91 research outputs found

    Security Protocol for Active Networks.

    Get PDF

    Enhancing IPsec Performance in Mobile IPv6 Using Elliptic Curve Cryptography

    Get PDF
    Internet has become indispensable to the modern society nowadays. Due to the dynamic nature of human activities, the evolving mobile technology has played a significant role and it is reflected in the exponential growth of the number of mobile users globally. However, the characteristic of the Internet as an open network made it vulnerable to various malicious activities. To secure communication at network layer, IETF recommended IPsec as a security feature. Mobile IPv6 as the successor of the current mobile technology, Mobile IPv4, also mandated the use of IPsec. However, since IPsec is a set of security algorithm, it has several well-known weaknesses such as bootstrapping issue when generating a security association as well as complex key exchange mechanism. It is a well-known fact that IPsec has a high overhead especially when implemented on Mobile IPv6 and used on limited energy devices such as mobile devices. This paper aims to enhance the IPsec performance by substituting the existing key exchange algorithm with a lightweight elliptic curve algorithm. The experiments managed to reduce the delay of IPsec in Mobile IPv6 by 67% less than the standard implementation

    Potential Applications of IPsec in Next Generation Networks

    Get PDF

    Securing Handover in Wireless IP Networks

    Get PDF
    In wireless and mobile networks, handover is a complex process that involves multiple layers of protocol and security executions. With the growing popularity of real time communication services such as Voice of IP, a great challenge faced by handover nowadays comes from the impact of security implementations that can cause performance degradation especially for mobile devices with limited resources. Given the existing networks with heterogeneous wireless access technologies, one essential research question that needs be addressed is how to achieve a balance between security and performance during the handover. The variations of security policy and agreement among different services and network vendors make the topic challenging even more, due to the involvement of commercial and social factors. In order to understand the problems and challenges in this field, we study the properties of handover as well as state of the art security schemes to assist handover in wireless IP networks. Based on our analysis, we define a two-phase model to identify the key procedures of handover security in wireless and mobile networks. Through the model we analyze the performance impact from existing security schemes in terms of handover completion time, throughput, and Quality of Services (QoS). As our endeavor of seeking a balance between handover security and performance, we propose the local administrative domain as a security enhanced localized domain to promote the handover performance. To evaluate the performance improvement in local administrative domain, we implement the security protocols adopted by our proposal in the ns-2 simulation environment and analyze the measurement results based on our simulation test

    Efficient, DoS-Resistant, Secure Key Exchange for Internet Protocols

    Get PDF
    We describe JFK, a new key exchange protocol, primarily designed for use in the IP Security Architecture. It is simple, efficient, and secure; we sketch a proof of the latter property. JFK also has a number of novel engineering parameters that permit a variety of trade-offs, most notably the ability to balance the need for perfect forward secrecy against susceptibility to denial-of-service attacks

    Comprehensive vehicular networking platform for V2I and V2V communications within the Walkie-Talkie Project

    Full text link
    [EN] Communication architectures integrating vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications will be the key of success for the next generation of cars. Nevertheless, the integration of these communication partners in the same platform is a challenging issue because most of the literature is focused on individual parts, such as V2V routing protocols or specific safety services. The Walkie-Talkie project was proposed to fill this gap, focusing on the integration of V2V and V2I systems to equip vehicles with a set of intelligent services addressing safer, smarter, and sustainable driving. This paper describes the developed communications platform. The network design is based on IPv6 to support middleware and applications executed on both the vehicle and infrastructure sides. Whereas V2I is focused on the usage of IPv6 network mobility, V2V is provided by means of a hybrid solution based on intelligent delivery and delay tolerant networks. On top of the networking protocols, a service access middleware exploiting concepts from next generation networks is proposed, together with a proper on-board application management based on the open service gateway initiative. A prototype of the network and real evaluations are also presented as a proof of concept of our platform.This work has been mainly sponsored by the Ministry of Science and Innovation, through the Walkie-Talkie project (TIN2011-27543-C03), and partially by the European Seventh Framework Program, through the ITSSv6 Project (contract 270519), and the Seneca Foundation, by means of the GERM program (04552/GERM/06).Santa, J.; Pereñíguez, F.; Cano Escribá, JC.; Skarmeta, AF.; Tavares De Araujo Cesariny Calafate, CM.; Manzoni, P. (2013). Comprehensive vehicular networking platform for V2I and V2V communications within the Walkie-Talkie Project. International Journal of Distributed Sensor Networks. 2013:1-12. https://doi.org/10.1155/2013/676850S112201

    Experimental Tests on SCTP over IPSec

    Get PDF
    As telecommunication technologies evolve, security in communications becomes a more and more relevant issue. IPSec is a set of protocols aiming to enhance security at the IP layer. Specifically, IPSec and IKE are important security mechanism that provide cryptographic-based protection for IP packets, and consequently for IP services. SCTP is a standardized transport protocol whose main features include multihoming and multistreaming, and is gaining momentum as a general-purpose transport protocol. While the simultaneous use of these two protocols is feasible, it is under study how to make them work efficiently. In this paper, we present a simple method to improve SCTP-IPSec-IKE compatibility by modifying the structure of the Security Associations. Despite the conceptual simplicity of our proposal, it has not been proposed before in related literature.This research has been supported by project grant TEC2007-67966-01/TCM (CON-PARTE-1) and it is also developed in the framework of "Programa de Ayudas a Grupos de Excelencia de la Región de Murcia, de la Fundación Séneca, Agencia de Ciencia y Tecnología de la RM (Plan Regional de Ciencia y Tecnología 2007/2010)

