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Abstract

Given a polynomial fpx1, . . . , xN q, we can wonder how we can evaluate it with a minimal
number of arithmetic operations. Indeed, the task of the algorithm designer is to find evolved
processes which decrease this number. In the other direction, it could be interesting to be
able to prove that there is no algorithm which does the computation in less than some
number of operations. But how one could prove something like that? We will present here
some methods which allow us to tackle the problem in the case of constant-depth algebraic
circuits.

1 Definitions and notations

To show that P ‰ NP, it would be sufficient to show that a chosen NP-complete problem is
hard to solve: for example, in a given undirected graph, find a Hamiltonian cycle – i.e., a cycle
which passes once and only once through each vertex. Let us consider the polynomial

HamCycnpx1,2, x1,3, . . . , xn´1,nq “
ÿ

pi1,i2,...,inq Hamiltonian cycle of Kn

xi1,i2xi2,i3 ¨ ¨ ¨xin,i1

where Kn stands for the complete undirected graph over n vertices (and the variable xi,j can be
interpreted as the edge between the vertices i and j). It is a homogeneous polynomial of degree
n with

`

n
2

˘

variables. Moreover, on a t0, 1u-input, it equals 0 if and only if the corresponding
graph (where the edge pi, jq belongs to the graph exactly when xi,j “ 1) does not contain any
Hamiltonian cycle. Consequently, we expect that such a polynomial should be hard to evaluate.
A natural approach for doing such calculations is to only compute arithmetic operations on
inputs and on constants. Would it be possible to show that, by restricting ourselves to these
types of operations, we cannot evaluate such polynomials efficiently?

Algebraic circuits and formulas

We want a model of computation for evaluating polynomials over a field F where the elementary
operations are the arithmetic ones. We will often use capital letters such as X to denote a vector
or a set of variables. Let us mimic the constructions of the Boolean circuits and formulas.

An algebraic circuit is a directed acyclic graph. The leaves (with fan-in 0) are labelled
by variables or constants from the field F. The internal nodes are labelled by the arithmetic
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operations: “`” or “ˆ”.1 Recursively, each gate computes a polynomial. A polynomial is
computed by the circuit if it is computed by one of its gates.

If the undirected graph is in fact a tree (i.e., there is no undirected cycle), we will call the
model an algebraic formula. One can notice that such a representation corresponds exactly to
the usual algebraic formulas (hence the name) where the tree structure is given by the operator
precedences.

The complexity of the models will be measured by two parameters. First, the size of the
circuit corresponds to the number of gates in it. It describes the number of elementary operations
performed during the process. Then, the depth is the length of the longest path in the directed
graph. An intuitive interpretation is as follows. Let’s say we work with a parallel machine
with enough processors, we will launch an elementary calculation of the process as soon as its
inputs have been previously calculated. The depth then describes the time of this parallelized
computation.

Classes

Following the Boolean approach, we will define classes of polynomials with respect to their
hardness. As we still want to compare their asymptotic complexity, we will formally focus on
sequences of polynomials. We will consider for example the sequence pHamCycnqnPN. We will
say that the size-complexity of pHamCycnq is at most psnq P NN if for any n, there is an algebraic
circuit Cn of size at most sn which computes the polynomial HamCycn.

In the following we will focus on sequences of polynomials pPnq P FrXsN where the number
of variables (|X|) and the degree (degpPnq) are polynomially bounded by n. To harmonize the
notations, we will denote by N the number of variables. The restriction on the degree might
seem artificial, but it avoids that algebraic models become superpolynomially stronger than their
Boolean counterparts (indeed, the Boolean models can simulate the algebraic ones by doing the
computations bit-wise, which requires us to maintain values with polynomial bit-sizes).

Particularly, we define the class VP to be the class of sequences of polynomials pfnq such
that there exists a polynomial π P Zrns upper-bounding for any n P N

1. the number N of variables of fn,

2. the degree of fn,

3. and the size of the smallest algebraic circuit computing fn.

Then, we define the class VNP to be the class of sequences of polynomials pfnq such that
there exists a sequence pgnq P VP verifying

fnpXq “
ÿ

εPt0,1uπpnq

gnpX, εq.

More intuitively, a sequence of polynomials is in the class VNP if, given n (in unary) and a
monomial m, we can efficiently2 compute the coefficient of m in fn. For example, this is the
case for our polynomial HamCycn, so it belongs to the class VNP.

We define VF similarly to VP by replacing “circuit” by “formula”. Clearly, since any formula
is also a circuit, it implies that VF is a subset of VP.

1One can also allow the circuits to use divisions, but it is possible to show that divisions can be eliminated at
a small cost. [Str73]

2The constraint here is stronger than required, since it is sufficient that the computation can be done in
GapP/poly.
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We will finally need a notion of reducibility. Let us consider a polynomial projection: pfnq
is reducible to pgnq if there is a polynomial π and affine forms `n P FrXs such that for any n
and any entry X we have fnpXq “ gπpnqp`npXqq.

One can notice that the defined classes are stable with respect to this reduction.
Let us introduce a polynomial which will interest us particularly in the following. We call

it IMM for Iterated Matrix Multiplication.

IMMn,d “
ÿ

1ďi1,i2,...,id´1ďn

x
p1q
1,i1
x
p2q
i1,i2

¨ ¨ ¨x
pdq
id´1,1

.

It is a homogeneous polynomial of degree d with dn2 variables. The semantic interpretation of
this polynomial is quite clear: if we consider the d pn ˆ nq-matrices Xpiq given by the entries

x
piq
u,v, then IMMn,d is just the p1, 1q-th entry of the matrix product Xp1q ¨Xp2q ¨ ¨ ¨Xpdq.

We can define the class VBP as the class of polynomials which are reducible to IMMn,n.
This class is interesting since it contains several natural families of polynomials. For example,
the polynomial Detn obtained by taking the determinant of a matrix of nˆn distinct variables
is complete for VBP.

We know that VF Ď VBP Ď VP Ď VNP. But it is still unknown if any one of these
inequalities is strict, and even, if VF is strictly contained in VNP. Proving this requires us
to prove a superpolynomial lower bound on the size of any algebraic formula computing a
VNP-complete sequence of polynomials, such as HamCycn.

Finally, we will be particularly interested in circuits which have constant depth. We already
noticed that formulas are, in particular, circuits. In the other direction, it is always possible to
transform a circuit of size s and depth δ into a formula of depth δ by duplicating the subtrees
as many times as necessary. The cost of this transformation is that the size blows up to at
most sδ. However, in the setting of constant-depth models, this blow-up is only polynomial.
So, if we are looking for superpolynomial lower bounds, it makes no difference whether we
consider constant-depth circuits or formulas. Furthermore, notice that it is always possible, up
to multiplying the depth by at most two, to have a layered circuit where the top node (of depth
0) is an addition gate, all internal nodes at even depth are additions, and all internal nodes
at odd depth are multiplications. In particular, such a depth-2 circuit is a sum of products
of variables and constants. We call such a circuit a ΣΠ-circuit. Similarly, we will use ΣΠΣ,
ΣΠΣΠ, ΣΠΣΠΣ, ... to denote such depth-3, depth-4, depth-5 circuits and so on.

