
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

8-2011

Click fraud : how to spot it, how to stop it? Click fraud : how to spot it, how to stop it?

Chamila Kumara Walgampaya
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Walgampaya, Chamila Kumara, "Click fraud : how to spot it, how to stop it?" (2011). Electronic Theses and
Dissertations. Paper 1499.
https://doi.org/10.18297/etd/1499

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the
author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F1499&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/1499
mailto:thinkir@louisville.edu

CLICK FRAUD: HOW TO SPOT IT, HOW TO STOP IT?

By

Chamila Kumara Walgampaya
BSc(Eng), University of Pcradcniya, 2001

MS, University of Louisville, 2006

A Dissertation Proposal Submitted to the
Faculty of the Graduate School of the

University of Louisville

Computer Engineering and Computer Science Department
Speed School of Engineering

University of Louisville
Louisville, Kentucky

August, 2011

Copyright © 2011 by Chamila Kumara Walgampaya

All rights reserved

CLICK FRAUD: HOW TO SPOT IT, HOW TO STOP IT?

By

Chamila Kumara Walgampaya
BSc(Eng), University of Peradeniya, 2001

MS, University of Louisville, 2006

A Dissertation Approved on

ylav 27th , 2011

by the following Dissertation Committee:

Dr. Ylehmed Kantardzic (Dissertation Director)

Dr. Adel Ekraghrabv

Dr. Dar-jen CJ\.ang

Dr. Roman Yamp(){s,kfy

•
Dr. Jeffrey Hieb

11

DEDICATION

To Thulani

III

___ 0 ____ • _____________ _

ACKNOWLEDGl\IENTS

I have the pleasure of expressing my appreciation and gratitude for those who have

helped me in preparing this dissertation.

First of all, I would like to thank my supervisor Dr. Mehmed Kantardzic, for his

guidance and continuous encouragement. He inspired many of the ideas presented in this

dissertation. He is a superb teacher and a great friend.

Secondly. I want to thank my other committee members Dr. Adel Elmaghraby, Dr.

Roman Yampolskiy, Dr. Dar-jen Chang, and Dr. Jeffrey Hieb for their comments and

feedback.

I thank all the faculty members and the staff of the Computer Science and Computer

Engineering Department and the University of Louisville. I also thank all my friends,

especially colleagues in the data mining lab.

I am thankful to Mr. Sean Higgins at Nomad LLC and Mr. Darren King at Host­

ing.com for their generous support.

Finally and most importantly, I would like to thank my parents for their efforts to

provide me with the best possible education and my brother, sister, wife, and my wonderful

daughter for continuous encouragements at difficult moments.

IV

ABSTRACT

CLICK FRAUD: HOvV TO SPOT IT, HOW TO STOP IT?

Chamila Walgampaya

May 27th, 2011

Online search advertising is currently the greatest source of revenue for many Internet

giants such as Google™, Yahoo!TM, and Bing™. The increased number of specialized

websites and modern profiling techniques have all contributed to an explosion of the

income of ad brokers from online advertising. The single biggest threat to this growth

is however click fraud. Trained botnets and even individuals are hired by click-fraud

specialists in order to maximize the revenue of certain users from the ads they publish on

their websites, or to launch an attack between competing businesses.

Most academics and consultants who study online advertising estimate that 15% to

35% of ads in pay per click(PPC) online advertising systems are not authentic. In the

first two quarters of 2010, US marketers alone spent $5.7 billion on PPC ads, where PPC

ads are between 45 and 50 percent of all online ad spending. On average about $1.5

billion is wasted due to click-fraud. These fraudulent clicks are believed to be initiated by

users in poor countries, or botnets, who are trained to click on specific ads. For example,

according to a 2010 study from Information Warfare Monitor, the operators of Koobface,

a program that installed malicious software to participate in click fraud, made over $2

million in just over a year. The process of making such illegitimate clicks to generate

revenue is called click-fraud.

Search engines claim they filter out most questionable clicks and either not charge

for them or reimburse advertisers that have been wrongly billed. However this is a hard

v

task, despite the claims that brokers' efforts are satisfactory. In the simplest scenario, a

publisher continuously clicks on the ads displayed on his own website in order to make

revenue. In a more complicated scenario. a travel agent may hire a large, globally dis­

tributed, botnet to click on its competitor's ads, hence depleting their daily budget. We

analyzed those different types of click fraud methods and proposed new methodologies

to detect and prevent them real time. While traditional commercial approaches detect

only some specific types of click fraud, Collaborative Click Fraud Detection and Preven­

tion (CCFDP) system, an architecture that we have implemented based on the proposed

methodologies, can detect and prevents all major types of click fraud.

The proposed solution analyzes the detailed user activities on both, the server side and

client side collaboratively to better describe the intention of the click. Data fusion tech­

niques are developed to combine evidences from several data mining models and to obtain

a better estimation of the quality of the click traffic. Our ideas are experimented through

the development of the Collaborative Click Fraud Detection and Prevention (CCFDP)

system. Experimental results show that the CCFDP system is better than the existing

commercial click fraud solution in three major aspects: 1) detecting more click fraud

especially clicks generated by software; 2) providing prevention ability; 3) proposing the

concept of click quality score for click quality estimation.

In the CCFDP initial version, we analyzed the performances of the click fraud detection

and prediction model by using a rule base algorithm, which is similar to most of the

existing systems. We have assigned a quality score for each click instead of classifying the

click as fraud or genuine, because it is hard to get solid evidence of click fraud just based

on the data collected, and it is difficult to determine the real intention of users who make

the clicks.

Results from initial version revealed that the diversity of CF attack types makes it hard

for a single counter measure to prevent click fraud. Therefore, it is important to be able

to combine multiple measures capable of effective protection from click fraud. Therefore,

in the CCFDP improved version, we provide the traffic quality score as a combination of

VI

~-------------

evidence from several data mining algorithms.

We have tested the system with a data from an actual ad campaign in 2007 and 2008.

We have compared the results with Google Adwords reports for the same campaign.

Results show that a higher percentage of click fraud present even with the most popular

search engine. The multiple model based CCFDP always estimated less valid traffic

compare to Google. Sometimes the difference is as high as 53%.

Detection of duplicates, fast and efficient, is one of the most important requirement in

any click fraud solution. Usually duplicate detection algorithms run in real time. In order

to provide real time results, solution providers should utilize data structures that can be

updated in real time. In addition, space requirement to hold data should be minimum.

In this dissertation, we also addressed the problem of detecting duplicate clicks in pay­

per-click streams. We proposed a simple data structure, Temporal Stateful Bloom Filter

(TSI3F), an extension to the regular I3loom Filter and Counting Bloom Filter. The bit

vector in the Bloom Filter was replaced with a status vector. Duplicate detection results of

TSBF method is compared with Buffering, FPBuffering, and CBF methods. False positive

rate of TSBF is less than 1% and it does not have false negatives. Space requirement

of TSBF is minimal among other solutions. Even though Buffering does not have either

false positives or false negatives its space requirement increases exponentially with the

size of the stream data size. When the false positive rate of the FPBuffering is set to 1 %

its false negative rate jumps to around 5%, which will not be tolerated by most of the

streaming data applications. We also compared the TSBF results with CBF. TSBF uses

only half the space or less than standard CI3F with the same false positive probability.

One of the biggest successes with CCFDP is the discovery of new mercantile click

bot, the Smart ClickBot. We presented a Bayesian approach for detecting the Smart

ClickBot type clicks. The system combines evidence extracted from web server sessions

to determine the final class of each click. Some of these evidences can be used alone, while

some can be used in combination with other features for the click bot detection. During

training and testing we also addressed the class imbalance problem. Our best classifier

Vll

shows recall of 94%. and precision of 89%, with Fl measure calculated as 92%. The high

accuracy of our system proves the effectiveness of the proposed methodology. Since the

Smart ClickBot is a sophisticated click bot that manipulate every possible parameters to

go undetected, the techniques that we discussed here can lead to detection of other types

of software bots too.

Despite the enormous capabilities of modern machine learning and data mining tech­

niques in modeling complicated problems, most of the available click fraud detection

systems are rule-based. Click fraud solution providers keep the rules as a secret weapon

and bargain with others to prove their superiority. We proposed validation framework

to acquire another model of the clicks data that is not rule dependent, a model that

learns the inherent statistical regularities of the data. Then the output of both models is

compared.

Due to the uniqueness of the CCFDP system architecture, it is better than current

commercial solution and search enginejISP solution. The system protects Pay-Per-Click

advertisers from click fraud and improves their Return on Investment (ROI). The system

can also provide an arbitration system for advertiser and PPC publisher whenever the

click fraud argument arises. Advertisers can gain their confidence on PPC advertisement

by having a channel to argue the traffic quality with big search engine publishers. The

results of this system will booster the internet economy by eliminating the shortcoming

of PPC business model. General consumer will gain their confidence on internet business

model by reducing fraudulent activities which are numerous in current virtual internet

world.

Vlll

TABLE OF CO:\TTENTS

Chapter

1 ONLINE ADVERTISING

1.1 Introduction.....................

1.2 Online Advertising Models, CPM, CPA, and PPC

1.3 Pay-Per-Click Model ...

1.4 Goals of the Dissertation .

1.5 Organization of the Dissertation .

2 CLICK FRAUD IN ONLINE ADVERTISING

2.1 Introduction ..

2.2 Types of Fraud

2.2.1 Active Human Click Fraud:

2.2.2 Active Software Click Fraud: .

2.2.3 Passive Software Click Fraud:

2.3 IRC click bots .

2.4 P2P click bots .

2.4.1 HTTP click bots

2.5 clickbot.A

Page

1

1

4

5

11

13

14

14

16

16

17

17

19

21

22

23

3 OVERVIEW OF COMMERCIAL CLICK FRAUD DETECTION SYS-

TEMS 27

4 REVIEW OF RESEARCH IN DOMAIN OF CLICK FRAUD DETEC­

TION 32

4.1 Alternatives for Pay-Per-Click model .. 32

IX

4.1.1 Cost-Per-Action (CPA) .

4.1.2 Pay-Per-Impression . . .

4.1.3 Pay-Per-Percentage of Impressions

4.2 Related research for click fraud detection in PPC model.

32

34

35

36

4.2.1 Duplicate Detection. 36

4.2.2 Association Rules . . 37

4.2.3 Classification of URLs 38

4.2.4 Non standard approaches for click fraud detection in PPC model. 39

4.3 Summary of Current Industrial and Research Solutions

5 COLLABORATIVE CLICK FRAUD DETECTION AND PREVEN-

TION

5.1 X et:vIosaics Hardware architecture.

5.1.1 Reading the Net Mosaics hardware diagram.

5.2 The operational architecture of the CCFDP system

5.2.1 Global Fraudulent Database (GFD)

5.2.2 Monitored site

5.3 Data Collection process in CCFDP

5.4 Click Fraud Detection Model: Initial Version .

5.5 Click Fraud vs. Click Quality

5.6 Disadvantages of the CCFDP Initial Version

5.7 Can the model be improved with context data?

42

45

47

47

50

51

53

56

61

62

68

69

6 CLICK FRAUD DETECTION WITH EXTENDED CONTEXT DATA 71

6.1 Context of the click

6.1.1 Local and Global context of a click

6.2 :Ylechanisms developed to detect click fraud in local context.

71

73

74

6.2.1 Fraudulent traffic scoring using improved rule based module 75

6.3 :Mechanisms developed to detect click fraud in global context 87

x

6.3.1

6.3.2

Dynamic baselines

Fraudulent Traffic Scoring

6.4 Fusion of Data

6.4.1 Why Data Fusion?

6.5 Dempster-Shafer Evidence Theory.

6.6 Fusion of Evidences of Click Fraud in the CCFDP System

6.6.1 Event vs. evidence

6.6.2 Assumption of Click Orthogonality

6.6.3 Model-driven fusion process

6.6.4 A case study

6.7 Experimental Results and Discussion

6.7.1 Calculation of Click Orthogonality

6.7.2 Comparison of results for change in score of IP, Referrer, Country

etc. in two versions of CCFDP

6.7.3 Comparison of distribution of final score

6.7.4 Comparison of improvements in quality of traffic.

6.7.5 Comparison with Google Adwords.

7 EXTENDED ANALYSIS OF CLICK BaTS IN CCFDP

7.1 Extended analysis of click bots

7.1.1 An Overview of the Smart ClickBot .

7.1.2 Methodology for Smart Clickbot detection

7.1.3 Classification of Bot traffic

7.1.4 Experimental Results and Discussion

7.2 Fast Detection of Duplicates

7.2.1 Data Stream Model.

7.2.2 Buffering Methods for duplicate detection

7.2.3 Bloom Filters for Duplicate Detection.

7.2.4 Bloom Filter and Its Variants

Xl

88

91

92

94

96

98

98

100

100

101

103

104

104

108

110

113

119

120

121

122

137

139

142

143

144

146

147

---.--.--~~------------

7.2.5 Experimental Results and Discussion

7.2.6 Accuracy of the Bloom Filter ..

7.2.7 Experiments with real world data

7.2.8 False Negatives in CBF

7.2.9 Double clicks Vs. Multiple clicks

157

158

164

168

174

7.2.10 Time Complexity Comparison for Duplicate Detection 176

7.2.11 Comparison with similar work for duplicate detection in Streaming

data 177

7.3 :Ylodeling of Knowledge and Validation

7.3.1 Rules in Knowledge-based Systems

7.3.2 Proposed Validation Framework.

7.3.3 Results of validation model

8 CONCLUSIONS

9 FUTURE WORK

9.1 Browser Verification

9.2

9.1.1 U sing extended context of the User Agent Header

9.1.2 User's frequently visited social websites .

Improve User Tracking

Browser finger printing 9.2.1

9.2.2

9.2.3

Use of Super Cookies to track users instead of HTTP cookies.

