
Efficient, DoS-Resistant, Secure Key Exchange for Internet
Protocols ∗

William Aiello
AT&T Labs Research

aiello@research.att.com

Steven M. Bellovin
AT&T Labs Research
smb@research.att.com

Matt Blaze
AT&T Labs Research
mab@research.att.com

Ran Canetti
IBM T.J. Watson Research Center

canetti@watson.ibm.com

John Ioannidis
AT&T Labs Research

ji@research.att.com

Angelos D. Keromytis
Columbia University

angelos@cs.columbia.edu

Omer Reingold
AT&T Labs Research
omer@research.att.com

Categories and Subject Descriptors
C.2.0 [Security and Protection]: Key Agreement Protocols

General Terms
Security, Reliability, Standardization

Keywords
Cryptography, Denial of Service Attacks

ABSTRACT
We describe JFK, a new key exchange protocol, primarily designed
for use in the IP Security Architecture. It is simple, efficient, and
secure; we sketch a proof of the latter property. JFK also has a
number of novel engineering parameters that permit a variety of
trade-offs, most notably the ability to balance the need for perfect
forward secrecy against susceptibility to denial-of-service attacks.

1. INTRODUCTION
Many public-key-based key-setup and key-agreement protocols

already exist and have been implemented for a variety of applica-
tions and environments. Several have been proposed for the IPsec
protocol suite, and one, IKE[15], is the current standard. IKE has
a number of deficiencies, the three most important being that the
number of rounds is high, that it is vulnerable to denial-of-service
attacks, and the complexity of the protocol and its specification.
(This complexity has led to interoperability problems — so much
so that, several years after its initial adoption by the IETF, there are
still non-interoperating commercial implementations.)
∗This work was partially supported by DARPA under Contract
F39502-99-1-0512-MOD P0001.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’02,November 18-22, 2002, Washington, DC USA
Copyright 2002 ACM 1-58113-612-9/02/0011 ...$5.00.

While it might be possible to “patch” the IKE protocol to fix
some of these problems, it may be perferable to construct a new
protocol that more narrorwly addresses the requirements “from the
ground up.” We set out to engineer a new key exchange protocol
specifically for Internet security applications. We call our new pro-
tocol “JFK,” which stands for “Just Fast Keying.”

1.1 Design Goals
We seek a protocol with the following characteristics:

Security: No one other than the participants may have access to
the generated key.

PFS:It must approach Perfect Forward Secrecy.

Privacy: It must preserve the privacy of the initiator and/or re-
sponder, insofar as possible.

Memory-DoS:It must resist memory exhaustion attacks.

Computation-DoS:It must resist CPU exhaustion attacks on the
responder.

Efficiency:It must be efficient with respect to computation, band-
width, and number of rounds.

Non-Negotiated:It must avoid complex negotiations over capa-
bilities.

Simplicity: The resulting protocol must be as simple as possible,
within the constraints of the requirements.

TheSecurityrequirement is obvious enough (we use the security
model of [7, 8]). The rest, however, require some discussion.

The PFS property is perhaps the most controversial. (PFS is
an attribute of encrypted communications allowing for a long-term
key to be compromised without affecting the security of past ses-
sion keys.) Rather than assert that “we must have perfect forward
secrecy at all costs,” we treat theamountof forward secrecy as an
engineering parameter that can be traded off against other neces-
sary functions, such as efficiency or resistance to denial-of-service
attacks. In fact, this corresponds quite nicely to the reality of to-
day’s Internet systems, where a compromise during the existence
of a security association will reveal the plaintext of any ongoing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161441114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

transmissions. Our protocol has aforward secrecy interval; secu-
rity associations are protected against compromises that occur out-
side of that interval. Specifically, we allow a party to reuse the same
secret Diffie-Hellman exponents for multiple exchanges within a
given time period; this may save a large number of costly modular
exponentiations.

The Privacy property means that the protocol must not reveal
the identity of a participant to any unauthorized party, including an
active attacker that attempts to act as the peer. Clearly, it is not
possible for a protocol to protect both the initator and the respon-
der against an active attacker; one of the participants must always
“go first.” In general, we believe that the most appropriate choice
is to protect the initator, since the initator is typically a relatively
anonymous “client,” while the responder’s identity may already be
known. Conversely, protecting the responder’s privacy may not be
of much value (except perhaps in peer-to-peer communication): in
many cases, the responder is a server with a fixed address or char-
acteristics (e.g.,well-known web server). One approach is to allow
for a protocol that allows the two parties to negotiate who needs
identity protection. In JFK, we decided against this approach: it
is unclear what, if any, metric can be used to determine which
party should receive identity protection; furthermore, this negoti-
ation could act as a loophole to make initiators reveal their identity
first. Instead, we propose two alternative protocols: one that pro-
tects the initator against an active attack, and another that protects
the responder.

TheMemory-DoSandComputation-DoSproperties have become
more important in the context of recent Internet denial-of-service
attacks. Photuris[24] was the first published key management pro-
tocol for which DoS-resistance was a design consideration; we sug-
gest that these properties are at least as important today.

The Efficiencyproperty is worth discussing. In many proto-
cols, key setup must be performed frequently enough that it can
become a bottleneck to communication. The key exchange proto-
col must minimize computation as well total bandwidth and round
trips. Round trips can be an especially important factor when com-
municating over unreliable media. Using our protocols, only two
round-trips are needed to set up a working security association.
This is a considerable saving in comparison with existing proto-
cols, such as IKE.

The Non-Negotiatedproperty is necessary for several reasons.
Negotiations create complexity and round trips, and hence should
be avoided. Denial of service resistance is also relevant here; a
partially-negotiated security association consumes resources.

The Simplicity property is motivated by several factors. Effi-
ciency is one; increased likelihood of correctness is another. But
our motivation is especially colored by our experience with IKE.
Even if the protocol is defined correctly, it must be implemented
correctly; as protocols become more complex, implementation and
interoperability errors occur more often. This hinders both secu-
rity and interoperability. Our design follows the traditional design
paradigm of successful internetworking protocols: keep individual
building blocks as simple as possible; avoid large, complex, mono-
lithic protocols. We have consciously chosen to omit support for
certain features when we felt that adding such support would cause
an increase in complexity that was disproportional to the benefit
gained.

Protocol design is, to some extent, an engineering activity, and
we need to provide for trade-offs between different types of secu-
rity. There are trade-offs that we made during the protocol design,
and others, such as that between forward secrecy and computational
effort, that are left to the implementation and to the user,e.g.,se-
lected as parameters during configuration and session negotiation.

2. PROTOCOL DEFINITION
We present two variants of the JFK protocol. Both variants take

two round-trips (i.e., four messages) and both provide the same
level of DoS protection. The first variant, denotedJFKi, provides
identity protection for the initiator even against active attacks. The
identity of the responder is not protected. This type of protection
is appropriate for a client-server scenario where the initiator (the
client) may wish to protect its identity, whereas the identity of the
responder (the server) is public. As discussed in Section 4, this
protocol uses the basic design of the ISO 9798-3 key exchange
protocol [20, 7], with modifications that guarantee the properties
discussed in the Introduction.