Homogeneous, Multilinear, and Set-multilinear circuits

It often happens that the polynomials for which we expect to prove lower bounds have additional
structure which we can hope to exploit to prove the lower bounds. This structure may be
homogeneity, which means that all monomials have the same degree d; multilinearity, which
means that no variable appears with degree more than 1 in any monomial; or set-multilinearity,
which means that the underlying set of variables is partitioned into some d sets X1, . . . , Xd, and
each monomial contains precisely one variable from each set.3

Notice that a set-multilinear polynomial P is both multilinear and homogeneous. The
prototypical example of such a polynomial is the Iterated Matrix Multiplication polynomial
IMMn,d where the corresponding partition of the variable set is the partition into the d matrices
Xp1q, . . . , Xpdq. Another important example is the determinant Detn of an nˆn matrix X, which
is set-multilinear w.r.t. the partition of the matrix into its rows, or its columns.

3Strictly speaking, we should speak about set-multilinear polynomials with respect to a given variable partition.
But we assume that the variable partition is known from context.

3



Given the problem of computing a polynomial P that is structured (homogeneous, multi-
linear or set-multilinear), it is natural to consider circuits for this problem that are structured
in a similar way. This leads to the definition of homogeneous, multilinear and set-multilinear
circuits. A homogeneous circuit is one where each intermediate gate of the circuit computes
a homogenous polynomial (of possibly a different degree than P ). We can similarly define
multilinear and set-multilinear circuits respectively.

The assumption that the circuit shares the same structure as the polynomial P is not with-
out loss of generality. For instance, it is possible that the most efficient circuit of some form
that computes a homogeneous polynomial P is inhomogeneous, i.e. it possibly computes some
intermediate polynomials that are inhomogeneous, but by virtue of some cancellations, the final
polynomial computed is indeed the homogeneous polynomial P . For an interesting example of
this kind, we refer the reader to Ben-Or’s construction described below, which gives quadratic-
sized inhomogeneous ΣΠΣ formulas of size for the elementary symmetric polynomial Enn{2. On

the other hand, Nisan and Wigderson [NW97] showed that any homogeneous ΣΠΣ formula for
Enn{2 is of exponential size. Another important example is that of the nˆn determinant polyno-

mial Detn which is a multilinear polynomial that is known to have (non-multilinear) algebraic
circuits of polynomial size, but not known to have multilinear circuits of sub-exponential (i.e.
exppnop1qq) size.

Nevertheless, we can show many statements to the effect that the existence of an efficient
(unstructured) algebraic circuit leads to the existence of a somewhat less efficient (in terms of
both size and depth) structured algebraic circuit. We refer to such statements as escalation
results, as they allow us to escalate a lower bound against a (seemingly) weaker family of
algebraic circuits to a stronger one. Some examples of such escalation results from the literature
are given below.

Theorem 1 (Escalation theorems). 1. [Str73] If P is a homogeneous polynomial of degree
d that has a circuit of size s, then it has a homogeneous circuit of size polyps, dq.

2. [NW97] If P is a set-multilinear polynomial of degree d that has a circuit of size s, then
it has a set-multilinear circuit of size polyps, 2dq.

3. [Raz13] If P is a set-multilinear polynomial of degree d that has a formula of size s, then
it has a set-multilinear formula of size polyps, ddq.

4. [SW01, LST21b] Assume that the field F has characteristic 0. If P is a homogeneous
polynomial of degree d that has a circuit of size s and depth p, then it has a homogeneous
circuit of depth 2p´ 1 and size polyps, 2Op

?
dqq.

5. [NW97, SW01, CKSV16, LST21b] Assume that the field F has characteristic 0. If P is
a set-multilinear polynomial of degree d that has a circuit of size s and depth p, then it
has a set-multilinear circuit of depth 2p´ 1 and size polyps, ddq.

These results imply that strong enough lower bounds against structured algebraic circuit
models imply lower bounds against more general models as well. For instance, the first result
says that if a sequence of homogeneous polynomials Pn cannot be computed by homogeneous
algebraic circuits of polynomial size, then they cannot be computed by any kind of algebraic
circuits of polynomial size. The latter three statements yield similar consequences for formu-
las and bounded-depth circuits, but under the additional condition that the degree d of the
polynomials is sufficiently bounded: something like d “ OplogN{ log logNq is sufficient. For
example, the last statement tells us that to prove superpolynomial lower bounds against gen-
eral depth-3 algebraic circuits, it suffices to prove superpolynomial lower bounds against depth-5
set-multilinear algebraic circuits in this low-degree setting.
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Polynomial Identity Testing Problem

We will consider the following algorithmic problem: Given a circuit which computes a polyno-
mial P , determine whether P is identically zero or not. This problem, called Polynomial Identity
Testing (PIT), is a fundamental problem in algebraic complexity. Its importance comes from
its numerous applications. Fore example, it appears in algorithms for finding perfect matchings
in graphs [Lov79, MVV87, FGT19], for primality testing [AB03, AKS04], or for polynomial
factoring [KSS14, DSS18]. Several other applications can be found in [SY10].

This problem has mainly two different settings. In the first setting, the algorithm can only
access the polynomial P by querying the value of P on inputs of its choice. This is called
the blackbox model. In this case, finding a PIT algorithm is equivalent to creating an efficient
hitting-set H, i.e. a set verifying that if P is a non-zero polynomial, then there is an a P H such
that P paq ‰ 0. In the second setting, the algorithm has access to the circuit which represents
P . This is called the whitebox model.

In both settings, however, the problem seems to be quite hard. Until very recently, sub-
exponential-time deterministic PIT algorithms were known only in restricted models such as
noncommutative algebraic formulas [RS05, GGOW16], depth-3 circuits with bounded top fan-
in [DS07, KS11, KS07, SS12] and some restricted versions of depth-4 circuits [KMSV13, SV18,
PS20, PS21, DDS21].

The mention of determinism is important since even in the general case, there is a clever ran-
domized algorithm which efficiently solves PIT (based on the DeMillo-Lipton-Schwartz–Zippel
lemma [Zip79, Sch80, DL77]). On the other hand, as mentioned above, we struggle to obtain
even sub-exponential time deterministic algorithms for restricted families of circuits. One reason
for this hardness comes from its intimate connection to algebraic complexity. Indeed, Kabanets
and Impagliazzo [KI04] showed that finding an efficient deterministic algorithm for PIT implies
that either NEXP Ł P{poly or HamCycn has no polynomial-size algebraic circuits. But in the
same paper, they also showed an implication in the other direction. More precisely, they showed
that one can design quasi-polynomial time deterministic algorithms for PIT from strong enough
lower bounds against algebraic circuits.

Moreover, PIT is important even if we restrict ourselves to constant-depth circuits. Indeed,
Agrawal and Vinay [AV08] showed that polynomial-time deterministic algorithms for PIT for
depth-4 circuits imply exponential lower bounds against arbitrary algebraic circuits (and again
by [KI04], quasi-polynomial PIT for general circuits).