Creating the Flash Cookie

REFERENCES

A ISAPI filter design

B History.js

CURRICULUM VITAE

Xll

178

179

179

181

184

189

189

190

193

197

197

198

200

203

215

217

225

LIST OF TABLES

Table

1.1 Advertising Expenditure of all Media

5.1 Structure of the server side log table

5.2 Structure of the client side log table.

5.3 Structure of the GeoPICity table ..

Page

2

51

52

53

6.1 Example record after outlier detection preprocessing. Record now contains

server side data. client side data and context based on a number of attributes 91

6.2 Fusion of Evidence 1 and Evidence 2 ..

6.3 Fusion of Evidences 1,2 and Evidence 3 .

6.4 Top IP and Country Counts

6.5 Top Referrer Counts

6.6 Distribution of clicks in each region in Figure 6.15

6.7 CCFDP Traffic Analysis for Hosting.com in 2007

6.8 CCFDP Traffic Analysis for Hosting.com in 2008

6.9 Google Adsense Traffic Analysis for Hosting.com in 2008

7.1 Filtered UserAgents

7.2 Summary of attributes derived from the Server sessions ..

7.3 Tracking ID per IP

7.4 Frequency of Outdated UserAgents

7.5 Frequency of top rcferrer sites ...

7.6 Percentage of Bot vs. non-Bot HTTP response codes

7.7 Distribution of countries

7.8 Training data set configuration

Xlll

102

102

104

105

109

115

116

117

126

127

130

131

132

136

137

140

7.9 Training data set configuration 141

7.10 Variation of Perror 150

7.11 Variation of Perror 152

7.12 Comparison of different methodologies for duplicate detection in a click

stream. 166

7.13 False Negatives in Buffering with LRU Replacement 169

7.14 False Negatives . 171

7.15 Comparison of error rates between TSBF,FPbuffering, and Buffering 174

7.16 False Negatives . 176

XIV

LIST OF FIGURES

Figure

l.1 Variation of Revenue Shared by Advertising Format

l.2 CPM, CPA vs. PPC

l.3 Growth of PPC model

l.4 PPC Traffic model ..

-l.5 Search Engine Advertising

l.6 Contextual Advertising . .

l.7 Internet Ad Revenue by Pricing Model

2.1 IRC Botmaster controlling several Clients

2.2 Formation and Exploitation of Botnet .

2.3 Peer-to-Peer Botnet

2.4 Bots communication in IRC channel .

2.5 Botmaster Administration Console. Note that entries in the IP address

and country columns have been sanitized for privacy purposes.

2.6 Example of doorway sites.

3.1 The tracking code is an essential component of all commercial click fraud

detection systems .

3.2 Top 10 ad tracking & PPC tracking tools - best ad tracker (2009)

4.1 The Classical Bloom Filter .

4.2 The Classical Bloom Filter.

5.1 Initial version of the CCFDP system

5.2 :'\et~1osaics logical network architecture.

xv

Page

3

5

6

7

8

9

10

20

20

21

22

24

25

28

31

36

37

46

48

5.3 CCFDP operational architecture.

5.4 G FD detailed diagram

5.5 javaScript executed on client's webpage

5.6 Sample HTTP request

5.7 HTTP Response header

5.8 ~et.\Iosaics UDP Server

5.9 Data Collection Process in CCFDP

5.10 javaScript code added to each web page.

5.ll Xet.\losaics Data Storage Server ...

5.12 Logical Structure of the click record .

6.1 Relationship between IP address and location

6.2 Records in a database

6.3 Context of the click ..

6.4 Server side IP and Client side IP mismatch .

6.5 Software Click

6.6 Suspicious keywords in userAgent

6.7 Repeated Visits scoring.

6.8 (left) Global baseline for four referrers as of 1/22/08. (center) Aggregated

window for 1/22/08. (right) Counts and thresholds for referrer on 1/22/08.

Thresholds are dark gray and counts in light gray.

6.9 Gaussian (Normal) distribution with the top 5% highlighted

6.10 Integrated structure of the click

6.11 Event Vs. Evidence

6.12 Ylodcl-driven fusion process of CCFDP

6.13 Variation of IP Score (left), Country Score (center), and Referrer Score

(right)

6.14 Variation of score for a blacklisted IP

6.15 Score distribution

XVI

50

54

54

55

56

57

57

59

60

62

72

73

73

77

78

80

81

89

90

94

99

101

106

107

108

6.16 Percentage Participation 109

6.17 Improvement of quality of traffic. 110

6.18 Click traffic in second and eighth months of 2007 111

6.19 Traffic analysis for Google 112

6.20 Referrer analysis with Google Publisher ID 112

6.21 Top 5 country lists for invalid Google only traffic 113

6.22 Ad Groups used in the campaign . . . 114

6.23 Comparison of Valid vs. Invalid Clicks 115

6.24 Comparison of Valid vs. Invalid Clicks 116

6.25 Comparison of valid traffic in CCFDP and Google Adwords in 2008 117

7.1 The NetMosaics data collection process.

7.2 Robot data collection process.

7.3 OX-OFF Signal for an IP used by Smart ClickBot.

7.4 Power spectral density for an IP used by Smart ClickBot ..

7.5 Frequency of TrackingID generation.

7.6 Bayesian Xetwork as a classifier. ..

7.7 Comparison of Bayesian Classifiers.

7.8 Storage of IP addresses in a Hash table.

7.9 A Classical Bloom Filter

7.10 Variation of Perror with min and k.

7.11 Counting Bloom Filter

7.12 Decay functions.

7.13 Real time Insertions and deletions in a click stream.

7.14 ~Iodified Counting Bloom Filter with status information.

7.15 Structure of the click record.

7.16 False positives in BF with m = 4096.

7.17 BF configurations with at most 10% False positives.

7.18 Theoretical and Practical error rates with n = 1000 ..

xvii

123

124

128

129

130

137

141

144

148

150

151

154

155

156

158

159

160

161

7.19 False Positive Rate Vs. kn/m. .. 162

7.20 min vs. False Positive Rate for n=1000. 162

7.21 False Positives vs. Number of hash functions. 163

7.22 Comparison of Memory Usage .. 165

7.23 False Negatives. .. 172

7.24 Extended status vector for duplicate detection .. 175

7.25 Break down of duplicate clicks. 175

7.26 Comparison of scores produced using the CCFDP system and S3VM algo-

rithm. 182

9.1 The User-Agent Header 190

9.2 User-Agent String 191

9.3 HTTP GET request generated by Internet Explorer 192

9.4 HTTP GET request generated by Firefox . 192

9.5 HTTP GET request generated by Chrome 193

9.6 HTML code to generate the cookies . 193

9.7 HTTP request generated by Firefox . 193

9.8 HTTP request generated by Chrome 194

9.9 HTTP request generated by Chrome 194

9.10 Global Web Traffic to Social ~etworking Sites 195

9.11 Browser Signature of PC 1 199

9.12 Browser Signature of PC 2 199

A.l IS API filter design 216

XVlll

CHAPTER 1

ONLINE ADVERTISING

1.1 Introduction

The Internet is probably the most important technological creation of our times. It is a

universally acknowledged truth that the world wide web has revolutionized our planet.

Today the web allows us to communicate with people nearly anywhere in the world and

indeed, with billions of people at once. It has changed the way we think, as well as the

way we do business. It provides many immensely useful services to the masses for free, in­

cluding such essentials as web portals, web email and web search [Immorlica et al., 2005].

The web is not only a means of communication, it also contains a wealth of knowledge.

Since the rise of the search engines, huge amounts of information have become readily

accessible. Web search engines provide information access to millions of users per day. For

many people, Web search engines are now the primary method for finding information.

news, and products. According to a recent study 99% of Internet users utilize search,

while the known web alone spans several billion pages [iProspect, 2004]. In addition to

addressing information requests, modern web search engines are navigational tools that

take people to specific websites or are an aid in browsing. People also employ search

engines in new and increasingly diverse ways, and search engines are constantly trying to

improve the retrieval aspects of their services.

Most of the information and services on the web come at no cost to the user. The

publisher or webmaster, on the other hand, has to pay to provide them. In order to

profit from their complimentary services, webmasters rent out space on their websites to

advertisers. This is currently the main means of covering the costs of providing online

1

----~----

services [Soubusta, 2008]. Advertising plays an important role for every company. Most

businesses operate with an advertising budget of 2 to 5 percent of their previous year's

gross sales. Since its inception, Internet advertising has grown rapidly and negatively

affected traditional mass media advertising like newspapers and television. Table 1.1

shows the variation of advertisement budget in for each media [TNS, 2010]. Spending

on Internet ads is growing faster than any other sector of the advertising industry and

is expected to surge from $12.5 billion in 2009 to $29 billion in 2010 in the US alone,

according to researcher el\Iarketer Inc.

Table 1.1: Advertising Expenditure of all Media

I Media Type 1 2008 Vs. 200712009 Vs. 20081

Internet 4.6% 7%

TV 0.1% -12.1%

~Iagazine -7.5% -19.7%

Paper -11.8% -22.8%

Radio -10.3% -22.8%

Outdoor -1.5% -16.2%

As the Internet continues to grow, the Internet advertising industry flourishes as a

means of reaching the appropriate market segments. Internet advertising is different

from conventional TV/Radio advertising, which tends to be expensive. broadcast-based,

and diluted. On the other hand, Internet advertisers are currently able to inexpensively

direct their campaigns to the appropriate audience. Because information flow through

cyberspace is electronic, online marketers can selectively advertise to consumers at high

volume with costs far below that of older media such as television and radio. Current

data management and Web programming technologies allow the classification of surfers

and thus allow the targeting of advertisements to the appropriate customer body on the

fly [Metwally et al., 2006].

Internet advertising comes in various forms. For example as a result of a search query,

2

banners , multimedia etc. Figure 1.1 shows the variation of revenue shared by advertising

format from year 2004 to 2009. It is obvious that "search query ads" are responsible for

the largest market share in Internet advertising and it is continuously growing [lAB , 2010] .

Q)
;:l
s::
Q)
:>
Q)
p::

.-i
m
.j.l

0
E-<

~

0

Of'

50

45

40

35

30

25

20

15

10

5

0

Search

• 2004 • 2005 • 2006 . 2007 • 2008 • 2009

Classifieds Rich Media and Lead Display
Banners Digital Video Generation

Advertisment Format

Sponsorships

Figure 1.1 : Variation of Revenue Shared by Advertising Format

Typical search engine queries are short and reveal a great deal of information about

user preferences. This gives search engine companies a unique opportunity to display

highly targeted ads to the user [Mehta et al. , 2007]. When a user types a query or search

keywords, major search engines offer at least two types of results on a search engine

results page. One set is composed of organic links that were determined using the search

engines matching algorithm. The other set is composed of paid links that appear because

a company purchased the keyword(s) used in the search query.

The first question comes into mind is, if we are able achieve the top organic positions

of the favorite (or most valued) keywords, we can eliminate or at least try to minimize

money paying for sponsored search. It sounds very tempting, and getting top organic

positions does have a huge incremental value. This is particularly true if the page that

ranks well contains a clear offer leading to a good conversion rate and site stickiness.

3

However, the ability to achieve top organic placement above any universal search element

is increasingly in doubt, except perhaps for a brand search. Also consider that search

engine results pages are no longer a "one size fits all" scenario. Therefore. sponsored

results playa vital role in advertising the business to the user [Lee, 2009].

1.2 Online Advertising Models, CPM, CPA, and PPC

In the past, online advertising used the Cost-Per-Impression(CPI or CPM) model to

charge for advertisements. An online advertisement impression is a single appearance of

an advertisement on a web page. Each time an advertisement loads onto a user's screen,

the ad server may count that loading as one impression. The cost per impression is often

measured in Cost-Per-Mille (CPM), that is, the cost of one thousand impressions of the

ad. This advertising model was based on traditional TV and print advertising, where the

advertiser is charged on the basis of the number of times that the ad is viewed. Cost­

Per-Impression is the preferred model of publishers (webmasters), because they are paid

regardless of the effectiveness of an ad. Obviously, advertisers would prefer to pay only

for ads that lead to a conversion.

Successful conversions are interpreted differently by individual marketers, advertisers,

and content creators. To online retailers, for example, a successful conversion may consti-

tute the sale of a product to a consumer whose interest in the item was initially sparked

by clicking a banner advertisement. To content creators, however, a successful conversion

may refer to a membership registration, newsletter subscription, software download, or

other activity that occurs due to a subtle or direct request from the content creator for

the visitor to take the action.

In internet marketing, conversion rate is the ratio of visitors who convert casual con-

tent views or website visits into desired actions based on subtle or direct requests from

marketers, advertisers, and content creators. The Conversion rate is defined as follows:

C
. N umber of Goals achieved

onver swn rate = -------=-------­
Total Visits

4

(1.1)

Casale Media™, Burst Media™, Value Click™, and Tribal Fusion™ are the popular

advertising companies that provide CPM based advertising.

