
A Super-Quadratic Lower Bound for Depth Four
Arithmetic Circuits
Nikhil Gupta
Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India
nikhilg@iisc.ac.in

Chandan Saha
Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India
chandan@iisc.ac.in

Bhargav Thankey
Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India
thankeyd@iisc.ac.in

Abstract
We show an Ω̃(n2.5) lower bound for general depth four arithmetic circuits computing an explicit
n-variate degree-Θ(n) multilinear polynomial over any field of characteristic zero. To our knowledge,
and as stated in the survey [88], no super-quadratic lower bound was known for depth four circuits
over fields of characteristic 6= 2 before this work. The previous best lower bound is Ω̃(n1.5) [85],
which is a slight quantitative improvement over the roughly Ω(n1.33) bound obtained by invoking
the super-linear lower bound for constant depth circuits in [73,86].

Our lower bound proof follows the approach of the almost cubic lower bound for depth three
circuits in [53] by replacing the shifted partials measure with a suitable variant of the projected
shifted partials measure, but it differs from [53]’s proof at a crucial step – namely, the way “heavy”
product gates are handled. Loosely speaking, a heavy product gate has a relatively high fan-in.
Product gates of a depth three circuit compute products of affine forms, and so, it is easy to prune
Θ(n) many heavy product gates by projecting the circuit to a low-dimensional affine subspace [53,87].
However, in a depth four circuit, the second (from the top) layer of product gates compute products
of polynomials having arbitrary degree, and hence it was not clear how to prune such heavy product
gates from the circuit. We show that heavy product gates can also be eliminated from a depth
four circuit by projecting the circuit to a low-dimensional affine subspace, unless the heavy gates
together account for Ω̃(n2.5) size. This part of our argument is inspired by a well-known greedy
approximation algorithm for the weighted set-cover problem.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases depth four arithmetic circuits, Projected Shifted Partials, super-quadratic
lower bound

Digital Object Identifier 10.4230/LIPIcs.CCC.2020.23

Acknowledgements We would like to thank Neeraj Kayal and Ankit Garg for sitting through a
presentation of this work and giving us useful feedback. Thanks specially to Ankit for bringing the
work of Chen and Tell [20] to our notice. A part of this work is done at Microsoft Research India
(MSRI), where CS is spending a sabbatical year. CS would like to thank MSRI for providing an
excellent research environment and for the hospitality.

1 Introduction

The arithmetic circuit model is naturally well-suited for the study of optimality of algorithms
for algebraic and linear algebraic problems. An arithmetic circuit consists of addition (+)
and multiplication (×) gates, it takes input {x1, x2, . . . , xn} and field scalars, and computes
a polynomial in {x1, x2, . . . , xn}. Size of a circuit is the number of wires in it, and depth

© Nikhil Gupta, Chandan Saha, and Bhargav Thankey;
licensed under Creative Commons License CC-BY

35th Computational Complexity Conference (CCC 2020).
Editor: Shubhangi Saraf; Article No. 23; pp. 23:1–23:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692583?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:nikhilg@iisc.ac.in
mailto:chandan@iisc.ac.in
mailto:thankeyd@iisc.ac.in
https://doi.org/10.4230/LIPIcs.CCC.2020.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 A Super-Quadratic Lower Bound for Depth Four Arithmetic Circuits

is the longest path from an input to an output gate. The two complexity measures – size
and depth – of a circuit essentially capture the sequential and parallel complexity of the
computation happening inside the circuit.

Arithmetic circuits are weaker1 than Boolean circuits: An explicit lower bound on the
size of Boolean circuits implies an explicit lower bound on the size of arithmetic circuits
over finite fields2 and also over fields of characteristic zero3, but the converse is not true4.
Still, the best known lower bound for arithmetic circuits is Ω(n logn) [13,90], which is barely
super-linear. For arithmetic formulas, an Ω(n2) lower bound is known [44]. Several other
better lower bounds have been shown in the past few decades for various restricted models of
arithmetic circuits (see Section A for a brief history of known lower bounds). But, very few
lower bounds are known for circuit models that do not impose restrictions like homogeneity,
multilinearity, monotonicity, bounded coefficients, bounded reads etc. One such result is the
lower bound for constant depth circuits.

Shoup and Smolensky [86], and Raz [73], showed an Ω(∆n1+ 1
∆) lower bound for depth-∆

circuits, where ∆ = O(logn). In the special case of depth three circuits, an Ω(n2) lower
bound was shown in [87], which was improved to an Ω̃(n3) lower bound in [53]. However, for
depth four circuits5, the best lower bound was Ω̃(n1.5) [85], which is a slight quantitative
improvement over the roughly Ω(n1.33) lower bound obtained by specializing the constant
depth lower bound in [73,86] to depth four circuits.

In this work, we show an Ω̃(n2.5) lower bound for depth four circuits. To the best of
our knowledge, and as stated in the survey [88] (Section 1.4.2, page-13), this is the first
super-quadratic lower bound for this model over fields of characteristic 6= 2.

1.1 Our Result
We state our result formally now. Without loss of generality, we will assume that a depth
four circuit is a ΣΠΣΠ circuit, i.e., the circuit has a +-gate on top followed by second layer
of ×-gates, then a third layer of +-gates and finally a bottom layer of ×-gates.

I Theorem 1 (Lower bound for depth four circuits). Over any field of characteristic zero6,
there exists a family of mulitilinear polynomials {fn}n≥1 in VNP, where fn is a polynomial
in Θ(n) variables and of degree Θ(n) such that any depth four circuit computing fn has
Ω
(

n2.5

(logn)6

)
many wires/edges and Ω

(
n1.5

(logn)4

)
many gates.

1 This is not to mean that arithmetic circuits cannot simulate Boolean circuits. It is easy to see that a
Boolean circuit can be efficiently simulated by an arithmetic circuit over any field that contains the
additive and the multiplicative identities 0 and 1 respectively.

2 This is because an arithmetic circuit over a finite field can be simulated by a Boolean circuit with only
a slight blow-up in size and depth (see [100]).

3 It was shown in [16] (Corollary 4.6 in Chapter 4) that NC3/poly 6= NP/poly implies VP 6= VNP over
fields of characteristic zero, assuming the Generalized Riemann Hypothesis. The circuit classes VP and
VNP are arithmetic analogues of non-uniform P and NP respectively [96].

4 as computing a Boolean function is a weaker requirement than computing a specific polynomial
representation of the function.

5 Depth four circuits form a natural circuit class as the “optimal” circuit for an arbitrary polynomial
turns out to be a depth four circuit: The multiplicative complexity of a polynomial f , denoted M(f),
is the minimum number of multiplication gates required to compute f . It is known that there exists
an n-variate degree-d polynomial f for which M(f) = Ω(

√(
n+d
d

)
) [21,39]. On the other hand, every

n-variate degree-d polynomial can be computed by a depth four circuit having
√(

n+d
d

)
· poly(n, d)

many multiplication gates [61].
6 The lower bound holds even if the characteristic is sufficiently large (see Section 4).

N. Gupta, C. Saha, and B. Thankey 23:3

A word about the polynomial family. The polynomial family {fn}n≥1 is a variant of the
Nisan-Wigderson design polynomial family, which has been used in proving several other
previous lower bounds [49, 51–53, 57, 58, 73, 85]. The n-th member of the family, i.e., fn is
a polynomial in x = {x1, ..., x3m} and y = {y1, ..., y3m} variables, where m is an integer in[
n
2 , 2n

]
. The degree of the polynomial in y variables is degy(fn) = m, while its degree in x

variables is degx(fn) = dx = Θ(
√
m

lnm). Informally, fn contains multiple ‘copies’ of the design
polynomial in different subsets of the x variables, while the y variables are used as ‘prefixes’
to uniquely identify each such copy. While the reason for having multiple copies is similar to
[53], as we shall see in the next section, handling them is a little trickier in our case. Note
that because of the way we have defined m and dx, proving that any depth four circuit
computing fn has Ω

(
m2dx

(lnm)5

)
many edges and Ω

(
mdx

(lnm)3

)
many gates would establish the

theorem.7 The exact description of fn is given in Section 4.

1.2 Proof Idea
Let C be a depth four circuit over a field F. Like many other works on arithmetic circuit
lower bounds, we use a rank based complexity measure to obtain our result. The measure
we apply is a variant of the projected shifted partials measure, which has been used before in
[49,51,58,85] and other works. Our proof can be divided into four steps; the first three show
a “small” upper bound on the measure of C while the last step shows a “large” lower bound
on the measure of the hard polynomial fn described above. We now briefly outline each of
these steps.

Step 1: Restricting the bottom support of C. We begin by removing all monomials
computed by the bottom layer of C that have a “large” support. Such restrictions have been
used in previous works [49,51,56,58,85] to control the degree of the (sparse) polynomials
computed at the third layer of a depth four circuit so that a “small” upper bound on the
measure of the circuit can be obtained. However, in our work, this step plays an even more
significant role by enabling us to remove “heavy” gates (see below). While previous works
use random restrictions, we use a deterministic procedure for restricting the bottom support
– we briefly explain our reasons for doing so towards the end of this section.

Heavy gates. We call a product gate in the second layer of C heavy if the number of distinct
third layer gates (computing sparse polynomials) feeding into it is Ω̃(n1.5). The presence of
heavy gates makes the task of obtaining a “small” upper bound on the measure of C difficult.
The problem of dealing with heavy gates was also faced by previous works on depth three
circuits [53, 87], and was dealt with by removing all heavy gates from the circuit before
applying the measure to it. We too remove all heavy gates from C, but our way of doing so
differs from [53,87]. Since a depth three circuit computes a sum of product of affine forms,
[53, 87] were able to remove all heavy gates by going modulo affine factors of these gates
thereby restricting the circuit to an affine subspace. While going modulo the sparse factors
of heavy gates is a natural generalization of this technique for depth four circuits, we do not
know how to adopt this method as the quotient ring so obtained might not be a polynomial
ring. In the next step, we outline a technique of removing heavy gates from C which, in
spirit, also restricts C to an affine subspace.

7 We use log base e in the proof rather than log base 2 as it simplifies the analysis.

CCC 2020

23:4 A Super-Quadratic Lower Bound for Depth Four Arithmetic Circuits

Step 2: Removing heavy gates from C. We remove heavy gates from C by sequentially
evaluating exactly one sparse factor of each heavy gate to zero. This can be done if F is
algebraically closed, which one can assume without loss of generality (as argued in Section
5). In particular, we use the following greedy procedure: While there exists a heavy gate in
C, pick a sparse polynomial for which the ratio of the number of heavy gates connected to
it to its fan-in is maximum, and evaluate it to zero. Intuitively, this allows us to remove a
large number of heavy gates at the cost of evaluating a few monomials (computed by the
bottom layer) to field constants. Then, as we have restricted the bottom support of C in
Step 1, we are able to show that we can remove Θ(n) many heavy gates at a cost of setting
only a few variables to constants (unless the already removed heavy gates account for Ω̃(n2.5)
size). Note that Θ(n) many heavy gates would immediately imply the desired lower bound.
This greedy procedure is inspired by an approximation algorithm for the weighted set cover
problem [99] (Section 2.1, page-16), however its analysis here is tailored to our needs. This
step, which is the main contribution of this work, plays a crucial role in enabling us to prove
a super-quadratic lower bound and we provide more details about it in Section 3.2.2.

Step 3: Analyzing the measure of C. After all the heavy gates have been removed, a “small”
upper bound on the measure of C is derived by closely following the “grouping” argument
made in [53]. However, we replace the shifted partials measure by the projected shifted
partials measure as the latter is suitable for controlling the degree of the sparse polynomials
computed at the third layer of C. In this step, we divide the factors of a polynomial T
computed by a ×-gate in the second layer of C into “groups” of suitable sizes, and multiply
out factors in the same group to reduce the effective number of factors of T . This then
helps obtain a “small” upper bound on the projected shifted partials measure of T which, by
sub-additivity, implies a “small” upper bound on the projected shifted partials measure of C.

Step 4: Lower bound on the measure of fn. The choice of the hard polynomial fn is
dictated by the above technique of removing heavy gates. As mentioned before, fn has
multiple copies of the Nisan-Wigderson design polynomial, denoted NW. The reason for
having multiple copies is that if we work with only one copy, we might end up irreparably
damaging it while removing heavy gates from C. On the other hand, starting with multiple
copies of NW, much like in [53], we are able to show that the procedure for removing heavy
gates leaves an intact copy along with some ‘damaged’ parts from the other copies. Our use
of a deterministic restriction in Step 1 makes it easier to show this. A “large” lower bound on
the measure of NW was obtained in [49,51,58]. However, it is not clear how to obtain such a
lower bound on NW in the presence of other “damaged” parts, and so we remove these parts.
Although in [53], such parts were removed by simply setting a subset of variables to 0 and 1,
here we need to augment the projected shifted measure appropriately to get rid of them.

2 Preliminaries

Notations. For r ∈ N, [r] := {1, . . . , r}. We use lowercase Greek alphabets like α, β for
field constants, bold-face lowercase letters like x and y to denote sets of variables, f, g for
polynomials in F[x,y], uppercase typewriter alphabets C, D for arithmetic circuits over F,
uppercase Roman alphabets T,Q for the polynomials computed by the gates of a depth
four circuit and M,M1,M2 for subsets of natural numbers. For M ⊆ [3m],xM := {xi : i ∈
M},yM := {yi : i ∈M}. For z ⊆ xM ∪ yM and r ∈ N, z≤∞ and z≤r denote the set of all
monomials in z variables and the set of all monomials in z variables with degree at most r
respectively. For S ⊆ F[x,y], dim〈S〉 denotes the dimension of the F-linear span of S.

