52 research outputs found

    An Enhanced Energy Balanced Data Transmission Protocol for Underwater Acoustic Sensor Networks.

    Full text link
    This paper presents two new energy balanced routing protocols for Underwater Acoustic Sensor Networks (UASNs); Efficient and Balanced Energy consumption Technique (EBET) and Enhanced EBET (EEBET). The first proposed protocol avoids direct transmission over long distance to save sufficient amount of energy consumed in the routing process. The second protocol overcomes the deficiencies in both Balanced Transmission Mechanism (BTM) and EBET techniques. EBET selects relay node on the basis of optimal distance threshold which leads to network lifetime prolongation. The initial energy of each sensor node is divided into energy levels for balanced energy consumption. Selection of high energy level node within transmission range avoids long distance direct data transmission. The EEBET incorporates depth threshold to minimize the number of hops between source node and sink while eradicating backward data transmissions. The EBET technique balances energy consumption within successive ring sectors, while, EEBET balances energy consumption of the entire network. In EEBET, optimum number of energy levels are also calculated to further enhance the network lifetime. Effectiveness of the proposed schemes is validated through simulations where these are compared with two existing routing protocols in terms of network lifetime, transmission loss, and throughput. The simulations are conducted under different network radii and varied number of nodes

    Self-Organizing and Scalable Routing Protocol (SOSRP) for Underwater Acoustic Sensor Networks

    Get PDF
    Las redes de sensores acústicas submarinas (UASN) han ganado mucha importancia en los últimos años: el 71% de la superficie de la Tierra está cubierta por océanos. La mayoría de ellos, aún no han sido explorados. Aplicaciones como prospección de yacimientos, prevención de desastres o recopilación de datos para estudios de biología marina se han convertido en el campo de interés para muchos investigadores. Sin embargo, las redes UASN tienen dos limitaciones: un medio muy agresivo (marino) y el uso de señales acústicas. Ello hace que las técnicas para redes de sensores inalámbricas (WSN) terrestres no sean aplicables. Tras realizar un recorrido por el estado del arte en protocolos para redes UASN, se propone en este TFM un protocolo de enrutamiento denominado "SOSRP", descentralizado y basado en tablas en cada nodo. Se usa como criterio para crear rutas una combinación del valor de saltos hasta el nodo recolector y la distancia. Las funciones previstas del protocolo abarcan: autoorganización de las rutas, tolerancia a fallos y detección de nodos aislados. Mediante la implementación en MATLAB de SOSRP así como de un modelo de propagación y energía apropiados para entorno marino, se obtienen resultados de rendimiento en distintos escenarios (variando nºextremo de paquetes, consumo de energía o longitud de rutas creadas (con y sin fallo). Los resultados obtenidos muestran una operación estable, fiable y adecuada para el despliegue y operación de los nodos en redes UASN

    PB-ACR: Node Payload Balanced Ant Colony Optimal Cooperative Routing for Multi-Hop Underwater Acoustic Sensor Networks

    Get PDF
    For a given source-destination pair in multi-hop underwater acoustic sensor networks (UASNs), an optimal route is the one with the lowest energy consumptions that usually consists of the same relay nodes even under different transmission tasks. However, this will lead to the unbalanced payload of the relay nodes in the multi-hop UASNs and accelerate the loss of the working ability for the entire system. In this paper, we propose a node payload balanced ant colony optimal cooperative routing (PB-ACR) protocol for multi-hop UASNs, through combining the ant colony algorithm and cooperative transmission. The proposed PB-ACR protocol is a relay node energy consumption balanced scheme, which considers both data priority and residual energy of each relay node, aiming to reduce the occurrence of energy holes and thereby prolong the lifetime of the entire UASNs. We compare the proposed PB-ACR protocol with the existing ant colony algorithm routing (ACAR) protocol to verify its performances in multi-hop UASNs, in terms of network throughput, energy consumption, and algorithm complexity. The simulation results show that the proposed PB-ACR protocol can effectively balance the energy consumption of underwater sensor nodes and hence prolong the network lifetime

    Design and implementation of heterogeneous surface gateway for underwater acoustic sensor network

    Get PDF
    Underwater Acoustic Sensor Networks (UASNs) are used for diverse purposes such as pollution monitoring, disaster prevention and industrial sensing in the oceans. Especially, UASNs are mainly focusing on monitoring various underwater environmental data and delivering the data to a monitoring center where nearby or far from the deployed area. To reliably deliver the data, a surface gateway should convert acoustic signal to RF (Radio Frequency) signal. In this paper, we devise a multiple interfaces-based surface gateway that can connect both a cellular network and a Zigbee network. Depends on the service requirement, the surface gateway can easily adopt each wireless interface and relay the data to a low power ZigBee network or a long range CDMA network

    An energy scaled and expanded vector-based forwarding scheme for industrial underwater acoustic sensor networks with sink mobility