Advertisers have an advantageous position in the Cost Per Action model or CPA

(sometimes known as Pay Per Action or PPA). It is an online advertising pricing model,

where the advertiser pays for each specified action (a purchase, a form submission, and

so on) linked to the advertisement.

Advertisers Publishers

CPM PPC CPA

Figure 1.2: CPM, CPA vs. PPC

1.3 Pay-Per-Click Model

Pay-Per-Click(PPC) model was developed by Google in 2004 as a balance between CPM

CPA methods. It has continued to attract more and more businesses and Figure 1.3

shows the growth of the PPC in the recent years.

In this type of arrangement, advertisers pay a certain amount of money to the pub­

lisher for every click on their ad (which leads to the advertiser's website). That is to say

costs are performance dependent . Consequently, the model is still favored by advertisers,

who get an interested visitor to their website for the money they pay. Sponsored search

owes much of its success to the pay-per-click performance advertising model. In tradi­

tional advertising, product advertisers target an audience and pay for each impression. In

sponsored search, advertisers target advertisements at search keywords, but only pay if a

user actually engages by clicking on the offered link. The close coupling between payment

and an easily measurable performance metric creates an unrivaled performance marketing

environment [Pedersen, 2008].

A typical PPC traffic model is depicted in Figure 1.4. An Advertiser can be a com-

5

• First Six Months • Second Six Months

25000

20000

In
c:

15000 g
~
.= 10000
"V).

5000

0

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Year

Figure 1.3: Growth of PPC model

pany or an individual who would like to display their advertisements in other websites.

Publishers are the websites that accept cont racts through advert isers to display adver-

tisements. The commissioner is an independent entity that has agreements with both the

advertiser and the publisher. It can be a search engine or other advertisement agent . The

commissioner keeps t rack of the advertisers ' budgets so that t hey are not over-spent. Of­

ten , t he advert iser site does not administer the advert isement pay-per-click model itself,

for example referred traffic by other sites, but rather employs a third party ad network,

here referred to as the click fraud detection service, to administer t he pay-per-click or

dick-through program on its behalf.

The web user can be a human or software, possibly t he source of click fraud t hat uses

services of the Internet. A user click propagates through the model as described below.

1. First a Web user requests a web page in the publisher site . The requested page is

loaded along with the advert isement on the Web users' browser.

2. If the Web user clicks on an advertisement hypertext link (for example a banner ad

or logo) in that page, the publisher redirects the Web user request to commissioner 's

server. The commissioner logs the click for account ing purposes.

6

" ,
: Optional Commissioner, Search Engines or other .! i advertisement agent I
... "

" . ~ . -" ,
""""",.,,.----- "

,'/' 2 "'",

-'-'-'-'-'-'-.-. -'- '-.
Optional Click fraud

detection service
,," / Direct or Indirect refer t~")(

[

" "J" II advertiser .~ ''It " '"\ \,
__ ~! Click Fraud Detection Service ! I

Publisher __ -1 Provider : ,

~ ;.'

'. ,

use: visit ~ '-."---3 ,-.-, .-,-./ .. ~ ... ~ /

User click on' ... · ... · ... · ... · ... · ... · ... · ... · ... · ... · -' - _
Web User advertiser

Figure 1.4: PPC Traffic model

3. The commissioner then redirects the Web user 's browser to the advertiser site.

The publishers are paid based on the click traffic they drive to the advertiser's web

site. The commissioner earns a percentage of this revenue. Sometimes these payments are

based on number of sales generated in the advertiser 's website, rather than the volume of

traffic driven by the publisher.

Pay-per-click metering is a popular payment model for advertising on the Internet.

The model involves and advertiser who contracts with a specialized entity, which we refer

to as a syndicator, to distribute textual or graphical banner advertisements to publishers

of content. These banner ads point to the advertiser's web site. When a user clicks on the

banner ad on the publisher's webpage, she is directed to the site to which it points. Search

engines such as Google and Yahoo are the most popular syndicators, and create the largest

portion of pay-per-clirk traffic on the Internet today. These sites display advertisements

on their own search pages in response to the search terms entered by users and charge

advertiser for clicks on these links (thereby acting as their own publishers) or, increas­

ingly, outsource advertisements to third-party publishers. Advertisers pay syndicators per

referral , and the syndicators pass on a portion of the payments to the publishers.

The pay per click model comes in two forms. The first form is search engine advertis­

mg. An example of Google ads is shown in Figure 1.5. To navigate the World Wide Web

7

and find desired sites, users input keywords into search engmes like Google or Yahoo!.

The engines, which index millions of online websites, then look for pages whose content

matches that of the keywords. The best results are sent back to the user. In search engine

advertising, firms like Google auction keywords to advertisers, who bid by amount paid

per click. The ads of top bidders then appear alongside the search results for the auc-

tioned keyword. By picking and choosing which keywords to couple ads with , advertisers

selectively target the types of users to market to .

W Favorit6 ; ~t click fraud • Googl~ Search

Coogle click fraud

Web fIl Shaw options.

Click Fraud Mirade Cure f;(
PPCSecure,corn Stop Click Fraud in 5 minutes Fast, Easy, 100% Guaranteed

AdWalcher - Click Fraud 'Iii
wwwAdWatchercom Voted Top Rated Click Fraud Detection & Prevention Software

Stop Click Fraud ~
WNW clkktrue net Detect and tNock click rraud before it happens. Free trial

Click fraud - Wikipedia the free encyclopedia -ii
Click fraud is a type of Internet crime that occurs in pay per click online advertising when a
person, automated script or computer program imitates a ...
Pay per click adyertjsmQ • Noo-cornractlnQ part ies . ~
en wlklpedia orgfWlki/Click_fraud • ~ . ~

Click Fraud Ii
Fleischmann is a victim of click fraud ' a dizzying collection of scams and deceptions that inflate
advertising bills for thousands of companies of all sizes ...
www.buslnessw€tl?k .coml .. .I06 .. !b4003001.htm· 12 hours ago -~ -~

Exposing click fraud - CNET News iI

Results 1 ·10 of about 22,700,000 for click Iraud. (0.25 seconds)

Sponsored links Sponsored Links

1
Ad Words

KeywordMax PPC Management ~
Track all of your traffic
with KeywordMax and Bid Directorl
www Key.>tordMax com

Top PPC Trackino Software 'Iii
Detect Bogus Clicks. Stop Click
Fraud & Improve Traffic Quality .
www ClickForensics com

Click Fraud Information Ii
Find resources that will help you
learn more about click fraud

Ads
www googfe com

--~)
Detect PPC Click Fraud ~
Track ad clicks & stop fraud
Measure CPC ads with ROI.
click websitegear com

Figure 1.5: Search Engine Advertising

PPC 's second form is contextual advertising. Unlike search engine advertising where

ads are placed alongside website search results , contextual advertising places ads into

websites themselves. An example is shown in Figure 1.6. Sometimes, marketing firms

contact site publishers directly to host ads for a negotiated fee . More commonly, however ,

intermediaries called advertising networks will help publishers find ads to host . Advertis-

ing networks maintain ad inventories that include various graphics like banners and text

links. Ads within inventories are designed to match an advertiser 's message and are stored

on network servers. Advertising networks then provide publisher with bits of HTML code,

the markup language for creating webpages, to script into host sites. When a web user

8

Network IntelOenl Tech Personal Tech SecorJy VeiOCly W .. eless

Contextual Ads
Online Advertl5m9

Google Faces The Slickest Click Fraud Yet
Andy Greenberg. 01 12 10 09 45 PM EST

A new form of the scheme may bilk advertisers while
sel!ming to result In rl!al sales .

Click fraud. that perpetual bane of online advertisers, is usually

hard to detect In the moment, but easy to spot alter lIle fact

That·s because, unlike real clicks. sham clicks performed by

automatic click soHware or human fraudsters pump up an

advertiser's pay-per-click fees but never generate sales

But on Tuesday. Harvard Business Schoo professor Ben

Edelman revealed what he says is a new form of click fraud

Figure 1.6: Contextual Advertising

visits the site , the code displays inventory ads from the network server for the user to

View. Revenues from per click ads are then shared between the advertising network and

publisher.

In every growing line of business PPC Internet advertising is getting more and more

popular mainly due to couple of reasons, First, search engines have eased t he setup of

this kind of a marketing account, Second, once setup it can generate traffic very quickly,

depending on the level of competition, Third , this type of marketing delivers ads to

users who are already searching for the product or services that an advertiser is offering,

meaning they are receiving mainly qualified traffic.

Increasing popularity of PPC inevitably increased the competition among advertisers

for popular keywords, thus increased the bid values for these keywords. As a result search

engines continue to make big profits. Figure 1. 7 shows the total revenue generated by

popular CPM (Casale Media™ , Burst Media ™ , Value Click™ , and Tribal Fusion™

) and PPC((Google™ , Yahoo!TM , bing™)) companies in t he recent years. It can be

seen that PPC model is growing its popularity compare to the CPM over the years.

9

- CPM - PPC - Other

70
Q) 60 :J
C
Q) 50 >
Q)

40 c::
nI 30 ...
0
I- 20 - -0

'*' 10

0

2004 2005 2006 2007 2008 2009

Year

Figure 1.7: Internet Ad Revenue by Pricing Model

However , the enormous growth of PPC advertising helped a group of fraudsters to

profit from that growth. This became obvious when companies started to report that their

fraudulent traffic was more than 50% of total traffic, and losses were in the range of $5,000

to $300,000. These fraudsters were using the inherent drawback of the PPC advertising.

PPC financial model totally depends on exchange of HTTP requests from advertiser and

publisher. For a syndicator or publisher's server a "click" is simply a browser request for

a URL associated with a particular ad. The server has no way to determine if a human

initiated the action and, if a human was involved, whether she acted knowingly and

with honest intent. Fraudsters soon started to manipulate PPC adverts with artificially

generated clicks, a process which is known as click fraud [Juels et al., 2007].

The major companies treat pay per click fraud seriously. But the situation is a little

similar to the battle against viruses; as a signature for a virus is released , a new virus

or strain appears. In order to remain undetected , professional inflators of clicks closely

simulate real visitor behavior and visitor parameters. Obviously, click fraud is becoming

a significant threat to the rapid growth of on-line marketing sector, and as Google CFO

George Reyes stated recently, "it threatens their entire business model where the paid­

search has been the primary revenue generator" [Goodman, 2005] .

10

1.4 Goals of the Dissertation

This research proposes new methodologies which can protect Pay-Per-Click advertisers

from click fraud and improve their Return on Investment (ROI). The proposed solutions

also provide an arbitration system for advertisers and PPC publishers whenever a click

fraud argument arises. Advertisers can gain their confidence on PPC advertisement by

having a channel to argue the traffic quality with big search engine publishers. General

consumer will gain their confidence on internet business model by reducing fraudulent

activities which are numerous in current virtual internet world.

In the fast growing Internet advertising industry, the pay-per-click business model, in

which advertisers pay for click-through to their website, is the dominant Internet adver­

tising model. Click fraud becomes a serious problem as the pay-per-click (PPC) business

model gained its popularity. We developed novel data mining methodologies and tested

our proposed solutions with the implementation of Collaborative Click Fraud Detection

and Prevention (CCFDP) system to detect and prevent click fraud. This system uses

a unique two-step logging structure to authenticate every click. In contrast to most of

the existing click fraud solutions, which only use client side logging process, we match up

every click from both server and client side.

Our solutions predict click fraud by finding the abnormalities in a click considering its

short term and long term behavior. In some of the data mining modes a click is considered

as a point in a large feature space, while in some data mining models a group of clicks

arc analYJl:ecl together for iclentification of behavioral characteristics. At the same time, it

has the functionality of blocking suspicious clicks. The results of this system will booster

the internet economy by eliminating the shortcoming of PPC business model. General

consumer will gain their confidence on internet business model by reducing fraudulent

activities which are numerous in current virtual internet world.

vVe implemented two versions of the CCFDP system, which achieved different goals.

The initial version uses a rule based system to calculate overall click fraud score for each

click. CCFDP improved version enhances the previous version by providing a traffic

11

quality score calculation method based on fusion of evidence from several data mining

models. Each data mining model generates a partial score for a click based on its analysis.

These partial scores are then combined to calculate the total quality score.

We accumulated large click data set, approximately 250,000 clicks from an actual ad

campaign. We compared different website contents, and different origins, e.g. Natural

Traffic (Non-paid traffic) and Pay-Per-Click traffic (Paid traffic), thus, finding the suspi­

cious activities. We also compared the result of proposed solution with that of Google

Adwords reports.

Detecting duplicates in click data streams is an important task to fight against click

fraud. Therefore, in this dissertation we also considered the problem of detecting du­

plicates in click data streams. Our solution uses a modified version of the Counting

Bloom Filter. The Temporal Stateful Bloom Filter (TSBF) extends the standard Count­

ing moom Filter by replacing the bit-vector with an array of counters of states. These

counters are dynamic and decay with time. We conducted a comprehensive set of ex­

periments, using synthetic and real world data. Results are compared with Buffering

techniques used in the initial CCFDP system.

