268 research outputs found

    Protecting the infrastructure: 3rd Australian information warfare & security conference 2002

    Get PDF
    The conference is hosted by the We-B Centre (working with a-business) in the School of Management Information System, the School of Computer & Information Sciences at Edith Cowan University. This year\u27s conference is being held at the Sheraton Perth Hotel in Adelaide Terrace, Perth. Papers for this conference have been written by a wide range of academics and industry specialists. We have attracted participation from both national and international authors and organisations. The papers cover many topics, all within the field of information warfare and its applications, now and into the future. The papers have been grouped into six streams: • Networks • IWAR Strategy • Security • Risk Management • Social/Education • Infrastructur

    Access controls on IP based cameras in IoT ecosystem

    Get PDF
    A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Science in Information Systems Security (MSc.ISS) at Strathmore UniversityInternet of things (IoT) is a concept of connected things that allows embedded devices, sensors and actuators to interconnect and share data thus bridging the gap between physical devices and virtual objects. The concept of IoT started gaining popularity in 2010, with its popularity impressively outgrowing other concepts up to date. The growth of IoT has seen more than 30% companies globally initiating the process of deploying IoT. IoT security has been a challenge due to its nascent market where manufacturers focus much on getting the product to the market rather than building security from start. Internet Protocol (IP) based cameras are among the most popular IoT devices. Governments, corporations to small business and homeowners are using cameras for surveillance among other activities, with their popularity growing due to their ability to collect and transmit data remotely. As cameras are expected to perform sophisticated tasks, it is important to protect the cameras and data they handle.The focus of this dissertation is to come up with an access control solution for IP based cameras, in efforts to reduce vulnerabilities associated with identity and access management. This dissertation adopted Rapid Application Development (RAD) methodology to develop the proposed solution. The methodology provided flexibility in changing requirements and testing the prototype at an early stage to continuously improve the system. Must, Should, Could, Would Not (MoSCoW) method was used to identify and rank requirements in evaluating the gaps that existed in the market, as this dissertation could not address all the vulnerabilities the method helped in picking the vulnerabilities to be handled first.The tested and validated prototype provides a mechanism to restrict factory set authentication credentials, system access lockouts and sending of alerts in cases of suspicious login attempts. The prototype demonstrate how Integrity of camera feeds can be maintained by using a combination of interplanetary file system (IPFS) and Blockchain. The solution also records and stores system logs in immutable format to support forensic investigation

    Click fraud : how to spot it, how to stop it?

