(j) = 1
otherwise. Let 0 denote the all zero vector, i.e. 0 = 0n. Let V = {ααα1,ααα2, . . . ,αααn,0}. Note
that, for any a ∈ {0, 1}n, there exists an x ∈ V such that a⊕ x is balanced. In particular for
x ∈ V chosen at random, the probability that a ⊕ x is balanced is at least 1/(n+ 1).

Now, let S be an (ε, k)-subspace avoiding set. Let S ⊕ x denote the set of all vectors
obtained by shifting all the vectors in S by x, i.e. S ⊕ x = {a ⊕ x | a ∈ S}. We have the
following easily verifiable fact.

I Fact 10. Let S be an (ε, k)-subspace avoiding set. Then for each x ∈ {0, 1}n, S ⊕ x is
also an (ε, k)-subspace avoiding set.

ICALP 2018



36:8 A Quadratic Size-Hierarchy Theorem for Small-Depth Multilinear Formulas

For any x, let Bx be the balanced vectors in S ⊕ x. From our reasoning above, we get
that Ex∈V [|Bx|] ≥ |S|/(n + 1). By averaging, we see that there exists an x ∈ V such that
|Bx| ≥ |S|/(n+ 1). We will now fix such an x. We will denote it by x0 and work with some
B ⊆ Bx0 of size exactly d|S|/(n+ 1)e. Clearly, given S, such an x0 and B can be found in
time poly(|S|, n) by simply computing all the sets S ⊕ x (x ∈ V) and counting the number
of balanced vectors in them.

We have shown the following claim.

I Claim 11. Let S ⊆ {0, 1}n be any (ε, k)-subspace avoiding set. Then, there is an x0 ∈
{0, 1}n and a set B of balanced vectors from S ⊕ x0 such that |B| = Θ(|S|/n). Further, given
S, such an x0 and B can be found deterministically in time poly(|S|, n).

3.2 The hard polynomial
We now define the explicit polynomial family that we will use to prove our size hierarchy
theorem.

Let n ∈ N be any positive even integer and let ε > 0 be any positive real parameter. Let
Sn,ε be the explicit ε-biased space from Theorem 6. We further fix an x0 ∈ {0, 1}n and a set
B of balanced vectors from Sn,ε ⊕ x0 such that |B| = Θ(|Sn,ε|/n) as guaranteed to exist by
Claim 11. Note that by Theorem 6 and Claim 11, |B| can be computed in time poly(n/ε).
We denote |B| by τ.

Fix any a ∈ B. Let 1a = {i1, . . . , in/2} and 0a = {j1, . . . , jn/2}, where i1 < i2 < . . . < in/2

and j1 < j2 . . . < jn/2. Define Γa(X) =
∏n/2
t=1(xit + xjt

).
We will use Γa(X) for a ∈ B to define our hard polynomial. As in [22, 24] we define such

a polynomial using a set W of auxiliary variables. Intuitively, the variables W help us in
tagging a certain polynomial Γa(X) with the appropriate vector a from the set B. We will
now formally describe this idea.

Since |B| = τ , we can fix a one-one map C : B → {0, 1}log τ . Let the vectors in B
be enumerated in some arbitrary order, say a1, . . . ,aτ . For an index i ∈ [τ ], let C(ai) =
(ui,1 . . . , ui,T ). We will denote this vector by ui, we will call ui the encoding of ai.

Let T = log τ . Let W = {w1, . . . , wT } be a new set of auxiliary variables. For a
vector u ∈ {0, 1}T , let φu(j) = wj if uj = 1 and φu(j) = 1 − wj otherwise. Then let
Wu =

∏
j∈[T ] φu(j). We will say that a polynomial Wu is the label of the vector u. We will

say that the tagging of the polynomial Γa(X) is obtained by multiplying Γa(X) with the label
of the encoding of a, i.e. with WC(a). Note that, given a ∈ B, the polynomial WC(a) · Γa(X)
can be computed by a depth-2 multilinear formula, which itself can be constructed in time
poly(n, τ) = poly(n/ε).

We are now ready to define our hard polynomial.

Pn,ε(X,W ) =
∑
a∈B

WC(a) · Γa(X).

We have the following.

I Lemma 12. The polynomial Pn,ε(X,W ) can be computed by a depth 3 multilinear formula
Fn,ε of size s = O(τ(n+2 log τ)) = O(n2/ε2+(n/ε2) log(n/ε)) that can be constructed in time
poly(s). Further, there is a deterministic poly(s)-time algorithm that, given a multilinear
monomial m over the variables X ∪W , computes the coefficient of m in Pn,ε(X,W ).