    IP Mobility in Wireless Operator Networks

    Get PDF
    Wireless network access is gaining increased heterogeneity in terms of the types of IP capable access technologies. The access network heterogeneity is an outcome of incremental and evolutionary approach of building new infrastructure. The recent success of multi-radio terminals drives both building a new infrastructure and implicit deployment of heterogeneous access networks. Typically there is no economical reason to replace the existing infrastructure when building a new one. The gradual migration phase usually takes several years. IP-based mobility across different access networks may involve both horizontal and vertical handovers. Depending on the networking environment, the mobile terminal may be attached to the network through multiple access technologies. Consequently, the terminal may send and receive packets through multiple networks simultaneously. This dissertation addresses the introduction of IP Mobility paradigm into the existing mobile operator network infrastructure that have not originally been designed for multi-access and IP Mobility. We propose a model for the future wireless networking and roaming architecture that does not require revolutionary technology changes and can be deployed without unnecessary complexity. The model proposes a clear separation of operator roles: (i) access operator, (ii) service operator, and (iii) inter-connection and roaming provider. The separation allows each type of an operator to have their own development path and business models without artificial bindings with each other. We also propose minimum requirements for the new model. We present the state of the art of IP Mobility. We also present results of standardization efforts in IP-based wireless architectures. Finally, we present experimentation results of IP-level mobility in various wireless operator deployments.Erilaiset langattomat verkkoyhteydet lisääntyvät Internet-kykyisten teknologioiden muodossa. Lukuisten eri teknologioiden päällekkäinen käyttö johtuu vähitellen ja tarpeen mukaan rakennetusta verkkoinfrastruktuurista. Useita radioteknologioita (kuten WLAN, GSM ja UMTS) sisältävien päätelaitteiden (kuten älypuhelimet ja kannettavat tietokoneet) viimeaikainen kaupallinen menestys edesauttaa uuden verkkoinfrastruktuurin rakentamista, sekä mahdollisesti johtaa verkkoteknologioiden kirjon lisääntymiseen. Olemassa olevaa verkkoinfrastruktuuria ei kaupallisista syistä kannata korvata uudella teknologialla yhdellä kertaa, vaan vaiheittainen siirtymävaihe kestää tyypillisesti useita vuosia. Internet-kykyiset päätelaitteet voivat liikkua joko saman verkkoteknologian sisällä tai eri verkkoteknologioiden välillä. Verkkoympäristöstä riippuen liikkuvat päätelaitteet voivat liittyä verkkoon useiden verkkoyhteyksien kautta. Näin ollen päätelaite voi lähettää ja vastaanottaa tietoliikennepaketteja yhtäaikaisesti lukuisia verkkoja pitkin. Tämä väitöskirja käsittelee Internet-teknologioiden liikkuvuutta ja näiden teknologioiden tuomista olemassa oleviin langattomien verkko-operaattorien verkkoinfrastruktuureihin. Käsiteltäviä verkkoinfrastruktuureita ei alun perin ole suunniteltu Internet-teknologian liikkuvuuden ja monien yhtäaikaisten yhteyksien ehdoilla. Tässä työssä ehdotetaan tulevaisuuden langattomien verkkojen arkkitehtuurimallia ja ratkaisuja verkkovierailujen toteuttamiseksi. Ehdotettu arkkitehtuuri voidaan toteuttaa ilman mittavia teknologisia mullistuksia. Mallin mukaisessa ehdotuksessa verkko-operaattorin roolit jaetaan selkeästi (i) verkko-operaattoriin, (ii) palveluoperaattoriin ja (iii) yhteys- sekä verkkovierailuoperaattoriin. Roolijako mahdollistaa sen, että kukin operaattorityyppi voi kehittyä itsenäisesti, ja että teennäiset verkkoteknologiasidonnaisuudet poistuvat palveluiden tuottamisessa. Työssä esitetään myös alustava vaatimuslista ehdotetulle mallille, esimerkiksi yhteysoperaattorien laatuvaatimukset. Väitöskirja esittelee myös liikkuvien Internet-teknologioiden viimeisimmän kehityksen. Työssä näytetään lisäksi standardointituloksia Internet-kykyisissä langattomissa arkkitehtuureissa

    Efficient security management for active networks.

    Get PDF
    Due to the dynamic nature and dynamic routing capability of active packets, security in active networks should be hop-by-hop based. This thesis discusses the identified drawbacks of existing approaches. These drawbacks are: the high performance overhead generated by per-hop Security Association (SA) negotiation prior to secured active packet transmission the high complexity in SA negotiation handshake process active packet can only be securely transmitted after SA negotiations the shared key set generated for protecting active packets may not have Perfect Forward Secrecy (PFS) lack of confidentiality protection on exchanged symmetric keys and active packets lack of SA negotiation power and scalability issues. This thesis presents a novel hop-by-hop active network security management approach known as Security Protocol for Active Networks (SPAN). SPAN is designed to enable secure active packet transmission during a series of hop-by-hop SPAN SA negotiation along a new execution path, instead of after. The design of SPAN has taken into consideration the factors of security, efficiency, flexibility, scalability, and applicability. SPAN is resistant to replay, man-in-the-middle, impersonate attacks. SPAN is designed to detect DoS attacks much more efficiently. Furthermore, SPAN is uniquely designed to enhance the robustness and efficiency of underlying active networking systems
    corecore