    Get PDF
    Online search advertising is currently the greatest source of revenue for many Internet giants such as Google™, Yahoo!™, and Bing™. The increased number of specialized websites and modern profiling techniques have all contributed to an explosion of the income of ad brokers from online advertising. The single biggest threat to this growth is however click fraud. Trained botnets and even individuals are hired by click-fraud specialists in order to maximize the revenue of certain users from the ads they publish on their websites, or to launch an attack between competing businesses. Most academics and consultants who study online advertising estimate that 15% to 35% of ads in pay per click (PPC) online advertising systems are not authentic. In the first two quarters of 2010, US marketers alone spent 5.7billiononPPCads,wherePPCadsarebetween45and50percentofallonlineadspending.Onaverageabout5.7 billion on PPC ads, where PPC ads are between 45 and 50 percent of all online ad spending. On average about 1.5 billion is wasted due to click-fraud. These fraudulent clicks are believed to be initiated by users in poor countries, or botnets, who are trained to click on specific ads. For example, according to a 2010 study from Information Warfare Monitor, the operators of Koobface, a program that installed malicious software to participate in click fraud, made over $2 million in just over a year. The process of making such illegitimate clicks to generate revenue is called click-fraud. Search engines claim they filter out most questionable clicks and either not charge for them or reimburse advertisers that have been wrongly billed. However this is a hard task, despite the claims that brokers\u27 efforts are satisfactory. In the simplest scenario, a publisher continuously clicks on the ads displayed on his own website in order to make revenue. In a more complicated scenario. a travel agent may hire a large, globally distributed, botnet to click on its competitor\u27s ads, hence depleting their daily budget. We analyzed those different types of click fraud methods and proposed new methodologies to detect and prevent them real time. While traditional commercial approaches detect only some specific types of click fraud, Collaborative Click Fraud Detection and Prevention (CCFDP) system, an architecture that we have implemented based on the proposed methodologies, can detect and prevents all major types of click fraud. The proposed solution analyzes the detailed user activities on both, the server side and client side collaboratively to better describe the intention of the click. Data fusion techniques are developed to combine evidences from several data mining models and to obtain a better estimation of the quality of the click traffic. Our ideas are experimented through the development of the Collaborative Click Fraud Detection and Prevention (CCFDP) system. Experimental results show that the CCFDP system is better than the existing commercial click fraud solution in three major aspects: 1) detecting more click fraud especially clicks generated by software; 2) providing prevention ability; 3) proposing the concept of click quality score for click quality estimation. In the CCFDP initial version, we analyzed the performances of the click fraud detection and prediction model by using a rule base algorithm, which is similar to most of the existing systems. We have assigned a quality score for each click instead of classifying the click as fraud or genuine, because it is hard to get solid evidence of click fraud just based on the data collected, and it is difficult to determine the real intention of users who make the clicks. Results from initial version revealed that the diversity of CF attack Results from initial version revealed that the diversity of CF attack types makes it hard for a single counter measure to prevent click fraud. Therefore, it is important to be able to combine multiple measures capable of effective protection from click fraud. Therefore, in the CCFDP improved version, we provide the traffic quality score as a combination of evidence from several data mining algorithms. We have tested the system with a data from an actual ad campaign in 2007 and 2008. We have compared the results with Google Adwords reports for the same campaign. Results show that a higher percentage of click fraud present even with the most popular search engine. The multiple model based CCFDP always estimated less valid traffic compare to Google. Sometimes the difference is as high as 53%. Detection of duplicates, fast and efficient, is one of the most important requirement in any click fraud solution. Usually duplicate detection algorithms run in real time. In order to provide real time results, solution providers should utilize data structures that can be updated in real time. In addition, space requirement to hold data should be minimum. In this dissertation, we also addressed the problem of detecting duplicate clicks in pay-per-click streams. We proposed a simple data structure, Temporal Stateful Bloom Filter (TSBF), an extension to the regular Bloom Filter and Counting Bloom Filter. The bit vector in the Bloom Filter was replaced with a status vector. Duplicate detection results of TSBF method is compared with Buffering, FPBuffering, and CBF methods. False positive rate of TSBF is less than 1% and it does not have false negatives. Space requirement of TSBF is minimal among other solutions. Even though Buffering does not have either false positives or false negatives its space requirement increases exponentially with the size of the stream data size. When the false positive rate of the FPBuffering is set to 1% its false negative rate jumps to around 5%, which will not be tolerated by most of the streaming data applications. We also compared the TSBF results with CBF. TSBF uses only half the space or less than standard CBF with the same false positive probability. One of the biggest successes with CCFDP is the discovery of new mercantile click bot, the Smart ClickBot. We presented a Bayesian approach for detecting the Smart ClickBot type clicks. The system combines evidence extracted from web server sessions to determine the final class of each click. Some of these evidences can be used alone, while some can be used in combination with other features for the click bot detection. During training and testing we also addressed the class imbalance problem. Our best classifier shows recall of 94%. and precision of 89%, with F1 measure calculated as 92%. The high accuracy of our system proves the effectiveness of the proposed methodology. Since the Smart ClickBot is a sophisticated click bot that manipulate every possible parameters to go undetected, the techniques that we discussed here can lead to detection of other types of software bots too. Despite the enormous capabilities of modern machine learning and data mining techniques in modeling complicated problems, most of the available click fraud detection systems are rule-based. Click fraud solution providers keep the rules as a secret weapon and bargain with others to prove their superiority. We proposed validation framework to acquire another model of the clicks data that is not rule dependent, a model that learns the inherent statistical regularities of the data. Then the output of both models is compared. Due to the uniqueness of the CCFDP system architecture, it is better than current commercial solution and search engine/ISP solution. The system protects Pay-Per-Click advertisers from click fraud and improves their Return on Investment (ROI). The system can also provide an arbitration system for advertiser and PPC publisher whenever the click fraud argument arises. Advertisers can gain their confidence on PPC advertisement by having a channel to argue the traffic quality with big search engine publishers. The results of this system will booster the internet economy by eliminating the shortcoming of PPC business model. General consumer will gain their confidence on internet business model by reducing fraudulent activities which are numerous in current virtual internet world