Proof. Everything but the last statement is immediate from the preceding discussion. To
prove the final statement, it suffices to note that the coefficient of m can be found in each
constituent depth-2 formula in time poly(n) = poly(s). Summing these coefficients yields the
coefficient of m in Pn,ε(X,W ). J
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Another property of our hard polynomial that is true by construction is the following.

I Lemma 13. For any n ∈ N and ε > 0, let Pn,ε(X,W ) ∈ F[X,W ] be the polynomial
defined above, which we will consider as a polynomial from G[X] where G = F(W ). For any
a ∈ B, let restriction ρa : X → Y ∪ Z be the restriction as defined in Section 2.2. Then
relrk(Ya,Za)(Pn,ε(X,W )|ρa) = 1.

Proof. Fix any a ∈ B and consider the balanced partition ρa : X → Ya ∪ Za. We analyze
the partial derivative matrix M(Ya,Za)(Pn,ε(X,W )|ρa) whose entries are polynomials over
the variables in W . To show that relrk(Ya,Za)(Pn,ε(X,W )|ρa) = 1, we need to show that
M(Ya,Za)(Pn,ε(X,W )|ρa) is a full rank matrix over G. Towards that, it is sufficient to show
that det(M(Ya,Za)(Pn,ε(X,W )|ρa)) is a non-zero polynomial over the variables in W . Further,
it is enough to show that there is an assignment A : W → {0, 1} to the W -variables such
that det(M(Ya,Za)(Pn,ε(X,A(W ))|ρa)) evaluates to a non-zero value. This is what we will do.
(A similar proof strategy is used in the proof of Claim 4.6 in [3].)

Let the vector u = C(a). For all i ∈ [log τ ], A sets the variable wi to 1 if ui = 1 and 0
otherwise. Now, it is easy to see that Pn,ε(X,A(W )) = Γa(X). This also implies that

det(M(Ya,Za)(Pn,ε(X,A(W ))|ρa)) = det(M(Ya,Za)(Γa(X)|ρa))

Now it is easy to check that M(Ya,Za)(Γa(X)|ρa) is a permutation matrix and hence
det(M(Ya,Za)(Γa(X)|ρa)) is non-zero. This implies that det(M(Ya,Za)(Pn,ε(X,A(W ))|ρa))
is non-zero as well. Thus, det(M(Ya,Za)(Pn,ε(X,W )|ρa)) is a non-zero polynomial over the
variables in W and we get that M(Ya,Za)(Pn,ε(X,W )|ρa) is a full rank matrix. J

4 The lower bound

In this section, we show that for f , a t-product polynomial, and a chosen randomly from an
(ε, 10 log(1/ε))-subspace avoiding set, the polynomial f |ρa has low relative-rank with high
probability. We then use this to prove the main theorem.

I Lemma 14. Let s ∈ N and ε > 0 be parameters such that s ≥ 1/ε. Let f ∈ G[X] be
a t-product polynomial with t ≥ (log s)3. Let S0 be any (ε, 10 log 1

ε )-subspace avoiding set
defined in Section 3.2. For any a ∈ {0, 1}n, let ρa denote the partitioning function defined in
Section 2.2. Then,

Pr
a∈S0

[relrk(Ya,Za)(f |ρa) ≥ 1
s

] ≤ 5 · ε.

Proof of Lemma 14. For all k ∈ [t], let r(k) = (r(k)
1 , r

(k)
2 , . . . , r

(k)
n ) be a vector in {0, 1}n

such that

r
(k)
i =

{
1 if xi ∈ Vars(fk),
0 otherwise.

Let Ek(a) be a 0-1 random variable defined as follows. If |Vars(fk)| is odd, Ek(a) is always 0.
Otherwise, define βk = |Vars(fk)| /2 (mod 2) and

Ek(a) =
{

1 if (r(k),a)2 = βk,

0 otherwise.

The main step in the proof of Lemma 14, is the following claim.
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I Claim 15. If S0 is a (ε, 10 log 1
ε )-subspace avoiding set, then Pra∈S0 [

∑
k∈[t] Ek(a) ≥ t −

2 log s] ≤ 5 · ε.

First, we will prove Lemma 14 using this claim. In order to do that, we will show that
for all a ∈ S0 the condition that (

∑
k∈[t] Ek(a) < t− 2 log s implies relrk(Ya,Za)(f |ρa) ≤ 1

s .
For any vector a ∈ S0 and for k ∈ [t], let Yk,a = ρa(Vars(fk)) ∩ Ya and let Zk,a =

ρa(Vars(fk)) ∩ Za. By Item 3 in Proposition 4 we know that

relrk(Ya,Za)(f |ρa) =
∏
k∈[t]

relrk(Yk,a,Zk,a)(fk|ρa).

