217 research outputs found

    Optimal Piecewise-Linear Approximation of the Quadratic Chaotic Dynamics

    Get PDF
    This paper shows the influence of piecewise-linear approximation on the global dynamics associated with autonomous third-order dynamical systems with the quadratic vector fields. The novel method for optimal nonlinear function approximation preserving the system behavior is proposed and experimentally verified. This approach is based on the calculation of the state attractor metric dimension inside a stochastic optimization routine. The approximated systems are compared to the original by means of the numerical integration. Real electronic circuits representing individual dynamical systems are derived using classical as well as integrator-based synthesis and verified by time-domain analysis in Orcad Pspice simulator. The universality of the proposed method is briefly discussed, especially from the viewpoint of the higher-order dynamical systems. Future topics and perspectives are also provide

    Synthesis of time-to-amplitude converter by mean coevolution with adaptive parameters

    Get PDF
    Copyright © 2011 the authors and Scientific Research Publishing Inc. This work is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)The challenging task to synthesize automatically a time-to-amplitude converter, which unites by its functionality several digital circuits, has been successfully solved with the help of a novel methodology. The proposed approach is based on a paradigm according to which the substructures are regarded as additional mutation types and when ranged with other mutations form a new adaptive individual-level mutation technique. This mutation approach led to the discovery of an original coevolution strategy that is characterized by very low selection rates. Parallel island-model evolution has been running in a hybrid competitive-cooperative interaction throughout two incremental stages. The adaptive population size is applied for synchronization of the parallel evolutions

    Automatic design of analogue circuits

    Get PDF
    Evolvable Hardware (EHW) is a promising area in electronics today. Evolutionary Algorithms (EA), together with a circuit simulation tool or real hardware, automatically designs a circuit for a given problem. The circuits evolved may have unconventional designs and be less dependent on the personal knowledge of a designer. Nowadays, EA are represented by Genetic Algorithms (GA), Genetic Programming (GP) and Evolutionary Strategy (ES). While GA is definitely the most popular tool, GP has rapidly developed in recent years and is notable by its outstanding results. However, to date the use of ES for analogue circuit synthesis has been limited to a few applications. This work is devoted to exploring the potential of ES to create novel analogue designs. The narrative of the thesis starts with a framework of an ES-based system generating simple circuits, such as low pass filters. Then it continues with a step-by-step progression to increasingly sophisticated designs that require additional strength from the system. Finally, it describes the modernization of the system using novel techniques that enable the synthesis of complex multi-pin circuits that are newly evolved. It has been discovered that ES has strong power to synthesize analogue circuits. The circuits evolved in the first part of the thesis exceed similar results made previously using other techniques in a component economy, in the better functioning of the evolved circuits and in the computing power spent to reach the results. The target circuits for evolution in the second half are chosen by the author to challenge the capability of the developed system. By functioning, they do not belong to the conventional analogue domain but to applications that are usually adopted by digital circuits. To solve the design tasks, the system has been gradually developed to support the ability of evolving increasingly complex circuits. As a final result, a state-of-the-art ES-based system has been developed that possesses a novel mutation paradigm, with an ability to create, store and reuse substructures, to adapt the mutation, selection parameters and population size, utilize automatic incremental evolution and use the power of parallel computing. It has been discovered that with the ability to synthesis the most up-to-date multi-pin complex analogue circuits that have ever been automatically synthesized before, the system is capable of synthesizing circuits that are problematic for conventional design with application domains that lay beyond the conventional application domain for analogue circuits.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Modeling and simulation of magnetic components in electric circuits

    No full text
    This thesis demonstrates how by using a variety of model constructions and parameter extraction techniques, a range of magnetic component models can be developed for a wide range of application areas, with different levels of accuracy appropriate for the simulation required. Novel parameter extraction and model optimization methods are developed, including the innovative use of Genetic Algorithms and Metrics, to ensure the accuracy of the material models used. Multiple domain modeling, including the magnetic, thermal and magnetic aspects are applied in integrated simulations to ensure correct and complete dynamic behaviour under a range of environmental conditions. Improvements to the original Jiles-Atherton theory to more accurately model loop closure and dynamic thermal behaviour are proposed, developed and tested against measured results. Magnetic Component modeling techniques are reviewed and applied in practical examples to evaluate the effectiveness of lumped models, 1D and 2D Finite Element Analysis models and coupling Finite Element Analysis with Circuit Simulation. An original approach, linking SPICE with a Finite Element Analysis solver is presented and evaluated. Practical test cases illustrate the effectiveness of the models used in a variety of contexts. A Passive Fault Current Limiter (FCL) was investigated using a saturable inductor with a magnet offset, and the comparison between measured and simulated results allows accurate prediction of the behaviour of the device. A series of broadband hybrid transformers for ADSL were built, tested, modeled and simulated. Results show clearly how the Total Harmonic Distortion (THD), Inter Modulation Distortion (IMD) and Insertion Loss (IL) can be accurately predicted using simulation.A new implementation of ADSL transformers using a planar magnetic structure is presented, with results presented that compare favourably with current wire wound techniques. The inclusion of transformer models in complete ADSL hybrid simulations demonstrate the effectiveness of the models in the context of a complete electrical system in predicting the overall circuit performance

