223 research outputs found

    Seamless Multimedia Delivery Within a Heterogeneous Wireless Networks Environment: Are We There Yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices, such as Facebook Live, Instagram Stories, Snapchat, etc. pressurizes the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of quality of experience (QoE) as the basis for network control, customer loyalty, and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users' quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: 1) adaptation; 2) energy efficiency; and 3) multipath content delivery. Discussions, challenges, and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    Seamless multimedia delivery within a heterogeneous wireless networks environment: are we there yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices such as Facebook Live, Instagram Stories, Snapchat, etc. pressurises the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of Quality of Experience (QoE) as the basis for network control, customer loyalty and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users’ quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: adaptation, energy efficiency and multipath content delivery. Discussions, challenges and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    A policy-based framework towards smooth adaptive playback for dynamic video streaming over HTTP

    Get PDF
    The growth of video streaming in the Internet in the last few years has been highly significant and promises to continue in the future. This fact is related to the growth of Internet users and especially with the diversification of the end-user devices that happens nowadays. Earlier video streaming solutions didn´t consider adequately the Quality of Experience from the user’s perspective. This weakness has been since overcame with the DASH video streaming. The main feature of this protocol is to provide different versions, in terms of quality, of the same content. This way, depending on the status of the network infrastructure between the video server and the user device, the DASH protocol automatically selects the more adequate content version. Thus, it provides to the user the best possible quality for the consumption of that content. The main issue with the DASH protocol is associated to the loop, between each client and video server, which controls the rate of the video stream. In fact, as the network congestion increases, the client requests to the server a video stream with a lower rate. Nevertheless, due to the network latency, the DASH protocol in a standalone way may not be able to stabilize the video stream rate at a level that can guarantee a satisfactory QoE to the end-users. Network programming is a very active and popular topic in the field of network infrastructures management. In this area, the Software Defined Networking paradigm is an approach where a network controller, with a relatively abstracted view of the physical network infrastructure, tries to perform a more efficient management of the data path. The current work studies the combination of the DASH protocol and the Software Defined Networking paradigm in order to achieve a more adequate sharing of the network resources that could benefit both the users’ QoE and network management.O streaming de vídeo na Internet é um fenómeno que tem vindo a crescer de forma significativa nos últimos anos e que promete continuar a crescer no futuro. Este facto está associado ao aumento do número de utilizadores na Internet e, sobretudo, à crescente diversificação de dispositivos que se verifica atualmente. As primeiras soluções utilizadas no streaming de vídeo não acomodavam adequadamente o ponto de vista do utilizador na avaliação da qualidade do vídeo, i.e., a Qualidade de Experiência (QoE) do utilizador. Esta debilidade foi suplantada com o protocolo de streaming de vídeo adaptativo DASH. A principal funcionalidade deste protocolo é fornecer diferente versões, em termos de qualidade, para o mesmo conteúdo. Desta forma, dependendo do estado da infraestrutura de rede entre o servidor de vídeo e o dispositivo do utilizador, o protocolo DASH seleciona automaticamente a versão do conteúdo mais adequada a essas condições. Tal permite fornecer ao utilizador a melhor qualidade possível para o consumo deste conteúdo. O principal problema com o protocolo DASH está associado com o ciclo, entre cada cliente e o servidor de vídeo, que controla o débito de cada fluxo de vídeo. De facto, à medida que a rede fica congestionada, o cliente irá começar a requerer ao servidor um fluxo de vídeo com um débito menor. Ainda assim, devido à latência da rede, o protocolo DASH pode não ser capaz por si só de estabilizar o débito do fluxo de vídeo num nível que consiga garantir uma QoE satisfatória para os utilizadores. A programação de redes é uma área muito popular e ativa na gestão de infraestruturas de redes. Nesta área, o paradigma de Software Defined Networking é uma abordagem onde um controlador da rede, com um ponto de vista relativamente abstrato da infraestrutura física da rede, tenta desempenhar uma gestão mais eficiente do encaminhamento de rede. Neste trabalho estuda-se a junção do protocolo DASH e do paradigma de Software Defined Networking, de forma a atingir uma partilha mais adequada dos recursos da rede. O objetivo é implementar uma solução que seja benéfica tanto para a qualidade de experiência dos utilizadores como para a gestão da rede

    Optimal QoE Scheduling in MPEG-DASH Video Streaming

    Get PDF
    DASH is a popular technology for video streaming over the Internet. However, the quality of experience (QoE), a measure of humans’ perceived satisfaction of the quality of these streamed videos, is their subjective opinion, which is difficult to evaluate. Previous studies only considered network-based indices and focused on them to provide smooth video playback instead of improving the true QoE experienced by humans. In this study, we designed a series of click density experiments to verify whether different resolutions could affect the QoE for different video scenes. We observed that, in a single video segment, different scenes with the same resolution could affect the viewer’s QoE differently. It is true that the user’s satisfaction as a result of watching high-resolution video segments is always greater than that when watching low-resolution video segments of the same scenes. However, the most important observation is that low-resolution video segments yield higher viewing QoE gain in slow motion scenes than in fast motion scenes. Thus, the inclusion of more high-resolution segments in the fast motion scenes and more low-resolution segments in the slow motion scenes would be expected to maximize the user’s viewing QoE. In this study, to evaluate the user’s true experience, we convert the viewing QoE into a satisfaction quality score, termed the Q-score, for scenes with different resolutions in each video segment. Additionally, we developed an optimal segment assignment (OSA) algorithm for Q-score optimization in environments characterized by a constrained network bandwidth. Our experimental results show that application of the OSA algorithm to the playback schedule significantly improved users’ viewing satisfaction
    • …
    corecore