Nowadays, almost every task involving Web traversing and information retrieval de­

pends on Web robots. \i\Teb robots are software programs that automatically traverse the

Webs hypertext structure. They proliferate rapidly aside with the growth of the Web

and are extremely valuable and important means not only for the large search engines,

but also for many specialized services such as investment portals, competitive intelligence

tools, etc. While many web robots serve useful purposes, recently, there have been cases

linked to click fraud committed by these Web robots. In this research we detail the ar­

chitecture and functionality of the Smart ClickBot, a sophisticated software bot that is

designed to commit click fraud. It was first detected and reported by CCFDP improved

solution in March, 2010. We discuss the machine learning algorithms used to identify all

clicks exhibiting Smart ClickBot like patterns. We disclose the results of our investigation

of this bot to educate the security research community and provide information regarding

12

the novelties of the attack.

1.5 Organization of the Dissertation

This dissertation is organil':ed as followings. Chapter 2 introduces the concept of click fraud

in online advertising. Chapter 3 compares and contrasts the current commercial solutions

for click fraud detection in advertising networks. Chapter 4 reviews the research in the

domain of click fraud detection, while Chapter 5 introduces the architecture and operation

processes of the Collaborative Click Fraud Detection and Prevention (CCFDP) System.

The improved version of the CCFDP system is introduced in Chapter 6. Methodologies for

Smart ClickBot detection and use of Temporal Stateful Bloom filters for fast detection of

duplicates are introduced in Chapter 7. Conclusions and future work are given in Chapter

8 and Chapter 9 respectively.

13

CHAPTER 2

CLICK FRAUD IN ONLINE ADVERTISING

2.1 Introduction

Click fraud, is a by-product of the "pay per click" online advertising model. It is the

act of clicking ads with fraudulent or malicious intent to generate illegitimate revenue or

hurt competitors. Because fraudulent clicks do not represent genuine consumer interest,

they hold zero economic value [Kintana et al., 2009]. Advertisers are charged on a per

click basis, so an excessive number of bad clicks can severely inflate an organization's

advertising expenditure. Since online advertising networks act as brokers of multi-billion

dollar online advertising revenue streams, click fraud has become a major concern for

publishers too.

Recently click fraud has become a subject of some controversy and increasing litigation

due to the advertising networks being a key beneficiary of the fraud. On one hand, the

brokers do not wish to lose customers. On the other hand, they are not able to provide full

details of the clicks, their rates, and origin IP addresses to advertisers. Even worse, the

advertisers would wish to claim that all clicks are fraud, hence avoiding click charges. For

instance, broker loses money to undetected click fraud when it pays out to the publisher

(third party website), but it makes more money when it collects fees from the advertiser

[Haddadi, 2010]. Because of the spread between what the broker collects and what it pays

out, click fraud may directly profit the broker. This also provides an incentive for the

publishers to hire click fraud botnets or human teams to increase their revenue.

Estimates of click fraud prevalence range from 5-50% of all internet clicks, with values

from 15-35% quoted most often. Even low end estimates pose huge concerns for the

14

rapidly expanding online advertising industry.

Click fraud benefits a fraudster in at least three ways. First, a firm may click nu­

merous times on competitor ads to drain at profit margins and thus gain a market edge.

Competitor click fraud is not committed for any monetary gain, but rather in order to

harm one's competitor. A prerequisite for the fraud is that the competitor in question

has signed up as advertiser in a PPC scheme. The fraudster, knowing that every click on

the ads costs the competitor good money, clicks repeatedly on his ad to cause harm. He

might perform this task himself or use more sophisticated means, such as hiring a group

of people or using a software.

Second, ad space suppliers like search engines, advertising networks, and publishers

may make bad clicks to generate more revenues for themselves at the advertiser's expense.

Publishers can in principle derive financial benefit from click fraud in the short term, as

they receive revenue for whatever clicks they deem "valid". In the long term, however,

as customers become sensitive to losses, and syndicators rely on third party auditors to

lend credibility to their operations, click fraud can jeopardize syndicator advertiser rela­

tionships. Thus syndicators ultimately have a strong incentive to eliminated fraudulent

clicks. Today they employ a series of filters to week out suspicious clicks. These filters

are trade secrets of individual companies, as their disclosure might prompt new forms

of fraud. For example it is likely that syndicators use IP tracing to determine if an im­

plausible number of clicks is originating from a single source. While heuristic filters are

fairly effective, they are of limited utility against sophisticated fraudsters) and subject to

degraded performance as fraudsters learn to defeat them [Juels et al., 2007].

Third, a fraudster can modify the ranking of advertisements by a combination of

impressions and clicks. An impression is the viewing of the banner. Impression fraud

occurs when fraudsters manipulate the number of page impressions for a given search term.

When an advertiser's relative click-through rate (CTR 1) decreases, his or her search term

lCTR is a way of measuring the success of an online advertising campaign. A CTR is obtained by

dividing the "number of users who clicked on an ad" on a web page by the "number of times the ad was

delivered" (impressions).

15

can be suspended because of low CTR performance. This creates a window of opportunity

for other advertisers. By committing impression fraud, they are able to obtain higher

search rankings at lower costs due to the crippled competition.

Fraudsters take the advantage of the lack of verifiable human engagement in PPC

requests, in order to fabricate ad traffic. It can take a number of forms. One type of

click fraud relies on real clicks, whether intentional or not. An example of the former

is a so called click farm, which is a term denoting a group of low wage workers who

click for a living. Another example involves deceiving or convincing users to click on

advertisements. An example of an unintentional click is one generated by a malicious

cursor following script that places the banner right under the mouse cursor. This can be

done in a very small window to avoid detection. When the user clicks, the click would

be interpreted as a click on the banner, and cause revenue generation to the attacker.

A related abuse is manifested in an attack where publishers manipulate web pages such

that honest visitors inadvertently trigger clicks. This can be done for many common PPC

schemes, and simply relies on the inclusion of a javaScript component on the publisher's

webpage, where the script reads the banner and performs a get request that corresponds

to what would be performed if a user had initiated a click.

2.2 Types of Fraud

Based on the type of attack we can identify three broad categories in the realm of clicks

fraud. They are active human, active software and passive software click fraud. In the

following section we briefly discuss each of these types.

2.2.1 Active Human Click Fraud:

In this category clicks are generated by human activity and the entire web request process

is completed, which means that not only the web page is loaded, but also the images, flash,

javascipt code etc. are loaded. Human may have activity on the web page such as mouse

click, and scroll bar activities and the page view time is at least couple of seconds. This

16

type of fraudulent clicks are generated mostly by people in developing countries who are

hired for a nominal wage.

2.2.2 Active Software Click Fraud:

In this kind, a software initiate the click fraud. In most of the cases, the web page request is

not complete and only the initial text web page is requested without the images, javascript

code or videos. No mouse or keyboard activities are followed and the page view time is

less than one second. A web page request to a server usually contains multiple follow up

requests. It first loads the texts in the web page followed by images, multimedia, etc. In

click agent software these requests are less likely to happen and such clues can be utilized

to identify software clicks. Although some smart click agent software can generate these

follow up requests, they are still different from the browser requests generated by real

users, such as mouse click, mouse movement, page view time etc.

2.2.3 Passive Software Click Fraud:

These frauds correspond to Adware and spyware run on the background of the client

computer without being known by the user. It hijacks browser sessions and sends out

web requests to multiple ad servers. These spyware or adware are installed on client com­

puters without the consent of users. Such software might pops up an advertise window,

sometimes pops under, or might not pops up windows at all. The click fraud of this type

also committed by software of type 2. The difference is, in type 2, fraud is a user initiated

click and it is active. But in type 3 click fraud is originated from different client computers

and it is passive, which means the client user is not aware of any click fraud activities.

To differentiate if the clicks are of type 2 or 3 the pay per click provider should check if

the ad was actually placed on the referring page or the originating search. Because in

type 3 it is not necessary to have an advertisement displayed in the browser. Most of

the background click robots are programmed to send requests without being clicked on

an advertisement. So the pay per click provider should check if a real browser clicked

17

the advertisement or not. This could be done by executing a java script code, or doing

redirects that do not occur every time. Another possibility to detect if the click is of type

2 or 3 is having log records. Advertisers can always check, are images being downloaded

in the requested webpage? Are any other pages clicked from the initial page? etc. The

recent addition to type 3 is click bots or botnet attacks.

The most novel characteristic of the click bot is that it is built to conduct a low noise

click fraud attack against syndicated search engines. In our research we are focusing on

detection and prevention of type 2 and type 3 click fraud with the emphasis on detecting

click bot attacks.

Besides committing click fraud bots are widely used in few other types fraudulent

activities:

1. Denial-of-service (DOS): Bots autonomously access an Internet system or service in

a way that appear legitimate, but much more frequently than normal use and cause

the system to become busy.

2. Spread Spyware: Spyware are used to send information to its creators about a user's

activities.

3. Harvest E-mail: E-mail spam are e-mail messages disguised as messages from people,

but are either annoying ads or malicious in nature.

4. Access number replacement: Access number replacements are where the botnet

operator replaces the access numbers of a group of dial-up bots to that of a victim's

phone number. Given enough bots partake in this attack. the victim is consistently

bombarded with phone calls attempting to connect to the internet. Having very little

to defend against this attack, most are forced into changing their phone numbers

(land line, cell phone, etc).

5. Fast flux: Fast flux is a Domanin Name System (DNS) technique used by botnets

18

to hide phishing2 and malware delivery sites behind an ever-changing network of

compromised hosts acting as proxies.

Immaterial of the fraudulent activity (DOS, click fraud etc.) bots are built on common

infrastructures. Following discussion will only focus on bots used for committing click

fraud. Based on how they are built and which communication protocols they use, we can

classify click bots into three main categories.

• Internet Relay Chat (IRC) click bots

• Peer-to-Peer (P2P) click bots

• HTTP click bots

2.3 IRe click hots

The initial deployment of IRC bots, dated back in 1993. These computer bots were used

to assist the Internet Relay Chat channel management. Internet Relay Chat is a chat

system that provides one-to-one and one-to-many instant messaging over the Internet. It

is based on Client/Server architecture. Administrator can create a channcl3 and manage

its clients. Users can join a named channel on an IRC network and communicate with

groups of other users.

Internet community have slowly started experimenting these computer bots to use to

commit click fraud.

An IRC based click bot is controlled by a bot-master and there are many bots attached

to one bot-master. A bot-master can operate bots via command and control (C&C).

Command and control activity is defined as a platform for transmitting the commands of

a bot-master to all bots. A bot-master takes advantage of Internet Relay Chat because

2Phishing is the fraudulent process of attempting to acquire sensitive information such as usernames,

passwords and credit card details by masquerading as a trustworthy entity in an electronic communication.

3The basic means of communication in an established IRC session is a channel. Channels in a server

can be displayed using the IRC command LIST that lists all currently available channels.

19

this makes it easy to operate Command and Control. A typical bot-master and bot

relationship is shown in Figure 2.1.

. &. ~
~ Bot

Bot

Figure 2.1: IRC Botmaster controlling several Clients

These are the most easy to build and most widely used click bots used by the fraudsters.

A typical formation of botnet can be described by the following steps, as shown in Figure

2.2.

1 /"

l,~"
2

Figure 2.2: Formation and Exploitation of Botnet

(i) A botnet operator (Administrator of the channel) sends out viruses or worms, in-

fecting ordinary users ' computers, whose payload is a malicious application of the

bot (its clients).

20

(ii) The bot on the infected PC, logs into a particular channel in the Command and

Control server specified during installation.

(iii) A fraudster purchases access to the botnet from the operator.

(iv) The fraudster sends instructions via the IRC server to the infected PCs, causmg

them to click on specific advertisements.

IRC bots are susceptible to center point failure. If a malware detection program finds

the Bot master and removes it the whole network will be shut down.

2.4 P2P click bots

A peer-to-peer network is a network in which any node in the network can act as both

a client and a server (see Figure 2.3). P2P bots are developed to minimize the hazard

of center point failure in IRC bots. Peer-to-peer botnets are distinctive from centralized

C&C botnets in that they focus on resiliency through the uses of a peer-to-peer network.

However, peer-to-peer botnets are similar to centralized botnets in most other aspects.

Figure 2.3: Peer-to-Peer Botnet

Both IRe Bots and P2P Bots use IRC as the channel of communication. Figure 2.4

shows how a Dot master interacts with its clients in an actual chat window. Steps involve

in the process is as follows.

1. Botmaster connects to an IRC Channel with a nick name. In Figure 2.4 the

nickname @Frogworm

21

2. All clients connect to the same channel through different nick names (known to the

botnet). In Figure 2.4 nicknames B-XDCC-C02, B-XDCC-COl , B-XDCC-C03.

3. Communicate using natural language words

4. Clients carry out commands

l<clru".;h-f' tD) FTr OnliDr 66 '1/6 • 13 , IIp: l1{l''',l~1 dec-
users :«i J' » Band~idth :« -tt» HOlD :«Hr ,oton"OClt OHiu-' k3 .)1 0 ~
lorll lOrn ~O:") IIHI 9~11" » 1 1- - - - - - - n.

<ps2rules27) V.4 « ') Ilfll» tim 1011 I it"'" Upd,fl ... 0111 it ,y I' '>ltlll - (fhl'

gets)
.. dalJydt'e has joined Ibetas-xdcc
(ps2rules27> -'it; « t1? [» nqhOl \1 l.029 ~I" ch - (13~ gets)
<ps2ruleos27) Jt, « . 1. n 1 '1.)0 C n-p - (j') gets)
(ps2 rules27> Serued :« 1 l!',t» Packs Offered:w»
<ps2rules27> MOlD: rutl ",tUIi ') " Ru1 III ')[..7" '=

<ps2rules27> Type: /' t p p' l'ulof;:.'1 ~[)CC \(liltl U(~<H:'k nunlW,") 11- - -
- - -01

TN. is the
ulet'lilt
pane.