2 Power of constant-depth algebraic circuits

Let us consider the model of computation of depth-2 algebraic circuits. Let us search for a
candidate for a hard polynomial for this class, i.e., one that does not have such circuits of
small size. In fact, we can restrict ourselves to consider only irreducible polynomials (indeed, if

fpx1, . . . , xnq is an interesting hard polynomial, then gpx1, . . . , xn, yq
def
“ fpx1, . . . , xnq ` y will

be at least as hard than f). In particular, the output of our depth-2 circuit needs to be a sum
and the gates at depth 1 are product gates. Hence, such a circuit computes a polynomial as
the sum of its monomials. Consequently, given a polynomial with an exponential number of
monomials (for example IMMn,n or HamCycn), we can not compute it with a sub-exponential
size depth-2 algebraic circuit.

So constant-depth circuits seem to be a weak model of computation and so lower bounds
against them should be easy to achieve. We will see that is not really the case. Indeed, even
depth-3 circuits are surprisingly powerful.
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Relation between constant-depth Boolean and algebraic circuits

Since the 80s, we have known that constant-depth Boolean circuits cannot efficiently compute
some explicit Boolean functions. This is the case, for example, of the function Parity which
evaluates the parity of the number of 1-bits of the input [FSS84, Ajt83, H̊86]. Generally, Boolean
lower bounds are harder to achieve than their algebraic counterparts. The reason is that we can
usually simulate an algebraic computation with Boolean models (doing the computation on the
bits of the entries). However, let us consider the polynomial fpx1, . . . , xnq “

řn
i“1 xi which is

just the sum of its variables. This computation can be achieved by a depth-1 formula with n`1
gates (one internal sum and n leaves). Now, if we want to simulate this computation for an input
in t0, 1un with Boolean computations, we notice that the value of the least significant bit of the
output is just the parity of the number of 1s of the input. Computing such a parity is exactly a
problem which is not doable by sub-exponential size Boolean circuits! Consequently, constant-
depth algebraic circuits cannot be efficiently simulated by Boolean constant-depth circuits and
so, lower bounds against constant-depth circuits from the Boolean world are not sufficient to
imply lower bounds against their algebraic counterparts.

Ben-Or’s construction

We saw that constant-depth algebraic circuits can not be simulated by their Boolean analogs.
But does it mean that there are natural, seemingly complex polynomials which can be computed
by constant-depth algebraic circuits?

Let us consider the family of elementary symmetric polynomials

End px1, . . . , xnq “
ÿ

1ďi1ăi2ă¨¨¨ăidďn

xi1xi2 ¨ ¨ ¨xid .

This polynomial is an irreducible polynomial that is a sum of
`

n
d

˘

monomials. Thus, for d “ n{2
(say), this polynomial has exponentially many monomials. Hence, it does not have a small
depth-2 circuit.

Surprisingly, however, this polynomial can be computed by a small depth-3 circuit. Let us
consider this new family of polynomials where t is a fresh new variable

Enpx1, . . . , xn, tq “
n
ź

j“1

p1` txjq.

Then, if we see En as a univariate polynomial in Frx1, . . . , xnsrts, we notice that the poly-
nomial End is the coefficient of the monomial td in En. Moreover, the polynomial En is easy to
compute (a linear-size product of constant-size sums). So the question rises: is it possible to
interpolate efficiently the coefficient of an easy polynomial? The answer is yes!

Indeed, for any value of t P t0, 1, 2, . . . , nu,4 we get an identity

Enpx1, . . . , xn, tq “
n
ÿ

d“0

End px1, . . . , xnqt
d.

The matrix of the coefficients which appear in the system (where the End pxq stand for the

4We assume here that the field F is the field of the rational numbers. However, the same idea works as long
as the size of the field F is at least n` 1.
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variables) is just the Vandermonde matrix

Vandn
def
“ Vandp0, 1, . . . , nq “

¨

˚

˚

˚

˚

˚

˝

1 0 ¨ ¨ ¨ 0
1 1 ¨ ¨ ¨ 1
1 2 ¨ ¨ ¨ 2n

...
...

...
1 n ¨ ¨ ¨ nn

˛

‹

‹

‹

‹

‹

‚

which is invertible. If we call V n
d px1, . . . , xnq the matrix we get from Vandn by replacing its

dth column by the column vector tpEnpx, 0q, Enpx, 1q, . . . , Enpx, nqq. By Cramer’s formula, we
obtain that

End “ detpV n
d pxqq{detpVandnq.

The denominator is just a constant from F. The numerator is a linear combination of the
pEnpx, iqq0ďiďn with coefficients in F. Consequently,

End pxq “
n
ÿ

i“0

λn,di Enpx, iq “
n
ÿ

i“0

λn,di

n
ź

j“1

p1` ixjq

where the pλn,di q are constants in F.
In conclusion, we see that depth-3 algebraic circuits can compute elementary symmetric

polynomials in just quadratic size.

Depth reduction

More generally, we will see now that if we allow constant-depth circuits of sub-exponential size,
then we get a truly large class of polynomials, which includes the complexity class VP. This
family of results goes by the name of depth-reduction.

Reduction to logarithmic depth

Let us consider the polynomial IMMn,d we defined before. For simplicity, assume that d is a
power of two. It is well-known that the product of matrices is associative. In particular, for
computing a product of d matrices, we can start by computing the product of the d{2 first
matrices, then the product of the d{2 remaining last matrices, and we finish by computing the
product of the two matrices thus obtained.

The final product (of two matrices) can be computed by doing at most n3 operations5.
Hence, if we have a circuit of size sn,d{2 for computing the inputs of a product of d{2 matrices,
we can achieve a circuit of size at most 2sn,d{2 ` n3 which computes the entries of a product
of d matrices. Moreover, the depth of the new circuit is the one from the computation of the
product of d{2 matrices increased by adding two. Clearly, sn,1 “ n2, and so by induction,
sn,2k ď p2

k`1 ´ 1qn3.
Consequently, there exists an algebraic circuit of depth 2 log2 d and of size at most 2dn3

which computes the entries of a product of d matrices. In particular, IMMn,n can be computed
by polynomial-size circuits of depth Oplog nq.

Consequently, any polynomial from VBP can be computed by algebraic circuits of poly-
nomial size and logarithmic depth. In fact, it has been shown by Valiant, Skyum, Berkowitz,

5We only use a cubic bound since it is simpler and does not affect the message. However, it is well-known
that this bound can be improved (for example by Strassen’s algorithm). The current best bound is Opn2.3728596

q

from [AW21].
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and Rackoff [VSBR83] that it is also the case for any polynomial from the class VP. So, to
show that a polynomial is not in VP, it is sufficient to show that it cannot be computed by a
polynomial-size circuit which has logarithmic depth. Consequently, considering only polynomi-
als where the degree is polynomially bounded, finding super-polynomial lower bounds against
logarithmic-depth algebraic circuit is equivalent to getting similar bounds for general algebraic
circuits.

Reduction to constant depth

In the previous section, we parallelized circuits to obtain polynomial-size circuits of logarithmic
depth. But in fact, we do not even expect that VNP-complete polynomials (like HamCyc) have
circuits of sub-exponential size. So, we can wonder if we can get even a stronger parallelization
by allowing sub-exponential blow-up for the size (let us say Nopdq blow-ups). In fact, we can
again easily see that is the case for IMMn,d.

This time, by grouping the matrices in blocks of size
?
d (assume for simplicity that

?
d is

an integer), we can easily notice that

IMMn,d “
ÿ

1ďi1,i2,...,i?d´1ďn

pXp1qXp2q ¨ ¨ ¨Xp
?
dqq1,i1 ¨ ¨ ¨ pX

pd´
?
d`1q ¨ ¨ ¨Xpdqqi?d´1,1

.