The second variant,JFKr, provides identity protection for the
responder against active adversaries. Furthermore, it protects both
sides’ identities against passive eavesdroppers. This type of protec-
tion is appropriate for a peer-to-peer scenario where the responder
may wish to protect its identity. Note that it is considerably eas-
ier to mount active identity-probing attacks against the responder
than against the initiator. Furthermore, JFKr provides repudiability
on the key exchange, since neither side can prove to a third party
that their peer in fact participated in the protocol exchange with
them. (In contrast, JFKi authentication is non-repudiable, since
each party signs the other’s identity along with session-specific in-
formation such as the nonces). This protocol uses the basic design
of the Sign-and-MAC (SIGMA) protocol from [28], again with the
appropriate modifications.

2.1 Notation
First, some notation:

Hk(M) Keyed hash (e.g.,HMAC[29]) of messageM using key
k. We assume thatH is a pseudorandom function. This
also implies that H is a secure message authentication
(MAC) function. In some places we make a somewhat
stronger assumption relatingH and discrete logarithms;
see more details within.

{M}Ke
Ka

Encryption using symmetric keyKe, followed by MAC
authentication with symmetric keyKa of messageM .
The MAC is computed over the ciphertext, prefixed with
the literal ASCII string"I" or "R" , depending on who
the message sender is (initiator or responder).

Sx[M] Digital signature of messageM with the private key be-
longing to principalx (initiator or responder). It is as-
sumed to be a non-message-recovering signature.

The message components used in JFK are:

IPI Initiator’s network address.

gx Diffie-Hellman (DH) exponentials; also identifying the
group-ID.

gi Initiator’s current exponential, (mod p).

gr Responder’s current exponential, (mod p).

NI Initiator nonce, a random bit-string.

NR Responder nonce, a random bit-string.

IDI Initiator’s certificates or public-key identifying informa-
tion.

IDR Responder’s certificates or public-key identifying infor-
mation.

IDR′ An indication by the initiator to the responder as to what
authentication information (e.g., certificates) the latter
should use.

HKr A transient hash key private to the responder.

sa Cryptographic and service properties of the security as-
sociation (SA) that the initiator wants to establish. It
contains a Domain-of-Interpretation which JFK under-
stands, and an application-specific bit-string.

sa′ SA information the responder may need to give to the
initiator (e.g.,the responder’s SPI, in IPsec).

Kir Shared key derived fromgir, NI , andNR used for pro-
tecting the application (e.g.,the IPsec SA).

Ke, Ka Shared keys derived fromgir, NI , andNR, used to en-
crypt and authenticate Messages (3) and (4) of the pro-
tocol.

grpinfoR All groups supported by the responder, the symmetric
algorithms used to protect Messages (3) and (4), and the
hash function used for key generation.

Both parties must pick a fresh nonce at each invocation of the JFK
protocol. The nonces are used in the session-key computation, to
provide key independence when one or both parties reuse their DH
exponential; the session key will be different between independent
runs of the protocol, as long as one of the nonces or exponentials
changes. HKR is a global parameter for the responder — it stays
the same between protocol runs, but can change periodically.

2.2 The JFKi Protocol
The JFKi protocol consists of four messages (two round trips):

I → R : NI , gi, IDR′ (1)

R → I : NI , NR, gr, grpinfoR, IDR,
SR[gr, grpinfoR],
HHKR

(gr, NR, NI , IPI)

(2)

I → R : NI , NR, gi, gr,
HHKR

(gr, NR, NI , IPI),

{IDI , sa, SI [NI , NR, gi, gr, IDR, sa]}Ke
Ka

(3)

R → I : {SR[NI , NR, gi, gr, IDI , sa, sa′], sa′}Ke
Ka

(4)

The keys used to protect Messages (3) and (4),Ke andKa, are
computed asHgir (NI , NR, "1") andHgir (NI , NR, "2") respec-
tively. The session key passed to IPsec (or some other application),
Kir, is Hgir (NI , NR, "0"). (Note that there may be a difference
in the number of bits from the HMAC and the number produced by
the raw Diffie-Hellman exchange; the 512 least-significant bits are
of gir are used as the key in that case). If the key used by IPsec is
longer than the output of the HMAC, the key extension method of
IKE is used to generate more keying material.

Message (1) is straightforward; note that it assumes that the ini-
tiator already knows a group and generator that are acceptable to
the responder. The initiator can reuse agi value in multiple in-
stances of the protocol with the responder, or other responders that
accept the same group, for as long as she wishes her forward se-
crecy interval to be. We discuss how the initiator can discover what
groups to use in a later section. This message also contains an indi-
cation as to which ID the initiator would like the responder to use
to authenticate.IDR′ is sent in the clear; however, the responder’s
ID in Message (2) is also sent in the clear, so there is no loss of
privacy.

Message (2) is more complex. Assuming that the responder ac-
cepts the Diffie-Hellman group in the initiator’s message (rejections
are discussed in Section 2.5), he replies with a signed copy of his

own exponential (in the same group, also(mod p)), information
on what secret key algorithms are acceptable for the next message,
a random nonce, his identity (certificates or a string identifying his
public key), and an authenticator calculated from a secret, HKR,
known to the responder; the authenticator is computed over the re-
sponder’s exponential, the two nonces, and the initiator’s network
address. The responder’s exponential may also be reused; again, it
is regenerated according to the responder’s forward secrecy inter-
val. The signature on the exponential needs to be calculated at the
same rate as the responder’s forward secrecy interval (when the ex-
ponential itself changes). Finally, note that the responder does not
need to generate any state at this point, and the only cryptographic
operation is a MAC calculation. If the responder is not under heavy
load, or if PFS is deemed important, the responder may generate
a new exponential and corresponding signature for use in this ex-
change; of course, this would require keeping some state (the secret
part of the responder’s Diffie-Hellman computation).

Message (3) echoes back the data sent by the responder, includ-
ing the authenticator. The authenticator is used by the respon-
der to verify the authenticity of the returned data. The authen-
ticator also confirms that the sender of the Message (3) used the
same address as in Message (1) — this can be used to detect and
counter a “cookie jar” DoS attack1. A valid authenticator indicates
to the responder that a roundtrip has been completed (between Mes-
sages (1), (2), and (3)). The message also includes the initiator’s
identity and service request, and a signature computed over the
nonces, the responder’s identity, and the two exponentials. This
latter information is all encrypted and authenticated under keysKe

andKa, as already described. The encryption and authentication
use algorithms specified in grpinfoR. The responder keeps a copy
of recently-received Messages (3), and their corresponding Mes-
sage (4). Receiving a duplicate (or replayed) Message (3) causes
the responder to simply retransmit the corresponding Message (4),
without creating new state or invoking IPsec. This cache of mes-
sages can be reset as soon as HKR is changed. The responder’s
exponential (gr) is re-sent by the initiator because the responder
may be generating a newgr for every new JFK protocol run (e.g.,
if the arrival rate of requests is below some threshold). It is impor-
tant that the responder deal with repeated Messages (3) as described
above. Responders that create new state for a repeated Message (3)
open the door to attacks against the protocol and/or underlying ap-
plication (IPsec).

Note that the signature is protected by the encryption. This is
necessary for identity protection, since everything signed is public
except thesa, and that is often guessable. An attacker could verify
guesses at identities if the signature were not encrypted.

Message (4) contains application-specific information (such as
the responder’s IPsec SPI), and a signature on both nonces, both
exponentials, and the initiator’s identity. Everything is encrypted
and authenticated by the sameKe andKa used in Message (3),
which are derived fromNI , NR, andgir. The encryption and au-
thentication algorithms are specified in grpinfoR.