We claim that for any k ∈ [t], if Ek(a) = 0, then relrk(Yk,a,Zk,a)(fk|ρa) ≤ 1/
√

2. To see this,
note that, for any k ∈ [t], Ek(a) = 1 if and only if |Vars(fk)| is even and (r(k),a)2 = βk. Now,
if |Vars(fk)| is odd then we can never have |Yk,a| = |Zk,a| and hence by Item 1 of Proposition 4,
relrk(Yk,a,Zk,a)(fk|ρa) ≤ 1/

√
2. Further, if |Vars(fk)| is even and |Yk,a| − |Vars(fk)| /2 6= 0

(mod 2), then again we must have |Yk,a| 6= |Zk,a| and hence relrk(Yk,a,Zk,a)(fk|ρa) ≤ 1/
√

2.
Now if

∑
k∈[t] Ek(a) ≤ t− 2 log s then there exist at least (2 log s) elements k ∈ [t] such

that Ek(a) = 0. Hence, relrk(Ya,Za)(f |ρa) ≤ (1/
√

2)2 log s ≤ 1/s.
Thus, in order to upper bound the probability of the event that relrk(Ya,Za)(f |ρa) ≥ 1/s,

it suffices to upper bound the probability of
∑
k∈[t] Ek(a) ≥ t− 2 log s, which by Claim 15 is

at most 5ε. This concludes the proof of Lemma 14.
It remains to prove Claim 15, which we do now. The proof follows a combinatorial proof

of the Chernoff bound due to Impagliazzo and Kabanets [16].

Proof of Claim 15. Let ` = t − 2 log s and E(a) =
∑
k∈[t] Ek(a). Let R(a) be a Boolean

random variable such that

R(a) =
{

1 if
∑
k∈[t] Ek(a) ≥ `,

0 otherwise.

Thus, Pra∈S [E(a) ≥ `] = Ea∈S [R(a)]. Fix a vector a. Let R̃(a) ∈ [0, 1] be the random
variable defined by R̃(a) = EA[

∏
i∈A Ei(a)], where A ⊆ [t] is an independently and uniformly

randomly chosen subset of size 2 log s.
We claim that for every a ∈ S0, R(a) ≤ 2 · R̃(a). Assuming this, we get the following.

Pr
a

[
∑
k∈[t]

Ek(a) ≥ `] = E
a

[R(a)] ≤ 2 E
a

[E
A

[
∏
i∈A
Ei(a)]]

= 2 E
A

[E
a

[
∏
i∈A
Ei(a)]] = 2 E

A
[Pr

a
[
∏
i∈A
Ei(a) = 1]]. (3)

Consider an individual term EA(a) :=
∏
i∈A Ei(a) in the above expression. We claim

that Ea[EA(a)] ≤ 2ε. To see this, note that we have one of the following two scenarios.
Either A contains an i such that |Vars(fi)| is odd, in which case EA(a) = Ei(a) = 0
with probability 1. Otherwise, |Vars(fi)| is even for each i ∈ A and then a satisfies
EA(a) = 1 if and only if a satisfies the system of linear equations {(a, r(i))2 = βi | i ∈ A}.
Since the r(i)’s are non-zero and linearly independent, this system of equations defines
an affine subspace of codimension |A| = 2 log s. Now, by invoking Claim 9, we get that
Pra[

∏
i∈A Ei(a) = 1] ≤ 1/s2 + ε ≤ 2ε, where the final inequality uses s ≥ 1/ε. Substituting

this back in (3), we get that Pra[E(a) ≥ `] ≤ 4ε.
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To complete the proof, we need to show that for every a ∈ S0, R(a) ≤ 2R̃(a). If R(a) = 0,
then this statement is trivial. If not, R(a) = 1. That is, there exist at least ` many k ∈ [t]
such that Ek(a) = 1. Then,

R̃(a) = E
A

[
∏
i∈A
Ei(a)] = Pr

A
[for all i ∈ A, Ei(a) = 1] ≥

(
`

2 log s
)(

t
2 log s

) =
(
t−2 log s

2 log s
)(

t
2 log s

) ≥ 1/2,

where the final inequality follows from the fact that t ≥ (log s)3. This completes the proof of
Lemma 14. J

The main theorem

We now prove our main theorem. It is restated here for the sake of convenience.