N. Gupta, C. Saha, and B. Thankey 23:5

Support and degree of a monomial. The support of a monomial η, denoted Supp(η), is
the set of variables appearing in it. Also, for any z ⊆ x ∪ y we will use degz(η) to denote its
degree in z variables. We will say that η is z-multilinear if the degree of every z variable in η
is at most one.

2.1 The complexity measure
Throughout this section, we will assume that m ∈ N is as stated in the paragraph following
Theorem 1, M ⊆ [3m], |M | = m, f ∈ F[xM ,yM] and S ⊆ F[xM ,yM]. Note that the set M
is not fixed and will depend on the circuit under analysis. Before defining the measure, let
us define the operations that make up the measure.

1. Partial derivatives. Let η = x1 · · · xk be a monomial in x variables. Then, we define
the partial derivative of f with respect to η as

∂f

∂η
:= ∂

∂x1

(
∂

∂x2

(
· · ·
(
∂f

∂xk

)))
.

If the degree of η is k, then ∂ f
∂η is said to be a k-th order partial derivative of f . We

denote by ∂kxf the set of all k-th order partial derivatives of f taken with respect to
multilinear monomials in x variables.

2. The shift operation. Let η be a degree ` multilinear monomial in xM variables. We
say that the polynomial η · f is obtained by shifting f by η. We denote by x`Mf the set of
polynomials obtained by shifting f by all degree ` multilinear monomials in xM variables
and x`MS :=

{
x`Mf : f ∈ S

}
.

3. Multilinear projection. We define a map πx : F[xM ,yM] → F[xM ,yM] with πx(f)
being the polynomial made up of exactly the x-multilinear monomials of f . Formally, for
a monomial η, πx(η) = η if η is x-multilinear and 0 otherwise. The map is then linearly
extended for arbitrary polynomials and πx(S) := {πx(f) : f ∈ S} .

4. A degree based projection. For i ∈ N and f ∈ F[xM ,yM], we define [f]i to be the
polynomial made up of only those monomials of f whose y-degree is exactly i. Formally,
for a monomial η, [η]i = η if degy(η) = i and 0 otherwise. It is then linearly extended for
arbitrary polynomials and [S]m := {[f]m : f ∈ S} .

5. An evaluation map. For α ∈ F and z ⊆ xM∪yM , we define a map σz=α : F[xM ,yM]→
F[xM \ z, yM \ z] with σz=α(f) being obtained from f by setting every variable in z to
α and σz=α(S) := {σz=α(f) : f ∈ S} .

The operations given in 1, 2 and 3 constitute the projected shifted partials measure [49].
In this work, we define and use the measure PSPM,k,`, which is obtained by augmenting the
projected shifted partials measure with the operations in 4 and 5 as follows.

I Definition 2 (The measure). For m, k, ` ∈ N, M ⊆ [3m], |M | = m and f ∈ F[xM ,yM],

PSPM,k,`(f) := dim
〈
σyM=1

([
πx
(
x`M ∂kx f

)]
m

)〉
.

I Observation 3 (Sub-additivity of the measure). For any two polynomials f, g ∈ F[xM ,yM],

PSPM,k,` (f + g) ≤ PSPM,k,` (f) + PSPM,k,` (g) .

The above observation is easy to prove and we omit its proof here.

CCC 2020

23:6 A Super-Quadratic Lower Bound for Depth Four Arithmetic Circuits

2.2 Some numerical estimates

I Proposition 4 (Estimating Binomial Coefficients). For any n, k ∈ N, k ≤ n,
(
n
k

)k ≤ (nk) <(
en
k

)k.
I Proposition 5 ([33,49]). Let a(n), f(n), g(n) : Z>0 → Z be integer values functions such
that (|f |+ |g|) = o(a). Then, ln (a+f)!

(a−g)! = (f + g) ln(a)±O
(
f2+g2

a

)
.

3 Upper bounding the measure for a depth four circuit

Let C =
∑s
i=1 Ti be a depth four circuit computing the polynomial f = fn (recall degx(fn) =

dx = Θ
(√

m
lnm

)
from Section 1.1); Ti =

∏ai
j=1Q

ej
ij and Qij ’s are distinct sparse polynomials

computed by the +-gates in the third layer of C, and ej ≥ 1. We assume that F is algebraically
closed and argue in Section 5 why this holds without loss of generality. For brevity, we would
use the terminologies ‘product terms’, ‘sparse polynomials’ and ‘monomials’ for the ×-gates,
+-gates and ×-gates in the second, third and fourth layers of C respectively as shown in
Figure 1a. The proof of the upper bound is divided into three steps:

Step 1: Restricting the bottom support. In this step, we show that if C has fewer than
Ω
(
m2dx

(lnm)5

)
distinct monomials then we can remove all monomials with support more than

τ = b20 lnmc at a cost of setting m many x variables and m many y variables to zero.
(Notice that if there are more than Ω

(
m2dx

(lnm)5

)
many monomials then there is nothing to

prove.) This step is required not only to remove heavy gates in Step 2 but also in Step 3
where using the fact that all monomials have support at most τ and multilinear projection,
we will argue that the degree of all monomials is not too large. More details about this
restriction are given in Section 3.2.1.

Step 2: Removing heavy gates. The transformed circuit C1, obtained after Step 1, com-
putes a polynomial in the remaining 2mmany x variables and 2mmany y variables. Moreover,
the number of gates and the fan-in of all gates in C1 is upper bounded by the number of
gates and the fan-in of the corresponding gates in C. A product term in C1 is called a heavy
gate if at least w =

⌊
mdx

λ0·(lnm)3

⌋
(λ0 is a large enough constant fixed in Appendix C) many

distinct sparse polynomials are connected to it. If there are more than m heavy gates, we
are done. Otherwise, we remove all heavy gates using the following greedy procedure: While
there is a heavy gate, evaluate a sparse polynomial that would kill the most number of heavy
gates at the cost of evaluating as few monomials as possible. As we have already restricted
the support of all monomials to τ , we are able to argue in Section 3.2.2 that this can be done
at a cost of setting m many x and m many y variables to field constants.

These steps transform C to a ‘pruned circuit’, defined as follows and depicted in Figure 1b.

I Definition 6. We say that a depth four circuit D is a pruned circuit if the support of
all monomials in D is at most τ = b20 lnmc, and it does not contain any heavy gate; i.e.
the number of distinct sparse polynomials feeding into any product term in D is less than
w =

⌊
mdx

λ0·(lnm)3

⌋
.

N. Gupta, C. Saha, and B. Thankey 23:7

+

X X X

+ + +

X XX X

Layer of sparse polynomials

Layer of monomials

𝑇𝑖

𝑄𝑖𝑗

Layer of product terms

Top fan-in = 𝑠

Input variables and field constants

(a) A depth four circuit C.

+

X X X

+ + +

X XX X

Input variables and field constants

Top fan-in = 𝑠

Number of distinct sparse
factors ≤ 𝑤

Support of each monomial ≤ 𝜏

(b) The pruned depth four circuit D.

Figure 1 A depth four circuit and its pruned version.

Step 3: Analysing the measure. In this step, we analyse the measure PSPM,k,` of the
pruned circuit D, obtained after Steps 1 and 2, computing a polynomial in the remaining m
many x and m many y variables. More details on this analysis are provided in the following
section.

3.1 Upper bound on the measure of a pruned depth four circuit
Recall the definition of the measure PSPM,k,` from Section 2. In Steps 1 and 2, we will ensure
that if a variable xi is set to a field constant then yi is also set to a field constant and vice
versa. The set M is then the set of indices of the remaining x (or y) variables and |M | = m.

I Lemma 7. Let D be a pruned depth four circuit with top fan-in s computing a polynomial
in xM and yM variables, where M ⊆ [3m], |M | = m. Also, let dx, τ, w be as defined earlier,
t =

⌊
dx

(lnm)3

⌋
, δ = 1

(lnm)2 , k =
⌊
δdx
t

⌋
and ` =

⌊
m

mδ/t+1

⌋
. Then, for sufficiently large m,

PSPM,k,`(D) ≤ s ·mO(1)
(

m

`+ 2ktτ

)(⌈w
t

⌉
+ k − 1
k

)
.

We prove the lemma at the end of this section. As D = T1 + · · · + Ts, where Ti is a
product term and as PSPM,k,` is sub-additive, to prove the lemma it suffices to show that
for all i ∈ [s],

PSPM,k,`(Ti) ≤ mO(1)
(

m

`+ 2ktτ

)(⌈w
t

⌉
+ k − 1
k

)
.

Consider any such product term T =
∏
i∈[a]Q

ei
i , where Qi ∈ F[xM ,yM], and since D is a

pruned depth four circuit, a ≤ w. Write Qi = Q′i +Q′′i , where Q′i is the sum of all monomials
of Qi wherein the individual degree of every x variable is at most two and Q′′i = Qi −Q′i.

CCC 2020

23:8 A Super-Quadratic Lower Bound for Depth Four Arithmetic Circuits

Then,

T =
∏
i∈[a]

(Q′i +Q′′i)ei =
∏
i∈[a]

Q′i
ei +Q′′,

where Q′′ is a polynomial whose every monomial has a x variable with degree at least
three. Thus, PSPM,k,`(Q′′) = 0 and hence from the sub-additivity of PSPM,k,` we have that

PSPM,k,`(T) ≤ PSPM,k,`

(∏
i∈[a]

Q′i
ei
)
.

Let T ′ =
∏
i∈[a]Q

′
i
ei . We will now upper bound PSPM,k,`(T ′). First, we assume without

loss of generality that a = w since if a < w then we can multiply with additional sparse
polynomials all of which are 1. Next we divide the sparse polynomials into disjoint sets such
that each set (except perhaps the last) has size exactly t. Then, we have that

T ′ = P1 · · ·Pdwt e, where Pi =
min(it,w)∏
j=(i−1)t+1

Q′j
ej .

B Claim 8. Let P = Q′1
e1 · · ·Q′t

et be one of the polynomials Pi. For k ≥ 0, let P (k) :=∏
i∈[t]Q

′
i
max(ei−k,0). Then, ∂kxP ⊆ F-span{y≤∞M x≤k(2tτ−1)

M P (k)}.

The proof of the claim is straighforward and is given in Appendix B.1.

Proof of Lemma 7. Recall that it is enough to show the following

PSPM,k,`(T ′) ≤ mO(1)
(

m

`+ 2ktτ

)(⌈w
t

⌉
+ k − 1
k

)
,

where T ′ = P1 · · · Pdwt e. Let v =
⌈
w
t

⌉
. Now,

∂kxT
′ ⊆ F-span

{
∂k1

x P1 · · · ∂kvx Pv : k1 + · · ·+ kv = k
}

⊆ F-span
{

y≤∞M x≤k1(2tτ−1)
M P

(k1)
1 · · ·y≤∞M x≤kv(2tτ−1)

M P (kv)
v : k1 + · · ·+ kv = k

}
⊆ F-span

{
y≤∞M x≤k(2tτ−1)

M P
(k1)
1 · · ·P (kv)

v : k1 + · · ·+ kv = k
}
,

where the second to last inclusion follows from Claim 8. Hence,

x`M∂kxT ′ ⊆ F-span
{

y≤∞M x≤`+k(2tτ−1)
M P

(k1)
1 · · ·P (kv)

v : k1 + · · ·+ kv = k
}
.

In other words, the space of shifted partials of T ′ is contained in the F-span of polynomials
of the form Y ·X ·P (k1)

1 · · ·P (kv)
v where Y is a monomial in yM variables and X is a monomial

in xM variables of degree at most `+ k(2tτ − 1). Let us analyse the effect of the operations
σyM=1, [·]m and πx on one such polynomial. We will assume that degy(Y) ≤ m and X is
multilinear for otherwise the polynomial will vanish after the operations are applied. Then,
we have that,

σyM=1

([
πx

(
Y ·X · P (k1)

1 · · ·P (kv)
v

)]
m

)
= X · σyM=1

([
πx

(
σSupp(X)=0

(
P

(k1)
1 · · ·P (kv)

v

))]
m−deg(Y)

)
.

N. Gupta, C. Saha, and B. Thankey 23:9

Thus,

σyM=1
([
πx
(
x`M∂kxT ′

)]
m

)
⊆ F-span

{
X · σyM=1

([
πx

(
σSupp(X)=0

(
P

(k1)
1 · · ·P (kv)

v

))]
i

)
:

X is a multilinear monomial in xM variables,deg(X) is

at most `+ k(2tτ − 1), 0 ≤ i ≤ m and k1 + · · ·+ kv = k
}
.

Once we fix i, X, and k1, ..., kv, X ·σyM=1

([
πx

(
σSupp(X)=0

(
P

(k1)
1 · · ·P (kv)

v

))]
i

)
is fixed.

So,

PSPM,k,`(T ′) = dim
〈
σyM=1

([
πx
(
x`M∂kx T ′

)]
m

)〉
≤ (m+ 1) ·

`+k(2tτ−1)∑
j=0

(
m

j

)(
v + k − 1

k

)

≤ (m+ 1) · (`+ 2ktτ) ·
(

m

`+ 2ktτ

)(
v + k − 1

k

)
= mO(1) ·

(
m

`+ 2ktτ

)(⌈w
t

⌉
+ k − 1
k

)
,

where the second last inequality follows from Claim 9 (proved in Appendix B.1). J

B Claim 9. Let `, k, t and τ be as defined earlier. Then, `+ 2ktτ < m
2 .