    Get PDF
    Industrial Underwater Acoustic Sensor Networks (IUASNs) come with intrinsic challenges like long propagation delay, small bandwidth, large energy consumption, three-dimensional deployment, and high deployment and battery replacement cost. Any routing strategy proposed for IUASN must take into account these constraints. The vector based forwarding schemes in literature forward data packets to sink using holding time and location information of the sender, forwarder, and sink nodes. Holding time suppresses data broadcasts; however, it fails to keep energy and delay fairness in the network. To achieve this, we propose an Energy Scaled and Expanded Vector-Based Forwarding (ESEVBF) scheme. ESEVBF uses the residual energy of the node to scale and vector pipeline distance ratio to expand the holding time. Resulting scaled and expanded holding time of all forwarding nodes has a significant difference to avoid multiple forwarding, which reduces energy consumption and energy balancing in the network. If a node has a minimum holding time among its neighbors, it shrinks the holding time and quickly forwards the data packets upstream. The performance of ESEVBF is analyzed through in network scenario with and without node mobility to ensure its effectiveness. Simulation results show that ESEVBF has low energy consumption, reduces forwarded data copies, and less end-to-end delay

    Effective Medium Access Control for Underwater Acoustic Sensor Networks

    Get PDF
    This work is concerned with the design, analysis and development of effective Medium Access Control (MAC) protocols for Underwater Acoustic Sensor Networks (UASNs). The use of acoustic waves underwater places time-variant channel constraints on the functionality of MAC protocols. The contrast between traffic characteristics of the wide-ranging applications of UASNs makes it hard to design a single MAC protocol that can be adaptive to various applications. This thesis proposes MAC solutions that can meet the environmental and non-environmental challenges posed underwater. Scheduling-based schemes are the most common MAC solutions for UASNs, but scheduling is also challenging in such a dynamic environment. The preferable way of synchronisation underwater is the use of a global scheduler, guard intervals and exchange of timing signals. To this end, single-hop topologies suit UASN applications very well. The Combined Free and Demand Assignment Multiple Access (CFDAMA) is a centralised, scheduling-based MAC protocol demonstrating simplicity and adaptability to the time-variant channel and traffic characteristics. It is shown to minimise end-to-end delay, maximise channel utilisation and maintain fairness amongst nodes. This thesis primarily introduces two novel robust MAC solutions for UASNs, namely CFDAMA with Systematic Round Robin and CFDAMA without clock synchronisation (CFDAMA-NoClock). The former scheme is more suitable for large-scale and widely-spread UASNs, whereas the latter is a more feasible MAC solution when synchronisation amongst node clocks cannot be attained. Both analytical and comprehensive event-driven Riverbed simulations of underwater scenarios selected based on realistic sensor deployments show that the two protocols make it possible to load the channel up to higher levels of its capacity with controlled delay performance superior to that achievable with the traditional CFDAMA schemes. The new scheduling features make the CFDAMA-NoClock scheme a very feasible networking solution for robust and efficient UASN deployments in the real world

    Latency-Optimized and Energy-Efficient MAC Protocol for Underwater Acoustic Sensor Networks: A Cross-Layer Approach

    Get PDF
    Considering the energy constraint for fixed sensor nodes and the unacceptable long propagation delay, especially for latency sensitive applications of underwater acoustic sensor networks, we propose a MAC protocol that is latency-optimized and energy-efficient scheme and combines the physical layer and the MAC layer to shorten transmission delay. On physical layer, we apply convolution coding and interleaver for transmitted information. Moreover, dynamic code rate is exploited at the receiver side to accelerate data reception rate. On MAC layer, unfixed frame length scheme is applied to reduce transmission delay, and to ensure the data successful transmission rate at the same time. Furthermore, we propose a network topology: an underwater acoustic sensor network with mobile agent. Through fully utilizing the supper capabilities on computation and mobility of autonomous underwater vehicles, the energy consumption for fixed sensor nodes can be extremely reduced, so that the lifetime of networks is extended

    An adaptive approach to opportunistic data forwarding in underwater acoustic sensor networks

    Get PDF
    Reliable data transfer for underwater acoustic sensor networks (UASNs) is a major research challenge in applications such as pollution monitoring, oceanic data collection, and surveillance due to the long propagation delay and high error rate of the acoustic channel. To address this issue, an opportunistic data forwarding protocol was proposed which achieves high packet delivery success ratio with less routing overhead and energy consumption by selecting the next hop forwarder among a set of candidates based on its link reliability and data transfer reach ability. However, the protocol relies on fixed data hold time approach, i.e., Each node holds data packets for a fixed amount of time before a forwarder discovery process is initiated. Depending on the value of the fixed hold time and deployment contextual scenario, this may incur large end-to-end delay. Moreover, lack of consideration of network condition in hold time limits its performance. In this paper, we propose an adaptive technique to improve its performance. The adaptive approach calculates data hold time at each node dynamically considering a number of 'node and network' metrics including current buffer occupancy, delay experienced by stored data packets, arrival and service rate, neighbors' data transmissions and reach ability. Simulation results show that compared with fixed hold time approach, our adaptive technique reduces end-to-end delay significantly, achieves considerably higher data delivery and less energy consumption per successful packet delivery
    corecore