The inputs of each block of matrix can be obtained by evaluating IMMn,
?
d. Furthermore,

IMMn,d can be obtained from the entries of the block matrices, by evaluating IMMn,
?
d again.

Overall, IMMn,d can be seen as a composition of two layers of IMMn,
?
d.

As IMMn,
?
d has n

?
d´1 monomials, it can be computed by a depth-2 circuit of size at most

dn
?
d´1. By composing the circuits, we get a depth-4 circuit of size p

?
d`1qpn2qdn

?
d´1 “ nOp

?
dq

(as long as n ě 2).
Furthermore, we can do a similar recursive construction to get a depth-6 algebraic circuit

of size nOpd
1{3q, or even for any p, a depth-2p algebraic circuit of size nOpd

1{pq.
Similar to what was done in the logarithmic-depth case, it was shown in a sequence of works

([AV08, Koi12, Tav15]) that such a parallelization can be achieved for any polynomial from VP.
That is to say, if f is a polynomial of degree d in VP, then for any p P Ně1, the polynomial f can

be computed by a depth-2p circuit of size NOpd1{pq, where N denotes the number of variables
of f .

Furthermore, such a parallelization maintains the homogeneity, multilinearity, and set-
multilinearity of the underlying circuit. That is, if f has a homogeneous, multilinear, or
set-multilinear circuit of polynomial size, then f also has a depth-2p circuit with the same
structure and size NOpd1{pq.

In a breakthrough work, Gupta, Kamath, Kayal, and Saptharishi [GKKS16] showed that
we can do even better, assuming that the underlying field F has characteristic 0 (e.g. when F is
the field of rational numbers). If f is a polynomial of degree d in VP, then for any odd p P Ně1,

the polynomial f can be computed by a depth-pp`1q circuit of size NOpd1{pq. In particular, any

polynomial from VP can be computed by depth-3 circuits of size NOp
?
dq.

However, this last transformation does not maintain at all the homogeneity, multilinearity,
or set-multilinearity of the underlying circuit.

Consequently, proving strong enough lower bounds (i.e., of the form Nωpd1{pq) against al-
gebraic circuits of depth p ` 1 already implies superpolynomial lower bounds against general
circuits. In this sense, proving lower bounds against constant-depth circuits can be seen as a
step to obtaining lower bounds against general circuits.

Finally, even the case of circuits of depth-3 seems very interesting. Indeed, we do not
expect that a polynomial like HamCyc can be computed by circuits of size NOp

?
dq. On the
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other hand, any polynomial from VP can be computed by depth-3 circuits of size NOp
?
dq. So,

characterizing the class of polynomials computed by depth-3 circuits of size NOp
?
dq should be

sufficient to separate VP from VNP.

3 Lower bounds against constant-depth circuits

While the problem of proving depth-2 lower bounds is easy, we have seen in the previous section
that the depth-3 case is already very interesting, with the potential of even being able to separate
VP from VNP. Lower bounds in this setting were first investigated in a very influential work of
Nisan and Wigderson [NW97], who proved such results for set-multilinear depth-3 circuits.

Depth-3 set-multilinear circuits and the Partial Derivative Method

We describe here the results of Nisan and Wigderson [NW97] which introduced a method for
proving lower bounds against set-multilinear and homogeneous depth-3 algebraic circuit models.
This method, called the Partial Derivative method, reduces the problem of proving lower bounds
for computing the polynomial P to bounding the rank of a certain matrix associated to P
(similar methods appeared in earlier work of Nisan [Nis91] and Hyafil [Hya77]). We illustrate
this technique with the case of depth-3 (i.e. ΣΠΣ) set-multilinear circuits.

Assume we have a set of N variables X that is partitioned into d sets X1, . . . , Xd. Let P be
a set-multilinear polynomial over the variables in X. A depth-3 set-multilinear circuit of size s
is (up to polynomial factors) an expression of the following form

P “
s
ÿ

i“1

d
ź

j“1

`i,j (1)

where for each i and j, `i,j denotes a homogeneous linear polynomial in the variables of Xj .
In order to argue that s must be large for a given polynomial P , we analyze a certain matrix

associated with P . We start with a toy case to illustrate the general idea. Assume that d “ 2
and that X1 “ tx1, . . . , xnu, X2 “ ty1, . . . , ynu. Consider the polynomial P that is just the
inner-product between the two variable sets. That is,

P “
n
ÿ

i“1

xiyi.

Clearly, the expression above gives us a depth-3 (even depth-2) set-multilinear circuit of size
Opnq for P . We would like to show that any depth-3 expression for P of the form in (1) must
have s ě n terms, proving that this construction is asymptotically tight.

This is easily proved via a matrix argument. For any set-multilinear polynomial Q over
the variable sets X1, X2, we define the n ˆ n matrix MpQq which has as the pi, jqth entry the
coefficient of the monomial xiyj in the polynomial Q. Then the matrix MpP q is the n ˆ n
identity matrix and hence has rank n. On the other hand, for each summand Q on the right
hand side of (1), it can be seen that the corresponding matrix MpQq has rank (at most) 1. As
matrix rank is sub-additive (i.e. the rank of M1 `M2 is at most the sum of their ranks), we
see that the number of summands must be at least n, concluding the proof.

This is a basic case of the partial derivative method of Nisan and Wigderson [NW97]. The
reason for the terminology is that the columns of the matrix MpQq can be interpreted as the
coefficients of the partial derivatives BQ

Byj
(j P rns) of the polynomial Q.

This method easily generalizes to higher degrees. For any degree d and set-multilinear poly-
nomial Q over X1, . . . , Xd, we can define a matrix MpQq analogously as follows. We partition
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the variable sets X1, . . . , Xd into two families. More precisely, for a subset R of t1, . . . , du,
we call the sets Xi (i P R) the row variable sets and we call the other sets the column vari-
able sets. Note that every set-multilinear monomial m (which contains exactly one variable
from each of X1, . . . , Xd) can be factored uniquely as m “ m1 ¨ m2, where m1 and m2 are
set-multilinear monomials over the row and column variable sets respectively. The rows and
columns of the matrix MpQq are labelled by the set-multilinear monomials over the row-variable
sets and column-variable sets respectively. Given a row labelled by monomial m1 and a column
labelled by monomial m2, the corresponding entry of the matrix MpQq is the coefficient of the
monomial m1 ¨m2 in Q.

As in the toy example, it is easy to see that each summand Q on the right hand size of (1)
is associated to matrix of rank 1. On the other hand, it is not hard to find polynomials P such
that the matrix MpP q is a high rank matrix of dimension K ˆK where K “ NΩpdq. This is
true, say, when P “ IMMn,d and d ď n. If we define the row-variable sets to be the Xi where i
is odd and the column-variable sets to be the Xi where i is even, then the matrix MpIMMn,dq is
a diagonal matrix with nd´1 many 1s along the diagonal. This implies the following exponential
lower bound for this very explicitly described polynomial.

Theorem 2 ([NW97]). Any set-multilinear depth-3 circuit for IMMn,d must have size nd´1.

Extensions using Restrictions

The partial derivative method does not immediately extend even to proving lower bounds against
set-multilinear circuits of depth 4. This was observed already by Nisan and Wigderson [NW97]
who constructed the following example, called the Product of Inner Products (PIP) polynomial.