This is a tisl
0101 the

+cu",u~5ia-)(user. and
+AnonoJllus51 bob pte.sent
+B-XDCC-BA in 1M
+9-XDCC-CI1 chaboOM.
+O- XDCC-Cn .

. +8-XDCC- C. ' Not:e
t
::@

+B- XDCC- DI1 ..ooclalof'.
+B-XDCC-F- nicknanMS.

Figure 2.4: Bots communication in IRC channel

2.4.1 HTTP click bots

HTTP click bots are the newest type of botnet. HTTP botnets use HTTP requests to

receive and import commands instead of a persistent IRC or P2P connection. It also

follows the common Server/Client structure, where the server(bot master) broadcasts the

commands and clients(bots) carry out the commands. Formation of the botnet is similar

to IRC and P2P where, a botnet operator sends out viruses or worms, infecting ordinary

users ' computers. It is still in its evolving process and soon we will have many varieties

of it.

The code base for the HTTP Bot uses an HTTP post that contains information de-

scribing the bot . It simply docs a GET request and receives back similar series of com-

mands from its bot master. It is a single request that (a) identifies itself (b) receives the

22

command from bot master and (c) reply.It then sort of goes quiet or launches an attack.

The point here is that it is not a persistent connection that is necessary for P2P and

IRC-based botnets. That means the HTTP botnet goes stealth, making it harder to find.

2.5 clickbot.A

In this section we discuss the implementation and functionality of clickbot.A.

The Clickbot.A client, or bot, is an Internet Explorer (IE) Browser Helper Object

(BH04). Similar to other browser helper objects, it runs within the process space of

the browser, and is capable of accessing the entire DOM (document object model) of a

web page. The Document Object Model is a cross-platform and language-independent

convention for representing and interacting with objects in HTML, XHTML and XML

documents. Clickbot.A was most probably written as a EHO so that its HTTP requests

would mimic those generated by legitimate IE clients, and the work of accessing and

parsing web pages would automatically be handled for the bot master. HTTP seems

like a reasonable choice for fraudsters to build botnets for click fraud. The bots need

to communicate using HTTP to click on ads, so why support an additional protocol if

HTTP can be reused for command and control anyhow? If one was to attempt to use

an IRC-based botnet to conduct click fraud, for example, the bot binary may have to

support two protocols (HTTP and IRC). The binary for the bot may be smaller if it only

has to support one communication protocol, and HTTP has the additional advantage

that fire walls typically let HTTP traffic pass through freely, whereas some firewalls might

restrict IRC traffic [Daswani and Stoppelman, 2007].

Once the bot is successfully installed it goes through the following three step process.

l. Contact its botmaster to register in botmaster server. The Clickbot.A botmaster

4 A Browser Helper Object (BHO) is a DLL module designed as a plugin for Microsoft's Internet

Explorer web browser to provide added functionality. The Adobe Acrobat plugin that allows Internet

Explorer users to read PDF files within their browser is a BHO. Alexa Toolbar that provides a list of

web sites related to the one you are currently browsing, or the Google Toolbar that adds a tool bar with

a Google search box to the browser user interface are examples of some more BHOs.

23

was implemented as an HTTP based web application written using PHP, and used

a MySQL database.

The bot registers with the botmaster using an URL such as

http://example.php ? action=registerf3 ver=O.007f3 id=GUID.

X ote that the action parameter specifies the operation that the client requests (in

this case to "register" with the botmaster). In addition to the action parameter , the

client always reports its version via the ver parameter (ver=O.007), and a globally

unique identifier via the GUID parameter to the botmaster server. So the botmaster

can uniquely identifies each bot . Once a bot is successfully registered with the

botmaster a raw will appear in botmaster 's MySQL database as in Figure 2.5.

Figure 2.5: Botmaster Administration Console. Note that entries in the IP address and

country columns have been sanitized for privacy purposes.

2. Learn about doorway site: A doorway site is a web site set up by the bot oper­

ator (who is a human), to funetion similar to a seareh engine. Doorway pages are

Web pages designed and built specifically to draw search engine visitors to a web­

site. They are standalone pages designed only to act as an entry point to a site. In

24

Figure 2.6 doorway sites 1,2, and 3 designed only to redirect traffic to service 1,

service 2, and service 3 pages.

In clickbot.A, each doorway page is especially tuned to a particular keyword search.

When an internet user does a search, the doorway pages will show up and lead them

directly to the main site (or target website). This is a proven and effective way to

increase traffic to the website. Doorway pages are typically very "light" pages, in

that they contain little or nothing in the way of pretty formatting, colors , tables,

Javascript, images, etc. Instead , the HTML code is optimized to be search engine

friendly.

MembersJ

providersJ

General
Info

Doorway to
Ser1Iices 1

Customer
Service

::to~ J
Product
Support

~ Info

~
Securityl J
PriYacy

~~j

Doorway to
Services 3

Artlc:les I
Require~
Reading

I

~~slet~j

Link's I
Figure 2.6: Example of doorway sites.

FAQ

The bot runs an infinite loop in which it requests a doorway site and keyword ,

accesses the doorway site, and chooses a candidate link to click on from the doorway

site. The bot repeats this loop for specified number of iterations which was set by

t he botmaster.

3. Place the HTTP request: The bot places a HTTP query to a doorway site. It will

then receive search results containing clickable links. After communicating with the

botmaster the bot issues a click. The doorway site in one version acts as a legitimate

25

search engine when applying to become a partner with a syndicator and serves as a

location from which a bot can access URLs to click on and commit direct click fraud.

In the other version the doorway site appears as a site that refers traffic to other

websites and make a referrcr deal. In the later version clickbot.A uses redirectors5

Had the doorway sites not used redirectors, the web sites from which the bot oper­

ator would derive revenue could notice how many clicks were originating from the

doorway sites, and could more easily investigate those sites based on information

in their web logs. ·While one might expect that HTTP requests that do not specify

referrers might be considered suspicious, there are many legitimate reasons that a

referrer might not appear in an HTTP request. For instance, HTTP proxies that

are used to conduct anonymous web browsing typically do not include referrers.

Click fraud is not difficult to commit and, consequently, it could threaten the existence

of companies like Google™. Therefore, researchers in both academia and industry have

proposed a series of models to detect it.

5Redirector is a customizable program, which returns a new URL replacing Client's original request.

Redirectors allowed the attacker to strip the Referer fields in HTTP requests issued by Internet Explorer.

26

CHAPTER 3

OVERVIEW OF COMMERCIAL CLICK FRAUD DETECTION SYSTEMS

The disagreement about the click fraud traffic between publishers and advertisers has

grown and resulted in class action law suits against big search companies [Goldman, 2007].

Recently most of the search companies have started to take click fraud seriously and

came up with solutions that kept as secrets until today. But law suits against search

companies have not stopped. In most of search engine solutions advertisers are placed

in a disadvantage position to those big publishers. Advertisers can neither control the

quantity and quality of traffic, nor negotiate the payment to big publishers if they suspect

the authenticity of the traffic. Due to this reason third party click fraud solutions also

started to bloom.).iost of the advertisers who lost their trust on the search engine

companies turn to these third party clients who manage their pay per click advertisement

campaigns. Many of these third party companies developed click fraud detection services

using their own matrics and offer them on the market. Xon of them reveal the techniques

use to detect fraudulent traffic and, they too, keep solutions as trade secrets. This created

one additional problems. Which solution is correct? Is it the one that estimates a lot of

click fraud? How should results from two different companies compared?

Many third party click fraud auditing firms often significantly overestimate the number

of detected click fraud activities, reporting so called "fictitious" clicks, clicks which were

never made on search engine ads. That causes a series of on going battles between search

engines such as Google and small third party click fraud auditing firms.

So until today there is no universally accepted click fraud detection method. ~!Iost

of the commercial solutions available are still not mature and do not discover most of

the click fraud activities, and mainly they are reporting tools without mechanisms in

27

preventing click fraud functionality.

Several commercial solutions, e.g. Clicklab, LLC, Web Traffic Intelligence, Inc. etc.,

are available for click fraud detection. They all use similar technology by adding a sampler

or collecting javascript or iframe code on a page to track all activities. The code will run

on the client computer when pages are viewed. Whenever the javascript or iframe is

executed on client browser, it sends back information to the logging server. The most

common client side parameters include client IP, client user agent, client browser settings,

client computer settings, link-out click, user activity etc. Figure 3.1 shows the typical

process of commercial click fraud solutions. These solutions include the following steps:

1
Web

2
Web Response

Monitored web
server

__ --+~-D
with tracking code ~

3
Tracking code send
client information back

Figure 3.1: The tracking code is an essential component of all commercial click fraud

detection systems

1. A tracking javascript or iframe code was added on each tracked page's bottom.

2. A client computer requests a web page. (Figure 3.1 message 1)

3. The web server response the web page with tracking code. (Figure 3.1 message 2)

4. The tracking code executes on client computer and sends the detailed tracking

information back to log server. (Figure 3.1 message 3)

Those companies provide web reports as well as paper reports to their subscribers.

The reports normally include the statistics on traffic origin IP, traffic user agents, page

28

view time, heuristic fraud score, etc. All these information are used for detection of click

fraud activities, and they can be classified in to two levels:

First Level: Static client parameters such as IP origin, user agent, monitor display

setting, web browser setting, java and javascript enabled, web page title etc.

Second Level: Dynamic client parameters such as mouse clicks, mouse location, key

stroll, scroll bar clicks, page view times, even client side clip board message etc.

The difference between these two classes of parameters may be recognized III the

message 3 given in Figure 3.1. If the tracking code just sends back once to the logging

server, this is static client parameters collecting. While the tracking code keeps sending

back user's activities, the logging server will have dynamic client parameters.

Figure 3.2 lists the top ten most popular click fraud commercial solutions as of March,

2010.

A significant problem of most of these existing commercial solutions, is that they do

not have a way to prevent click fraud dynamically. The javascript or iframe code can not

block the page being loaded. Then those solutions are just click fraud reporting system not

real click fraud detection and prevention system. There are some other problem exist in

the commercial solutions. For example, the www.whosclickingwho.com. and Click Defense

Corporate do not have real time user activity information, such as mouse movement, key

stroke etc., which is very important to detect post user activities after a click occurs.

There is an ongoing industry-wide effort to develop tools that will effectively detect

and block many common click fraud attacks. Most of attacks discovered and reported so

far have been malware-based attacks that rely on automated scripts, individuals hired by

competitors or proxy servers used to generate clicks for paid advertisements.

These commercial solutions are third-party add-on click fraud solutions. The search

engine companies, such as Google, Yahoo, implements their own click quality control

system. For example: Goolge's Click Quality team tries to control the click quality in two

ways:

Prevention: Discouraging invalid clicking activities on its Network by making life for

29

unethical users more difficult and less rewarding

Detection: Detecting and removing invalid clicks and the perpetrators.

In addition to launching an extensive effort to detect and remove invalid clicks, Google

also tries to build other mechanisms for preventing invalid clicking that reduce inappro­

priate activities on the Google Network even before invalid clicks are made.

Some of these preventive activities include:

(a) Making hard to create duplicate accounts and open new accounts after the old ones

are terminated, (b) Making hard to register using false identities, and (c) Development of

certain mechanisms that automatically discount fraudulent activities, i.e., advertisers pay

less for invalid clicks since certain invalid clicking patterns would automatically reduce

costs that advertisers pay for these clicks etc.

However. due to the nature inherent weakness of Google's (or any other search engine),

which does not have enough data on post-click user activities, it is hard or even impossible

to determine the true intent of a click. There are some other weaknesses in these online

procedure: (a) lack of deployment of data mining methods, (b) lack of online real time

solutions, (c) lack of using the conversion data and lack of more advanced types of filters,

(d) use only one aspect of the click information which is the server side click information.

30

Name:
Free Online Click Fraud

Hosted? Download? Price:
Trial? Demo? Protection?

V
$29.95/

Month

$19.95/

Month

$14.95/

Month
AHITS l. tN·1(VI ':SCi 'IINtb!·j#-!

$29.95/

Month

DynaTracker $87.00

converSion
RULER LlIW' JIlIai

$19.99/

Month

AdTrackz $97 .00
FiD TRACKinG SOFTWARE

$19.95/

Month

I

ROI Wiz™ $399

$29.95/

Month

.
56 $69.97

Figure 3.2: Top 10 ad tracking & PPC t racking tools - best ad tracker (2009)

31

CHAPTER 4

REVIEW OF RESEARCH IN DOMAIN OF CLICK FRAUD DETECTION

Research activities in click fraud detection can be divided into two groups. One group

proposes alternative business models for Pay-Per-Click model, while the other group tries

to find solutions for click fraud in the Pay-Per-Click payment model.