2.3 Discussion
The design follows from our requirements. With respect to com-

munication efficiency, observe that the protocol requires only two
round trips. The protocol is optimized to protect the responder
against denial of service attacks on state or computation. The initia-

1The “cookie jar” DoS attack involves an attacker that is willing
to reveal the address of one subverted host so as to acquire a valid
cookie (or number of cookies) that can then be used by a large
number of other subverted hosts to launch a DDoS attack using the
valid cookie(s).

tor bears the initial computational burden and must establish round-
trip communication with the responder before the latter is required
to perform expensive operations. At the same time, the protocol
is designed to limit the private information revealed by the initia-
tor; she does not reveal her identity until she is sure that only the
responder can retrieve it. (An active attacker can replay an old
Message (2) as a response to the initiator’s initial message, but he
cannot retrieve the initiator’s identity from Message (3) because he
cannot complete the Diffie-Hellman computation).

The initiator’s first message, Message (1), is a straightforward
Diffie-Hellman exponential. Note that this is assumed to be en-
coded in a self-identifying manner,i.e., it contains a tag indicat-
ing which modulus and base was used. The nonceNI serves two
purposes: first, it allows the initiator to reuse the same exponen-
tial across different sessions (with the same or different responders,
within the initiator’s forward secrecy interval) while ensuring that
the resulting session key will be different. Secondly, it can be used
to differentiate between different parallel sessions (in any case, we
assume that the underlying transport protocol,i.e.,UDP, can handle
the demultiplexing by using different ports at the initiator).

Message (2) must require only minimal work for the responder,
since at that point he has no idea whether the initiator is a legitimate
correspondent or,e.g.,a forged message from a denial of service at-
tack; no round trip has yet occurred with the initiator. Therefore, it
is important that the responder not be required at this point to per-
form expensive calculations or create state. Here, the responder’s
cost will be a single authentication operation, the cost of which (for
HMAC) is dominated by two invocations of a cryptographic hash
function, plus generation of a random nonceNR.

The respondermaycompute a new exponentialgb (modp) for
each interaction. This is an expensive option, however, and at times
of high load (or attack) it would be inadvisable. The nonce prevents
two successive session keys from being the same, even if both the
initiator and the responder are reusing exponentials. One case when
both sides may reuse the same exponentials is when the initiator is
a low-power device (e.g.,a cellphone) and the responder is a busy
server.

A simple way of addressing DoS is to periodically (e.g.,once ev-
ery 30 seconds) generate an(r, gr, HHKR

(gr), SR[gr]) tuple and
place it in a FIFO queue. As requests arrive (in particular, as valid
Messages (3) are processed), the first entry from the FIFO is re-
moved; thus, as long as valid requests arrive at under the generation
rate, PFS is provided for all exchanges. If the rate of valid protocol
requests exceeds the generating rate, a JFK implementation should
reuse the last tuple in the FIFO. Notice that in this scheme, the same
gr may be reused in different sessions, if these sessions are inter-
leaved. This does not violate the PFS or other security properties
of the protocol.

If the responder is willing to accept the group identified in the
initiator’s message, his exponential must be in the same group. Oth-
erwise, he may respond with an exponential from any group of his
own choosing. The field grpinfoR lists what groups the responder
finds acceptable, if the initiator should wish to restart the proto-
col. This provides a simple mechanism for the initiator to discover
the groups currently allowed by the responder. That field also lists
what encryption and MAC algorithms are acceptable for the next
two messages. This is not negotiated; the responder has the right to
decide what strength encryption is necessary to use his services.

Note that the responder creates no state when sending this mes-
sage. If it is fraudulent, that is, if the initiator is non-existent or
intent on perpetrating a denial-of-service attack, the responder will
not have committed any storage resources.

In Message (3), the initiator echoes content from the responder’s

message, including the authenticator. The authenticator allows the
responder to verify that he is in round-trip communication with a
legitimate potential correspondent. The initiator also uses the key
derived from the two exponentials and the two nonces to encrypt
her identity and service request. The initiator’s nonce is used to
ensure that this session key is unique, even if both the initiator and
the responder are reusing their exponentials and the responder has
“forgotten” to change nonces.

Because the initiator can validate the responder’s identity before
sending her own and because her identifying information (ignoring
her public key signature) is sent encrypted, her privacy is protected
from both passive and active attackers. An active attacker can re-
play an old Message (2) as a response to the initiator’s initial mes-
sage, but he cannot retrieve the initiator’s identity from Message (3)
because he cannot complete the Diffie-Hellman computation. The
service request is encrypted, too, since its disclosure might identify
the requester. The responder may wish to require a certain strength
of cryptographic algorithm for selected services.

Upon successful receipt and verification of this message, the re-
sponder has a shared key with a party known to be the initiator. The
responder further knows what service the initiator is requesting. At
this point, he may accept or reject the request.

The responder’s processing on receipt of Message (3) requires
verifying an authenticator and, if that is successful, performing sev-
eral public key operations to verify the initiator’s signature and cer-
tificate chain. The authenticator (again requiring two hash opera-
tions) is sufficient defense against forgery; replays, however, could
cause considerable computation. The defense against this is to
cache the corresponding Message (4); if a duplicate Message (3)
is seen, the cached response is retransmitted; the responder does
not create any new state or notify the application (e.g.,IPsec). The
key for looking up Messages (3) in the cache is the authenticator;
this prevents DoS attacks where the attacker randomly modifies the
encrypted blocks of a valid message, causing a cache miss and thus
more processing to be done at the responder. Further, if the authen-
ticator verifies but there is some problem with the message (e.g.,the
certificates do not verify), the responder can cache the authentica-
tor along with an indication as to the failure (or the actual rejection
message), to avoid unnecessary processing (which may be part of a
DoS attack). This cache of Messages (3) and authenticators can be
purged as soon as HKR is changed (since the authenticator will no
longer pass verification).

Caching Message (3) and refraining from creating new state for
replayed instances of Message (3) also serves another security pur-
pose. If the responder were to create a new state and send a new
Message (4), and a new sa′ for a replayed Message (3), then an at-
tacker who compromised the initiator could replay a recent session
with the responder. That is, by replaying Message (3) from a re-
cent exchange between the initiator and the responder, the attacker
could establish a session with the responder where the session-key
would be identical to the key of the previous session (which took
place when the initiator was not yet compromised). This could
compromise the Forward Security of the initiator.

There is a risk, however, in keeping this message cached for too
long: if the responder’s machine is compromised during this pe-
riod, perfect forward secrecy is compromised. We can tune this by
changing the MAC key HKR more frequently. The cache can be
reset when a new HKR is chosen.

In Message (4), the responder sends to the initiator any responder-
specific application data (e.g., the responder’s IPsec SPI), along
with a signature on both nonces, both exponentials, and the ini-
tiator’s identity. All the information is encrypted and authenti-
cated using keys derived from the two nonces,NI andNR, and

the Diffie-Hellman result. The initiator can verify that the respon-
der is present and participating in the session, by decrypting the
message and verifying the enclosed signature.

2.4 The JFKr Protocol
Using the same notation as in JFKi, the JFKr protocol is:

I → R : NI , gi (1)

R → I : NI , NR, gr, grpinfoR,
HHKR

(gr, NR, NI , IPI)
(2)

I → R : NI , NR, gi, gr,
HHKR

(gr, NR, NI , IPI)

{IDI , IDR′ , sa, SI [NI , NR, gi, gr, grpinfoR]}Ke
Ka

(3)

R → I : {IDR, sa′, SR[gr, NR, gi, NI]}Ke
Ka

, (4)

As in JFKi, the keys used to protect Messages (3) and (4),Ke

and Ka, are respectively computed asHgir (NI , NR, "1") and
Hgir (NI , NR, "2"). The session key passed to IPsec (or some
other application),Kir, is Hgir (NI , NR, "0").