3.2 Pruning a depth four circuit
As mentioned before, we will prune the circuit C computing fn in two steps - first we will
restrict the bottom support of C and then we will get rid of all heavy gates in it.

3.2.1 Step 1 - Restricting the bottom support of C

If the number of monomials in C is more than
⌊
m2dx

(lnm)5

⌋
, there is nothing to prove. Otherwise,

we show that we can get rid of all monomials with support more than τ = b20 lnmc.

I Lemma 10. Let the number of monomials in C be at most
⌊
m2dx

(lnm)5

⌋
. Then, for sufficiently

large m, there exists M1 ⊆ [3m], |M1| = m such that all monomials in C1 obtained from C by
setting variables xM1 and yM1 to 0 have support at most τ .

Proof. We first present a greedy procedure to remove all monomials with support more
than τ and then argue that it sets m variables each from x and y to 0. In each iteration
the procedure picks a pair of variables that appears in a large number of monomials with
support more than τ and set them to 0.

Procedure 1 Restriction procedure.

1. M1 ← ∅, C1 ← C, H := set of all monomials of C1 with support more than τ .
2. For j ∈ [3m], e(j) := number of monomials in H containing xj or yj .
3. while H 6= ∅ do
4. Pick j′ ∈ [3m]\M1 such that e(j′) ≥ e(j) for all j ∈ [3m]. Set xj′ = 0 and yj′ = 0.

Update M1 ← M1 ∪ {j′}, C1 ← circuit obtained from C1 by setting xj′ and yj′ to 0,
H ← set of all monomials of C1 with support more than τ , and e(j) ← number of
monomials in H containing xj or yj .

5. end while

CCC 2020

23:10 A Super-Quadratic Lower Bound for Depth Four Arithmetic Circuits

It is clear that the bottom support of C1 obtained after the termination of the procedure
is at most τ . Also, since we are only setting variables to 0, it trivially follows that the
procedure does not increase the number of gates nor does it increase the fan-in of any gate
in the circuit. Claim 11 (proved in Appendix B.2) implies that the procedure terminates in
at most m iterations. If it terminates before m iterations, we arbitrarily add an appropriate
number of j ∈ [3m] to M1 so that |M1| = m and set xj and yj to 0 for all such j. J

B Claim 11. Procedure 1 terminates in at most m iterations.

I Remark. Procedure 1 looks similar to an approximation algorithm for the Set Cover
problem [102] (Section 1.2, page-6). This is because the problem of removing monomials
with support more than τ can be formulated as an instance of Set Cover with the universe
being all such monomials and with a set corresponding to each j ∈ [3m]. For a j ∈ [3m], the
corresponding set will contain all monomials with support more than τ in which at least one
of xj and yj appears.

3.2.2 Step 2 - Pruning the heavy gates from C1

A sparse polynomial Q in C1 is said to be light if its fan-in is at most m
(lnm)2 , i.e., at most

m
(lnm)2 many non-zero monomials are present in Q. If the sum of fan-ins of all the light

sparse polynomials is Ω
(
m2dx

(lnm)5

)
then there is nothing to prove. So assume that the sum of

fan-ins of all the light sparse polynomials is O
(
m2dx

(lnm)5

)
. Recall that a product term is called

heavy if it has at least w =
⌊

mdx
λ0·(lnm)3

⌋
many distinct sparse polynomials connected to it

(where λ0 is a large enough constant fixed in Appendix C). Observe that one of the following
cases is true:
1. There is a heavy gate in C1, that is connected to at most m·dx

2·λ0·(lnm)3 light sparse polyno-
mials.

2. Every heavy gate is connected to at least m·dx
2·λ0·(lnm)3 light sparse polynomials.

Case 1 clearly implies a lower bound of Ω
(
m2dx

(lnm)5

)
. Else, we prove the following lemma.

I Lemma 12. Let C1 be the circuit (obtained from Lemma 10) having at most m heavy gates
such that every heavy gate is connected to at least mdx

2·λ0·(lnm)3 light sparse polynomials, and
the sum of fan-ins of all the light sparse polynomials is at most m2·dx

160·λ0·(lnm)5 . Then, there
exist M2 ⊆ [3m] \M1, |M2| = m and αl, βl ∈ F for l ∈M2, such that setting xl = αl, yl = βl
for all l ∈M2 removes all heavy gates from C1.

Proof. We first present the pruning procedure and then argue its correctness. For any light
sparse polynomial Qj in C1, let bj and cj be equal to the fan-in of Qj and the number of
distinct heavy gates connected to Qj in C1 respectively. As Qj is a light sparse polynomial,
bj ≤ m

(lnm)2 . In this procedure, while all the heavy gates do not disappear from C1, we pick
a sparse polynomial whose ratio of the number of distinct heavy gates connected to it and
fan-in is maximum and set that to zero by evaluating it to one of its roots in F. This can be
done as F is algebraically closed. The restricted support of the monomials in C1 ensure that
at the end of this procedure, only a small fraction of the variables are set.

N. Gupta, C. Saha, and B. Thankey 23:11

Procedure 2 Pruning heavy gates from C1.

1. Set i = 1 and M2 = ∅. Let s1 ≤ m be the number of heavy gates in C1. Choose a
non-constant light sparse polynomial Q1 from C1 such that the ratio c1

b1
is maximum

and add the indices of the variables appearing in Q1 to M2. As b1 ≤ m
(lnm)2 , we have

τ · b1 ≤ m.
2. Make Q1 equal to zero by setting at most τ · b1 many variables appearing in Q1 to field

constants. By doing so, at least c1 many heavy gates vanish from C1.
3. while (τ(b1 + · · ·+ bi) ≤ m) do
4. Increment i by 1.
5. Let si be the number of heavy gates in the current circuit C1 obtained after the

(i− 1)-th iteration. Clearly, si ≤ si−1 − ci−1. If si = 0 then exit the loop.
6. Otherwise, choose a non-constant light sparse polynomial Qi from C1 having the

maximum value of cibi in C1 and add the indices of the variables appearing in Qi to
M2.

7. Make Qi equal to zero by setting at most τ · bi many variables appearing in Qi to field
constants. By doing so, at least ci many heavy gates vanish from C1.

8. end while

B Claim 13. Let M1 = [3m]\M1. Procedure 2 sets at most m many variables in xM1
∪ yM1

to field constants and removes all the heavy gates from C1.

The above claim is proved in Appendix B.3. The claim implies that |M2| ≤ m. If
|M2| < m, add appropriate number of elements from [3m] \M1 ∪M2 to M2 arbitrarily so
that |M2| = m. For every l ∈ M2, if xl or yl is not set to a field constant then set xl = 0
or yl = 0 respectively. Clearly, we end up setting exactly m variables each from xM1

and
yM1

. J

I Remark. Procedure 2 resembles an approximation algorithm for the Weighted Set Cover
problem [99] (Section 2.1, page-16). This is no coincidence as the problem of removing
heavy gates can be formulated as an instance of Weighted Set Cover with the universe
being all heavy gates and with a set corresponding to every sparse polynomial Q. The set
corresponding to Q contains all heavy gates connected to Q and has a cost equal to the
number of monomials feeding into Q.

4 An explicit polynomial family with high measure

We now describe the family {fn}n≥1, whose n-th member fn is a polynomial in variables
x = {x1, ..., x3m} and y = {y1, ..., y3m}, where m ∈

[
n
2 , 2n

]
will be fixed later.

fn :=
∑

S⊆[3m],|S|=m

(∏
i∈S

yi

)
· NWr(xS),

where NWr is a variant of the Nisan-Wigderson design polynomial (introduced in [52]), the
construction of which is described later and r is a parameter fixed in this construction. Note
that {fn}n≥1 is in VNP. Given a monomial, in order to find its coefficient in fn, we first
check if the monomial is multilinear and of degree m in y variables. If it is so and S is
the set of the indices of the m many y variables in the monomial then simply return the
coefficient of the part of the monomial in x variables in NWr(xS) – this can be done as the
Nisan-Wigderson polynomial family is in VNP.

CCC 2020

23:12 A Super-Quadratic Lower Bound for Depth Four Arithmetic Circuits

Let M1 and M2 be as in Section 3 and M = [3m] \ (M1 ∪M2). Let f1 be the polynomial
computed by the pruned circuit D, which is obtained from f = fn by setting the variables
xM and yM to field constants as in Section 3.2. Let us now see how PSPM,k,`(f1) is related
to dim

〈
πx
(
x`M∂kx NWr

)〉
.

I Lemma 14. Let f1 be as defined above. Then, PSPM,k,`(f1)=dim
〈
πx
(
x`M∂kx NWr(xM)

)〉
.

Proof. The proof follows easily from the following two observations:
1. The two operations in y variables and the three operations in x variables (in the definition

of PSPM,k,`) commute. That is, we have σyM=1
([
πx(x`M∂kx f1)

]
m

)
=

πx
(
x`M∂kx (σyM=1 ([f1]m))

)
.

2. f1 = (
∏
i∈M yi) · NWr(xM) + f ′, where f ′ ∈ F[xM ,yM] and degy(f ′) < m.

From these observations we have that

PSPM,k,`(f1) = dim
〈
σyM=1

([
πx(x`M∂kx f1)

]
m

)〉
= dim

〈
πx

(
x`M∂kx

(
σyM=1

([(∏
i∈M

yi

)
· NWr(xM) + f ′

]
m

)))〉
= dim

〈
πx
(
x`M∂kx NWr(xM)

)〉
.

The last equality follows from the fact that
(
σyM=1

([(∏
i∈M yi

)
· NWr(xM) + f ′

]
m

))
=

NWr(xM). J

Construction of NWr. Let dx =
⌊√

n
lnn

⌋
. Pick an α such that dx

⌈
d1+α

x
⌉
≤ n ≤ 2dx

⌈
d1+α

x
⌉
;

this forces α to be Θ(ln lnn
lnn). Let q be a prime number between

⌈
d1+α

x
⌉
and 2

⌈
d1+α

x
⌉
–

such a prime exists [26] – and let m = dxq. Thus, dx
⌈
d1+α

x
⌉
≤ m ≤ 2dx

⌈
d1+α

x
⌉
and hence

n
2 ≤ m ≤ 2n; moreover, it can be easily verified that dx ∈

[√
m

2
√

2·lnm ,
2
√

2·
√
m

lnm

]
; both being

as required in Section 3. Also notice that this means q = Θ(
√
n lnn). Let β = 1

lnm and
r =

⌊
α+β

2(1+α)dx

⌋
− 1, u = (u1,1, ..., u1,q, ..., udx,1, ..., udx,q) and define

NWr(u) :=
∑

h(z)∈Fq [z], deg(h)≤r

u1,h(1) · · ·udx,h(dx).

A lower bound on dim
〈
πx
(
x`M∂kx NWr

)〉
was proved in [51, 85]. Since their analysis

continues to hold for our choice of parameters – which only slightly differ from the parameters
in [85] – we omit the proof of the following theorem. Moreover, while they prove this lower
bound over fields of characteristic zero, the same proof also works if the characteristic is
greater than q(r+1)·min{(mk)(m`),(m

`−dx−k)}.

I Theorem 15 (Lemma 5.2 of [51], Lemma 4.1 of [85]).

dim
〈
πx
(
x`M∂kx NWr(xM)

)〉
≥ 1
mO(1) min

{
1
4k ·

(
m

`

)(
m

k

)
,

(
m

`+ dx − k

)}
.

Hence, from Lemma 14 and Theorem 15 we get

I Lemma 16. PSPM,k,`(f1) ≥ 1
mO(1) min

{ 1
4k ·

(
m
`

)(
m
k

)
,
(

m
`+dx−k

)}
.

N. Gupta, C. Saha, and B. Thankey 23:13

5 Proof of Theorem 1

As before, let C be a depth four circuit computing the polynomial fn. Before proving the
theorem, let us first justify the assumption that F is an algebraically closed field that we
made in Section 3. Suppose not. Then, let F be its algebraic closure. Since C is also a circuit
over F and fn a polynomial over F, we can make all arguments assuming the underlying field
to be F. Since the size of a circuit does not depend on the underlying field, the lower bound
so obtained will continue to hold when we treat C as a circuit over F.

First we will prove a lower bound on the number of wires of C. If the number of monomials
in C is

⌊
m2dx

(lnm)5

⌋
then there is nothing to prove. Otherwise from Lemma 10, we can obtain

a circuit C1 such that the support of all the monomials of C1 is at most τ = b20 lnmc, the
number of gates in C1 is at most the number of gates in C and the fan-in of each gate in C1
is upper bounded by the fan-in of the corresponding gate in C. Then, if C1 does not satisfy
the hypothesis of Lemma 12, the size of C1 and hence the size of C is at least Ω

(
m2dx

(lnm)5

)
.

Otherwise, we can obtain a pruned circuit D such that the top fan-in and the bottom support
of D are upper bounded by the top fan-in and bottom support of C1 and so proving a lower
bound on the top fan-in of D would suffice.

