15 research outputs found

    A Study on Device To Device Communication in Wireless Mobile Network

    Full text link
    Volume 3 Issue 3 (March 2015

    Resource Allocation for Energy-Efficient Device-to-Device Communication in 4G Networks

    Full text link
    Device-to-device (D2D) communications as an underlay of a LTE-A (4G) network can reduce the traffic load as well as power consumption in cellular networks by way of utilizing peer-to-peer links for users in proximity of each other. This would enable other cellular users to increment their traffic, and the aggregate traffic for all users can be significantly increased without requiring additional spectrum. However, D2D communications may increase interference to cellular users (CUs) and force CUs to increase their transmit power levels in order to maintain their required quality-of-service (QoS). This paper proposes an energy-efficient resource allocation scheme for D2D communications as an underlay of a fully loaded LTE-A (4G) cellular network. Simulations show that the proposed scheme allocates cellular uplink resources (transmit power and channel) to D2D pairs while maintaining the required QoS for D2D and cellular users and minimizing the total uplink transmit power for all users.Comment: 2014 7th International Symposium on Telecommunications (IST'2014

    Benchmarking Practical RRM Algorithms for D2D Communications in LTE Advanced

    Full text link
    Device-to-device (D2D) communication integrated into cellular networks is a means to take advantage of the proximity of devices and allow for reusing cellular resources and thereby to increase the user bitrates and the system capacity. However, when D2D (in the 3rd Generation Partnership Project also called Long Term Evolution (LTE) Direct) communication in cellular spectrum is supported, there is a need to revisit and modify the existing radio resource management (RRM) and power control (PC) techniques to realize the potential of the proximity and reuse gains and to limit the interference at the cellular layer. In this paper, we examine the performance of the flexible LTE PC tool box and benchmark it against a utility optimal iterative scheme. We find that the open loop PC scheme of LTE performs well for cellular users both in terms of the used transmit power levels and the achieved signal-to-interference-and-noise-ratio (SINR) distribution. However, the performance of the D2D users as well as the overall system throughput can be boosted by the utility optimal scheme, because the utility maximizing scheme takes better advantage of both the proximity and the reuse gains. Therefore, in this paper we propose a hybrid PC scheme, in which cellular users employ the open loop path compensation method of LTE, while D2D users use the utility optimizing distributed PC scheme. In order to protect the cellular layer, the hybrid scheme allows for limiting the interference caused by the D2D layer at the cost of having a small impact on the performance of the D2D layer. To ensure feasibility, we limit the number of iterations to a practically feasible level. We make the point that the hybrid scheme is not only near optimal, but it also allows for a distributed implementation for the D2D users, while preserving the LTE PC scheme for the cellular users.Comment: 30 pages, submitted for review April-2013. See also: G. Fodor, M. Johansson, D. P. Demia, B. Marco, and A. Abrardo, A joint power control and resource allocation algorithm for D2D communications, KTH, Automatic Control, Tech. Rep., 2012, qC 20120910, http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10205

    Resource allocation for network-controlled device-to-device communications in LTE-Advanced

    Get PDF
    Network-controlled device-to-device (D2D) communication allows cellular users to communicate directly, i.e., without passing through the eNodeB, while the latter retains control over resource allocation. This allows the same time–frequency resources to be allocated to spatially separated D2D flows simultaneously, thus increasing the cell throughput. This paper presents a framework for: (1) selecting which communications should use the D2D mode, and when, and (2) allocating resources to D2D and non-D2D users, exploiting reuse for the former. We show that the two problems, although apparently similar, should be kept separate and solved at different timescales in order to avoid problems, such as excessive packet loss. We model both as optimization problems, and propose a heuristic solution to the second, which must be solved at millisecond timescales. Simulation results show that our framework is practically viable, it avoids the problem of packet losses, increases throughput and reduces delays

    Modeling network-controlled device-to-device communications in SimuLTE

    Get PDF
    In Long Term Evolution-Advanced (LTE-A), network-controlled device-to-device (D2D) communications allow User Equipments (UEs) to communicate directly, without involving the Evolved Node-B in data relaying, while the latter still retains control of resource allocation. The above paradigm allows reduced latencies for the UEs and increased resource efficiency for the network operator, and is therefore foreseen to support several services, from Machine-to-machine to vehicular communications. D2D communications introduce research challenges that might affect the performance of applications and upper-layer protocols, hence simulations represent a valuable tool for evaluating these aspects. However, simulating D2D features might pose additional com-putational burden to the simulation environment. To this aim, a careful modeling is required in order to reduce computational overhead. In this paper we describe our modeling of net-work-controlled D2D communications in SimuLTE, a system-level LTE-A simulation library based on OMNeT++. We describe the core modeling choices of SimuLTE, and show how these allow an easy extension to D2D communications. Moreover, we describe in detail the modeling of specific problems arising with D2D communications, such as scheduling with frequency reuse, connection mode switching and broadcast transmission. We document the computational efficiency of our modeling choices, showing that simulation of D2D communications is not more complex than simulation of classical cellular communications of comparable scale. Results show that the heaviest computational burden of D2D communication lies in estimating the Sidelink channel quality. We show that SimuLTE allows one to evaluate the interplay between D2D communication and end-to-end performance of UDP- and TCP-based services. Moreover, we assess the accuracy of using a binary interference model for frequency reuse, and we evaluate the trade-off between speed of execution and accuracy in modeling the reception probability

    Efficient Traffic Management Algorithms for the Core Network using Device-to-Device Communication and Edge Caching

    Get PDF
    Exponentially growing number of communicating devices and the need for faster, more reliable and secure communication are becoming major challenges for current mobile communication architecture. More number of connected devices means more bandwidth and a need for higher Quality of Service (QoS) requirements, which bring new challenges in terms of resource and traffic management. Traffic offload to the edge has been introduced to tackle this demand-explosion that let the core network offload some of the contents to the edge to reduce the traffic congestion. Device-to-Device (D2D) communication and edge caching, has been proposed as promising solutions for offloading data. D2D communication refers to the communication infrastructure where the users in proximity communicate with each other directly. D2D communication improves overall spectral efficiency, however, it introduces additional interference in the system. To enable D2D communication, efficient resource allocation must be introduced in order to minimize the interference in the system and this benefits the system in terms of bandwidth efficiency. In the first part of this thesis, low complexity resource allocation algorithm using stable matching is proposed to optimally assign appropriate uplink resources to the devices in order to minimize interference among D2D and cellular users. Edge caching has recently been introduced as a modification of the caching scheme in the core network, which enables a cellular Base Station (BS) to keep copies of the contents in order to better serve users and enhance Quality of Experience (QoE). However, enabling BSs to cache data on the edge of the network brings new challenges especially on deciding on which and how the contents should be cached. Since users in the same cell may share similar content-needs, we can exploit this temporal-spatial correlation in the favor of caching system which is referred to local content popularity. Content popularity is the most important factor in the caching scheme which helps the BSs to cache appropriate data in order to serve the users more efficiently. In the edge caching scheme, the BS does not know the users request-pattern in advance. To overcome this bottleneck, a content popularity prediction using Markov Decision Process (MDP) is proposed in the second part of this thesis to let the BS know which data should be cached in each time-slot. By using the proposed scheme, core network access request can be significantly reduced and it works better than caching based on historical data in both stable and unstable content popularity
    corecore