4.1 Alternatives for Pay-Per-Click model

4.1.1 Cost-Per-Action (CPA)

In the Cost-Per-Action model, advertisers do not pay for clicks, but rather for specific ac­

tions that are performed on the advertisers page after the click. These actions include, for

example, Generating email opt-ins, Producing product sales, and Signing up subscriptions

etc. Therefore, we can define Completed Actions as:

Completed Actions = Total Number of Generating email opt - ins +

Producing product sales + Signing up subscriptions (4.1)

These actions produce measurable outcomes for a company. Ideally, the actions, which

are being measured are those most closely tied to the growth of the business; therefore

product or service sales are the most common actions tracked. These outcomes are usually

known as conversions.

Website conversion is a process of turning website visitors into prospects and cus­

tomers. The conversions or conversion rate evaluates: (1) the quality of the visitors

attracted by the advertising strategies and (2) how satisfied the visitors are interacting

with the website.

conversion rate is calculated as follows:

32

· Completed Actions
Converswn Rate = T l N b f V· . ota um er 0 ~s~tor s

(4.2)

It is important to use the same time range when gathering the completed actions and

the total number of website visitors.

For example, if in the last month 1,000 visitors visited the website and 10 have pur-

chased a product, the "sales" conversion rate is 1.0%. i.e. for every 100 visitors to the

website, 1% is satisfied.

CPA or "cost per action" is the advertising cost somebody pays for one completed

action. As with the conversion rate, an action may be generating an email opt-in, pro-

ducing a product sale or downloading a white paper. For example, if in the last month a

company spent $1,000 on advertising to generate 2,000 visitors and 20 of them subscribed

to a newsletter, the cost per action for a newsletter subscription is, $1,000 ad cost per 20

subscriptions, i.e. $50.00 Cost per Action.

C A
· Advertising Cost

ost per ctwn = ---------­
Total Completed Actions

(4.3)

Although CPA does prevent publisher and competitor click fraud, it leaves room for

advertiser fraud. Since the publisher (and the commissioner, if he exists) have no way to

confirm whether or not a specific action has taken place they depend on the advertiser

to report the customers action truthfully. Additionally, the publisher has to rely on the

advertisers ability to produce both efficient advertisements and if the action in question is

making a purchase worthwhile products on the target side in order to make a profit. This

means that the publisher does not profit directly from the advertising space and traffic

he/she provides anymore. Furthermore, a user might click on an ad on the publishers

website without making a purchase on the target site, only to return to the target site

and make the purchase later thus robbing the publisher of his well-deserved commission.

For the advertiser. on the other hand, the CPA model is very advantageous: since he only

has to pay when he actually does make a sale, there is virtually no risk on his side.

However, it is still a model that is based on trust. The only difference being that, this

33

time, it is the other party that has to trust, and as such it is a model that publishers

might be wary of adopting.

4.1.2 Pay-Per-Impression

An alternative to the PPC model of advertising is the old Pay-Per-Imprcssion(PPI) model.

It is also know as Cost-Per-.Mille(CPM). It remains popular on major Internet portals,

such as Yahoo.com, msn.com, and aol.com [Edelman et al., 2007]. Cost per .Mille is

slightly different than PPC. Much like traditional advertising, the display of an ad (im-

pression) is nothing more than a single appearance of an ad. Viewers are not required to

take action, for example click the ad, in order for payment to be due. Banners or other ad-

vertisements are placed, according to the terms of a contract. Payment is typically based

on a predetermined number of impressions, generally set at 1000, thus naming it Cost per

Mille(thousand). While advertisers are paying for each instance of the advertisement, it

is generally less expensive than Cost per Click.

The dollar figure of "Cost per Thousand" is used to evaluate the cost to reach a

thousand persons in a media buy. PPIs are calculated by multiplying the cost of an ad

by 1,000, then dividing that number by the total audience.

CPM = Cost * 1,000
Total Audience

(4.4)

Advertisers are drawn towards CPM because of the enormous amount of visibility it

can bring; the ad is seen often even when the ad itself is not clicked. It is strongly believed

that the ad is still read and that exposure counts over the long run. If the ad is attractive

and grabs attention, the Click Through Rate (CTR) will be higher, thus generating even

better results.

Unfortunately, Pay-Per-Impression is not fraud resistant either. The technical methods

that make click fraud possible can be easily adapted to so-called impression fraud. Instead

of simulating a click, though, the script repeatedly requests the website on which the ad

is displayed and consequently artificially increases the number of impressions.

34

4.1.3 Pay-Per-Percentage of Impressions

Pay-Per-Percentage of Impressions is an alternative to Pay-Per-Click that was suggested

by Goodman [Goodman, 2005]. In his paper he describes this model as follows. In this

system, an advertiser picks a keyword, e.g. "cameras" and purchases, perhaps through

bidding, a certain percentage of all impressions for that keyword. For instance, an adver­

tiser might pay $1.00 to Bing Search. In return, the advertiser might receive 10% of all

impressions for "camera" for 1 week. What does this mean? It means that for 1 week,

one out of ten times that someone searches for the word "camera", they will see the ad.

The costs of advertising are thus fixed and do not depend on whether or not the ad is

clicked. They do not even depend on the number of impressions. If there are R real

impressions over the week. and Fake impressions, that the advertiser will receive 0.1 x

R real impressions and 0.1 x F fake ones. Consequently, this system is not susceptible

to competitor fraud of any kind (neither click nor impression fraud). However,evaluating

how much a certain percentage of impressions on a specific website is worth remains prob­

lematic. If such an evaluation is based on the average number of impressions of a site

it remains vulnerable to impression fraud. Goodman himself admits that "the pay-per­

percentage model is not appropriate for all kinds of affiliate advertising; in particular,

it is most appropriate for high volume sites". He recommends using a rating company

to estimate the traffic on these sites, basing the cost-per-percentage on the estimates.

For the publisher, this model is just as advantageous as Pay-Per-Impression, since his

payment depends solely on the services he/she provides. Although the advertiser is safe

from competitor fraud, this scheme leaves him susceptible to publisher Impression fraud

if he/she does not advertise on a trustworthy site. Furthermore, the model is worse for

him/her than Pay-Per-Click because the price is not based on the effectiveness of the ad.

35

4.2 Related research for click fraud detection in PPC model

4.2.1 Duplicate Detection

Metwallys group at UCSB proposed a solution, based on Bloom Filters, to detect du­

plicates in data streams[Metwally et al., 2005b]. 1 Their technique could be utilized

in various web-based applications including click fraud detection. Assuming that these

streams could be click activities, duplicates represent one type of a click fraud in adver-

tisement networks. A comprehensive set of experiments, using both real and synthetic

click streams, showed high detection rate of duplicates, and very low error rate.

In the proposed method they start by allocating M bits, where M is O(N), and N is

the estimated size of the processed window. As illustrated in Figure 4.1, using d = 17

independent hash functions, they test every new element on the Bloom Filter structure

of the previously observed elements, and then insert it into the Bloom Filter structure.

Before setting any of the d cells to 1, the cell is tested whether it has been set before to

1, or not. The element is not counted as a duplicate if at least 1 bit was switched from

o to 1, and is considered to be a duplicate otherwise. Both M and d can be determined

according to the required error rate, and the expected window size.

10
111111111111111111111111111111111

Figure 4.1: The Classical Bloom Filter

The original moom Filters use one hash space and hashes all the clements onto it.

However, when the authors developed the proposed solution, independently of Bloom

1 A Bloom Filter is a data structure that was proposed to detect approximate membership of elements.

Given two sets X, and Y, the Bloom Filter algorithm would loop on every element in set X, to check if

it belongs to set Y.

36

Filters, they used separate space for different hash functions, as sketched in Figure 4.2.

10
I IIIIIIIIIIIIIIIJJIIIIIIIIIIIIIII

Figure 4.2: The Classical Bloom Filter

In order to differentiate between authentic and fraudulent clicks, the advertising

commissioner "tracks individual customers by setting cookies. Duplicate clicks within

a short period of time, a day for example, raise suspicion on the commissioners side"

[Metwally et al., 2005bj. Duplicate detection can, no doubt, detect amateur click fraud,

where the fraudster operates from one or a handful of computers. However, it is clearly

inadequate when it comes to detecting distributed click fraud, where millions of computers

simulate clicks on an advertisement from all over the world, since it relies on cookies (text

files which the commissioner stores and accesses on the users computer) for detection. In

the case of distributed click fraud, every computer in the attackers vast network will have

its own individual cookie. Moreover, an attacker who knows what he/she is doing will

just delete the cookies after each "click", leaving no duplicates to be detected.

4.2.2 Association Rules

Metwally, Agrawal and Abbadi have also proposed a solution to the referrer click fraud.

They propose encouraging ISPs (Internet Service Providers) to provide the data stream

necessary to detect this kind of click fraud. This data stream would contain the HTTP re-

quests to page P, which might or might not be fraudulent. They would devise an algorithm

to detect associations between one or more sites that refer to P very frequently, and clicks

on an ad on P. If strong associations are found, it is very probable that P is using one or

37

more "decoi' websites in order to commit undetected click fraud [Metwally et al., 2005a].

In [Metwally et al., 2005b] the same authors extend the ideas of streaming data anal­

ysis, and they established schemas that would detect fraud attacks of many classes based

on their classification of click fraud. Special attention is given to the problem of detect­

ing automated click fraud activities. They develop the algorithm called Streaming Rules

which reports association rules, using limited processing per clement and minimal space.

The algorithm has a possibility to detect more sophisticated attacks such as the one iden­

tified by Anupam et al. [AnupamL et al., 1999]. The system is tested with synthetic data

but also with ISP logs from an anonymous ISP where some suspicious relationships are

detected. The focus in their research is on the commissioner part of the click fraud de­

tection process, and it is very specific because commissioners are optional in the Internet

advertising network and many advertisers directly put advertisements on publishers' sites.

In another paper [Metwally et al., 2007] the authors are analyzing coalition hit inflation

attacks. Still, they agree that the area is open for other classifications of hit inflation

attacks, for new techniques to detect automated behavior, and more effective real world

solutions.

4.2.3 Classification of URLs

Malicious \iVeb sites are a cornerstone of Internet criminal activities. Referrer click fraud

is one form of URL related fraud. As a result, there has been broad interest in developing

systems to prevent the end user from visiting such sites. Researchers have address the

problem of URL classification, using statistical methods to discover the tell-tale lexical

and host-based properties of malicious Web site URLs.

Justin Ma et al. have described an approach for classifying URLs automatically as

either malicious or benign based on supervised learning across both lexical and host­

based features [Ma et al., 2009]. They argue that this approach is complementary to

both blacklisting, which cannot predict the status of previously unseen URLs and systems

based on evaluating site content and behavior, which require visiting potentially dangerous

38

sites. Further, they show that with appropriate classifiers, it is feasible to automatically

sift through comprehensive feature sets (i.e., without requiring domain expertise) and

identify the most predictive features for classification.

The work by Garera ct al. use logistic regression over 18 hand-selected features to

classify phishing URLs [Garera ct al., 2007]. The features include the presence red flag key

words in the URL, features based on Google's Page Rank and Google's Web page quality

guidelines. In their experiments they achieved a classification accuracy of 97.3% over a set

of 2,500 URLs. McGrath and Gupta do not construct a classifier but nevertheless perform

a comparative analysis of phishing and non-phishing URLs [McGrath and Gupta, 2008].

The features they analyze include IP addresses,WHOIS records (containing date and

registrar-provided information only), geographic information, and lexical features of the

URL (length, character distribution, and presence of pre-defined brand names).

Provos et al. perform a study of drive-by exploit URLs and use a patented machine

learning algorithm as a pre-filter for VM-based analysis [Provos ct al., 2008]. They extract

content-based features from the page, including whether IFrames are "out of place," the

presence of obfuscated javascript, and whether IFrames point to known exploit sites.

CANTINA classifies phishing URLs by thresholding a weighted sum of 8 features (4

content-related, 3 lexical, and 1 WHOIS related) [Zhang et al., 2007]. Among the lexical

features, it looks at dots in the URL, whether certain characters are present, and whether

the URL contains an IP address. The WHO IS-related feature CANTINA examines the

age of the domain.

4.2.4 Non standard approaches for click fraud detection in PPC model

There are a number of other solutions proposed in the literature for avoiding click fraud

in PPC advertisement model. One suggestion is to charge based on user's actions, i.e.,

the publisher gets a premium only after the successful conversion of the ad, meaning the

user's visit to the advertiser website and performing an action such as buying an item

or signing up for a service. There are a number of basic attempts. Such as by means

39

of tracking cookies, however these efforts make up a negligible portion of the current

advertising revenue on the Internet. Immorlica et al. [Immorlica et al., 2005] analyze

the click fraud learning algorithms to compute the estimated click-through rate. They

focus on a situation in which there is just one ad slot, and show that fraudulent clicks

can not increase the expected payment per impression by more than O(1) in a click­

based algorithm. However the complexity of the inferred algorithm and the need for

click-through rate estimation would make it impractical as it also deviates from the pay

per click model, to pay per view model, which is the least desired model in the modern

advertisement world where bidding for space is of critical importance.

Gandhi et al. [Gandhi et al. , 2006] from Indiana University at Bloomington proposed

a new type of camouflaged click fraud attack on the advertising infrastructure so called

"badvertisement". This stealthy attack can be thought of as a threatening mutation of

spam and phishing attacks. The target of this attack is the unwitting advertiser and

it could be very serious with significant revenue potential for its perpetrators. The at­

tack was experimentally verified by corrupting the JavaScript file that is required to be

downloaded and executed by a clients web browser to publish sponsored advertisements.