Both parties send their identities encrypted and authenticated un-
der Ke andKa respectively, providing both parties with identity
protection against passive eavesdroppers. In addition, the party that
first reveals its identity is the initiator. This way, the responder is
required to reveal its identity only after it verifies the identity of the
initiator. This guarantees active identity protection to the responder.

We remark that it is essentially impossible, under current tech-
nology assumptions, to have a two-round-trip protocol that pro-
vides DoS protection for the responder, passive identity protection
for both parties, and active identity protection for the initiator. An
informal argument proceeds as follows: if DoS protection is in
place, then the responder must be able to send his first message
before he computes any shared key; This is so since computing
a shared key is a relatively costly operation in current technology.
This means that the responder cannot send his identity in the second
message, without compromising his identity protection against pas-
sive eavesdroppers. This means that the responder’s identity must
be sent in the fourth (and last) message of the protocol. Conse-
quently, the initiator’s identity must be sent before the responder’s
identity is sent.

2.5 Rejection Messages
Instead of sending Messages (2) or (4), the responder can send

a ‘rejection’ instead. For Message (2), this rejection can only be
on the grounds that he does not accept the group that the initiator
has used for her exponential. Accordingly, the reply should indicate
what groups are acceptable. Since Message (2) already contains the
field grpinfoR (which indicates what groups are acceptable), no ex-
plicit rejection message is needed. (For efficiency’s sake, the group
information could also be in the responder’s long-lived certificate,
which the initiator may already have.)

Message (4) can be a rejection for several reasons, including
lack of authorization for the service requested. But it could also
be caused by the initiator requesting cryptographic algorithms that
the responder regards as inappropriate, given the requester (initia-
tor), the service requested, and possibly other information available
to the responder, such as the time of day or the initiator’s location
as indicated by the network. In these cases, the responder’s reply
should list acceptable cryptographic algorithms, if any. The initia-
tor would then send a new Message (3), which the responder would

accept anew; again, the responder does not create any state until af-
ter a successful Message (3) receipt.

3. WHAT JFK AVOIDS
By intent, JFK does not do certain things. It is worth enumer-

ating them, if only to stimulate discussion about whether certain
protocol features are ever appropriate. In JFK, the “missing” fea-
tures were omitted by design, in the interests of simplicity.

3.1 Multiple Authentication Options
The most obvious “omission” is any form of authentication other

than by certificate chains trusted by the each party. We make no
provisions for shared secrets, token-based authentication, certifi-
cate discovery, or explicit cross-certification of PKIs. In our view,
these are best accomplished by outboard protocols. Initiators that
wish to rely on any form of legacy authentication can use the pro-
tocols being defined by the IPSRA[41] or SACRED[1, 14] IETF
working groups. While these mechanisms do add extra round trips,
the expense can be amortized across many JFK negotiations. Sim-
ilarly, certificate chain discovery (beyond the minimal capabilities
implicit in ID I and IDR) should be accomplished by protocols de-
fined for that purpose. By excluding the protocols from JFK, we
can exclude them from our security analysis; the only interface be-
tween the two is a certificate chain, which by definition is a stand-
alone secure object.

We also eliminate negotiation generally, in favor of ukases issued
by the responder. The responder is providing a service; it is enti-
tled to set its own requirements for that service. Any cryptographic
primitive mentioned by the responder is acceptable; the initiator
can choose any it wishes. We thus eliminate complex rules for se-
lecting the “best” choice from two different sets. We also eliminate
the need that state be kept by the responder; the initiator can either
accept the responder’s desires or restart the protocol.

3.2 Phase II and Lack Thereof
JFK rejects the notion of two different phases. As will be dis-

cussed in Section 5, the practical benefits of quick mode are limited.
Furthermore, we do not agree that frequent rekeying is necessary.
If the underlying block cipher is sufficiently limited as to bar long-
term use of any one key, the proper solution is to replace that cipher.
For example, 3DES is inadequate for protection of very high speed
transmissions, because the probability of collision in CBC mode
becomes too high after encryption of232 plaintext blocks. Using
AES instead of 3DES solves that problem without complicating the
key exchange.

Phase II of IKE is used for several things; we do not regard any
of them as necessary. One is generating the actual keying material
used for security associations. It is expected that this will be done
several times, to amortize the expense of the Phase I negotiation. A
second reason for this is to permit very frequent rekeying. Finally,
it permits several separate security associations to be set up, with
different parameters.

We do not think these apply. First, with modern ciphers such as
AES, there is no need for frequent key changes. AES keys are long
enough that brute force attacks are infeasible. Its longer block size
protects against CBC limitations when encrypting many blocks.

We also feel that JFK is efficient enough that avoiding the over-
head of a full key exchange is not required. Rather than adding new
SAs to an existing Phase I SA, we suggest that a full JFK exchange
be initiated instead. We note that the initiator can also choose to
reuse its exponential, it if wishes to trade perfect forward secrecy
for computation time. If state already exists between the initiator
and the responder, they can simply check that the Diffie-Hellman

exponentials are the same; if so, the result of the previous expo-
nentiation can be reused. As long as one of the two parties uses
a fresh nonce in the new protocol exchange, the resulting crypto-
graphic keys will be fresh and not subject to a related key (or other,
similar) attack. As we discuss in Section 3.3, a similar performance
optimization can be used on the certificate-chain validation.

A second major reason for Phase II is dead-peer detection. IPsec
gateways often need to know if the other end of a security associ-
ation is dead, both to free up resources and to avoid “black holes.”
In JFK, this is done by noting the time of the last packet received.
A peer that wishes to elicit a packet may send a “ping.” Such hosts
may decline any proposed security associations that do not permit
such “ping” packets.

A third reason for Phase II is general security association control,
and in particular SA deletion. While such a desire is not wrong,
we prefer not to burden the basic key exchange mechanism with
extra complexity. There are a number of possible approaches. Ours
requires that JFK endpoints implement the following rule: a new
negotiation that specifies an SPD identical to the SPD of an existing
SA overwrites it. To some extent, this removes any need to delete
an SA if black hole avoidance is the concern; simply negotiate a
new SA. To delete an SA without replacing it, negotiate a new SA
with a null ciphersuite.

3.3 Rekeying
When a negotiated SA expires (or shortly before it does), the

JFK protocol is run again. It is up to the application to select the
appropriate SA to use among many valid ones. In the case of IPsec,
implementations should switch to using the new SA for outgoing
traffic, but would still accept traffic on the old SA (as long as that
SA has not expired).

To address performance considerations, we should point out that,
properly implemented, rekeying only requires one signature and
one verification operation in each direction, if both parties use the
same Diffie-Hellman exponentials (in which case, the cached result
can be reused) and certificates: the receiver of an ID payload com-
pares its hash with those of any cached ID payloads received from
the same peer. While this is an implementation detail, a natural lo-
cation to cache past ID payloads is along with already established
SAs (a convenient fact, as rekeying will likely occur before exist-
ing SAs are allowed to expire, so the ID information will be readily
available). If a match is found and the result has not “expired” yet,
then we do not need to re-validate the certificate chain. A previ-
ously verified certificate chain is considered valid for the shortest
of its CRL re-validate time, certificate expiration time, OCSP result
validity time,etc.For each certificate chain, there is one such value
associated (the time when one of its components becomes invalid
or needs to be checked again). Notice that an implementation does
not need to cache the actual ID payloads; all that is needed is the
hash and the expiration time.