As D computes f1 (defined in Section 4), PSPM,k,`(D) = PSPM,k,`(f1). Lemma 7 and 16
imply

s ≥
1

mO(1) min
{ 1

4k ·
(
m
`

)(
m
k

)
,
(

m
`+dx−k

)}
mO(1) ·

(
m

`+2ktτ
)(dwt e+k−1

k

) , (1)

and the required lower bound follows from the next claim, which is proved in Appendix C.

B Claim 17. The top fan-in s of D is ω
(
m2dx

(lnm)5

)
.

Now let us prove the lower bound on the number of gates. Notice that if the circuit C
computing f has a heavy gate as defined in Section 3 then we are done. So assume that
it does not have any heavy gates. Now, if the number of monomials in C is

⌊
m2dx

(lnm)5

⌋
then

there is nothing to prove. Otherwise from Lemma 10, we can obtain a circuit C1 such that
the support of all the monomials of C1 is at most τ = b20 lnmc, the number of gates in
C1 is at most the number of gates in C and the fan-in of each gate in C1 is upper bounded
by the fan-in of the corresponding gate in C. Obtain a circuit D from C1 by picking a set
M2 ⊆ [3m] \M1 (where M1 is as in Lemma 10), |M2| = m arbitrarily and setting variables
in xM2 and yM2 to 0 (notice that the top fan-in and bottom support of D are upper bounded
by the top fan-in and bottom support of C1). Now D computes f1 (where f1 is as defined in
Section 4) and just as it was done in the preceding paragraph, we can show that the top
fan-in of D is ω

(
m2dx

(lnm)5

)
. However, we only get an Ω

(
mdx

(lnm)3

)
lower bound on the number

of gates since the definition of a heavy gate is the bottleneck.

6 Conclusion

We conclude by stating a few questions/problems, some of which may not be very hard to
answer/solve.

1. Improving the depth four lower bound. An affirmative answer to any of the
following questions will strengthen or improve the lower bound shown in this work.

Can we prove an Ω̃(n2.5) lower bound on the number of gates of depth four circuits?
The almost cubic lower bound in [53] is on the number of gates of depth three circuits.

CCC 2020

23:14 A Super-Quadratic Lower Bound for Depth Four Arithmetic Circuits

Can we prove an Ω̃(n2.5) lower bound for depth four circuits computing IMM2,n
8? The

same question may also be asked with regard to the Ω̃(n3) lower bound for depth three
circuits.
Can we prove an Ω̃(n3) lower bound for depth four circuits? The loss of a

√
n factor

(in Theorem 1) in comparison to the almost cubic lower bound for depth three circuits
[53] is due to the use of the projected shifted partials measure in place of the shifted
partials measure.

2. A lower bound for depth five circuits. As mentioned in Appendix A, an Ω(n1.8+ε)
lower bound on the number of gates of a depth five circuit computing IMM2,n implies a
super-cubic lower bound for depth three circuits. It is also interesting to note that the
hard polynomial used in [12, 103] to prove an Ω̃(n3) lower bound for depth three circuits
is computable by a poly(n)-size depth five circuit. As a natural next step, we pose the
following problem:

Prove a super-quadratic lower bound for depth five circuits.
3. Super-linear lower bound for constant depth circuits computing IMM2,n. Re-

call that lower bounds of Ω(∆n1+ 1
∆) and roughly Ω(n1+ 1

∆) are shown for depth-∆ circuits
in [86] and [73] respectively. We have argued in Appendix A that the same lower bound
for depth-∆ circuits computing IMM2,n would give a super-polynomial lower bound for
constant depth circuits. It is thus natural to ask:

Can we prove a super-linear lower bound for constant depth circuits computing IMM2,n?
4. Hardness magnification for commutative circuits. It was shown in [18] that

a sufficiently large super-linear lower bound for non-commutative circuits implies an
arbitrarily large polynomial lower bound for general non-commutative circuits. It would
be highly interesting to show a similar hardness magnification result for commutative
circuits.

References

1 Manindra Agrawal, Eric Allender, and Samir Datta. On TC0, AC0, and Arithmetic Circuits.
J. Comput. Syst. Sci., 60(2):395–421, 2000. Conference version appeared in the proceedings of
CCC 1997.

2 Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. Jacobian
Hits Circuits: Hitting Sets, Lower Bounds for Depth-D Occur-k Formulas and Depth-3
Transcendence Degree-k Circuits. SIAM J. Comput., 45(4):1533–1562, 2016. Conference
version appeared in the proceedings of STOC 2012.

3 Manindra Agrawal and V. Vinay. Arithmetic Circuits: A Chasm at Depth Four. In 49th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28,
2008, Philadelphia, PA, USA, pages 67–75. IEEE Computer Society, 2008.

4 Miklós Ajtai. Σ1
1-Formulae on finite structures. Annals of Pure and Applied Logic, 24(1):1–48,

1983.
5 Boris Alexeev, Michael A. Forbes, and Jacob Tsimerman. Tensor rank: Some lower and upper

bounds. In Proceedings of the 26th Annual IEEE Conference on Computational Complexity,
CCC 2011, San Jose, California, USA, June 8-10, 2011, pages 283–291. IEEE Computer
Society, 2011.

6 Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-reducibility. J.
ACM, 57(3):14:1–14:36, 2010. Conference version appeared in the proceedings of CCC 2008.

7 Noga Alon and Ravi B. Boppana. The monotone circuit complexity of boolean functions.
Combinatorica, 7(1):1–22, 1987.

8 The reason why lower bounds for IMM2,n are interesting is mentioned in the discussion on hardness
magnification in Appendix A.

N. Gupta, C. Saha, and B. Thankey 23:15

8 Noga Alon, Mrinal Kumar, and Ben Lee Volk. Unbalancing Sets and an Almost Quadratic
Lower Bound for Syntactically Multilinear Arithmetic Circuits. In Rocco A. Servedio, editor,
33rd Computational Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA,
USA, volume 102 of LIPIcs, pages 11:1–11:16. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2018.

9 Matthew Anderson, Michael A. Forbes, Ramprasad Saptharishi, Amir Shpilka, and Ben Lee
Volk. Identity Testing and Lower Bounds for Read-k Oblivious Algebraic Branching Programs.
TOCT, 10(1):3:1–3:30, 2018. Conference version appeared in the proceedings of CCC 2016.

10 A. E. Andreev. On a method for obtaining more than quadratic effective lower bounds for
thecomplexity of π-schemes. Moscow Univ. Math. Bull., 42:63–66, 1987.

11 Vikraman Arvind and Srikanth Srinivasan. On the hardness of the noncommutative determ-
inant. Computational Complexity, 27(1):1–29, 2018. Conference version appeared in the
proceedings of STOC 2010.

12 Nikhil Balaji, Nutan Limaye, and Srikanth Srinivasan. An almost cubic lower bound for ΣΠΣ
circuits computing a polynomial in VP. Electronic Colloquium on Computational Complexity
(ECCC), 23:143, 2016. URL: http://eccc.hpi-web.de/report/2016/143.

13 Walter Baur and Volker Strassen. The Complexity of Partial Derivatives. Theor. Comput.
Sci., 22:317–330, 1983.

14 Norbert Blum. A Boolean Function Requiring 3n Network Size. Theor. Comput. Sci.,
28:337–345, 1984. doi:10.1016/0304-3975(83)90029-4.

15 Allan Borodin, Alexander A. Razborov, and Roman Smolensky. On Lower Bounds for
Read-K-Times Branching Programs. Computational Complexity, 3:1–18, 1993.

16 Peter Bürgisser. Completeness and Reduction in Algebraic Complexity Theory, volume 7 of
Algorithms and computation in mathematics. Springer, 2000.

17 Peter Bürgisser, Michael Clausen, and Mohammad Amin Shokrollahi. Algebraic complexity
theory, volume 315 of Grundlehren der mathematischen Wissenschaften. Springer, 1997.

18 Marco L. Carmosino, Russell Impagliazzo, Shachar Lovett, and Ivan Mihajlin. Hardness
Amplification for Non-Commutative Arithmetic Circuits. In Rocco A. Servedio, editor, 33rd
Computational Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA,
volume 102 of LIPIcs, pages 12:1–12:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2018.

19 Prerona Chatterjee, Mrinal Kumar, Adrian She, and Ben Lee Volk. A Quadratic Lower Bound
for Algebraic Branching Programs. Electronic Colloquium on Computational Complexity
(ECCC), page 170, 2019. URL: https://eccc.weizmann.ac.il/report/2019/170.

20 Lijie Chen and Roei Tell. Bootstrapping results for threshold circuits "just beyond" known
lower bounds. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June
23-26, 2019, pages 34–41. ACM, 2019.

21 Xi Chen, Neeraj Kayal, and Avi Wigderson. Partial Derivatives in Arithmetic Complexity and
Beyond. Foundations and Trends in Theoretical Computer Science, 6(1-2):1–138, 2011.

22 Suryajith Chillara, Christian Engels, Nutan Limaye, and Srikanth Srinivasan. A Near-Optimal
Depth-Hierarchy Theorem for Small-Depth Multilinear Circuits. In Mikkel Thorup, editor,
59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris,
France, October 7-9, 2018, pages 934–945. IEEE Computer Society, 2018.

23 Suryajith Chillara, Nutan Limaye, and Srikanth Srinivasan. Small-Depth Multilinear Formula
Lower Bounds for Iterated Matrix Multiplication with Applications. SIAM J. Comput.,
48(1):70–92, 2019. Conference version appeared in the proceedings of STOC 2001.

24 Danny Dolev, Cynthia Dwork, Nicholas Pippenger, and Avi Wigderson. Superconcentrators,
Generalizers and Generalized Connectors with Limited Depth (Preliminary Version). In David S.
Johnson, Ronald Fagin, Michael L. Fredman, David Harel, Richard M. Karp, Nancy A. Lynch,
Christos H. Papadimitriou, Ronald L. Rivest, Walter L. Ruzzo, and Joel I. Seiferas, editors,
Proceedings of the 15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983,
Boston, Massachusetts, USA, pages 42–51. ACM, 1983.

CCC 2020

http://eccc.hpi-web.de/report/2016/143
https://doi.org/10.1016/0304-3975(83)90029-4
https://eccc.weizmann.ac.il/report/2019/170

23:16 A Super-Quadratic Lower Bound for Depth Four Arithmetic Circuits

25 Zeev Dvir, Guillaume Malod, Sylvain Perifel, and Amir Yehudayoff. Separating multilinear
branching programs and formulas. In Howard J. Karloff and Toniann Pitassi, editors, Proceed-
ings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY,
USA, May 19 - 22, 2012, pages 615–624. ACM, 2012.

26 Paul Erdős. Beweis eines Satzes von Tschebyschef. Acta Litt. Sci. Szeged, 5:194–198, January
1932.

27 Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S. Kulikov.
A Better-Than-3n Lower Bound for the Circuit Complexity of an Explicit Function. In Irit
Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS
2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 89–98.
IEEE Computer Society, 2016.

28 Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower Bounds for
Depth-4 Formulas Computing Iterated Matrix Multiplication. SIAM J. Comput., 44(5):1173–
1201, 2015. Conference version appeared in the proceedings of STOC 2014.

29 Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, Circuits, and the Polynomial-Time
Hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984. Conference version appeared in
the proceedings of FOCS 1981.

30 Michelangelo Grigni and Michael Sipser. Monotone Separation of Logarithmic Space from
Logarithmic Depth. J. Comput. Syst. Sci., 50(3):433–437, 1995. Conference version appeared
in the proceedings of CCC 1991.

31 Dima Grigoriev and Marek Karpinski. An Exponential Lower Bound for Depth 3 Arithmetic
Circuits. In Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing,
Dallas, Texas, USA, May 23-26, 1998, pages 577–582, 1998.

32 Dima Grigoriev and Alexander A. Razborov. Exponential Lower Bounds for Depth 3 Arithmetic
Circuits in Algebras of Functions over Finite Fields. Appl. Algebra Eng. Commun. Comput.,
10(6):465–487, 2000. Conference version appeared in the proceedings of FOCS 1998.

33 Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Approaching the
Chasm at Depth Four. J. ACM, 61(6):33:1–33:16, 2014. Conference version appeared in the
proceedings of CCC 2013.

34 Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic Circuits:
A Chasm at Depth 3. SIAM J. Comput., 45(3):1064–1079, 2016. Conference version appeared
in the proceedings of FOCS 2013.

35 Johan Håstad. Almost Optimal Lower Bounds for Small Depth Circuits. In Proceedings
of the 18th Annual ACM Symposium on Theory of Computing, May 28-30, 1986, Berkeley,
California, USA, pages 6–20, 1986.

36 Johan Håstad. The Shrinkage Exponent of de Morgan Formulas is 2. SIAM J. Comput.,
27(1):48–64, 1998. Conference version appeared in the proceedings of FOCS 1993.

37 William Hesse, Eric Allender, and David A. Mix Barrington. Uniform constant-depth threshold
circuits for division and iterated multiplication. J. Comput. Syst. Sci., 65(4):695–716, 2002.
Conference version appeared in the proceedings of CCC 2001.

38 Pavel Hrubes, Avi Wigderson, and Amir Yehudayoff. Non-commutative circuits and the
sum-of-squares problem. In Leonard J. Schulman, editor, Proceedings of the 42nd ACM
Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June
2010, pages 667–676. ACM, 2010.

39 Pavel Hrubes and Amir Yehudayoff. Arithmetic complexity in ring extensions. Theory of
Computing, 7(1):119–129, 2011.

40 Pavel Hrubes and Amir Yehudayoff. On Isoperimetric Profiles and Computational Complexity.
In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi,
editors, 43rd International Colloquium on Automata, Languages, and Programming, ICALP
2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 89:1–89:12, 2016.