The Jacobsons paper [Jakobsson et al., 1999] discusses the measures for the visibility

and degree of success of an ad. It had be found that traditional methods perform very

poorly in an Internet setting, due to lack of trust, lack or reliable metering methods,

and a lack of direct feedback. Therefore, they introduce the concept of e-coupons. E­

coupons can be viewed as the electronic counterpart of traditional coupons in mailboxes

or newspapers. In order to benefit from e-coupon, a customer needs to interact with

the merchant, which allows checking the validity of the e-coupon and represents direct

feedback of the impact of the ad campaign. The authors argue that the proposed scheme

is safe and meets the strongest security requirements.

Another solution, proposed by Juels et al., tries to authenticate valid clicks. In

[Juels et al., 2007], they proposed a credential-based approach to identify premium clicks

(i.e. good clicks) instead of excluding invalid clicks. If a user has committed legitimate

40

behaviors (e.g. purchases), the clicks from his/her browser are marked as premium clicks

and cryptographic credentials are stored in the browsing cache for authentication. This

approach, however, is still subject to the attack presented in this paper, where click fraud

may be committed in a browser used by a legitimate user, If credentials have been stored

due to the legitimate behaviors from that user, fraudulent clicks will also be identified as

premium clicks.

Haddadi et al. presented a simple detection strategy, what they called as using Bluff

ads [Haddadi, 2010]. These are sets of irrelevant ads displayed amongst user's targeted

ads, which should never be clicked on. Together with threshold detection, IP address

monitoring and profile matching techniques, bluff ads can be used to make it more com­

plicated for the bot net owners to train their software, or a human operator, The bluff ads

also may have a comfort factor of decreasing the user's negative perceptions by reducing

the number of accurately targeted ads.

Important discussion about a click fraud concept and its interpretation are also given

1Il [Thzhilin, 2006]. Thuzilin claims that between the obviously clear cases of valid and

invalid clicks, lies the whole spectrum of highly complicated cases when the clicking intent

is far from clear and depends on a the range of factors, including the parameter values

of the click. This intent cannot be operationalized and detected by technological means

with any reasonable measure of certainty. Therefore, the invalid click detection methods

need to be developed without a proper formal specification of invalid clicks. The standard

commercial methodologies, which are measuring mainly the true rate of invalid clicks, are

only guesstimates at best.

Many researchers [Banerjee and Ghosh, 2001]' [Buchner et al., 1999] have been carry­

ing out similar research for web usage and user behavior analysis. Web usage charac­

teristics could be indicators for click fraud detection, especially for software clicks. Web

usage mining is the application of data mining techniques to discover usage patterns from

Web data, in order to understand and better serve the needs of Web-based applications

[Cooleyet al., 1999]. In the same paper, the Web usage mining is parsed into three dis-

41

tinctive phases: preprocessmg, pattern discovery, and pattern analysis. It also clarified

the research sub direction of the Web usage mining, which facilitates the researchers to

focus on each individual process with different applications and techniques.

4.3 Summary of Current Industrial and Research Solutions

We briefly categorize the commercial solutions and research activities in three categories

based on the data they use:

1. Server side approaches such as Metwally et al.[Metwally et al.. 2005b], Mahdian

et al. [Mahdian, 2006], Banerjee et al. [Banerjee and Ghosh, 2001], Google etc. They

are using the data direct from server without caring much about the users activities.

These methods analyze the IP, double clicks, or web pages from the server side or

ISP side.

2. Client side approaches such as Gandhi [Gandhi et al., 2006], Whosclickingwho.com,

and Anupam [AnupamL et al., 1999] etc. They study the client side user activities

to propose solutions for the click fraud problem.

3. Non standard approaches such as Jacobson [Jakobsson et al., 1999] and Goodman

[Goodman, 2005] etc. proposed different approaches to the existing problem. How­

ever, these solutions are not standard and not widely accepted by the existing in­

ternet industry.

Limitations and drawbacks of existing solutions, fall in to each category stated above, are

discussed below.

Even though commercial solutions and research trends exist, there are unaddressed

threats to the pay-per-click model. For example, most of the commercial solutions can not

detect software click fraud. If click traffic is generated by robotic software, the software

may not execute the javaScript or may not load iframe tags. Since, there are no user

activities, category 2 solutions will not have any information about sources of such clicks.

Since category 1 solutions do not collect client side data, they will not know whether click

42

has user activities or not. Then the detecting hosts in both category 1 and 2 solutions

will have partial evidence about any of these traffic; thus, will not report any kind of

fraudulent click.

Software click bots provide the largest threat to the PPC advertising model. Despite a

few early efforts towards identifying special classes of click-bot attacks such as clickbot.A

and Bahama bot, there has been a little work on studying bot-generated click traffic. A

number of challenges make this task difficult. First, the amount of data to process is

often huge, on the order of terabytes per day. Thus any method that mines the data

for identifying bot traffic has to be both efficient and scalable. Secondly, most of these

data are not disclosed due to privacy, security and business policy issues. Furthermore,

with many bot-net hosts available, attacks are getting increasingly stealthy with each host

submitting only a few clicks to evade detection. Therefore, click bot detection methods

cannot just focus on aggressive patterns, such as in Bahama bot, but also need to examine

the low rate patterns that arc mixed with normal traffic. Third, attackers can constantly

craft new attacks to make them appear different and legitimate; thus we cannot use the

training-based approaches that derive patterns from historical attacks. Finally, with the

lack of ground truth, evaluating detection results is non trivial and requires different

methodology and metrics than the detection methods.

Most of the existing solutions do not collect real time user activity information, such

as mouse movement, keyboard pressed etc., which is very important in detecting adware,

malware, and simulated clicks. When a user session is observed, if there are user activities

reported, they provide positive evidence for the existence of a human user. Such evidence

can be used instead of asking a user to verify a "CAPTCHA", which more and more

websites find annoy the actual human user.

Another significant problem of the existing commercial solutions is that they do not

have a way to prevent click fraud dynamically. Since most of these solutions are merely

click fraud reporting solutions they provide reports at the end of the day, at the end of

the week or sometimes at the end of the month. By the time they found out about the

43

~-------~----------

fraud it may be too late to take necessary actions against the fraudulent sources because

fraudsters will change their method of attack to go undetected.

Most PPC service providers currently approach the problem of click fraud by attempt­

ing to automatically recognize fraudulent clicks and discount them. Fraudulent clicks are

recogni~ed by machine learning algorithms, which use information regarding the navi­

gational behavior of users to try and distinguish between human and robot generated

clicks. Such algorithms are mainly built using rule based techniques and most of them

are classification systems, even though a few score based systems are also reported.

Most of the click fraud solution providers, including search engines and third party

solution providers, claim their rule-based expert system is the best among the others

taking the advantage of keeping "rules" as a secret weapon. They do not disclose in­

formation about the set of rules due to fear of competition. This situation even led to

multi-million dollar settlements in recent years. Due to the lack of verifiability of click

fraud solutions, it is inevitable that the trust between service providers and advertis­

ers is degraded. Since real-world click fraud solutions are usually kept secret for fear of

competition, it is practically impossible to study many of them in a single context. If

a mechanism for the modeling of knowledge and validation (KV) for rule based expert

systems exists, solution providers will be able to use it to verify their systems without

revealing the implementation details of the rule base.

We tried to address these issues in the Pay Per Click advertising model. Chapter 5

and 6 we introduce our proposed methodologies.

44

CHAPTER 5

COLLABORATIVE CLICK FRAUD DETECTION AND PREVENTION

Sometimes it is hard to get solid evidence of the existence of click fraud based on the data

collected. In some cases the true intent of a click can be identified only after examining

deep psychological processes. For example, a person might have clicked on an ad, looked at

it, went somewhere else but then decided to have another look at the ad shortly thereafter

to make sure that he/she got all the necessary information from the ad. It is hard to say

the second dick is dick fraud. However, we can evaluate the second click as less valuable

than the first click, or give less quality score for any multiple clicks for a single user.

Initial phase of our research is based on the CCFDP system that was developed by

Dr. Li Ge[Ge and Kantardzic, 2006]. In this research we do not try to determine the

real intention of the web users and classify as binary (fraud and not fraud). We assign

each click with a score value which estimates the quality of user activities, and also

measures the difference between characteristics of a given click and averages collected

through time in the click database. The CCFDP system integrates raw user activity data

with the derived factors to determine the quality of each click. Preliminary list of factors,

which describe user behavior and intentions, includes: Software clicks, No User Activities,

Repeat Visitors, Suspicious User Agent Keyword, History Count, Blacklist Referrer, ~o

Cookie or JavaScript allowed, IP and Permanent Cookie inconsistency, Web users location

and IP location mismatch. IP location analysis, Page Activity Analysis, and Referrer Rate

analysis. The CCFDP system establishes an arbitration system to evaluate the quality of

every click referred from publishers, thus protecting advertiser from click fraud.

The CCFDP system takes collaborative approach to determine click quality by an­

alyzing detailed user activities, matching the client and server side logs (Figure 5.1).

45

Since the CCFDP system logs both, we collect the data about the detailed activities of

individual web user, which enable us analyzing web users behavior and estimate a quality

score based on their activities. Recorded users activities on a web page can indicate their

interests, browsing habit, and most important, estimating their intention. We use quality

score to estimate the users intention instead of labeling clicks as fraud/not-fraud. After

applying data mining method in the collected database, we analyze and quantify twelve

factors for click score calculation. Three analyzes, History Factor Analysis, Individual

Factor Analysis and Sequence Factor Analysis are implemented in the system for quality

score calculation. The history click database for a site is used to build baselines to help

determine the quality for new clicks while sequence factor analysis focuses on the relations

between clicks. We study the user activities also by comparing baselines in databases for

different website contents and different origins, e.g. ~atural Traffic (Non-paid traffic) and

Pay-Per-Click traffic (Paid traffic), thus, finding the suspicious activities.

L~{~.·nitol~ \~'eb S(";;':el" (;:gl
mvwl!b .. Cl);;:::m)"---___ .-J -1 .,.--"'" o ~s:;erSitpdate did;

qualIty score

Visit -

~
-chent Side Log /\ , ,

~L

~lobal J
Fraudulent
Database

Figure 5.1: Initial version of the CCFDP system

The core part of this system is the Global Fraudulent Database (GFD), which stores

the real-time server side log, client side log, and computed fraud score for the given click.

The fraud score is not based only on a single click characteristics; it is based on the time

and space context of the click event. When a web user visits the monitored web site, both

the server side log and client side log data are stored in the Global Fraudulent Database.

A quality score for each click is computed and normalized from 0 to 1, and it is used to

46

indicate the quality of a click. A score of 0 means valid click and a score of 1 means click

fraud. The click score is usually a fractional value between 0 and 1 representing ambiguity

in classification (fraud/not-fraud) of a current click. Summation of scores for all clicks on

the current site gives the integrated score for the quality of click traffic on the site.

In the Section 5.1 we detail the hardware architecture of the CCFDP system, while

Section 5.2 is dedicated to the operation architecture of the system. Section 5.3 explains

the data collection process and Section 5.4 describes the actual click scoring process.

5.1 Net Mosaics Hardware architecture

The Netl'vlosaics hardware is currently implemented at NetMosaics.com Louisville data

center. It is implemented as a dedicated Windows@server and follows most current

industrial standards for web server hosting. Figure 5.2 shows the logical network diagram

of the Net Mosaics.

5.1.1 Reading the Net Mosaics hardware diagram

1. Network Subnet:

The network subnet is 65.182.201.0/28. A subnetwork, or subnet, is a logically

visible, distinctly addressed part of a single Internet Protocol network. The process

of subnetting is the division of a computer network into groups of computers that

have a common, designated IP address routing prefix. Subnetting breaks a network

into smaller rcalms that may use existing address space more efficiently, and, when

physically separated, may prevent excessive rates of Ethernet packet collision in a

larger network.

2. HSRP Redundant Network Core:

HSRP stands for Host Standby Router Protocol. It is a Cisco proprietary redun­

dancy protocol for establishing a fault-tolerant default gateway, and has been de­

scribed in detail in RFC 2281.

47

VPN Pool; 65 182,201 .6&'28
Group N.am& : Ne!r.Aouics.IPSEC
Group PSI<: X4qXea2wtlHHK\1hQ.2
VPN UoerlPass: U: Ne1Mooaics1. P: a5rf'Pl<MOcllU2q4XW

Interface VLAN 481
HSRP: 65.182.201 .65/29

ExternallP: 65.182.201.68/29
Etl1emelOIO (QII1l!ide)

Etherneto/1 (VlAN1 - WEB)
192.168.80.1 -192.168.80.254
Ethernet 0/2 (VLAN2 - SOL)

192.168.81 .1 - 192.168.81.254
Ethernetol3 (VLAN3 - DMZ)

65.182.201.73 - 65.182.201.78

NAT Translations Table
ttl. lSl.eG,,,. . U ,112.2OU'
112.1 .. , H .182:.zo1 ••
1'12. 11I,1CI"' · I!J, IU.201."