That said, if for some reason fast rekeying is needed for some
application domain, it should be done by a separate protocol.

4. TOWARDS A PROOF OF SECURITY
This section very briefly overviews our security analysis of the

JFK protocol. Full details are deferred to the full analysis paper.
There are currently two main approaches to analyzing security

of protocols. One is the formal-methods approach, where the cryp-
tographic components of a protocol are modeled by “ideal boxes”
and automatic theorem-verification tools are used to verify the va-
lidity of the high-level design (assuming ideal cryptography). The
other is the cryptographic approach, which accounts for the fact
that cryptographic components are imperfect and may potentially

interact badly with each other. Here, security of protocols is proven
based on some underlying computational intractability assumptions
(such as the hardness of factoring large numbers, computing dis-
crete logarithms modulo a large prime, or inverting a cryptographic
hash function). The formal-methods approach, being automated,
has the advantage that it is less susceptible to human errors and
oversights in analysis. On the other hand, the cryptographic ap-
proach provides better soundness, since it considers the overall se-
curity of the protocol, and in particular accounts for the imperfec-
tions of the cryptographic components.

Our analysis follows the cryptographic approach. We welcome
any additional analysis. In particular, analysis based on formal
methods would be a useful complement to the analysis described
here.

We separate the analysis of the “core security” of the protocol
(which is rather tricky) from the analysis of added security fea-
tures such as DoS protection and identity protection (which is much
more straightforward). The rest of this section concentrates on the
“core security” of the protocol. DoS and identity protection were
discussed in previous sections.

4.1 Core security
We use the modeling and treatment of [7], which in turn is based

on [6]; see there for more references and comparisons with other
analytical work. Very roughly, the “core security” of a key ex-
change protocol boils down to two requirements:

1. If party A generates a keyKA associated with a session-
identifiers and peer identityB, and partyB generates a key
KB associated with the same session identifiers and peerA,
thenKA = KB .

2. No attacker can distinguish between the key exchanged in
a session between two unbroken parties and a truly random
value. This holds even if the attacker has total control over
the communication, can invoke multiple sessions, and is told
the keys generated in all other sessions.

We stress that this is only a rough sketch of the requirement.
For full details see [7, 8]. We show that both JFKi and JFKr sat-
isfy the above requirement. When these protocols are run with
perfect forward secrecy, the security is based on a standard in-
tractability assumption of the DH problem, plus the security of
the signature scheme and the security of MAC as a pseudo-random
function. When a party reuses its DH value, the security is based
on a stronger intractability assumption involving both DH and the
HMAC pseudo-random function.

We first analyze the protocols in the restricted case where the
parties do not reuse the private DH exponents for multiple sessions;
this is the bulk of the work. Here, the techniques for demonstrating
the security of the two protocols are quite different.

4.1.1 JFKi:
The basic cryptographic core of this protocol is the same as the

ISO 9798-3 protocol, which was analyzed and proven secure in [7].
This protocol can be briefly summarized as follows:

A → B : A, NA, ga (1)

B → A : B, NB , gb, SB [NA, NB , ga, gb, A] (2)

A → B : SA[NA, NB , ga, gb, B] (3)

A salient point about this protocol is that each party signs, in ad-
dition to the nonces and the two public DH exponents, the identity

of the peer. If the peer’s identity is not signed then the protocol is
completely broken. JFKi inherits the same basic core security. In
addition, JFKi adds a preliminary cookie mechanism for DoS pro-
tection (which results in adding one flow to the protocol and having
theresponderin JFKi play the role ofA), and encrypts the last two
messages in order to provide identity protection for the initiator.

Finally, we note that JFKi enjoys the following additional prop-
erty. Whenever a partyP completes a JFKi exchange with peer
Q, it is guaranteed thatQ has initiated an exchange withP and is
aware ofP ’s existence. This property is not essential in the context
of IPsec (indeed, JFKr does not enjoy this property). Nonetheless,
it may be of use in other contexts.

4.1.2 JFKr:
The basic cryptographic core of this protocol follows the design

of the SIGMA protocol [28] (which also serves as the basis to the
signature mode of IKE). SIGMA was analyzed and proven secure
in [8]. This basic protocol can be briefly summarized as follows:

A → B : NA, ga (1)

B → A : B, NB , gb, SB [NA, NB , ga, gb],
HKa (NA, NB , B)

(2)

A → B : A, SA[NA, NB , ga, gb],
HKa (NA, NB , A)

(3)

Here, neither party signs the identity of its peer. Instead, each
party includes a MAC, keyed with a key derived fromgab, and ap-
plied to its own identity (concatenated withNA andNB). JFKr en-
joys the same basic core security as this protocol. In addition, JFKr
adds a preliminary cookie mechanism for DoS protection (which
results in adding one flow to the protocol and having theResponder
in JFKr play the role ofA), and encrypts the last two messages in
order to provide identity protection. The identity protection against
passive adversaries covers both parties, since the identities are sent
only in the last two messages.

The next step in the analysis is to generalize to the case where
the private DH exponents are reused across sessions. This is done
by making stronger (but still reasonable) computational intractabil-
ity assumptions involving both the DH problem and the HMAC
pseudo-random function. We defer details to the full analysis pa-
per.

5. RELATED WORK
The basis for most key agreement protocols based on public-key

signatures has been the Station to Station (StS)[11] protocol. In its
simplest form, shown in Figure 1, this consists of a Diffie-Hellman
exchange, followed by a public key signature authentication step,
typically using the RSA algorithm in conjunction with some certifi-
cate scheme such as X.509. In most implementations, the second
message is used to piggy-back the responder’s authentication infor-
mation, resulting in a 3-message protocol, shown in Figure 2. Other
forms of authentication may be used instead of public key signa-
tures (e.g., Kerberos[37] tickets, or preshared secrets), but these
are typically applicable in more constrained environments. While
the short version of the protocol has been proven to be the most
efficient[13] in terms of messages and computation, it suffers from
some obvious DoS vulnerabilities.

5.1 Internet Key Exchange (IKE)
The Internet Key Exchange protocol (IKE)[15] is the current

IETF standard for key establishment and SA parameter negotiation.

responderinitiator

Initiator RSA signature and certificate(s)

Initiator Diffie−Hellman public value

Responder Diffie−Hellman public value

Responder RSA signature and certificate(s)

Figure 1: 4-message Station to Station key agreement protocol.

IKE is based on the ISAKMP [33] framework, which provides en-
coding and processing rules for a set of payloads commonly used
by security protocols, and the Oakley protocol, which describes an
adaptation of the StS protocol for use with IPsec.2 The public-key
encryption modes of IKE are based on SKEME [27].

IKE is a two-phase protocol: during the first phase, a secure
channel between the two key management daemons is established.
Parameters such as an authentication method, encryption/hash al-
gorithms, and a Diffie-Hellman group are negotiated at this point.
This set of parameters is called a “Phase I SA.” Using this infor-
mation, the peers authenticate each other and compute key ma-
terial using the Diffie-Hellman algorithm. Authentication can be
based on public key signatures, public key encryption, or preshared
passphrases. There are efforts to extend this to support Kerberos
tickets[37] and handheld authenticators. It should also be noted
that IKE can support other key establishment mechanisms (besides
Diffie-Hellman), although none has been proposed yet.3

Furthermore, there are two variations of the Phase I message ex-
change, called “main mode” and “aggressive mode.” Main mode
provides identity protection, by transmitting the identities of the
peers encrypted, at the cost of three message round-trips (see Fig-
ure 3). Aggressive mode provides somewhat weaker guarantees,
but requires only three messages (see Figure 4).