For parameters n, d, assume that we have variable sets X1, . . . , Xd where each Xi has size n2.

Assume Xi “ tx
piq
1 , . . . , x

piq
n2u. Define the polynomial PIPn,d to be the polynomial P1 ¨P2 ¨ ¨ ¨Pd{2

where Pi is the inner product between the variables in X2i´1 and X2i. More formally, we have

PIPn,d “

d{2
ź

i“1

˜

n2
ÿ

j“1

x
p2i´1q
j ¨ x

p2iq
j

¸

. (2)

By construction, this yields a small (OpNq-sized) depth-4 circuit for PIPn,d.
6 On the other

hand, it is an easy check that if we partition the variable sets as in the case of IMMn,d above,
the matrix MpPIPn,dq is similarly of large (in fact full) rank. Hence, it is not true that whenever
the rank of MpQq is large, then Q does not have small depth-4 set-multilinear circuits.

More generally, for any way of partitioning the d variable sets X1, . . . , Xd into two parts,
there is a similar “PIP-type” example that constructs a small depth-4 set-multilinear circuit
such that MpQq has large rank.

Many subsequent lower bound results for circuits of depth-4 and above can be seen as
formulating ways of circumventing these examples.

Nisan and Wigderson [NW97] showed how to do this via the method of random restrictions,
which has found a lot of purchase in the setting of Boolean circuits (see e.g. [Sub61, Ajt83,
FSS84, H̊86]). The way to restrict a set-multilinear polynomial P is to take a subset of the
variable sets X1, . . . , Xd and set all the variables in these sets to constants from the underlying
field F. If this is done in a suitable way, then the computational hardness of P is still preserved.
For instance, if P “ IMMn,d, we could take a subset S of (say) half the sets and set their variables
so that the corresponding matrices become the identity matrix. Under such a restriction, the

6Strictly speaking, the construction yields a depth-3 ΠΣΠ circuit with a output gate that is a multiplication
gate. However, we restrict our circuits to have output gates that are sum gates. We can achieve this by adding
a trivial sum gate that has only one input. This yields a ΣΠΣΠ circuit.
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polynomial P would transform into the polynomial IMMn,d{2, which is not very different from
the polynomial we started out with.

However, such restrictions could radically transform a PIP-type polynomial. For instance,
if we choose to restrict each matrix with probability 1{2 independently, it seems very unlikely
that a PIP-type polynomial would preserve its structure.7 More generally, it is possible to show
that applying such a random restriction to a depth-4 set-multilinear circuit transforms it, with
high probability, to a circuit that does not compute a polynomial of high rank. We can apply
the partial derivative method after applying this restriction argument to get a lower bound.

Using this idea, Nisan and Wigderson were able to prove superpolynomial lower bounds
against set-multilinear circuits of all constant depths. More precisely, they showed the following.

Theorem 3 ([NW97]). For any constant p and any n ě 2, any set-multilinear circuit of depth
p for IMMn,d has size at least exppd1{pq.

Notice that the above bound is exponential when d approaches N . However, for d ď logN,
the bound is not even linear in N , which is trivial. This is rather unfortunate in view of our
escalation results in Theorem 1. However, we will see later that these bounds can be improved.

We now discuss some modifications of the partial derivative method to proving lower bounds
against other kinds of circuits. Starting with a celebrated result of Raz [Raz09], there were
many results [Raz06, RY09, RSY08, DMPY12, CLS19, CELS18] on extending the lower bounds
of [NW97] to the more general setting of multilinear circuits.

The partial derivative method can be extended to the setting of general multilinear polyno-
mials P px1, . . . , xN q as follows. Recall that a multilinear polynomial is one where no variable
appears with degree more than 1. Equivalently, each monomial in P is a product of a subset
of its variables. To define the matrix MpP q in this case, we divide the variable set into two
parts Y and Z of equal size N{2. Every multilinear monomial m factors uniquely as m1 ¨m2

where m1 and m2 are multilinear monomials in the variables of Y and Z respectively. The
partial derivative matrix MpP q is now similarly defined, with the rows labelled by multilinear
monomials over Y and the columns by multilinear monomials in Z; the pm1,m2qth entry of
MpP q is the coefficient of the monomial m1 ¨m2 in P . The complexity of the polynomial P is
now captured by the rank of the matrix MpP q.

By combining this complexity measure with the method of random restrictions, many lower
bound results have been shown against multilinear circuits. In particular, in the setting of
constant-depth circuits, Raz and Yehudayoff showed the following exponential lower bound.

Theorem 4 ([RY09]). For any constant p, any multilinear circuit of depth p for the n ˆ n
determinant polynomial Detn must have size exppnΩp1{pqq.

Similar lower bounds have also been shown for variants of IMMn,d [DMPY12, CLS19,
CELS18].

Augmented with restrictions, the partial derivative can also be applied to prove lower bounds
against other kinds of constant-depth circuits. To see this, we need to (again) reformulate
the partial derivative method in the setting of general polynomials. Let P px1, . . . , xN q be a
polynomial of degree at most d. We think of such a polynomial as a list of its coefficients, that
is, as a vector of suitable length LN,d

8 with entries from the underlying field F. We define BkpP q
to be the set of all partial derivatives of P of order k. This is a set of homogeneous polynomials
of degree at most d ´ k, each of which is a vector of dimension LN,d´k. We will define MpP q

7Intuitively, about half the inner products would turn into linear polynomials, which would be quite “un-PIP-
like”.

8More precisely, we have LN,d “
`

N`d
d

˘

, though we do not need that here.
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to be the matrix whose columns are exactly the vectors in BkpP q and the rank of MpP q will
measure the complexity of P .

This general version of the partial derivative method was first used by Nisan and Wigder-
son [NW97] to show exponential lower bounds against homogeneous depth-3 circuits computing
the elementary symmetric polynomials defined in Section 2. However, the construction of Ben-
Or shows that these same polynomials can be computed by (inhomogenous) depth-3 circuits of
polynomial size! So, clearly the partial derivative method, as formulated above, cannot be used
to prove lower bounds against general depth-3 circuits.

Grigoriev and Karpinski [GK98] showed how to overcome this bottleneck in the setting of
a finite field F of constant size, using again the idea of restrictions (of a different kind from
the ones described above) along with the partial derivative technique. Here, they proved the
following exponential lower bound.

Theorem 5. Let F be a finite field of size q, which is a constant. Then, any depth-3 circuit
computing the nˆ n determinant over F has size exppΩpnqq.

Their ideas can also be extended to the case of elementary symmetric polynomials (see [Sap15,
Chapter 10]).9 For the case of large or infinite fields (e.g. the rational numbers), Shpilka and
Wigderson [SW01] used similar ideas to prove an ΩpN2q lower bound against depth-3 circuits
computing certain elementary symmetric polynomials.

Homogeneous Circuits and Shifted Partial derivatives

As already noted, the partial derivative method can be used to prove lower bounds against
homogeneous circuits of depth 3 [NW97]. However, once again, the PIP construction prevents
this method from working at depths 4 and above. Breakthrough results of Kayal [Kay12] and
Gupta, Kamath, Kayal and Saptharishi [GKKS14] formulated a modification of this method to
prove strong lower bounds against depth-4 circuits. This technique, called the Shifted Partial
Derivative technique, has since proven to be useful in a variety of contexts.