    Modeling and Optimization Algorithm for SiC-based Three-phase Motor Drive System

    Get PDF
    More electric aircraft (MEA) and electrified aircraft propulsion (EAP) becomes the important topics in the area of transportation electrifications, expecting remarkable environmental and economic benefits. However, they bring the urgent challenges for the power electronics design since the new power architecture in the electrified aircraft requires many benchmark designs and comparisons. Also, a large number of power electronics converter designs with different specifications and system-level configurations need to be conducted in MEA and EAP, which demands huge design efforts and costs. Moreover, the long debugging and testing process increases the time to market because of gaps between the paper design and implementation. To address these issues, this dissertation covers the modeling and optimization algorithms for SiC-based three-phase motor drive systems in aviation applications. The improved models can help reduce the gaps between the paper design and implementation, and the implemented optimization algorithms can reduce the required execution time of the design program. The models related to magnetic core based inductors, geometry layouts, switching behaviors, device loss, and cooling design have been explored and improved, and several modeling techniques like analytical, numerical, and curve-fitting methods are applied. With the developed models, more physics characteristics of power electronics components are incorporated, and the design accuracy can be improved. To improve the design efficiency and to reduce the design time, optimization schemes for the filter design, device selection combined with cooling design, and system-level optimization are studied and implemented. For filter design, two optimization schemes including Ap based weight prediction and particle swarm optimization are adopted to reduce searching efforts. For device selection and related cooling design, a design iteration considering practical layouts and switching speed is proposed. For system-level optimization, the design algorithm enables the evaluation of different topologies, modulation schemes, switching frequencies, filter configurations, cooling methods, and paralleled converter structure. To reduce the execution time of system-level optimization, a switching function based simulation and waveform synthesis method are adopted. Furthermore, combined with the concept of design automation, software integrated with the developed models, optimization algorithms, and simulations is developed to enable visualization of the design configurations, database management, and design results

    A New MPPT-Based Extended Grey Wolf Optimizer for Stand-Alone PV System: A Performance Evaluation versus Four Smart MPPT Techniques in Diverse Scenarios

    Get PDF
    Photovoltaic (PV) systems play a crucial role in clean energy systems. Effective maximum power point tracking (MPPT) techniques are essential to optimize their performance. However, conventional MPPT methods exhibit limitations and challenges in real-world scenarios characterized by rapidly changing environmental factors and various operating conditions. To address these challenges, this paper presents a performance evaluation of a novel extended grey wolf optimizer (EGWO). The EGWO has been meticulously designed in order to improve the efficiency of PV systems by rapidly tracking and maintaining the maximum power point (MPP). In this study, a comparison is made between the EGWO and other prominent MPPT techniques, including the grey wolf optimizer (GWO), equilibrium optimization algorithm (EOA), particle swarm optimization (PSO) and sin cos algorithm (SCA) techniques. To evaluate these MPPT methods, a model of a PV module integrated with a DC/DC boost converter is employed, and simulations are conducted using Simulink-MATLAB software under standard test conditions (STC) and various environmental conditions. In particular, the results demonstrate that the novel EGWO outperforms the GWO, EOA, PSO and SCA techniques and shows fast tracking speed, superior dynamic response, high robustness and minimal power fluctuations across both STC and variable conditions. Thus, a power fluctuation of 0.09 W could be achieved by using the proposed EGWO technique. Finally, according to these results, the proposed approach can offer an improvement in energy consumption. These findings underscore the potential benefits of employing the novel MPPT EGWO to enhance the efficiency and performance of MPPT in PV systems. Further exploration of this intelligent technique could lead to significant advancements in optimizing PV system performance, making it a promising option for real-world applications.The authors wish to express their gratitude to the Basque Government, through the project EKOHEGAZ II (ELKARTEK KK-2023/00051); to the Diputación Foral de Álava (DFA), through the project CONAVANTER; and to the UPV/EHU, through the project GIU20/063 for supporting this work

    Modeling of a hardware VLSI placement system: Accelerating the Simulated Annealing algorithm