As a result, aggressive mode is very susceptible to untraceable4

denial of service (DoS) attacks against both computational and mem-
ory resources[42]. Main mode is also susceptible to untraceable
memory exhaustion DoS attacks, which must be compensated for
in the implementation using heuristics for detection and avoidance.
To wit:

2We remark, however, that the actual cryptographic core of IKE’s
signature mode is somewhat different than Oakley. In Oakley the
peer authentication is guaranteed by having each party explicitly
sign the peer identity. In contrast, IKE guarantees peer authenti-
cation by having each party MACits ownidentity using a key de-
rived from the agreed Diffie-Hellman secret. This method of peer
authentication is based on the Sign-and-Mac design [28].
3There is ongoing work (still in its early stages) in the IETF to
use IKE as a transport mechanism for Kerberos tickets, for use in
protecting IPsec traffic.
4The attacker can use a forged address when sending the first mes-
sage in the exchange.

Initiator RSA signature and certificate(s)

Responder RSA signature and certificate(s)

initiator

Initiator Diffie−Hellman public value

responder

Responder Diffie−Hellman public value

Figure 2: 3-message Station to Station key agreement protocol.

• The responder has to create state upon receiving the first mes-
sage from the initiator, since the Phase I SA information is
exchanged at that point. This allows for a DoS attack on the
responder’s memory, using random source-IP addresses to
send a flood of requests. To counter this, the responder could
employ mechanisms similar to those employed in countering
TCP SYN attacks[17, 9, 40]. JFK maintains no state at all
after receiving the first message.

• An initiator who is willing to go through the first message
round-trip (and thus identify her address) can cause the re-
sponder to do a Diffie-Hellman exponential generation as
well as the secret key computation on reception of the third
message of the protocol. The initiator could do the same with
the fifth message of the protocol, by including a large num-
ber of bogus certificates, if the responder blindly verifies all
signatures. JFK mitigates the effects of this attack by reusing
the same exponential across different sessions.

The second phase of the IKE protocol is commonly called “quick
mode” and results in IPsec SAs being established between the two
negotiating parties, through a three-message exchange. Parameters
such as the IP security protocol to use (ESP/AH), security algo-
rithms, the type of traffic that will be protected,etc. are negotiated
at this stage. Since the two parties have authenticated each other
and established a shared key during Phase I, quick mode messages
are encrypted and authenticated using that information. Further-
more, it is possible to derive the IPsec SA keying material from
the shared key established during the Phase I Diffie-Hellman ex-
change. To the extent that multiple IPsec SAs between the same
two hosts are needed, this two-phase approach results in faster and
more lightweight negotiations (since the same authentication infor-
mation and keying material is reused).

Unfortunately, two hosts typically establish SAs protecting all
the traffic between them, limiting the benefits of the two-phase
protocol to lightweight re-keying. If PFS is desired, this benefit
is further diluted.

Another problem of the two-phase nature of IKE manifests it-
self when IPsec is used for fine-grained access control to network
services. In such a mode, credentials exchanged in the IKE pro-
tocol are used to authorize users when connecting to specific ser-
vices. Here, a complete Phase I & II exchange will have to be done
for each connection (or, more generally, traffic class) to be pro-

responderinitiator

Initiator Diffie-Hellman value & Nonce

Initiator signature, certs & identity

Initiator cookie, proposed phase1 SA

Responder cookie, accepted Phase1 SA

Responder Diffie-Hellman value & Nonce

Responder signature, certs & identity

Figure 3: IKE Main Mode exchange with certificates.

tected, since credentials, such as public key certificates, are only
exchanged during Phase I.

IKE protects the identities of the initiator and responder from
eavesdroppers.5 The identities include public keys, certificates, and
other information that would allow an eavesdropper to determine
which principals are trying to communicate. These identities can
be independent of the IP addresses of the IKE daemons that are
negotiating (e.g., temporary addresses acquired via DHCP, public
workstations with smartcard dongles,etc.). However, since the ini-
tiator reveals her identity first (in message 5 of Main Mode), an
attacker can pose as the responder until that point in the protocol.
The attackers cannot complete the protocol (since they do not pos-
sess the responder’s private key), but they can determine the initia-
tor’s identity. This attack is not possible on the responder, since she
can verify the identity of the initiator before revealing her identity
(in message 6 of Main Mode). However, since most responders
would correspond to servers (firewalls, web servers,etc.), the iden-
tity protection provided to them seems not as useful as protecting
the initiator’s identity.6 Fixing the protocol to provide identity pro-
tection for the initiator would involve reducing it to 5 messages and
having the responder send the contents of message 6 in message 4,
with the positive side-effect of reducing the number of messages,
but breaking the message symmetry and protocol modularity.

Finally, thanks to the desire to support multiple authentication
mechanisms and different modes of operation (Aggressivevs.Main
mode, Phase I / II distinction), both the protocol specification and
the implementations tend to be bulky and fairly complicated. These
are undesirable properties for a critical component of the IPsec ar-
chitecture.

Several works (including [12, 26, 25]) point out many deficien-
cies in the IKE protocol, specification, and common implemen-

5Identity protection is provided only in Main Mode (also known
as Identity Protection Mode); Aggressive Mode does not provide
identity protection for the initiator.
6One case where protecting the responder’s identity can be more
useful is in peer-to-peer scenarios.

Initiator signature and certificate(s)

Initiator Diffie−Hellman value & Identity

Responder cookie, accepted Phase1 SA

Responder Diffie−Hellman value & Identity

Responder signature and certificate(s)

initiator responder

Initiator cookie, proposed Phase 1 SA

Figure 4: IKE Aggressive Mode exchange with certificates.

tations. They suggest removing several features of the protocol
(e.g.,aggressive mode, public key encryption mode,etc.), restore
the idea of stateless cookies, and protect the initiator’s (instead of
the responder’s) identity from an active attacker. They also sug-
gest some other features, such as one-way authentication (similar
to what is common practice when using SSL/TLS[10] on the web).
These major modifications would bring the IKE protocol closer to
JFK, although they would not completely address the DoS issues.

A measure of the complexity of IKE can be found in the analyses
done in [34, 36]. No less than 13 different sub-protocols are iden-
tified in IKE, making understanding, implementation, and analysis
of IKE challenging. While the analysis did not reveal any attacks
that would compromise the security of the protocol, it did identify
various potential attacks (DoS and otherwise) that are possible un-
der somevalid interpretations of the specification and implementa-
tion decisions.

Some work has been done towards addressing, or at least ex-
amining, the DoS problems found in IKE[31, 32] and, more gener-
ally, in public key authentication protocols[30, 21]. Various recom-
mendations on protocol design include use of client puzzles[23, 3],
stateless cookies[39], forcing clients to store server state, rearrang-
ing the order of computations in a protocol[18], and the use of a
formal method framework for analyzing the properties of protocols
with respect to DoS attacks[35]. The advantages of being state-
less, at least in the beginning of a protocol run, were recognized in
the security protocol context in [22] and [2]. The latter presented
a 3-message version of IKE, similar to JFK, that did not provide
the same level of DoS protection as JFK does, and had no identity
protection.