I Theorem 16. For any fixed positive c ∈ N and δ ∈ (0, 1/2), there exists an explicit
polynomial family Pn ∈ F[x1, . . . , xn] that has multilinear formulas of depth 3 and size at
most O(s) where s = nc, but no multilinear formulas of size less than s(1/2)−δ and depth
∆ < logn/100 log logn.

Proof. We first show that we can assume without loss of generality that c ≥ 10/δ. Say this
is not the case: we then have s = nc < n10/δ. Now, let m = sδ/10 ≤ n. We will then define a
polynomial over only the variables {x1, . . . , xm}. So the number of variables reduces to m
and s = m10/δ (in particular, the new value of c is now 10/δ). Thus, we can always reduce
the problem to the case when c ≥ 10/δ.

So we assume without loss of generality that s ≥ n10/δ. We will fix our polynomial
Pn to be Pn/2,ε(X,W ) as defined in Section 3.2 for ε = n/

√
s, where the variable set

X = {x1, · · · , xn/2} and W ⊆ {xn/2+1, . . . , xn} is some fixed set of size log τ ≤ log s (since
s ≤ nc, it is clear that log s ≤ n/2). From Lemma 12, we know that {Pn | n ∈ N} is an explicit
family of multilinear polynomials such that each Pn is computed by a depth three multilinear
formula of size O(s). Further, from Lemma 13, we get that relrk(Ya,Za)(Pn(X,W )|ρa) = 1
for every choice of a ∈ B, where B is as defined in Section 3.2.

Let us assume that Pn can be computed by a depth ∆ multilinear formula Φ of size
s′ < s1/2−δ. We consider Pn(X,W ) as a polynomial from the ring G[X] where G = F(W ).
We also consider Φ as a multilinear formula computing a polynomial from G[X] (i.e. we
consider the variables from W in Φ as constants from the underlying field G.)

From Lemma 3, we know that Pn can be written as a sum of at most s′′ = s′ · n many
t-product polynomials where t = Ω(n1/2∆). Note that as ∆ < logn/100 log logn, we have
t = Ω((logn)50) ≥ (log s)40, the latter inequality following from the fact that log s = O(logn).

Assume that the t-product polynomials in the above decomposition are f1, . . . , fs′′ ∈ G[X].
So, we have Pn =

∑
i∈[s′′] fi. We would like to show that

Pr
a∈B

[relrk(Ya,Za)(Pn|ρa) < 1] > 0 (4)

which would contradict Lemma 13 and hence prove the theorem.
In order to prove inequality (4), by the sub-additivity property (Proposition 4 Item 2) of

the relative-rank, it suffices to show the following.

Pr
a∈B

[∀i ∈ [s′], relrk(Ya,Za)(fi|ρa) < 1/s′′] > 0.

Equivalently, it suffices to prove that

Pr
a∈B

[∃i ∈ [s′′], relrk(Ya,Za)(fi|ρa) ≥ 1/s′′] < 1. (5)
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Recall from Section 3.2 that the set B is defined to be a subset of the set S0 = Sn,ε ⊕ x0
of size τ = Θ(|S0|/n). Also, by Claim 9 and Fact 10, it follows that S0 is an (ε, 10 log(1/ε))-
biased set. By using Lemma 14, we get that for each t-product polynomial fi, we have
that

Pr
a∈S0

[relrk(Ya,Za)(fi|ρa) ≥ 1
s

] ≤ 5ε.

Therefore, by a simple union bound, we get that

Pr
a∈S0

[∃i : relrk(Ya,Za)(fi|ρa) ≥ 1
s

] ≤ 5s′′ · ε. (6)

As B is a subset of S0, we get that

|B|
|S0|
· Pr

a∈B
[∃i : relrk(Ya,Za)(fi|ρa) ≥ 1

s
] ≤ Pr

a∈S0
[∃i : relrk(Ya,Za)(fi|ρa) ≥ 1

s
]. (7)

Hence, using the inequalities (6), (7) and the fact that |B|/|S0| = Θ(1/n), we get

Pr
a∈B

[∃i : relrk(Ya,Za)(fi|ρa) ≥ 1
s

] ≤ O
(
s′′n2
√
s

)
≤ s′n4
√
s
. (8)

As s ≥ n10/δ we get n4 ≤ sδ/2. Therefore, as long as s′ ≤ O(s1/2−δ), inequality (5) is
satisfied, which then implies that inequality (4) is also satisfied.

If inequality (4) is satisfied, then there exists a partitioning function ρa for a ∈ B such that
relrk(Ya,Za)(Pn|ρa) < 1. This contradicts Lemma 13 which tells us relrk(Ya,Za)(Pn|ρa) = 1
with respect to every partitioning function ρa (a ∈ B). J
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