N. Gupta, C. Saha, and B. Thankey 23:17

41 Russell Impagliazzo, Ramamohan Paturi, and Michael E. Saks. Size-Depth Tradeoffs for
Threshold Circuits. SIAM J. Comput., 26(3):693–707, 1997. Conference version appeared in
the proceedings of STOC 1993.

42 Kazuo Iwama and Hiroki Morizumi. An Explicit Lower Bound of 5n - o(n) for Boolean
Circuits. In Krzysztof Diks and Wojciech Rytter, editors, Mathematical Foundations of
Computer Science 2002, 27th International Symposium, MFCS 2002, Warsaw, Poland, August
26-30, 2002, Proceedings, volume 2420 of Lecture Notes in Computer Science, pages 353–364.
Springer, 2002.

43 Mark Jerrum and Marc Snir. Some Exact Complexity Results for Straight-Line Computations
over Semirings. J. ACM, 29(3):874–897, 1982.

44 K. Kalorkoti. A Lower Bound for the Formula Size of Rational Functions. SIAM J. Comput.,
14(3):678–687, 1985.

45 Daniel M. Kane and Ryan Williams. Super-linear gate and super-quadratic wire lower bounds
for depth-two and depth-three threshold circuits. In Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June
18-21, 2016, pages 633–643, 2016.

46 Mauricio Karchmer and Avi Wigderson. Monotone Circuits for Connectivity Require Super-
Logarithmic Depth. SIAM J. Discrete Math., 3(2):255–265, 1990. Conference version appeared
in the proceedings of STOC 1988.

47 Mauricio Karchmer and Avi Wigderson. On Span Programs. In Proceedings of the Eigth
Annual Structure in Complexity Theory Conference, San Diego, CA, USA, May 18-21, 1993,
pages 102–111. IEEE Computer Society, 1993.

48 Neeraj Kayal. An exponential lower bound for the sum of powers of bounded degree polynomials.
Electronic Colloquium on Computational Complexity (ECCC), 19:81, 2012. URL: http:
//eccc.hpi-web.de/report/2012/081.

49 Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. An Exponential Lower
Bound for Homogeneous Depth Four Arithmetic Formulas. SIAM J. Comput., 46(1):307–335,
2017. Conference version appeared in the proceedings of FOCS 2014.

50 Neeraj Kayal and Chandan Saha. Lower Bounds for Sums of Products of Low arity Polynomials.
Electronic Colloquium on Computational Complexity (ECCC), 22:73, 2015. URL: http:
//eccc.hpi-web.de/report/2015/073.

51 Neeraj Kayal and Chandan Saha. Lower Bounds for Depth-Three Arithmetic Circuits with
small bottom fanin. Computational Complexity, 25(2):419–454, 2016. Conference version
appeared in the proceedings of CCC 2015.

52 Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. A super-polynomial lower bound
for regular arithmetic formulas. In Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, pages 146–153, 2014.

53 Neeraj Kayal, Chandan Saha, and Sébastien Tavenas. An Almost Cubic Lower Bound for
Depth Three Arithmetic Circuits. In 43rd International Colloquium on Automata, Languages,
and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 33:1–33:15, 2016.

54 Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theor. Comput. Sci.,
448:56–65, 2012.

55 Alexander S. Kulikov, Olga Melanich, and Ivan Mihajlin. A 5n - o(n) Lower Bound on
the Circuit Size over U 2 of a Linear Boolean Function. In S. Barry Cooper, Anuj Dawar,
and Benedikt Löwe, editors, How the World Computes - Turing Centenary Conference and
8th Conference on Computability in Europe, CiE 2012, Cambridge, UK, June 18-23, 2012.
Proceedings, volume 7318 of Lecture Notes in Computer Science, pages 432–439. Springer,
2012.

56 Mrinal Kumar and Shubhangi Saraf. Superpolynomial lower bounds for general homogeneous
depth 4 arithmetic circuits. In Automata, Languages, and Programming - 41st International
Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, pages
751–762, 2014.

CCC 2020

http://eccc.hpi-web.de/report/2012/081
http://eccc.hpi-web.de/report/2012/081
http://eccc.hpi-web.de/report/2015/073
http://eccc.hpi-web.de/report/2015/073

23:18 A Super-Quadratic Lower Bound for Depth Four Arithmetic Circuits

57 Mrinal Kumar and Shubhangi Saraf. Sums of Products of Polynomials in Few Variables: Lower
Bounds and Polynomial Identity Testing. In 31st Conference on Computational Complexity,
CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages 35:1–35:29, 2016.

58 Mrinal Kumar and Shubhangi Saraf. On the Power of Homogeneous Depth 4 Arithmetic
Circuits. SIAM J. Comput., 46(1):336–387, 2017. Conference version appeared in the
proceedings of FOCS 2014.

59 Mrinal Kumar and Ben Lee Volk. Lower Bounds for Matrix Factorization. Electronic
Colloquium on Computational Complexity (ECCC), 26:47, 2019.

60 Oded Lachish and Ran Raz. Explicit lower bound of 4.5n - o(n) for boolean circuits. In
Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors, Proceedings on 33rd
Annual ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece,
pages 399–408. ACM, 2001.

61 Shachar Lovett. Computing polynomials with few multiplications. Theory of Computing,
7(1):185–188, 2011.

62 Jacques Morgenstern. Note on a Lower Bound on the Linear Complexity of the Fast Fourier
Transform. J. ACM, 20(2):305–306, 1973.

63 Cody Murray and R. Ryan Williams. Circuit lower bounds for nondeterministic quasi-polytime:
an easy witness lemma for NP and NQP. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 890–901, 2018.

64 E. I. Nechiporuk. On a Boolean function. Doklady of the Academy of Sciences of the USSR,
164(4):765–766, 1966.

65 Noam Nisan. Lower Bounds for Non-Commutative Computation (Extended Abstract). In
Cris Koutsougeras and Jeffrey Scott Vitter, editors, Proceedings of the 23rd Annual ACM
Symposium on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages
410–418. ACM, 1991.

66 Noam Nisan and Avi Wigderson. Lower Bounds on Arithmetic Circuits Via Partial Derivatives.
Computational Complexity, 6(3):217–234, 1997. Conference version appeared in the proceedings
of FOCS 1995.

67 Igor Carboni Oliveira and Rahul Santhanam. Hardness Magnification for Natural Problems.
In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2018, Paris, France, October 7-9, 2018, pages 65–76. IEEE Computer Society, 2018.

68 Pavel Pudlák. Communication in Bounded Depth Circuits. Combinatorica, 14(2):203–216,
1994.

69 Pavel Pudlák. A note on the use of determinant for proving lower bounds on the size of linear
circuits. Inf. Process. Lett., 74(5-6):197–201, 2000.

70 Ran Raz. On the Complexity of Matrix Product. SIAM J. Comput., 32(5):1356–1369, 2003.
Conference version appeared in the proceedings of STOC 2002.

71 Ran Raz. Separation of Multilinear Circuit and Formula Size. Theory of Computing, 2(6):121–
135, 2006. Conference version appeared in the proceedings of FOCS 2004.

72 Ran Raz. Multi-linear formulas for permanent and determinant are of super-polynomial size.
J. ACM, 56(2):8:1–8:17, 2009. Conference version appeared in the proceedings of STOC 2004.

73 Ran Raz. Elusive Functions and Lower Bounds for Arithmetic Circuits. Theory of Computing,
6(1):135–177, 2010. Conference version appeared in the proceedings of STOC 2008.

74 Ran Raz. Tensor-Rank and Lower Bounds for Arithmetic Formulas. J. ACM, 60(6):40:1–40:15,
2013. Conference version appeared in the proceedings of STOC 2010.

75 Ran Raz and Pierre McKenzie. Separation of the Monotone NC Hierarchy. Combinatorica,
19(3):403–435, 1999. Conference version appeared in the proceedings of FOCS 1997.

76 Ran Raz and Amir Shpilka. Lower Bounds for Matrix Product in Bounded Depth Circuits
with Arbitrary Gates. SIAM J. Comput., 32(2):488–513, 2003. Conference version appeared
in the proceedings of STOC 2001.

N. Gupta, C. Saha, and B. Thankey 23:19

77 Ran Raz, Amir Shpilka, and Amir Yehudayoff. A Lower Bound for the Size of Syntactically
Multilinear Arithmetic Circuits. SIAM J. Comput., 38(4):1624–1647, 2008. Conference version
appeared in the proceedings of FOCS 2007.

78 Ran Raz and Amir Yehudayoff. Balancing Syntactically Multilinear Arithmetic Circuits.
Computational Complexity, 17(4):515–535, 2008.

79 Ran Raz and Amir Yehudayoff. Lower Bounds and Separations for Constant Depth Multilinear
Circuits. Computational Complexity, 18(2):171–207, 2009. Conference version appeared in the
proceedings of CCC 2008.

80 A. A. Razborov. Lower bounds on monotone complexity of the logical permanent. Mathematical
notes of the Academy of Sciences of the USSR, 37(6):485–493, June 1985.

81 Alexander A. Razborov. Lower bounds on the monotone complexity of some Boolean functions.
Soviet Mathematics Doklady, 31:354–357, 1985.

82 John H. Reif and Stephen R. Tate. On Threshold Circuits and Polynomial Computation.
SIAM J. Comput., 21(5):896–908, 1992.

83 Robert Robere, Toniann Pitassi, Benjamin Rossman, and Stephen A. Cook. Exponential Lower
Bounds for Monotone Span Programs. In Irit Dinur, editor, IEEE 57th Annual Symposium
on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New
Brunswick, New Jersey, USA, pages 406–415. IEEE Computer Society, 2016.

84 Eli Shamir and Marc Snir. Lower bounds on the number of multiplications and the number of
additions in monotone computations. Technical report, IBM RC 6757, 1977.

85 Abhijat Sharma. An Improved Lower Bound for Depth Four Arithmetic Circuits. Master’s
thesis, Indian Institute of Science, Bangalore, India, 2017.

86 Victor Shoup and Roman Smolensky. Lower Bounds for Polynomial Evaluation and Interpola-
tion Problems. Computational Complexity, 6(4):301–311, 1997. Conference version appeared
in the proceedings of FOCS 1991.

87 Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of characteristic zero.
Computational Complexity, 10(1):1–27, 2001. Conference version appeared in the proceedings
of CCC 1999.

88 Amir Shpilka and Amir Yehudayoff. Arithmetic Circuits: A survey of recent results and open
questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.

89 Srikanth Srinivasan. Strongly Exponential Separation Between Monotone VP and Monotone
VNP. Electronic Colloquium on Computational Complexity (ECCC), 26:32, 2019.

90 Volker Strassen. Die berechnungskomplexiät von elementarysymmetrischen funktionen und
von iterpolationskoeffizienten. Numerische Mathematik, 20:238–251, 1973.

91 Volker Strassen. Vermeidung von divisionen. The Journal für die Reine und Angewandte
Mathematik, 264:182–202, 1973.

92 Éva Tardos. The gap between monotone and non-monotone circuit complexity is exponential.
Combinatorica, 8(1):141–142, 1988.

93 Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. Inf. Comput.,
240:2–11, 2015. Conference version appeared in the proceedings of MFCS 2013.

94 Leslie G. Valiant. On Non-linear Lower Bounds in Computational Complexity. In William C.
Rounds, Nancy Martin, Jack W. Carlyle, and Michael A. Harrison, editors, Proceedings of
the 7th Annual ACM Symposium on Theory of Computing, May 5-7, 1975, Albuquerque, New
Mexico, USA, pages 45–53. ACM, 1975.

95 Leslie G. Valiant. Graph-Theoretic Arguments in Low-Level Complexity. In Mathematical
Foundations of Computer Science 1977, 6th Symposium, Tatranska Lomnica, Czechoslovakia,
September 5-9, 1977, Proceedings, pages 162–176, 1977.

96 Leslie G. Valiant. Completeness Classes in Algebra. In Proceedings of the 11h Annual ACM
Symposium on Theory of Computing, April 30 - May 2, 1979, Atlanta, Georgia, USA, pages
249–261, 1979.

97 Leslie G. Valiant. Negation can be exponentially powerful. Theor. Comput. Sci., 12:303–314,
1980. Conference version appeared in the proceedings of STOC 1979.

CCC 2020

23:20 A Super-Quadratic Lower Bound for Depth Four Arithmetic Circuits

98 Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast Parallel Computation
of Polynomials Using Few Processors. SIAM J. Comput., 12(4):641–644, 1983.

99 Vijay V. Vazirani. Approximation algorithms. Springer, 2001. URL: http://www.springer.
com/computer/theoretical+computer+science/book/978-3-540-65367-7.

100 Joachim von zur Gathen and Gadiel Seroussi. Boolean Circuits Versus Arithmetic Circuits.
Inf. Comput., 91(1):142–154, 1991.

101 Ryan Williams. Nonuniform ACC Circuit Lower Bounds. J. ACM, 61(1):2:1–2:32, 2014.
Conference version appeared in the proceedings of CCC 2011.

102 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011. URL: http://www.cambridge.org/de/knowledge/isbn/
item5759340/?site_locale=de_DE.

103 Morris Yau. Almost cubic bound for depth three circuits in VP. Electronic Colloquium on
Computational Complexity (ECCC), 23:187, 2016. URL: http://eccc.hpi-web.de/report/
2016/187.