To define this, we start with the set BkpP q as defined above. For a parameter `, we let xď`

to be the set of all monomials in x1, . . . , xN of degree at most `. We now consider the set

xď` ¨ BkpP q “ tm ¨Q | m a monomial of degree at most `, Q P BkpP qu.

I.e., each polynomial in the above set is obtained by “shifting” a polynomial Q P BkpP q by a
monomial of degree at most `. The above is a set of polynomials of degree at most d´k``. The
shifted partial derivative complexity of the polynomial P (with respect to the chosen parameters
k and `) is measured by the rank of the matrix with these column vectors.

We refer the reader to a survey of Kayal and Saha [KS18] for a description of this complexity
measure in geometric terms.

Using this measure, a result of Gupta, Kamath, Kayal and Saptharishi [GKKS14] showed
lower bounds against certain families of homogeneous depth-4 circuits computing the determi-
nant. A series of extensions of this result followed [FLMS15, KLSS17, KS17, KS19, KS16, BC15],
including to the family of all homogeneous depth-4 circuits and restricted families of homoge-
neous depth-5 circuits. We state below two of the strongest such results, due to Kayal and
Saha [KS16] and Bera and Chakrabarti [BC15]. While the first lower bound is stronger, the
polynomial for which the lower bound is proved is harder to describe.

Theorem 6. 1. [KS16] There is some explicitly described sequence of polynomials PN of
degree d “ NΩp1q such that any homogeneous depth-5 (i.e. ΣΠΣΠΣ) circuit for PN with

the bottom-most sum gates having fan-ins at most N0.99 must have size NΩp
?
dq.

9This shows the difference between the case of large fields and fields of constant size.
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2. [BC15] For some d “ NΩp1q, any homogeneous depth-5 (i.e. ΣΠΣΠΣ) circuit for IMMn,d

with the bottom-most sum gates having fan-ins at most N0.49 must have size NΩp
?
dq.

(Here, the constants 0.99 and 0.49 can be replaced by any constants less than 1 and 0.5
respectively.)

Note that the above lower bounds require non-trivial upper bounds on the fan-ins of the
bottom sum gates of the depth-5 circuits. If we did not have this restriction, along with an
escalation result of Shpilka and Wigderson [SW01] (see Item 4 of Theorem 1), we would get
exponential lower bounds against depth-3 circuits without any other restrictions. Using this
idea, however, Kayal and Saha [KS16] were able to prove lower bounds against depth-3 circuits
where the bottom sum gates have restricted fan-ins.

Further, the shifted partial derivative technique does yield some stronger results in the
unrestricted depth-3 case. Building on the work of Shpilka and Wigderson [SW01], Kayal, Saha
and Tavenas [KST16] showed nearly cubic lower bounds against depth-3 circuits computing
a certain explicitly described multilinear polynomial. This was the best explicit lower bound
against this model (for non-constant-sized finite fields) until very recently.

Partial Derivatives Strike Back

While the theorems of the previous sections proved strong (exponential) lower bounds against
various restricted families of constant-depth circuits, the question of proving superpolynomial
lower bounds against even depth-3 circuits (without any other restrictions) over non-constant-
sized finite fields remained open until recently. The authors were able to answer this question (for
fields of characteristic 0) by proving such lower bounds for the Iterated Matrix Multiplication
and determinant polynomials, among others.

Theorem 7. [LST21b] Assume that the field F has characteristic 0. Then, for any d ď log n,

any depth-3 circuit C computing IMMn,d has size nΩp
?
dq. Any depth-3 circuit C computing Detn

has size nΩp
?

lognq.

By the depth reduction result of [GKKS16] described in Section 2, the above lower bound
for IMMn,d is nearly tight. The result for Detn, however, is far from the best known upper

bound, which is nOp
?
nq [GKKS16]. Also, while many of the lower bounds from the previous

sections were exponential, the above theorem can only prove a quasi-polynomial lower bound.
Nevertheless, it is the first superpolynomial lower bound for general ΣΠΣ circuits.

We sketch the proof of the above theorem, which goes via the strategy of escalation. By
Theorem 1, it suffices to prove a lower bound of nΩp

?
dq against set-multilinear circuits of depth-5.

So we focus on this latter class of circuits.
The method for proving this lower bound harks back to the simplest version of the par-

tial derivative method for set-multilinear polynomials. As there, we work with set-multilinear
polynomials P over variable sets X1, . . . , Xd. To measure the complexity of such a polynomial
P , we partition the sets X1, . . . , Xd into two categories, the row-variable sets R Ď rds and the
column-variable sets S “ rdszR, and consider the matrix MpP q as described above. The rank
of MpP q will be our measure of the complexity of P .

While the basic set-up is the same, some idea is required to circumvent the PIP-type exam-
ples that cause a bottleneck in the Nisan-Wigderson lower bound. Our idea for doing this is
surprisingly simple: just ensure that no row-variable set has the same size as a column-variable
set! This ensures that we can never take an inner-product between the variables from a row-
variable set and those from a column-variable set. More generally, the condition we need is the
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following: for any ‘small’ set R1 of row-variable sets and any ‘small’ set S1 of column-variable
sets, we have

max

#

ś

iPR1 |Xi|
ś

jPS1 |Xj |
,

ś

jPS1 |Xj |
ś

iPR1 |Xi|

+

is large. (3)

This ensures that there are no small ‘perturbations’ of the PIP-type examples that are close to
full-rank. Finally, we also ensure that overall the matrix MpP q is square:

ź

iPR

|Xi| “
ź

jPS

|Xj |.

We need the above condition as without it, we would not be able to find any polynomial P such
that MpP q is full rank. Note that there is some tension between this condition and the one in
(3). However, both can be met by setting each |Xi| (i P R) to n and |Xj | (j P S) to nα where
α is a suitably chosen number.10

With this idea in place, we now outline the lower bound against set-multilinear depth-5
circuits. A depth-5 set-multilinear circuit of size s can be written as follows.

C “
s
ÿ

i“1

Ci,1 ¨ ¨ ¨Ci,di (4)

where each Ci,j is a set-mutilinear depth-3 circuit (w.r.t. to some subset X1, . . . , Xd) of size at
most s. As before, the idea is to show that each summand on the right hand side of (4) has low
rank. Fix such a summand, say corresponding to i “ 1. The argument splits naturally into two
cases.

The first case is when each term in the product has small degree, say at most r. In this case,
each C1,j depends on at most r of row-variable sets and at most r column variable sets. We
consider the partial derivative matrix of each MpC1,jq w.r.t. the same partition into row and
column variable sets restricted to the variable sets involved in C1,j . The property informally
described in (3) allows us to infer that this matrix is highly ‘imbalanced’: i.e. it has many more
rows than columns, or vice versa. This allows us to show that the matrix MpC1,jq is low-rank.
Further, we can show that the matrix MpC1,1 ¨ ¨ ¨C1,d1q is low-rank because it is the tensor
product of MpC1,jq for j P t1, . . . , d1u.