    ACUTA Journal of Telecommunications in Higher Education

    Get PDF
    In This Issue Current Legislative and Regulatory lssues What to Do When Both Sides Are Right: RIAA and Academia Advertorial: Considerations for Enterprise Emergency Notification Systems Advertorial: Telephony and the Creation of the Continuous Campus Key Findings from the ACUTA 2007 Trends Survey Trolling for Security Breaches and Digital Forensic Evidence Campuses Taking a Hard Look at Emergency Response Plans Roles and Regulations-Taking Back Control of the Network Bill D. Morris Award ACUTA Ruth A. Michalecki Award lnstitutional Excellence Award Interview President\u27s Message From the Executive Directo

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    A trust supportive framework for pervasive computing systems

    Get PDF
    Recent years have witnessed the emergence and rapid growth of pervasive comput- ing technologies such as mobile ad hoc networks, radio frequency identification (RFID), Wi-Fi etc. Many researches are proposed to provide services while hiding the comput- ing systems into the background environment. Trust is of critical importance to protect service integrity & availability as well as user privacies. In our research, we design a trust- supportive framework for heterogeneous pervasive devices to collaborate with high security confidence while vanishing the details to the background. We design the overall system ar- chitecture and investigate its components and their relations, then we jump into details of the critical components such as authentication and/or identification and trust management. With our trust-supportive framework, the pervasive computing system can have low-cost, privacy-friendly and secure environment for its vast amount of services

    Cyber-Physical Threat Intelligence for Critical Infrastructures Security

    Get PDF
    Modern critical infrastructures can be considered as large scale Cyber Physical Systems (CPS). Therefore, when designing, implementing, and operating systems for Critical Infrastructure Protection (CIP), the boundaries between physical security and cybersecurity are blurred. Emerging systems for Critical Infrastructures Security and Protection must therefore consider integrated approaches that emphasize the interplay between cybersecurity and physical security techniques. Hence, there is a need for a new type of integrated security intelligence i.e., Cyber-Physical Threat Intelligence (CPTI). This book presents novel solutions for integrated Cyber-Physical Threat Intelligence for infrastructures in various sectors, such as Industrial Sites and Plants, Air Transport, Gas, Healthcare, and Finance. The solutions rely on novel methods and technologies, such as integrated modelling for cyber-physical systems, novel reliance indicators, and data driven approaches including BigData analytics and Artificial Intelligence (AI). Some of the presented approaches are sector agnostic i.e., applicable to different sectors with a fair customization effort. Nevertheless, the book presents also peculiar challenges of specific sectors and how they can be addressed. The presented solutions consider the European policy context for Security, Cyber security, and Critical Infrastructure protection, as laid out by the European Commission (EC) to support its Member States to protect and ensure the resilience of their critical infrastructures. Most of the co-authors and contributors are from European Research and Technology Organizations, as well as from European Critical Infrastructure Operators. Hence, the presented solutions respect the European approach to CIP, as reflected in the pillars of the European policy framework. The latter includes for example the Directive on security of network and information systems (NIS Directive), the Directive on protecting European Critical Infrastructures, the General Data Protection Regulation (GDPR), and the Cybersecurity Act Regulation. The sector specific solutions that are described in the book have been developed and validated in the scope of several European Commission (EC) co-funded projects on Critical Infrastructure Protection (CIP), which focus on the listed sectors. Overall, the book illustrates a rich set of systems, technologies, and applications that critical infrastructure operators could consult to shape their future strategies. It also provides a catalogue of CPTI case studies in different sectors, which could be useful for security consultants and practitioners as well

    Naval Reserve support to information Operations Warfighting

    Get PDF
    Since the mid-1990s, the Fleet Information Warfare Center (FIWC) has led the Navy's Information Operations (IO) support to the Fleet. Within the FIWC manning structure, there are in total 36 officer and 84 enlisted Naval Reserve billets that are manned to approximately 75 percent and located in Norfolk and San Diego Naval Reserve Centers. These Naval Reserve Force personnel could provide support to FIWC far and above what they are now contributing specifically in the areas of Computer Network Operations, Psychological Operations, Military Deception and Civil Affairs. Historically personnel conducting IO were primarily reservists and civilians in uniform with regular military officers being by far the minority. The Naval Reserve Force has the personnel to provide skilled IO operators but the lack of an effective manning document and training plans is hindering their opportunity to enhance FIWC's capabilities in lull spectrum IO. This research investigates the skill requirements of personnel in IO to verify that the Naval Reserve Force has the talent base for IO support and the feasibility of their expanded use in IO.http://archive.org/details/navalreservesupp109451098
    • …
    corecore