104 Amir Yehudayoff. Separating monotone VP and VNP. In Moses Charikar and Edith Cohen,
editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 425–429. ACM, 2019.

A Known lower bounds

We give a brief account of known lower bounds for some of the important classes of arithmetic
circuits by drawing parallels with similar results from the Boolean circuit literature. The
reader may refer to the surveys [21,88] or the book [17] for more details on arithmetic circuit
lower bounds. We also state a few hardness magnification9 or amplification results to show
that proving seemingly modest lower bounds can be quite interesting and challenging even
for constant depth circuits, provided the polynomials being computed have “low” complexity.

General circuits. The best known lower bound for general arithmetic circuits is Ω(n log d),
which was obtained nearly four decades ago for circuits computing the power symmetric
polynomial xd1 + xd2 + . . . + xdn [13, 90]10. Recently, [19] has shown an Ω(n2) lower bound
for “layered” algebraic branching programs (ABPs) computing the same polynomial. An
Ω(n2) lower bound for formulas computing the polynomial

∑
i,j∈[n] x

j
iyj was shown in [44].

The situation is similar for Boolean circuits. For circuits over the DeMorgan basis and over
the full binary basis, the lower bounds 5n − o(n) [42, 55, 60] and (3 + 1

86)n − o(n) [14, 27]
respectively, are the best till date. For Boolean formulas, an Ω̃(n2) lower bound is known
over the full binary basis [64], and an Ω̃(n3) lower bound is known over the DeMorgan basis
[10,36].

Monotone circuits. These are arithmetic circuits over Q or R that disallow negation. A
lot more is known about this class of circuits. A near optimal 2Ω(n) lower bound on the
monotone circuit complexity of the n× n permanent was shown in [43]. In fact, [97] showed
an exponential separation between monotone and general circuits computing the perfect
matching polynomial of a certain planar graph. Optimal separations are also known between
monotone ABPs and monotone circuits [40] and between monotone formulas and monotone
ABPs [84]. Recently, [104] gave an exponential separation between monotone VP and
monotone VNP which was made stronger in [89]. One of the success stories on Boolean

9 Borrowing terminology from [67].
10The bound also holds for the d-th elementary symmetric polynomial in n variables.

http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-65367-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-65367-7
http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE
http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE
http://eccc.hpi-web.de/report/2016/187
http://eccc.hpi-web.de/report/2016/187

N. Gupta, C. Saha, and B. Thankey 23:21

circuit complexity in the 80s is the exponential lower bound for monotone circuits computing
the clique function [7,81]. Building on these results, [92] showed an exponential separation
between monotone and general Boolean circuits11. An exponential separation between
monotone switching networks12 and monotone circuits was given in [83]13. A separation
between monotone formulas and monotone switching networks follows from the work of [30].
Yet another interesting result is the separation of monotone-NCi from monotone-NCi+1 for
every i ≤ 1 [46,75].

Non-commutative and multilinear circuits. A non-commutative circuit computes a poly-
nomial in non-commuting variables. This model has more structure than circuits over
commuting variables and so one may hope that it is “easier” to prove lower bounds for non-
commutative circuits14. The seminal work of [65] showed an exponential separation between
non-commutative ABPs and non-commutative circuits. But, proving a super-polynomial
lower bound for general non-commutative circuits15 and showing a separation between
non-commutative formulas and non-commutative ABPs continue to remain two important
open problems. The techniques used to prove lower bounds for non-commutative circuits is
closely related to that used to prove lower bounds for multilinear circuits. In a (syntactically)
multilinear circuit, the sets of variables occurring in the subcircuits rooted at the children of a
product gate are pairwise disjoint. It is an interesting model of computation as most natural
families of polynomials, like the permanent, determinant, iterated matrix multiplication,
elementary symmetric polynomials, design polynomials etc., are multilinear. Building on [77],
an Ω(n2

(logn)2) lower bound for multilinear circuits has been recently shown in [8]. Prior to
this, the breakthrough work of [72] culminated in an optimal separation between multilinear
formulas and multilinear ABPs [25,71,78]. We do not know of any super-polynomial lower
bound for multilinear ABPs.

Bounded coefficient circuits. In a bounded coefficient circuit over C, we forbid any mul-
tiplication by a field element having absolute value larger than 1. An Ω(n logn) lower
bound for bounded coefficient circuits computing the Discrete Fourier Transform of a vector
(x1, . . . , xn) was shown in [62]. Later, [70] gave an Ω(n logn) lower bound for the same class
of circuits computing the product of two

√
n×
√
n matrices.

Read-k circuits. A read-once oblivious algebraic branching program (ROABP) is a layered
ABP in which every layer is indexed by a variable, and every variable indexes exactly one
layer. The edges of a layer are labeled by univariate polynomials in the variable indexing
the layer. In a certain sense, the ROABP model generalizes quite a few other interesting
arithmetic circuit models, especially tensors. An exponential lower bound for ROABPs
follows from the technique introduced in the work of [65]. A read-k oblivious ABP is defined
similarly, with every variable indexing at most k layers. In [9], an exp(n

kO(k)) lower bound
for read-k oblivious ABP was shown. Another related result is the exp(nk2) lower bound for

11Prior to this, [80] showed a quasi-polynomial lower bound for monotone circuits computing the perfect
matching function.

12We may think of monotone switching networks as the Boolean analogue of monotone ABPs.
13 In fact, [83] gave an exponential lower bound for the more powerful model of monotone span programs

that was introduced in [47].
14Besides, there is an interesting connection between the non-commutative determinant and the commut-

ative permanent [11].
15 In fact, nothing better than the Ω(n log d) lower bound (which also holds for commutative circuits) is

known. The hardness of proving a sufficiently strong super-linear lower bound for non-commutative
circuits is explained in a recent work [18] (see the discussion below on hardness magnification).

CCC 2020

23:22 A Super-Quadratic Lower Bound for Depth Four Arithmetic Circuits

depth four read-k formulas [2]. An exponential lower bound is also known for read-k Boolean
branching programs [15], which is a stronger model than read-k oblivious Boolean branching
programs.

Constant depth circuits
The best lower bound for constant depth circuits is a little better than that for general circuits.
Shoup and Smolensky [86] showed an Ω(∆n1+ 1

∆) lower bound for depth-∆ circuits computing
the polynomials {

∑
j∈[n] x

j
1yj , . . . ,

∑
j∈[n] x

j
nyj}. Using an argument similar to [86], Raz

[73] showed a roughly Ω(n1+ 1
∆) lower bound for depth-∆ circuits computing polynomials of

degree Θ(∆), i.e., the polynomials have constant degree for constant depth circuits. These
bounds were essentially achieved by analyzing linear circuits16. Prior to these works, a
barely super-linear lower bound of n · λ∆(n) was known for depth-∆ linear circuits using
super-concentrators [24,68,76,94], where λ∆(n) is a very slowly growing function17. Recently,
[59] gave a n1+ 1

2∆ lower bound for depth-∆ linear circuits computing a linear transformation
that can be computed in exp(n1−Ω(1

d)) time. A similar lower bound was known before for
bounded coefficient circuits – Pudlák [69] proved an Ω(∆n1+ 1

∆) lower bound for depth-∆
bounded coefficient circuits computing the DFT matrix. A lower bound of Ω(n1+ 1

O(∆)) was
also shown in [70] for depth-∆ bounded coefficient circuits computing the product of two√
n×
√
n matrices.

A lot better lower bounds are known for constant depth multilinear circuits. Raz and
Yehudayoff [79] showed an exp(nΩ(1

∆)) lower bound for depth-∆ multilinear circuits computing
the n× n determinant polynomial. More recently, [23] showed an exp(n 1

∆) lower bound for
depth-∆ multilinear circuits computing the product of n many 2× 2 matrices. In fact, an
exponential separation is known between depth-∆ and depth-(∆ + 1) multilinear circuits
[22], which improved upon a previous quasi-polynomial separation [79].

A circuit computing an n-variate homogeneous polynomial of poly(n) degree can be
homogenized with only a polynomial blow-up in size [91], but this process is not depth
preserving. It is plausible that homogeneous depth-∆ circuits are weaker than general
depth-∆ circuits for constant ∆. Indeed, such a statement is known to be true for ∆ = 3
and ∆ = 4. It was shown in the classical work [66] that any homogeneous depth three circuit
computing the n-variate degree-d elementary symmetric polynomial ESymn,d has size nΩ(d),
although ESymn,d has a non-homogeneous (multilinear) depth three circuit18 of size O(n2).
A sequence of work [28,33,48,49,52,58] culminated in a nΩ(

√
d) lower bound for homogeneous

depth four circuits computing the width-n, degree-d iterated matrix multiplication polynomial
IMMn,d. On the other hand, the depth reduction result in [34,93], which built on [3, 54,98],
yields a non-homogeneous depth four circuit of size nO(d

1
3) for IMMn,d.

An almost cubic lower bound for general depth three circuits was shown in [53], which
improved upon the previous quadratic bound [87]. The bound in [87] is for the elementary
symmetric polynomial, whereas the bound in [53] is for a variant of the Nisan-Wigderson
design polynomial (which is in VNP). Subsequently, [12,103] showed near cubic lower bounds
for depth three circuits computing polynomials that have poly(n)-size depth five circuits. Over

16A linear circuit has only addition gates and so it computes a linear transformation (i.e., a set of linear
forms) in the input variables. If a set of linear forms is computable by a circuit of size s and depth-∆
then they are computable by a linear circuit of size O(s) and depth ∆. Thus, a super-linear lower bound
for linear circuits implies a super-linear lower bound for general circuits.

17For instance, λ4(n) = log∗ n.
18Construction of this circuit is attributed to Michael Ben-Or.

N. Gupta, C. Saha, and B. Thankey 23:23

fixed finite fields, an exponential lower bound is known for depth three circuits computing
the determinant [31, 32]. For depth three circuits with low bottom fan-in19 (but without any
homogeneity restriction), [51] proved an exponential lower bound20. As mentioned before,
the previous best lower bound for general depth four circuits is Ω̃(n1.5) [85], which is a slight
improvement over the roughly Ω(n1.33) bound obtained by specializing the lower bound for
constant depth circuits in [73, 86] to depth four circuits21. Our work here improves these
super-linear bounds to a super-quadratic lower bound for depth four circuits.

Now, coming to constant depth Boolean circuits, an exponential lower bound is known
for constant depth Boolean circuits over the DeMorgan basis (i.e., AC0 circuits). However, it
appears to us that the “right” Boolean analogue of constant depth arithmetic circuits is TC0

circuits (see [1, 37,82])22. The exponential lower bounds for AC0 circuits [4, 29,35] and the
quasi-polynomial lower bounds for ACC0 circuits23 [63,101] are two of the great achievements
in Boolean circuit complexity, but we are yet to see these kind of bounds for TC0 circuits.
The best known lower bound for threshold circuits is the slightly super-linear n1+ 1

c∆ bound
for depth-∆ TC0 circuits computing the parity function, where c > 1 is a fixed constant [41].
For depth two TC0 circuits, [45] showed an Ω̃(n2.5) lower bound on the number of wires and
an Ω̃(n1.5) lower bound on the number of gates.

Hardness magnification
There are results in the arithmetic and Boolean circuit literature that show how to obtain
strong lower bounds from seemingly weak ones. We state a few of these results below with
the intent of demonstrating that sufficiently strong super-linear or super-quadratic lower
bounds can be quite interesting and challenging to prove even for constant depth circuits.

It follows from [91] that a cubic form24 has a depth three powering circuit25 with Θ(s)
gates if it has a circuit of size s. Thus, a super-linear lower bound on the number of gates
of a depth three powering circuit computing an explicit cubic form implies a super-linear
circuit lower bound. Stated differently, a super-linear lower bound on the (symmetric) tensor
rank of an explicit (symmetric) tensor of order 3 implies a super-linear circuit lower bound26.
In fact, Raz [74] showed that an nr·(1−o(1)) lower bound on the tensor rank of an explicit
order-r tensor T : [n]r → F implies a super-polynomial formula lower bound, assuming r is
a super-constant and r ≤ logn

log logn .

19The depth reduction in [34] yields a depth three circuit with low bottom fan-in. This is reminiscent of a
result in [95], which showed that a strong exponential lower bound for depth three Boolean circuits with
low bottom fan-in implies a super-linear lower bound for Boolean circuits having logarithmic depth and
bounded fan-in.

20This result was extended to depth four circuits with low bottom fan-in in the works [50,57].
21For the reader’s convenience, we show how the Ω(n1.33) bound can be derived from [73,86] in Appendix

D.
22This is because iterated addition and multiplication of integers are in TC0, and in the converse direction,

it is known that TC0 circuits can be simulated by constant depth arithmetic circuits using a single
threshold gate [1]. A related fact (attributed to Michael Ben-Or) is that there is an O(n2) size depth
three arithmetic circuit computing the n-variate degree-n2 elementary symmetric polynomial, which is
the arithmetic analogue of the majority function.

23 also for ACC0 circuits composed with a bottom layer of threshold gates
24 i.e., a homogeneous degree-3 polynomial
25A depth three powering circuit has a top +-gate, a middle layer of powering gates, and a bottom layer

of +-gates.
26The best known lower bound for an explicit order-3 tensor T : [n]3 → F is roughly 3n and for an

explicit order-r tensor is roughly 2nb
r
2 c [5].