The second case is some term in the product, say C1,1, has degree greater than r. In this
case, as C1,1 is a set-multilinear depth-3 circuit, we simply use the Nisan-Wigderson argument
to argue that MpC1,1q has very low rank (much lower than what we would expect a general
degree-r polynomial to have). This is enough to infer that the matrix MpC1,1 ¨ ¨ ¨C1,d1q has low
rank as well, concluding the proof.

Finally, to derive a lower bound for a fixed polynomial P , we need to show that MpP q has
full rank. This can be done quite easily for a suitable choice of P . In fact, we can ensure
that P is just a restriction of IMMn,d. This way, we are able to derive a lower bound for
IMMn,d. The lower bound for Detn is derived by reducing IMMn,d to it using a reduction due
to Valiant [Val79].

This basic proof idea of the depth-3 lower bound is simple enough that it extends to larger
(but constant) depths in a straightforward manner. We work with low-degree polynomials,
where again it suffices to prove lower bounds against constant-depth set-multilinear circuits by
Theorem 1. To do this, we use an inductive argument based on the depth. At each stage of
the induction, the argument again splits into two cases. In the first case, we use an imbalance

10Taking α to be an irrational number such as 1{
?

2 is enough to get a slightly weaker lower bound than the
one stated in Theorem 7.
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condition on the partial derivative matrix to derive an upper bound on its rank. In the second
case, we do this via the inductive hypothesis. This idea yields the following result.

Theorem 8. Assume that the field F has characteristic 0 and p is a constant. Then, for any
d ď log n, any depth-p circuit C computing IMMn,d has size nd

ε
where ε is a constant that

depends only on p. Any depth-p circuit C computing Detn has size nplognqε .

Applications to PIT

As mentioned in Section 1 above, the problem of obtaining deterministic algorithms for PIT is
closely related to the proving lower bounds against algebraic circuits. In particular, it is known
that strong enough lower bounds against general algebraic circuits would lead to deterministic
polynomial-time algorithms for PIT [KI04, GKSS19].

What about the lower bounds of the previous sections? Do they have implications for PIT,
at least in the constant-depth setting?

This line of questioning was initiated by Dvir, Shpilka and Yehudayoff [DSY09], which
showed that deterministic algorithms for PIT for some depth-p circuits would follow from lower
bounds against depth-pp`5q circuits. A follow-up result of Chou, Kumar and Solomon [CKS19]
proved a similar statement connecting PIT for unrestricted depth-p circuits to lower bounds
against depth-pp` 5q circuits. With the results of the previous section, we can now apply these
theorems to get deterministic PIT algorithms in the setting of constant-depth circuits.

We state below the result of Chou, Kumar and Solomon, which is best suited to our setting.

Theorem 9 ([CKS19]). Let p be any constant. Assume that d “ oplogNq and there is some
explicit sequence of degree-d polynomials that do not have depth-pp`5q circuits of size polypNq.
Then, there is a deterministic algorithm for PIT for circuits of depth-p that runs in subexpo-
nential (i.e. exppNop1qq) time on circuits of size polypNq.

Applying the above theorem along with the lower bounds for IMMn,d given by Theorem 11
yields a deterministic subexponential-time algorithm for PIT of all constant-depth circuits.

While there are considerably faster PIT algorithms known for various special families of
circuits (see, e.g. the surveys [SY10, Sax09, Sax13]), no non-trivial PIT algorithms were known
even for general depth-3 circuits of polynomial size before these results. So this represents a
considerable improvement.

4 Lower bounds in the non-constant depth setting

Most lower bounds from Section 3 were proved for computing either the Iterated Matrix Mul-
tiplication or the determinant polynomials, both of which lie in the algebraic complexity class
VBP. These lower bounds (for example Theorem 8) thus separate VBP from the complexity
class of polynomial-sized constant-depth circuits or equivalently, the class of polynomial-sized
constant-depth formulas.11 This leads to the following natural question: can we separate the
power of arbitrary formulas (of any depth) from VBP? Equivalently, can we separate the
complexity classes VF and VBP?

There are many ways to attack this problem. One natural approach is to try the same proof
idea we used for proving constant-depth circuit lower bounds. That is,

(a) Prove an escalation theorem to convert general algebraic formulas into set-multilinear
formulas. Specifically, show that if P is a set-multilinear polynomial that has a formula
of size polypNq, then P also has a set-multilinear formula of size polypNq.

11Recall that we can convert circuits to formulas with only a polynomial blow-up in the constant-depth setting.
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(b) Prove a superpolynomial lower bound against set-multilinear formulas (of any depth) for
a set-multilinear sequence of polynomials from VBP.

Both these steps have been attempted in the works of [Raz09, Raz06, Raz13, DMPY12].
As mentioned earlier in Theorem 1 Item 3, Raz [Raz13] gave an escalation result suitable

for (a). The size blow-up in the process is polypN, ddq. So if a set-multilinear polynomial P
has a (not necessarily set-multilinear) formula of size polypNq, then it also has a set-multilinear
formula of size polypNq as long as the degree of P is OplogN{ log logNq.

This means that it is sufficient to prove a superpolynomial separation between set-multilinear
formulas and VBP in part (b) as long as we can do it with respect to a polynomial of degree
OplogN{ log logNq. Unfortunately, this is not yet known. However, many interesting attempts
have been made in this direction as well.

Raz [Raz09] studied multilinear formulas of arbitrary depth and proved the first strong lower
bound for this model of computation. Specifically, [Raz09] showed the following.

Theorem 10. Any multilinear (and in particular set-multilinear) formula (of any depth) com-
puting the determinant polynomial Detn must have size nΩplognq.

In particular, this separates the power of set-multilinear formulas from VBP. Unfortunately,
this lower bound does not escalate, as the determinant is a relatively high degree polynomial
(Detn has degree n “

?
N where N is the number of variables). Therefore, this does not give

a separation between general (not necessarily set-multilinear) formulas and VBP.
Dvir, Malod, Perifel, and Yehudayoff [DMPY12] also proved a separation between multilin-

ear formulas and VBP. Their hard polynomial is more special, in that it lies in a multilinear
version of the complexity class VBP. Unfortunately, this polynomial, like the determinant, also
has relatively high degree.

In general, there does not seem to be any easy way to convert these results from the high-
degree setting into lower bounds in the low-degree setting. But in some cases, this may be
possible. To illustrate this point, let us consider the polynomial IMMn,n. It is a folklore
result that IMMn,n has algebraic formulas of size nOplognq.12 Assume that we are able to prove
an optimal nΩplognq formula lower bound for IMMn,n. This is a lower bound for a high-degree
polynomial. But such a lower bound would imply something interesting even for IMMn,d, where
d ă n. Specifically, it is known that if IMMn,d can be computed by set-multilinear formulas
of size noplog dq, then IMMn,n can also be computed by set-multilinear formulas of size noplognq.
In the contrapositive, this means that an nΩplognq lower bound for IMMn,n is enough to prove
an nΩplog dq lower bound for IMMn,d, even for a small value of d. This combined with Raz’s
escalation would give us the lower bound we desire. As far as we know, this is still open.

Set-multilinear formula lower bounds for IMMn,n are therefore very interesting. Unfortu-
nately, the results mentioned above [Raz09, DMPY12] do not seem to yield such a lower bound.
While the hard polynomials from these results belong to VBP and thus reduce to IMMn,n, these
reductions do not preserve the set-multilinearity of the underlying formula.