5.2 IKEv2
IKEv2[16] is another proposal for replacing the original IKE

protocol. The cryptographic core of the protocol, as shown in Fig-
ure 5, is very similar to JFKr. The main differences between IKEv2
and JFKr are:

• IKEv2 implements DoS protection by optionally allowing
the responder to respond to a Message (1) with a cookie,
which the sender has to include in a new Message (1). Under
normal conditions, the exchange would consist of the 4 mes-
sages shown; however, if the responder detects a DoS attack,
it can start requiring the extra roundtrip. One claimed benefit
of this extra roundtrip is the ability to avoid memory-based

Responder authentication and certificate(s)

initiator responder

Initiator Keying Material, Phase I SA,Initiator cookie

Responder Keying Material, Phase 1 SA,

Responder cookie

Phase II SA, Traffic Selectors, Identities

Accepted Phase II SA and Traffic Selectors

Initiator authentication and certificate(s)

Figure 5: IKEv2 protocol exchange.

DoS attacks against the fragmentation/reassembly part of the
networking stack. (Briefly, the idea behind such an attack is
that an attacker can send many incomplete fragments that fill
out the reassembly queue of the responder, denying service
to other legitimate initiators. In IKEv2, because the “large”
messages are the last two in the exchange, it is possible for
the implementation to instruct the operating system to place
fragments received from peers that completed a roundtrip to
a separate, reserved reassembly queue.)

• IKEv2 supports a Phase II exchange, similar to the Phase
I/Phase II separation in the original IKE protocol. It sup-
ports creating subsequent IPsec SAs with a single roundtrip,
as well as SA-teardown using this Phase II.

• IKEv2 proposals contain multiple options that can be com-
bined in arbitrary ways; JFK, in contrast, takes the approach
of using ciphersuites, similar to the SSL/TLS protocols[10].

• IKEv2 supports legacy authentication mechanisms (in par-
ticular, pre-shared keys). JFK does not, by design, support
other authentication mechanisms, as discussed in Section 3;
while it is easy to do so (and we have a variant of JFKr that
can do this without loss of security), we feel that the added
value compared to the incurred complexity does not justify
the inclusion of this feature in JFK.

Apart from these main differences, there are a number of superfi-
cial ones (e.g.,the “wire” format) which are more a matter of taste
than of difference in protocol design philosophy. The authors of
the two proposals have helped create a joint draft[19], submitted
to the IETF IPsec Working Group. In that draft, a set of design
options reflecting the differences in the two protocols is presented
to the working group. Concurrent with the writing of this paper,
and based on this draft, a unified proposal is being written. This
unified proposal combines properties from both JFK and IKEv2. It
adopts the approach of setting up a security association within two
round trips, while providing DoS protection for the responder (and,
in particular, allowing the responder to be almost completely state-
less between the sending of message 2 and the receipt of message
3.)

5.3 Other Protocols
The predecessor to IKE, Photuris[24], first introduced the con-

cept of cookies to counter “blind” denial of service attacks. The
protocol itself is a 6-message variation of the Station to Station
protocol. It is similar to IKE in the message layout and purpose,
except that the SA information has been moved to the third mes-
sage. For re-keying, a two-message exchange can be used to re-
quest a uni-directional SPI (thus, to completely re-key, 4 messages
are needed). Photuris is vulnerable to the same computation-based
DoS attack as IKE, mentioned above. Nonetheless, one of the vari-
ants of this protocol has 4 messages and provided DoS protection
via stateless cookies.

SKEME[27] shares many of the requirements for JFK, and many
aspects of its design were adopted in IKE. It serves more as a set of
protocol building blocks, rather than a specific protocol instance.
Depending on the specific requirements for the key management
protocol, these blocks could be combined in several ways. An in-
teresting aspect of SKEME is its avoidance of digital signatures;
public key encryption is used instead, to provide authentication as-
surances. The reason behind this was to allow both parties of the
protocol to be able to repudiate the exchange.

SKIP[5] was an early proposal for an IPsec key management
mechanism. It uses long-term Diffie-Hellman public keys to derive
long-term shared keys between parties, which is used to distribute
session keys between the two parties. The distribution of the ses-
sion key occurs in-band,i.e., the session key is encrypted with the
long-term key and is injected in the encrypted packet header. While
this scheme has good synchronization properties in terms of re-
keying, the base version lacks any provision for PFS. It was later
provided via an extension [4]. However, as the authors admit, this
extension detracts from the original properties of SKIP. Further-
more, there is no identity protection provided, since the certificates
used to verify the Diffie-Hellman public keys are (by design) pub-
licly available, and the source/destination master identities are con-
tained in each packet (so that a receiver can retrieve the sender’s
Diffie-Hellman certificate). The latter can be used to mount a DoS
attack on a receiver, by forcing them to retrieve and verify a Diffie-
Hellman certificate, and then compute the Diffie-Hellman shared
secret.

The Host Identity Payload (HIP)[38] uses cryptographic public
keys as the host identifiers, and introduces a set of protocols for es-
tablishing SAs for use in IPsec. The HIP protocol is a four-packet
exchange, and uses client puzzles to limit the number of sessions
an attacker can initiate. HIP also allows for reuse of the Diffie-
Hellman value over a period of time, to handle a high rate of ses-
sions. For re-keying, a HIP packet protected by an existing IPsec
session is used. HIP does not provide identity protection, and it de-
pends on the existence of an out-of-band mechanism for distribut-
ing keys and certificates, or on extra HIP messages for exchanging
this information (thus, the message count is effectively 6, or even
8, for most common usage scenarios).

6. CONCLUSION
Over the years, many different key exchange protocols have been

proposed. Some have had security flaws; others have not met cer-
tain requirements.

JFK addresses the first issue by simplicity, and by a proof of
correctness. (Again, full details of this are deferred to the analy-
sis paper.) We submit that proof techniques have advanced enough
that new protocols should not be deployed without such an anal-
ysis. We also note that the details of the JFK protocol changed in
order to accommodate the proof: tossing a protocol over the wall to

the theoreticians is not a recipe for success. But even a proof of cor-
rectness is not a substitute for simplicity of design; apart from the
chance of errors in the formal analysis, a complex protocol implies
a complex implementation, with all the attendant issues of buggy
code and interoperability problems.

The requirements issue is less tractable, because it is not possi-
ble to foresee how threat models or operational needs will change
over time. Thus, StS is not suitable for an environment where de-
nial of service attacks are a concern. Another comparatively-recent
requirement is identity protection. But the precise need — whose
identity should be protected, and under what threat model — is still
unclear, hence the need for both JFKi and JFKr.

Finally, and perhaps most important, we show that some attributes
often touted as necessities are, in fact, susceptible to a cost-benefit
analysis. Everyone understands that cryptographic primitives are
not arbitrarily strong, and that cost considerations are often used in
deciding on algorithms, key lengths, block sizes,etc.We show that
DoS-resistance and perfect forward secrecy have similar character-
istics, and that it is possible to improve some aspects of a protocol
(most notably the number of round trips required) by treating others
as parameters of the system, rather than as absolutes.

7. ACKNOWLEDGEMENTS
Ran Atkinson, Matt Crawford, Paul Hoffman, and Eric Rescorla

provided useful comments, and discussions with Hugo Krawczyk
proved very useful. Dan Harkins suggested the inclusion ofIPI

in the authenticator. David Wagner made useful suggestions on the
format of Message (2) in JFKi. The design of the JFKr protocol
was influenced by the SIGMA and IKEv2 protocols.

8. REFERENCES
[1] A. Arsenault and S. Farrell. Securely available credentials -

requirements. Request for Comments 3157, Internet
Engineering Task Force, Aug. 2001.