CCC 2020

23:24 A Super-Quadratic Lower Bound for Depth Four Arithmetic Circuits

Recently, Chen and Tell [20] showed that a super-linear lower bound for TC0 circuits
(computing certain NC1-complete functions) which is slightly better than the lower bound
in [41] would imply TC0 6= NC1. Their result builds on the work of [6]. By mimicking
the argument in [20] for arithmetic circuits one gets the following statement: If IMM2,n is
computable27 by a depth-∆0 circuit of size nk then it is computable by a depth-∆ circuit
of size O(∆

∆0
· n1+exp(− ∆

∆0k
)). Recall that an Ω(∆n1+ 1

∆) lower bound is already known for
depth-∆ arithmetic circuits [73,86]. If the same lower bound is shown for depth-∆ circuits
computing IMM2,n then that would imply a super-polynomial lower bound for constant depth
arithmetic circuits! Compare this with the best known upper bound for depth-∆ circuits
computing IMM2,n which is roughly exp(O(∆n 1

∆)). Even for depth three circuits, we get
the following interesting observation: An Ω(n1.8+ε) lower bound on the number of gates of
a depth five circuit computing IMM2,n, for any constant ε > 0, implies a super-cubic lower
bound for depth three circuits28.

Hardness amplification results are also known for non-commutative circuits [18, 38].
A biquadratic polynomial f in the variables x = {x1, . . . , xn} and y = {y1, . . . , yn} is
a homogeneous degree-4 polynomial in which every monomial is of the form xixjykyl.
The bilinear complexity of a biquadratic polynomial f is the minimum r such that f =
g1h1 + . . . + grhr, where gi, hi are bilinear forms in x and y. It was shown in [38] that
Permanent requires non-commutative circuits of exponential size if there is an explicit
biquadratic polynomial having bilinear complexity Ω(n1+ε), for some constant ε > 0. In other
words, a super-cubic lower bound on the size of a homogeneous depth four (commutative)
circuit computing an explicit biquadratic form implies an exponential lower bound for
non-commutative circuits. In another appealing instance of hardness amplification, [18]
showed that an Ω(nω2 +ε) lower bound, where ω is the matrix multiplication exponent, for
non-commutative circuits computing an explicit constant degree polynomial implies an
exponential lower bound for non-commutative circuits; if the explicit polynomial has poly(n)
degree then the lower bound is an arbitrarily large polynomial function.

B Missing proofs from Section 3

B.1 Proofs from Section 3.1

B Claim 8. Let P = Q′1
e1 · · ·Q′t

et be one of the polynomials Pi. For k ≥ 0, let P (k) :=∏
i∈[t]Q

′
i
max(ei−k,0). Then, ∂kxP ⊆ F-span{y≤∞M x≤k(2tτ−1)

M P (k)}.

Proof. We prove the claim by induction on k. If k = 0, then ∂0
xMP = {P} = {P (0)} and

hence the claim is true. Assume that the claim is true for k. Let X be a multilinear monomial
of degree k + 1 in x variables. Then X = xX ′ where X ′ is a multilinear monomial of degree
k in x variables and x one of the x variables. From the induction hypothesis we have that,

∂P

∂X ′
= g · P (k)

where g is a polynomial in F[xM ,yM] with xM degree of g being at most k(2tτ − 1) while
its yM degree can be arbitrarily large.

27Here IMM2,n is a collection of four polynomials corresponding to the entries of a product of n many
2× 2 matrices whose entries are distinct formal variables.

28We attribute this observation to Ankit Garg.

N. Gupta, C. Saha, and B. Thankey 23:25

Let J := {j ∈ [t] : ej > k}. We have that,

∂P

∂X
= ∂

∂x

(
g · P (k)

)
= ∂

∂x

g ·∏
j∈J

Q′j
ej−k


= ∂g

∂x
·
∏
j∈J

Q′j
ej−k + g ·

∑
j∈J

(ej − k) ·Q′j
ej−k−1 ·

∂Q′j
∂x
·
∏

i∈J\{j}

Q′i
ei−k

=

∂g

∂x
·
∏
j∈J

Q′j + g ·
∑
j∈J

(ej − k) ·
∂Q′j
∂x
·
∏

i∈J\{j}

Q′i

 ·∏
j∈J

Q′j
ej−k−1

Observe that as D is a pruned depth four circuit, the support of all monomials of Q′j is
upper bounded by τ and as in any monomial the individual degree of any x variable is at
most two, degx(Q′j) ≤ 2τ . Also, |J | ≤ t and hence

degx

∂g

∂x
·
∏
j∈J

Q′j + g ·
∑
j∈J

(ej − k) ·
∂Q′j
∂x
·
∏

i∈J\{j}

Q′i

 ≤ (k + 1)(2tτ − 1).

As
∏
j∈J Q

′
j
ej−k−1 = P (k+1), the claim is true for k + 1. C

B Claim 9. Let `, k, t and τ be as defined earlier. Then, `+ 2ktτ < m
2 .

Proof. We will show that the ratio
m
2 −2ktτ

` > 1. Putting the values of k and `,

m
2 − 2ktτ

`
=

m
2 − 2

⌊
δdx
t

⌋
tτ⌊

m
mδ/t+1

⌋
≥
(

1
2 −

2δdxτ

m

)
(mδ/t + 1).

So, we need to show that

1
1
2 −

2δdxτ
m

< mδ/t + 1 ⇐⇒ 1
1
2 −

2δdxτ
m

− 1 < mδ/t

⇐⇒
1 + 4δdxτ

m

1− 4δdxτ
m

< mδ/t.

For large enough m, 4δdxτ
m ≤ 1

2 . Using 1 + x ≤ ex, which holds for all x ∈ R, and
1

1−x ≤ e
2x, which holds for 0 ≤ x ≤ 1

2 we get:

1 + 4δdxτ
m

1− 4δdxτ
m

≤ e
12δdxτ
m .

So showing that e
12δdxτ
m < mδ/t would suffice. Now,

e
12δdxτ
m < mδ/t ⇐⇒ e

12dxtτ
m < m.

Putting the values of dx, t an τ , we get that 12dxtτ
m =

12dx
⌊

dx
(lnm)3

⌋
b20 lnmc

m ≤ 12d2
x ·20 lnm
m(lnm)3 =

Θ
(

m
m(lnm)2(lnm)2

)
= Θ

(
1

(lnm)4

)
= o(1) as dx = Θ

(√
m

lnm

)
. Thus e

12dxtτ
m < m. C

CCC 2020

23:26 A Super-Quadratic Lower Bound for Depth Four Arithmetic Circuits

B.2 Proof from Section 3.2.1
B Claim 11. Procedure 1 terminates in at most m iterations.

Proof. Let Hi be the set H after the i-th iteration of the procedure. Since each monomial in
Hi has support more than τ , for any such monomial there are at least τ

2 distinct j ∈ [3m]\M1
such that at least one of xj and yj appears in it. Counting the number of times at least one
of xj and yj appears in a monomial in Hi and summing up these counts for all j ∈ [3m]\M1,
we get that∑

j∈[3m]\M1

e(j) ≥ τ · |Hi|
2 ;

so from an averaging argument there exists a j such that

e(j) ≥ τ · |Hi|
6m .

Hence, the size of Hi+1 is upper bounded as

|Hi+1| ≤ |Hi| ·
(

1− τ

6m

)
.

So after i iterations of the procedure we get,

|Hi| ≤ |H0| ·
(

1− τ

6m

)i
≤
⌊
m2dx

(lnm)5

⌋
·
(

1− b20 lnmc
6m

)i
≤ m2dx

(lnm)5 ·
(

1− (20 lnm− 1)
6m

)i
≤ m2dx

(lnm)5 · e
− 3i·lnm

m (for sufficiently large m)

= m2dx

(lnm)5 ·m
− 3i
m .

For i = m, |Hi| < 1 (for sufficiently large m), i.e., the procedure terminates in at most m
iterations. C

B.3 Proof from Section 3.2.2
B Claim 13. Let M1 = [3m]\M1. Procedure 2 sets at most m many variables in xM1

∪ yM1

to field constants and removes all the heavy gates from C1.

Proof. In each iteration, we evaluate a light sparse polynomial in C1 to zero. This can be
done as F is an algebraically closed field. Since the support of every monomial in C1 is at
most τ , we end up setting at most τ ·m

(lnm)2 ≤ 20·m
lnm many variables to field constants in each

iteration. As we can afford to set m variables, Step 2 of the procedure executes successfully.
For some i ∈ N, the while loop terminates in the i-th iteration in either of the following two
cases:
1. All the heavy gates get eliminated after the (i− 1)-th iteration, i.e., si = 0.
2. τ(b1 + · · ·+ bi) > m. (We show in the following subclaim that all the heavy gates are

eliminated before this happens. Hence, the procedure stops only in the above case.)

N. Gupta, C. Saha, and B. Thankey 23:27

B Subclaim 18. Let i ∈ N be such that τ(b1 + · · · + bi−1) ≤ m but τ(b1 + · · · + bi) > m.
Then, all the heavy gates in C1 get eliminated in the first (i− 1) iterations of Procedure 2.
If we assume Subclaim 18 then Claim 13 is proved. C

Proof of Subclaim 18: For 1 ≤ j < i, let (Qj,1, . . . , Qj,rj) be the available light sparse poly-
nomials in C1 after the (j − 1)-th iteration. Recall that sj is the number of heavy gates in C1
after the (j − 1)-th iteration. Suppose, sj ≥ 1 (otherwise, we have nothing to prove). For
every l ∈ [rj], bj,l and cj,l refer to the fan-in of Qj,l and the number of distinct heavy gates
connected to Qj,l in C1 respectively. We may assume that bj,l 6= 0 for every l ∈ [rj]. It is
given that

bj,1 + . . .+ bj,rj ≤
m2dx

160 · λ0 · (lnm)5 . (2)

Since every heavy gate is connected to at least m·dx
2·λ0·(lnm)3 many light sparse polynomials in

C1,

sj ·
mdx

2 · λ0 · (lnm)3 ≤ cj,1 + · · ·+ cj,rj .

As bj,1, . . . , bj,rj are all non-zero, we get

sj ·
mdx

2 · λ0 · (lnm)3 ≤
cj,1
bj,1
· bj,1 + · · ·+

cj,rj
bj,rj

· bj,rj .

Let u ∈ [rj] be such that cj,u
bj,u

= max
{
cj,1
bj,1

, . . . ,
cj,rj
bj,rj

}
. Let cj := cj,u and bj := bj,u. Then,

the above equation implies

sj ·
mdx

2 · λ0 · (lnm)3 ≤
cj
bj
· (bj,1 + · · ·+ bj,rj).

From Equation (2), we get that for every 1 ≤ j < i,

sj ·
mdx

2 · λ0 · (lnm)3 ≤
cj
bj
· m2dx

160 · λ0 · (lnm)5 ,

which implies

80 · sj · bj · (lnm)2

m
≤ cj . (3)

Thus, by setting the light sparse polynomial Qj,u to zero in the j-th iteration, we get rid of
at least 80·sj ·bj ·(lnm)2

m many heavy gates from C1. Recall that sj+1 is the number of available
heavy gates after the j-th iteration. Then, for every 1 ≤ j < i,

sj+1 ≤ sj − cj ≤ sj ·
(

1− 80 · bj · (lnm)2

m

)
. (4)

Hence, for every 1 ≤ j < i,

sj+1 ≤ s1 ·
j∏
l=1

(
1− 80 · bl · (lnm)2

m

)
. (5)

Also, for every l ≤ j, we have cl ≤ sl. Thus, Equation (3) implies

80 · bl · (lnm)2

m
≤ 1. (6)

CCC 2020

23:28 A Super-Quadratic Lower Bound for Depth Four Arithmetic Circuits

As 1− a ≤ e− a2 for 0 ≤ a ≤ 1, Equations (5) and (6) imply

sj+1 ≤ s1 ·
j∏
l=1

(
e−

40·bl·(lnm)2
m

)
= s1 · e−

40·(b1+···+bj)·(lnm)2

m . (7)

It is given that τ(b1 + · · ·+ bi) > m, which implies τ(b1 + · · ·+ bi−1) > m− τ · bi. As bi
is the fan-in of a light sparse polynomial, bi ≤ m

(lnm)2 and so

τ(b1 + · · ·+ bi−1) > m− mτ

(lnm)2 . (8)

On substituting j = i− 1, τ = b20 lnmc and the value of τ(b1 + · · ·+ bi−1) from Equation
(8) in Equation (7), we get

si ≤ s1 · e
− 40·(lnm)2

m ·
(

m
20 lnm−

m
(lnm)2

)
= s1 · e−(2 lnm−40).

For large enough m, si ≤ s1
m1.9 . Since s1 ≤ m, we get si = 0 (as it is a natural number). In

other words, we get rid of all the heavy gates within (i− 1) iterations. C

C Missing proofs from Section 5

B Claim 17. The top fan-in s of D is ω
(
m2dx

(lnm)5

)
.

Proof. From Equation (1), we have

s ≥
1

mO(1) min
{

1
4k ·
(
m
`

)(
m
k

)
,
(

m
`+dx−k

)}
mO(1) ·

(
m

`+2ktτ

)(dwt e+k−1
k

)
≥ 1

mO(1)
(dwt e+k−1

k

) min

{(
m
k

)
4k ·

(
m
`+1

)(
m

`+2ktτ+1

) , (m
`+dx−k

)(
m

`+2ktτ

) }

= 1

mO(1)
(dwt e+k−1

k

) min

{(
m
k

)
4k ·

(m− `− 2ktτ − 1)!
(m− `− 1)! · (`+ 2ktτ + 1)!