In a recent result, we proved the first superpolynomial set-multilinear formula lower bound
for IMMn,n.

Theorem 11 ([LST21a]). Any set-multilinear formula for IMMn,n requires size nΩplog lognq.

As mentioned above, improving this bound to nΩplognq for IMMn,n would separate general
algebraic formulas from ABPs. While we may not be close to proving this yet, the above result
gives an interesting corollary for non-commutative formulas. A non-commutative formula is an

12This can be shown, for example, using the divide-and-conquer argument from the depth-reduction results in
Section 2.
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algebraic formula over a set of variables that do not commute. One can define non-commutative
ABP in a similar way. The above result gives the following corollary.

Corollary 12 ([LST21a]). Any non-commutative homogeneous formula computing IMMn,n

must have size nΩplog lognq.

This separates non-commutative homogeneous formulas from the non-commutative version
of VBP.

5 Summary and future directions

Escalation and lower bounds. Our new lower bounds against constant-depth circuits cru-
cially use escalation results (such as those in Theorem 1) to convert set-multilinear circuit lower
bounds to lower bounds against general circuits. Further, it is known that improving these
escalation statements can lead to qualitative improvements in our lower bounds. Below are
some questions regarding possible improvements of these results. We state the questions and
also mention how they can lead to better lower bounds.

• Can we prove a version of Theorem 1 Item 4 above which holds over all fields? If we are
able to do that, then it would also imply a similar improvement in Theorem 1 Item 5.
These improvements would then show that the lower bound from Theorem 7 holds over
all characteristics.

• Can we prove Theorem 1 Item 5 with a size of polyps, 2
?
dq instead of polyps, ddq? If we

are able to prove this, then the lower bound in Theorem 7 would hold for a larger range
of d. Specifically, the statement would hold true for d ď N0.99, and we would therefore
get exponential lower bounds against depth-3 algebraic circuits.

Lower bounds and PIT. As discussed above, we can show that any ΣΠΣ circuit computing
IMMn,d must have size nΩp

?
dq (as long as d ď log n). We also know that this lower bound

is tight for ΣΠΣ circuits. But how about higher depths? More generally, we know that for
any constant odd integer p, IMMn,d has depth-p circuits of size nOpd

1{pp´1qq. Unfortunately, our
lower bound is not tight for p ą 3. To pin-down the complexity of IMM at higher depths is
an interesting open question arising from these results. We conjecture that a lower bound of
nΩpd1{pp´1qq holds at depth p for every odd p.

Proving the above conjecture would help us understand the complexity of IMM, which is
by itself a fundamental computational problem. Another motivation is the connection between
lower bounds and PIT. We saw that constant-depth circuit lower bounds imply deterministic
PIT algorithms for constant-depth circuits. Here, the quality of the lower bound dictates the
performance of the deterministic algorithm for PIT; the stronger the lower bound, the better
the parameter regime of the deterministic PIT algorithm.

As stated above, our current lower bound gives PIT for circuits for all constant depths. In
fact, we also get PIT for circuits of depth oplog log dq. If we prove the conjecture, then we will
be able to get deterministic subexponential-time PIT algorithm for circuits of larger depth, in
fact for circuits of depth oplog dq.

VP vs. VNP. As we saw earlier, any N -variate, degree-d polynomial in VP can be computed
by a ΣΠΣ circuit of size NOp

?
dq. So, to prove that VP is not equal to VNP, it suffices to prove

that there is a polynomial in VNP such that any ΣΠΣ polynomial for it must have size Nωp
?
dq.
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Presently, we have a ΣΠΣ lower bound of NΩp
?
dq for IMMn,d. As we noted above, this is

optimal. In fact, this bound is optimal for any polynomial in VP. But proving an asymptotically
stronger, say Nωp

?
dq, lower bound for a polynomial in VNP is not ruled out, perhaps even using

variations of the Partial Derivative method.
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bounds against low-depth algebraic circuits. FOCS, 2021.

20



[MVV87] Ketan Mulmuley, Umesh V Vazirani, and Vijay V Vazirani. Matching is as easy
as matrix inversion. In Proceedings of the nineteenth annual ACM symposium on
Theory of computing, pages 345–354, 1987.

[Nis91] Noam Nisan. Lower bounds for non-commutative computation. In Proceedings of
the twenty-third annual ACM symposium on Theory of computing, pages 410–418,
1991.

[NW97] Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial
derivatives. Computational Complexity, 6(3):217–234, 1997.

[PS20] Shir Peleg and Amir Shpilka. A generalized sylvester-gallai type theorem for
quadratic polynomials. In Shubhangi Saraf, editor, 35th Computational Complexity
Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Confer-
ence), volume 169 of LIPIcs, pages 8:1–8:33. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020.

[PS21] Shir Peleg and Amir Shpilka. Polynomial time deterministic identity testing algo-
rithm for Σr3sΠΣΠr2s circuits via Edelstein-Kelly type theorem for quadratic poly-
nomials. In STOC ’21—Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, pages 259–271. ACM, New York, [2021] ©2021.

[Raz06] Ran Raz. Separation of multilinear circuit and formula size. Theory of Computing,
2(1):121–135, 2006.

[Raz09] Ran Raz. Multi-linear formulas for permanent and determinant are of super-
polynomial size. Journal of the ACM, 56(2):8:1–8:17, 2009.

[Raz13] Ran Raz. Tensor-rank and lower bounds for arithmetic formulas. Journal of the
ACM, 60(6):40:1–40:15, 2013.

[RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-
commutative models. Comput. Complex., 14(1):1–19, 2005.

[RSY08] Ran Raz, Amir Shpilka, and Amir Yehudayoff. A lower bound for the size of syn-
tactically multilinear arithmetic circuits. SIAM Journal of Computing, 38(4):1624–
1647, 2008.

[RY09] Ran Raz and Amir Yehudayoff. Lower bounds and separations for constant depth
multilinear circuits. Computational Complexity, 18(2):171–207, 2009.

[Sap15] Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity.
Github survey, 2015.

[Sax09] Nitin Saxena. Progress on polynomial identity testing. Bull. EATCS, 99:49–79,
2009.

[Sax13] Nitin Saxena. Progress on polynomial identity testing - II. Electron. Colloquium
Comput. Complex., page 186, 2013.

[Sch80] Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial iden-
tities. Journal of the ACM (JACM), 27(4):701–717, 1980.

21



[SS12] Nitin Saxena and Comandur Seshadhri. Blackbox identity testing for bounded top-
fanin depth-3 circuits: The field doesn’t matter. SIAM J. Comput., 41(5):1285–
1298, 2012.

[Str73] Volker Strassen. Vermeidung von divisionen. Journal für die reine und angewandte
Mathematik, 264:184–202, 1973.

[Sub61] Bella A. Subbotovskaya. Realization of linear functions by formulas using ^, _,
 . In Doklady Akademii Nauk, volume 136–3, pages 553–555. Russian Academy of
Sciences, 1961.

[SV18] Shubhangi Saraf and Ilya Volkovich. Black-box identity testing of depth-4 multi-
linear circuits. Combinatorica, 38(5):1205–1238, 2018.

[SW01] Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of char-
acteristic zero. Computational Complexity, 10(1):1–27, 2001.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results
and open questions. Now Publishers Inc, 2010.
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