[2] T. Aura and P. Nikander. Stateless connections. InProc. of
International Conferenec on Information and
Communications Security (ICICS ’97), Lecture Notes in
Computer Science volume 1334, pages 87–97. Springer,
November 1997.

[3] T. Aura, P. Nikander, and J. Leiwo. DOS-resistant
authentication with client puzzles. InProc. of the 8th
International Workshop on Security Protocols, April 2000.

[4] A. Aziz. SKIP extension for perfect forward secrecy (PFS).
Internet Draft, Internet Engineering Task Force, August
1996.

[5] A. Aziz and M. Patterson. Simple Key Management for
Internet Protocols (SKIP). InProc. of the 1995 INET
conference, 1995.

[6] M. Bellare and P. Rogaway. Entity Authentication and Key
Distribution. InProc. of the Crypto conference, August 1993.

[7] R. Canetti and H. Krawczyk. Analysis of Key-Exchange
Protocols and Their Use for Building Secure Channels. In
Proc. of the Eurocrypt conference, May 2001.

[8] R. Canetti and H. Krawczyk. Security Analysis of IKE’s
Signature-based Key-Exchange Protocol. InProc. of the
Crypto conference, August 2002.

[9] CERT. Advisory CA-96.21: TCP SYN Flooding, September
1996. ftp://info.cert.org/pub/certadvisories/CA-
96.21.tcpsyn flooding

[10] T. Dierks and C. Allen. The TLS protocol version 1.0.
Request for Comments (Proposed Standard) 2246, Internet
Engineering Task Force, January 1999.

[11] W. Diffie, P. van Oorschot, and M. Wiener. Authentication
and Authenticated Key Exchanges.Designs, Codes and
Cryptography, 2:107–125, 1992.

[12] N. Ferguson and B. Schneier. A Cryptographic Evaluation of
IPSec.
http://www.counterpane.com/ipsec.html .

[13] L. Gong. Efficient Network Authentication Protocols: Lower
Bounds and Optimal Implementations.Distributed
Computing, 9(3):131–145, 1995.

[14] D. Gustafson, M. Just, and M. Nystrom. Securely available
credentials - credential server framework. Internet Draft,
Internet Engineering Task Force, Aug. 2001. Work in
progress.

[15] D. Harkins and D. Carrel. The Internet Key Exchange (IKE).
Request for Comments (Proposed Standard) 2409, Internet
Engineering Task Force, November 1998.

[16] D. Harkins, C. Kaufman, S. Kent, T. Kivinen, and
R. Perlman. Proposal for the IKEv2 Protocol. Internet Draft,
Internet Engineering Task Force, April 2002. Work in
progress.

[17] L. Heberlein and M. Bishop. Attack Class: Address
Spoofing. InProceedings of the 19th National Information
Systems Security Conference, pages 371–377, October 1996.

[18] S. Hirose and K. Matsuura. Enhancing the resistance of a
provably secure key agreement protocol to a
denial-of-service attack. InProc. of the 2nd International
Conference on Information and Communication Security
(ICICS ’99), pages 169–182, November 1999.

[19] P. Hoffman. Features of Proposed Successors to IKE.
Internet Draft, Internet Engineering Task Force, April 2002.
Work in progress.

[20] IEEE. Entity authentication mechanisms — part 3: Entity
authentication using asymmetric techniques. Technical
Report ISO/IEC IS 9798-3, ISO/IEC, 1993.

[21] M. Jakobsson and A. Juels. Proofs of work and bread
pudding protocols. InProc. of the IFIP TC6 and TC11 Joint
Working Conference on Communications and Multimedia
Security, September 1999.

[22] P. Janson, G. Tsudik, and M. Yung. Scalability and flexibility
in authentication services: the KryptoKnight approach. In
Proc. of IEEE INFOCOM, pages 725–736, April 1997.

[23] A. Juels and J. Brainard. Client puzzles: A cryptographic
countermeasure against connection depletion attacks. In
Proc. of the Network and Distributed Systems Security
Symposium (NDSS ’99), pages 151–165, February 1999.

[24] P. Karn and W. Simpson. Photuris: Session-key management
protocol. Request for Comments 2522, Internet Engineering
Task Force, Mar. 1999.

[25] C. Kaufman et al. Code-preserving Simplifications and
Improvements to IKE. Internet Draft, Internet Engineering
Task Force, July 2001. Work in progress.

[26] C. Kaufman and R. Perlman. Analysis of IKE. InIEEE
Transactions on Network Computing,, November 2000.

[27] H. Krawczyk. SKEME: A Versatile Secure Key Exchange
Mechanism for Internet. InProc. of Network and Distributed
System Security Symposium (NDSS), February 1996.

[28] H. Krawczyk. The IKE-SIGMA Protocol.
http://www.ee.technion.ac.il/˜ hugo/sigma.html, November
2001.

[29] H. Krawczyk, M. Bellare, and R. Canetti. HMAC:
keyed-hashing for message authentication. Request for
Comments 2104, Internet Engineering Task Force, February
1997.

[30] J. Leiwo, P. Nikander, and T. Aura. Towards network denial
of service resistant protocols. InProc. of the 15th
International Information Security Conference (IFIP/SEC),
August 2000.

[31] K. Matsuura and H. Imai. Resolution of ISAKMP/Oakley
key-agreement protocol resistant against denial-of-service
attack. InProc. of Internet Workshop (IWS ’99), pages
17–24, February 1999.

[32] K. Matsuura and H. Imai. Modified aggressive mode of
Internet key exchange resistant against denial-of-service
attacks.IEICE Transactions on Information and Systems,
E83-D(5):972–979, May 2000.

[33] D. Maughan, M. Schertler, M. Schneider, and J. Turner.
Internet security association and key management protocol
(ISAKMP). Request for Comments (Proposed Standard)
2408, Internet Engineering Task Force, Nov. 1998.

[34] C. Meadows. Analysis of the Internet Key Exchange
protocol using the NRL protocol analyzer. InProc. of the
IEEE Symposium on Security and Privacy, pages 216–231,
May 1999.

[35] C. Meadows. A formal framework and evaluation method for
network denial of service. InProc. of the 12th IEEE
Computer Security Foundations Workshop, pages 4–13, June
1999.

[36] C. Meadows. Open issues in formal methods for
cryptographic protocol analysis. InProc. of DARPA
Information Survivability Conference and Exposition
(DISCEX 2000), pages 237–250. IEEE Computer Society
Press, January 2000.

[37] S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer.
Kerberos Authentication and Authorization System.
Technical report, MIT, December 1987.

[38] R. Moskowitz. The Host Identity Payload. Internet Draft,
Internet Engineering Task Force, July 2001. Work in
progress.

[39] R. Oppliger. Protecting key exchange and management
protocols against resource clogging attacks. InProc. of the
IFIP TC6 and TC11 Joint Working Conference on
Communications and Multimedia Security (CMS ’99), pages
163–175, September 1999.

[40] C. Schuba, I. Krsul, M. Kuhn, E. Spafford, A. Sundaram, and
D. Zamboni. Analysis of a denial of service attack on tcp. In
IEEE Security and Privacy Conference, pages 208–223, May
1997.

[41] Y. Sheffer, H. Krawczyk, and B. Aboba. PIC, a pre-IKE
credential provisioning protocol. Internet Draft, Internet
Engineering Task Force, Nov. 2001. Work in progress.

[42] W. A. Simpson. IKE/ISAKMP Considered Harmful.
USENIX ;login:, December 1999.