(`+ 1)! ,

(m− `− 2ktτ)!
(m− `− dx + k)! ·

(`+ 2ktτ)!
(`+ dx − k)!

}
= 1

mO(1)
(dwt e+k−1

k

) min

{(
m
k

)
4k · e

(−2ktτ) ln m−`−1
`+1 ±o(1), e(dx−2ktτ−k) ln m−`

`
±o(1)

}
(Using Proposition 5.)

≥ 1

mO(1)
(dwt e+k−1

k

) min

{(
m
k

)
4k ·

(
m

`+ 1 − 1
)−2ktτ

,

(
m

`
− 1
)(dx−2ktτ−k)

}

= 1

mO(1)
(dwt e+k−1

k

) min


(
m
k

)
4k ·

(
m⌊

m
mδ/t+1

⌋
+ 1
− 1

)−2ktτ

,

(
m⌊
m

mδ/t+1

⌋ − 1

)(dx−2ktτ−k)


≥ 1

mO(1)
(dwt e+k−1

k

) min

{(
m
k

)
4k ·

(
m
m

mδ/t+1
− 1
)−2ktτ

,

(
m
m

mδ/t+1
− 1
)(dx−2ktτ−k)

}

≥ 1

mO(1)
(dwt e+k−1

k

) min

{(
m
k

)
4k ·m

−2kδτ ,m(1−2δτ− δ
t

)k

}

N. Gupta, C. Saha, and B. Thankey 23:29

Since (mk)
4k · m

−2kδτ = (mk)
4k·m(1− δ

t
)k
· m(1−2δτ− δt)k ≤ (emk)k · m

δk
t

4kmk · m
(1−2δτ− δt)k. For our

choice of parameters δ, k and t, m δk
t = O(1). Hence, (mk)

4k ·m
−2kδτ ≤ m(1−2δτ− δt)k and thus,

s ≥ 1
mO(1) ·

(
m
k

)
·m−2kδτ

4k ·
(dwt e+k−1

k

)
≥ 1
mO(1) ·

(
m · k

4e · k ·m2δτ · (wt + k)

)k
(Using Proposition 4.)

≥ 1
mO(1) ·

(
m · t

8e ·m2δτ · w

)k
(Since kt ≤ w =

⌊
mdx

λ0·(lnm)3

⌋
.)

= 1
mO(1) ·

 m ·
⌊

dx
(lnm)3

⌋
8e ·m2δτ ·

⌊
mdx

λ0·(lnm)3

⌋
k

≥ 1
mO(1) ·

(
m · dx

(lnm)3

16e ·m2δτ · mdx
λ0·(lnm)3

)k

≥ 1
mO(1) ·

(
λ0

16e ·m2· 1
(lnm)2

·b20 lnmc

)lnm
(Since k ≥ blnmc.)

= 1
mO(1) ·

(
λ0

16e · eO(1)

)lnm

= ω

(
m2dx

(lnm)5

)
,

if we choose λ0 to be a large enough constant. C

D A brief review of the lower bounds from [86] and [73]

In this section, we present a short overview of the lower bounds for restricted depth arithmetic
circuits with multiple output gates from [86] and [73] and focus mainly on depth four circuits.
We would use (s,∆)-arithmetic circuit to denote an arithmetic circuit of size-s and depth-∆
and y for the set of variables {y1, . . . , yn}.

Lower bound from [86]. Let n ∈ N and ∆ = O(logn). Shoup and Smolensky showed that
there exist n linear forms g1, . . . , gn ∈ C[y], such that the size of any depth-∆ normal-linear
circuit29 that computes g1, . . . , gn is Ω(∆n1+ 1

∆). The following proposition implies that the
same lower bound holds for a depth-∆ arithmetic circuit, that also computes g1, . . . , gn.

I Proposition 19. Let n ∈ N, F be an arbitrary field and h1, . . . , hn ∈ F[y] be linear forms
computed by an (s,∆)-arithmetic circuit. Then, there exists an (s,∆)-normal-linear circuit
that computes h1, . . . , hn.

This proposition is easy to prove; a proof of the same in given in Section 2 of [73]. We
refer the reader to Section 3 of [86] for more details. In case of depth four arithmetic circuits
over C, if we substitute ∆ = 4 in the above mentioned result then we get a lower bound of

29An arithmetic circuit D over F is called a normal-linear circuit if all the gates in D are labelled by either
variables or by +. Every gate in D computes a linear form in the underlying set of variables over F.

CCC 2020

23:30 A Super-Quadratic Lower Bound for Depth Four Arithmetic Circuits

Ω(n1.25), but we observe that this lower bound can be optimised roughly to Ω(n1.33) using
the following claim. Claim 20 implies that the size of any depth four arithmetic circuit and
any depth three normal-linear circuit computing the linear forms g1, . . . , gn given in [86] are
same, which is roughly Ω(n1.33).

B Claim 20. Let n ∈ N and h1, . . . , hn ∈ F[y] be linear forms, computed by an (s, 4)-
arithmetic circuit C over F. Then, there exists an (s, 3)-normal-linear circuit over F that
computes h1, . . . , hn.

Proof. From Proposition 19, we obtain an (s, 4)-normal-linear circuit D over F that computes
h1, . . . , hn. We now argue that linearisation ensures that the fan-in of every gate in the
bottom layer of D is exactly 1. It turns out that only those product gates survive the
linearisation in the bottom layer of C which are connected to exactly one variable. Let v be
a gate in the bottom layer of C with children u1, . . . , ur. Then, there exists some i ∈ [r] such
that ui is a variable and all other gates are labelled by field constants, in which case, we
remove uj , j ∈ [r] \ {i} and multiply the label of the edge (v, ui) with

∏
j∈[r]\{i} uj . As every

gate in the bottom layer of D has fan-in 1, we can directly connect the input of every gate
in this layer to its outputs, thereby yielding an (s, 3)-normal-linear circuit that computes
h1, . . . , hn. C

Lower bound from [73]. Let n be a prime number and ∆ = O(logn). Raz showed that
there exist n explicit homogeneous polynomials of degree Θ(∆) in Θ(n) variables over F, such
that any depth-∆ arithmetic circuit that computes these polynomials has size Ω(n1+ 1

2·∆).
While the lower bound for depth-∆ arithmetic circuit given in [86] holds for n non-explicit
linear forms over C, the same lower bound also holds for n explicit homogeneous polynomials
of Θ(n) degree in Θ(n) variables over C. We first recall some definitions from [73] and then
show that the lower bound for depth-∆ arithmetic circuits in [73] can be optimized slightly.

Let n′,m, t, s ∈ N. A polynomial mapping f : Fn′ → Fm of degree t is an m tuple
(f1, . . . , fm) of n′ variate degree t polynomials over F. The polynomial mapping f eludes
a polynomial mapping Γ : Fs → Fm if Image(f) 6⊂ Image(Γ). Moreover, f is said to be
(s, t)-elusive over F if it eludes every polynomial mapping Γ : Fs → Fm of degree at most t.

Let n be a prime, ∆ = O(logn), m := n2,∆′ := a · ∆, where a ∈ N is a constant,
n′ := ∆′ · n and x := {xk,l : k ∈ [∆′], l ∈ [n]}. Let f : Fn′ → Fm be defined as follows:

For every (i, j) ∈ [n]× [n],

f(i,j)(x) :=
∆′∏
k=1

xk,(i+j·k)mod n. (9)

Further, for every i ∈ [n],

f̃i(x,y) :=
∑
j∈[n]

yj · f(i,j)(x). (10)

[73] showed that for a = 5, any depth-∆ arithmetic circuit computing f̃1, . . . , f̃n requires size
Ω(n1+ 1

2·∆). The detailed proof is given in Section 4 of [73]. Here, we show how this lower
bound can be optimized to Ω(n1+ 1

∆−εa,∆), where εa,∆ := 2·∆−1
a·∆2 . Note that as we increase

the value of a, this lower bound gets closer to the one for depth-∆ arithmetic circuits given
in [86]. The main ingredient of this improvement is the following optimization of Lemma 4.1
in [73].

N. Gupta, C. Saha, and B. Thankey 23:31

I Lemma 21. Let n be a prime, m = n2, ∆ = O(logn), ∆′ = a·∆, where a ∈ N is a constant
and n′ = ∆′ · n. Let G be a field extension of F of size more than m and f : Gn′ → Gm be
the polynomial mapping defined in Equation (9)30. Then, f is (s,∆)-elusive over G, where
s = bn1+ 1

∆−εa,∆c and εa,∆ = 2·∆−1
a·∆2 .

Proof. Let U := [n]× [n], r := 1
2bn

1− 2
∆′ c. For A ⊆ U , fA(x) :=

∏
(i,j)∈A fi,j(x). A is said

to be retrievable if for any A′ ⊆ U , fA 6= fA′ implies A 6= A′. It is shown in Claim 4.2 of [73]
that

Pr
A∈R(Ur)

[A is not retrievable] ≤
(
|A|
n+ 1

)∆′

· n2,

where A ∈R
(
U
r

)
means that A is a subset of U of size r chosen uniformly at random. On

plugging the value of r in the above equation, we get

Pr
A∈R(Ur)

[A is retrievable] > 1
2 . (11)

Let L be the set of degree r multilinear homogeneous polynomials of the type g : Gm → G,
such that every monomial of g corresponds to a retrievable set. Clearly, L is a G-vector space.
From Equation (11), we get dimG(L) > 1

2
(
m
r

)
≥ 1

2
(
m
r

)r = 1
2

(
2n1+ 2

∆′
)r

. Fix a polynomial
map Γ : Gs → Gm of degree ∆. Then, for every g ∈ L, g◦Γ : Gs → G is a polynomial of degree
r ·∆. Let K be the set of all polynomials from Gs to G of degree at most r ·∆. Then, K is a
G-vector space and dimGK ≤

(
s+r·∆
r·∆

)
≤
(
e(s+r·∆)
r·∆

)r·∆
<
(2es
r

)r·∆ =
(

12n 1
∆ + 2

∆′−εa,∆
)r·∆

.

On substituting the values of ∆′ and εa,∆ in dimG L and dimGK, we get dimGK < dimG L.
Now, for a fixed polynomial map Γ : Gs → Gm of degree ∆, define ϕΓ : L → K ; g 7→ g ◦ Γ.
Clearly, ϕΓ is a G-linear map and as dimGK < dimG L, ϕΓ is not an injective map. This
means that there exists a non-zero gΓ ∈ L, such that ϕΓ(gΓ) = gΓ ◦ Γ = 0. As |G| > m,
Claim 4.4 in [73] implies that gΓ ◦ f : Gn′ → G is not the zero polynomial. Thus, for every
polynomial mapping Γ : Gs → Gm of degree ∆, Image(f) 6⊂ Image(Γ). Hence, f is an
(s,∆)-elusive polynomial map over G. J

The following is a corollary of Lemma 21 and Proposition 3.11 in [73].

I Corollary 22. Let n be a prime, ∆ = O(logn) and ∆′ = a ·∆ for some constant a ∈ N. Let
f̃1, . . . , f̃n be n(∆′ + 1) variate degree ∆′ + 1 polynomials as defined in Equation (10). Then,
any depth-∆ arithmetic circuit C over F computing f̃1, . . . , f̃n requires size Ω

(
n1+ 1

∆−εa,∆
)
,

where εa,∆ = 2·∆−1
a·∆2 .

Proof idea. In Proposition 3.11 in [73], f̃1, . . . , f̃n and C are viewed as linear polynomials
in y variables over the function field F(x) and an arithmetic circuit over F(x) respectively.
Then, using Proposition 19, C is converted to an (s,∆)-normal-linear circuit over F(x), that
also computes f̃1, . . . , f̃n. After that, on invoking Lemma 21, we get the lower bound of
Ω
(
n1+ 1

∆−εa,∆
)
on a depth-∆ arithmetic circuit computing f̃1, . . . , f̃n. J

We now focus on depth four circuits. Let s := n
4
3−εa,3 , where εa,3 := 5

9a . In the proof of
Corollary 22, we use Claim 20 to obtain an (s, 3)-normal-linear circuit over F(x) from an
(s, 4)-arithmetic circuit over F(x), such that both circuits compute f̃1, . . . , f̃n. As Lemma 21
implies that the polynomial mapping f is (s, 3)-elusive, we get a lower bound of Ω(n 4

3−εa,3)
for depth four circuits.

30 f is naturally a polynomial mapping over G because from every i, j ∈ [n], fi,j(x) ∈ F[x] ⊆ G[x].

CCC 2020

	Introduction
	Our Result
	Proof Idea

	Preliminaries
	The complexity measure
	Some numerical estimates

	Upper bounding the measure for a depth four circuit
	Upper bound on the measure of a pruned depth four circuit
	Pruning a depth four circuit
	Step 1 - Restricting the bottom support of C
	Step 2 - Pruning the heavy gates from C _1

	An explicit polynomial family with high measure
	Proof of Theorem 1
	Conclusion
	Known lower bounds
	Missing proofs from Section 3
	Proofs from Section 3.1
	Proof from Section 3.2.1
	Proof from Section 3.2.2

	Missing proofs from Section 5
	A brief review of the lower bounds from [Shoup and Smolensky, 1991] and [Raz, 2010]