    Get PDF
    An essential step in the automation of electronic design is the placement of the physical components on the target semiconductor die. The placement step presents the opportunity to reduce costs in terms of wire length and performance degradation; however it is compute intensive and is NP-complete in terms of obtaining an optimal solution. As designs have grown in complexity and gate count, obtaining an optimal solution is not feasible due to time to market constraints or sheer compute effort required. Heuristic algorithms allow for efficient but sub-optimal designs to be produced with a reduction in processing time. A widely used algorithm is Simulated Annealing (SA). The goal of this work was to develop a model that would enable an analysis into the feasibility of developing a hardware accelerated placement system which uses SA at its core. The SA heuristic was analyzed for possible improvements in efficiency with focus given to targeting the system for hardware. A solution implementing parallel computing with specialized hardware configurations inside a field programmable gate array (FPGA) was investigated as having the possibility to improve the efficiency of the SA-based algorithm. All supporting subsystems were also described for a hardware accelerated model. A large speedup was analytically shown from both accelerating the critical path of the SA algorithm as well as novel methods of improving SA\u27s efficiency. As data throughput requirements were not included in this work, the results presented may be optimistic for an overall system speedup. However, the results clearly show that future work is warranted in studying the concept of a hardware accelerated placement system

    Research on the propagation efficiency of ultrasonic guided waves in the rail

    Get PDF
    Ultrasonic guided waves (UGW) technique has the advantages of low detection frequency, long detection distance, strong anti-electromagnetic interference ability, and large coverage. Hence it has potential advantages in real-time detection of breakages in the rail. Based on the research background of UGW-based broken rail detection, this paper focuses on the characteristics optimization of piezoelectric ultrasonic transducers (PUTs) to improve the propagation efficiency of UGW in the rail. Due to the influence of energy attenuation, multimodal, dispersion, and on-site noise when the UGW propagates in the rail, the amplitude of the received UGW signal is low and the signal-to-noise ratio is poor. Therefore, this thesis mainly systematically studies the characteristics optimization of PUTs from the aspects of impedance matching, driving circuit optimization, and excitation signal optimization. The main work is as follows: 1. To deeply study of the electromechanical characteristics of longitudinal vibration sandwich piezoelectric ultrasonic transducer (referred to as PUTs), the PSpice equivalent circuit models of a piezoelectric ultrasonic transducer and the PSpice equivalent circuit model of a pitch-catch setup are established based on one-dimensional wave and transmission line theory. The PSpice model of the PUT and the PSpice model of the pitch-catch setup are analyzed from the time and frequency domains, respectively, and the accuracy of the built PSpice models is verified through some experiments. It is shown that the PSpice model of a PUT established above is highly scalable and can be combined with amplifiers, driving circuits, diodes. 2. With the aim of solving the problem of impedance mismatch between the piezoelectric ultrasonic transducer and the driving circuit and the rail surface, the effect of the impedance matching on the electromechanical properties of the piezoelectric ultrasonic transducer was studied from the electrical and acoustic ends, respectively. From the electrical side, the effects of different electrical impedance matching networks on the electromechanical characteristics of PUTs are studied in both time and frequency domains. It is shown that in the two LC impedance matching networks, the matching network formed by the series inductance and parallel capacitance is better. From the acoustic side, an experimental method is used to study the effect of acoustic impedance matching on the transient characteristics of PUTs. It is concluded that when the epoxy resin is doped with 10% tungsten powder and the coating thickness is 8 mm, the acoustic impedance matching effect is better. 3. To overcome the problems of the existing driving circuits that the excitation voltage is not high enough, the extra high voltage DC voltage is required and the impedance matching is not considered, this thesis proposed a high voltage pulse driving circuit based on the full-bridge topology. The driving circuit takes into account the suppression of overshoot and oscillation when the power MOSFET is turned off, and at the same time conducts the impedance matching and tailing absorption of the excitation signal for PUTs. The suppression of overshoot and oscillation adopts the RC snubber circuit, and the tailing absorption is accomplished by a bleeder resistor and a bidirectional thyristor. The correctness and effectiveness of the proposed high-voltage pulse driving circuit are verified through experiments. It was also found that the combined use of electrical impedance matching and absorption circuits can effectively improve the energy conversion efficiency of PUTs. 4. To obtain the optimal performance of PUTs, the excitation signal of PUTs is optimized in terms of excitation signal frequency and excitation coding. First of all, to solve the problem of PUTs with having a resonance frequency shift after loading, this thesis proposes an optimal excitation frequency tracking method based on a digital band-pass tracking filtering. Then its correctness and stability are verified through some field experiments. Secondly, to improve the signal-to-noise ratio of the UGW signal, it is proposed to apply the Barker code excitation method to the broken rail detection, and use the pulse compression technique at the receiving end to realize the rapid recognition of the signal characteristics. Finally, for the case where the pulse-compressed signal produces undesirable peak sidelobes due to the effects of bandwidth, multipath, and noise, an adaptive peak detection algorithm based on the Hilbert transform combined with a digital bandpass tracking filter and a triangle filter. The accuracy and effectiveness of the above-mentioned Barker code excitation method and the adaptive peak detection algorithm are verified through experiments. The study in this thesis presents a feasible solution for improving the propagation efficiency of UGW in the rails and at the same time provides theoretical guidance for the large-scale application of the real-time broken rail detection system based on UGW
    • 

    corecore