3,385 research outputs found

    Quality assessment and usage behavior of a mobile voice-over-IP service

    Get PDF
    Voice-over-IP (VoIP) services offer users a cheap alternative to the traditional mobile operators to make voice calls. Due to the increased capabilities and connectivity of mobile devices, these VoIP services are becoming increasingly popular on the mobile platform. Understanding the user's usage behavior and quality assessment of the VoIP service plays a key role in optimizing the Quality of Experience (QoE) and making the service to succeed or to fail. By analyzing the usage and quality assessments of a commercial VoIP service, this paper identifies device characteristics, context parameters, and user aspects that influence the usage behavior and experience during VoIP calls. Whereas multimedia services are traditionally evaluated by monitoring usage and quality for a limited number of test subjects and during a limited evaluation period, this study analyzes the service usage and quality assessments of more than thousand users over a period of 120 days. This allows to analyze evolutions in the usage behavior and perceived quality over time, which has not been done up to now for a widely-used, mobile, multimedia service. The results show a significant evolution over time of the number of calls, the call duration, and the quality assessment. The time of the call, the used network, and handovers during the call showed to have a significant influence on the users' quality assessments

    On the traffic offloading in Wi-Fi supported heterogeneous wireless networks

    Get PDF
    Heterogeneous small cell networks (HetSNet) comprise several low power, low cost (SBSa), (D2D) enabled links wireless-fidelity (Wi-Fi) access points (APs) to support the existing macrocell infrastructure, decrease over the air signaling and energy consumption, and increase network capacity, data rate and coverage. This paper presents an active user dependent path loss (PL) based traffic offloading (TO) strategy for HetSNets and a comparative study on two techniques to offload the traffic from macrocell to (SBSs) for indoor environments: PL and signal-to-interference ratio (SIR) based strategies. To quantify the improvements, the PL based strategy against the SIR based strategy is compared while considering various macrocell and (SBS) coverage areas and traffic–types. On the other hand, offloading in a dense urban setting may result in overcrowding the (SBSs). Therefore, hybrid traffic–type driven offloading technologies such as (WiFi) and (D2D) were proposed to en route the delay tolerant applications through (WiFi) (APs) and (D2D) links. It is necessary to illustrate the impact of daily user traffic profile, (SBSs) access schemes and traffic–type while deciding how much of the traffic should be offloaded to (SBSs). In this context, (AUPF) is introduced to account for the population of active small cells which depends on the variable traffic load due to the active users

    A Multi-Game Framework for Harmonized LTE-U and WiFi Coexistence over Unlicensed Bands

    Full text link
    The introduction of LTE over unlicensed bands (LTE-U) will enable LTE base stations (BSs) to boost their capacity and offload their traffic by exploiting the underused unlicensed bands. However, to reap the benefits of LTE-U, it is necessary to address various new challenges associated with LTE-U and WiFi coexistence. In particular, new resource management techniques must be developed to optimize the usage of the network resources while handling the interdependence between WiFi and LTE users and ensuring that WiFi users are not jeopardized. To this end, in this paper, a new game theoretic tool, dubbed as \emph{multi-game} framework is proposed as a promising approach for modeling resource allocation problems in LTE-U. In such a framework, multiple, co-existing and coupled games across heterogeneous channels can be formulated to capture the specific characteristics of LTE-U. Such games can be of different properties and types but their outcomes are largely interdependent. After introducing the basics of the multi-game framework, two classes of algorithms are outlined to achieve the new solution concepts of multi-games. Simulation results are then conducted to show how such a multi-game can effectively capture the specific properties of LTE-U and make of it a "friendly" neighbor to WiFi.Comment: Accepted for publication at IEEE Wireless Communications Magazine, Special Issue on LTE in Unlicensed Spectru

    A novel multipath-transmission supported software defined wireless network architecture

    Get PDF
    The inflexible management and operation of today\u27s wireless access networks cannot meet the increasingly growing specific requirements, such as high mobility and throughput, service differentiation, and high-level programmability. In this paper, we put forward a novel multipath-transmission supported software-defined wireless network architecture (MP-SDWN), with the aim of achieving seamless handover, throughput enhancement, and flow-level wireless transmission control as well as programmable interfaces. In particular, this research addresses the following issues: 1) for high mobility and throughput, multi-connection virtual access point is proposed to enable multiple transmission paths simultaneously over a set of access points for users and 2) wireless flow transmission rules and programmable interfaces are implemented into mac80211 subsystem to enable service differentiation and flow-level wireless transmission control. Moreover, the efficiency and flexibility of MP-SDWN are demonstrated in the performance evaluations conducted on a 802.11 based-testbed, and the experimental results show that compared to regular WiFi, our proposed MP-SDWN architecture achieves seamless handover and multifold throughput improvement, and supports flow-level wireless transmission control for different applications

    Unified radio and network control across heterogeneous hardware platforms

    Get PDF
    Experimentation is an important step in the investigation of techniques for handling spectrum scarcity or the development of new waveforms in future wireless networks. However, it is impractical and not cost effective to construct custom platforms for each future network scenario to be investigated. This problem is addressed by defining Unified Programming Interfaces that allow common access to several platforms for experimentation-based prototyping, research, and development purposes. The design of these interfaces is driven by a diverse set of scenarios that capture the functionality relevant to future network implementations while trying to keep them as generic as possible. Herein, the definition of this set of scenarios is presented as well as the architecture for supporting experimentation-based wireless research over multiple hardware platforms. The proposed architecture for experimentation incorporates both local and global unified interfaces to control any aspect of a wireless system while being completely agnostic to the actual technology incorporated. Control is feasible from the low-level features of individual radios to the entire network stack, including hierarchical control combinations. A testbed to enable the use of the above architecture is utilized that uses a backbone network in order to be able to extract measurements and observe the overall behaviour of the system under test without imposing further communication overhead to the actual experiment. Based on the aforementioned architecture, a system is proposed that is able to support the advancement of intelligent techniques for future networks through experimentation while decoupling promising algorithms and techniques from the capabilities of a specific hardware platform
    • …
    corecore