112.11 ... ao.l00 . U .l.1:2.2.01.100
lntfiuo.,o, · 65."1U.lot ttl
112. ' '' • • 102. • '5.112..201.102
112.'ao.10S · 15.112.201.103
112.."&*-IIU04. U . tt2.20'. M4
lt2..tUM. 'OS.I5.1'2...}6t .l0S
If:2.1 06 · '5.1f:"0","
182.,el.,lIt'07 · 15.112..201.101
112.108.10. '01 - 15..182.201.10'
1i2:i'ft..JO. tot • u 1J2.201.1et
112.1.'.80.110 - 15.112.20\.110
1.2,lNv1O..111 . f,5.1UJtl . 111
tt2.1n. • . ' 12 .. n . 111.201. t tl
'12.1 • . 80.113 · 65.112.201 .' "
tti,,." .. . I5.1I2.20 • . .,,,
'12.1t&.IO.tt$ · 155.1IUOt.1t5
112.1.,..ao.11' · 65.182.201116
tnf 1O..1 17 · 85.111.201.111
lU,IQ.to.lt. · nU.U0111.
112.11&..10.11, · 15,'82.201.1"
182.111.80. tlG - 55.112.20', '20
ltl,l.uo.Ut - Ul".20'.121
lt2.1IItI22 · 15.112.201.122
"2,1"'10.12) · Iii$, lUJOI.12'
,f2.tI&.10.1'2" . iIi!l.tU.20t. t2 ...
ltl.lta.IO.125 · 65.1I2.201. US
,Ut4&.IO..IB . 15.1IZ.201. UI

HSRP
Redundant

Network Core

/
,..-----,

sWilch2.idf3.
port 911 .
3.2.16#1

ASA5505 ~

Intemet

VMware Host VMware Host MOSAICS 1
1i2.1 1.100 65.1'2.201.74 65.112.201 .715

NETWORK SU8NET
65.182.201.0128

ESX HOST SERVERS
65.182.201.14/29
65.132.201 .75129

VMWARE SERVERS
WEB 65.182.201.97-126127
SOl. 192.163.81.100·103124

MOSAICS2
1112.1 1.101

Figure 5.2: NetMosaics logical network architecture

48

3. Multi layer switch:

A multilayer switch (MLS) is a computer networking device that switches on OS1

layer 2 like an ordinary network switch and provides extra functions on higher OS1

layers.

4. Cisco catalyst switch:

The 13-slot Cisco Catalyst 6513 Switch chassis is ideally suited for high performance.

high port density Fast Ethernet and Gigabit Ethernet aggregation in all parts of the

network, including the access, distribution, and backbone layers as well as the server

farm and data center environments. With up to 12 payload slots available, the 13-

slot chassis offers industry-leading 10/100/1000 Gigabit Ethernet and 10 Gigabit

Ethernet port densities while providing high levels of network resilience.

5. ASA 5505 Firewall:

Cisco ASA 5500 Series Adaptive Security Provides intelligent threat defense and

secure communications services.

6. Virtual LAN:

A virtual LAN, commonly known as a VLAN, is a group of hosts with a common set

of requirements that communicate as if they were attached to the same Broadcast

domain. regardless of their physical location. In Net Mosaics setup we have three

virtual LANs.

• EthernetO/1 (VLAN1 - WEB): Not publicly accessible. Use NAT table

• EthernetO/2 (VLAN2 - SQL) : Not publicly accessible. Use NAT table

• EthernetO/3 (VLA~3 DMZ): Publicly accessible. DMZ, or demilitarized zone

is a physical or logical subnetwork that contains and exposes an organization's

external services to a larger untrusted network, usually the Internet.

49

5.2 The operational architecture of the CCFDP system

The operational architecture of the CCFDP system is given in Figure 5.3.

(4)

~- --------------------

(1) HTIP request

(2) HTIP send

Client Web Server

115 Server running
NetMosaics Solution

(3)

Receiver at

Port 10500

.--+-__ Optional

Buffer

Figure 5.3: CCFDP operational architecture

The three main components in the CCFDP are:

1. The NetMosaics SQL server or the Global Fraudulent Database (GFD).

2. Monitored site which is a web server.

3. Client computer which could be normal user, click fraud user or software user.

We will explain each component in detail below.

50

5.2.1 Global Fraudulent Database (GFD)

GFD stores the server side log, client log, and fraud score report data. The database

contains three main tables. They are serverlog, clientlog, and serverclienttracking tables.

Tables "serverlogx" and "historyserverlogx" store server-side of click information and

"clicktracking" and "historyclicktracking" store client-side of click information including

the post click event data. The server side log and the client side log are matched by

trackingID. In server side log, IP, User Agent and Referrer are three important parameters

to detect and predict fraud. Other parameters include the logging time and the site name.

Field "ID" is the primary key for serverlog table and its structure is shown in Table 5.l.

Table 5.1: Structure of the server side log table

I Field N arne I Field Type I Allow K ulls I

ID bigint No

TrackingID varchar(50) Yes

IP varchar(20) Yes

Referrer varchar(255) Yes

UserAgent varchar(255) Yes

Location varchar(512) Yes

Site varchar(50) Yes

WebServerIP varchar(20) Yes

insertDate datetime Yes

The client side log includes client computer settings, such as screen width, screen

height etc.; client activities inside the pages, such as mouse click. keyboard click, mouse

over etc.; client browser setting, such as, javascript enabled and java enabled, allowing

cookie etc. The IP Location table is the IP geographic location, which includes the owner

of the IP, postal code, and latitude and longitude information. Field "ID" is the primary

key for clientlog table and its structure is shown Table 5.2.

51

Table 5.2: Structure of the client side log table

I Field Name I Field Type I Allow Nulls I

ld lnt (4) No

Html Varchar(lOOO) Yes

Html before Varchar (1000) Yes

Html after Varchar(1000) Yes

Mouse x Int (4) Yes

Mouse y Int (4) Yes

Clickitem x Int (4) Yes

Clickitem y lnt (4) Yes

Size x lnt (4) Yes

Size y lnt (4) Yes

Event type Varchar(20) Yes

Time to click Bigint(8) Yes

trackingID Varchar(50) Yes

Keystrobecount Int (4) Yes

insertDate datetime Yes

In fraud detection process, the location is an important indicator of a click fraud.

Therefore Some additional tables were used in calculation of the originating country for

a given IP. These tables are: GeoIPCity, GeoIPCityBlocks, GeoIPCityLocation. For the

purpose of finding the country only GeoIPCity table was used. Its structure is shown in

Table 5.3.

The IPScore, ReferrerScore, CountryScore, and UserAgentScore tables dynamically

update the activity scores based on the client side IP, Referrer, Country and User Agent

parameters. The ReferrerScoreSoftClick, IPScoreSoftClick and UserAgentScoreSoftClick

tables are software click fraud score based on the existence of server side log, and its

match with client side. Figure 5.4 is the detailed diagram of the GFD.

52

Table 5.3: Structure of the GeoPICity table

I Field Name I Field Type I Allow Nulls I

startIpNum Varchar(20) Yes

endIpNum Varchar(20) Yes

Country Varchar(lOO) Yes

Region Varchar(lOO) Yes

City Varchar(lOO) Yes

postalCode Varchar(20) Yes

Latitude Float(8) Yes

Longitude Float(8) Yes

dmaCode Varchar(lO) Yes

areaCode Varchar(lO) Yes

intStartIP Bigint(8) Yes

intEndIP Bigint(8) Yes

5.2.2 Monitored site

CCFDP data collection works in 2 connected parts, server and client. They are separate

software and may be run on separate servers, but they are coordinated by one central

element. The central element that binds everything together is a server module that must

be inserted into the website that is being tracked.

Currently, this module is developed in C#.~ET that runs on IIS 7.0 (WindowsTM

Server 2008) or later versions and C++ .NET that runs on IIS 6.5 and earlier versions.

Both implementations are discussed later in this section. This module intercepts all

incoming requests to a webpage, generates a unique ID for this user session, and attach a

line of java script code into the outgoing webpage.

Notice that this way the original webpage never needs to be modified or updated. The

server module takes care of all that behind the scene. In fact, the original webpage file

53

Relational Database Schema
Click Fraud Detection

ReferrerScoreSoftClick Se!verSideLog ClientSideiog

PK,FK1 IQ PK IQ PK,FK1 !.Q

SoftClickScore ~ TrackinglD U1 IP ReferrerScoreActivlty
SupportCount FK1 ,I1 IP +- Relerrer

PK,FK1 IQ RelerrerSite Relerrer U1 LinkClick

UserAgent U1 Screen Width
RelerrerSite

Location U1 Screen Height
Activ~yScore

Site Screen Width

insertDate ScreenAvilableWidth SupportCount
I PLacation ScreenAvilableHeight

PK,FK1 IQ ~ ColorDepth

PK !!Dllletluw Location
Title IPScoreActivlty

ISP AliowCookies PK,FK1 IQ
Organization AllowJavaScript

Site Country IP
C~y TracinglD Activ~yScore

PostalCode PermCookie SupportCount
Lamude TimeZone

Long~ude
StartLoadingTime

AreaCode PageViewTime
MouseClickCount UserAgentScoreActivlty
KeyBoardClickCount
MouseScroliCount PK,FK1 IQ
IsMouseOVer

UserAgentScoreSoftClick IPScoreSoftClick
InsertTime UserAgent

Activ~yScore

PK,FK1 IQ PK,FK1 IQ SupportCount

UserAgent U1 IP
SoftclickScore SoftclickScore
SupportCount SupportCount

Figure 5.4: GFD detailed diagram

will never be changed, only the user of the webpage will see the javaScript code attached.

The author of the webpage will never be aware of the javaScript code being attached.

After installing the NetMosaics module at the end of the source file, a javaScript line

at the bottom of the file can be seen as similar to what is shown in Figure 5.5 .

C/body>
C/htm.l>
<script l a n g u age=" javascr1pc" sIc=" hc tp: // 65.1S2.201 . 98/activicytrackLng.asp?
cb=6015be 3 656d84551a 235ef95 1e8d12cO&s ite=VDW55716SSWEB3! D: \Webs i te5\thebestmusic3itesorg">c/ script>

Figure 5.5: javaScript executed on client 's webpage

The Net Mosaics Module

When a user opens a browser and navigates to a website, he/she sends out an http request

to a web server , as is defined in RFC 2616. The HTTP protocol is an application level

54

protocol, which is above TCP /IP protocol. Figure 5.6 is a sample HTTP request sent

out from the client computer.

GET /mypclbrowserinfo/
HTIP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-shockwave-flash,
applicationlvnd.ms-excel, applicationlvnd.ms
Referer: http://www.internelfrog.com
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322;)
Host: www.internelfrog.com
Connection: Keep-Alive
Cookie: AreCookiesEnabled=476558864; permCookies=972049659; ASPSESSIONI=BFPFAEKAKIOELDK

Figure 5.6: Sample HTTP request

In Figure 5.6, t.he sample HTTP request contains most server side log parameters,

except IP, which is a network layer parameter. Besides the server side parameters, we

are interested in, some other parameters sent to the web server. They include HTTP

version, accept file format, language, encoding, connection status, and cookies etc. Those

parameters are defined in RFC 2626.

As the client computer sends the request to the web server (for example IIS), the

server generates the page and forwards it to the client computer. We created an ISAPI

filter(managed module in IIS 7) to record such requests and this process is displayed in

Appendix A.

We are only concerned about the successfully generated pages, with HTTP success

code 200 (From the example presented in Figure 5.7, we can find the response status code,

which is HTTP/1.1 200 OK). At the same time, we only process requests for text/html.

Other contents, such as image, css, video clip etc are supplementary and will be sent to the

client computer directly. If the major text/html page is blocked, there should not be any

requests for image. css, and video clip etc. The system sends logs to Global Fraudulent

Database (GFD), and queries for the fraud score before the response is sent back to client

computer. If the fraud score is higher than the threshold, a warning page will be sent to

client computer instead. Otherwise, a unique 128-bit number, Globally Unique Identifier

(GUID) will be added to the tracking javascript code at the bottom of the page. This

tracking id is introduced in Hardware Architecture.

55

HTTP!1.1 200 OK
Connection: close
Date: Tue, 27 Sep 2005 1804:35 GMT
Server: Microsoft-IIS!6.0
X-Powered-By: ASP.NET
Content-Type: texUhtml
Set-Cookie: BrowserMirrorPersistent=9%2F27%2F2005+2%3A04%3A35+PM; expires=Wed, 27-Sep-2006 18:04:34 GMT; path=!
Set-Cookie: BrowserMirrorSession=9%2F27%2F2005+2%3A04%3A35+PM; path=!
Cache-control: private

Figure 5.7: HTTP Response header

UDPServer application

The UDPServcr is an application that can receive local UDP packets and queue them in

a buffer. This software is installed on the client's web server and set to receive packets

from that web server's XetMosaics module. The packets are written to a database locally

on the server, and then they are sent off to the main NetMosaics receiving server (client

side database setup is discussed later in this section). This helps ensure no click data is

lost if the NetMosaics server is unreachable or busy but does have the downside of having

to install a local version of the Net Mosaics database.

This application's second major task is to run a loop internally that checks if buffer

database contains any entries, if there are entries, the application creates UDP packets

from database entries, and sends those UDP packets to the network address and port

specified at the bottom of GUI in Figure 5.8 (the port should be open).

Once "Start Server" button is pressed, the application is listening to any incoming

UDP packets on the port that you have specified the UDP server to listen to. Once a

packet arrives, the application reads the packet to see if it's server or a client packet. The

application then copies the information of the packet into the "buffer" database. And

goes back to waiting for more packets.

5.3 Data Collection process in CCFDP

The data collection is a five step process. Each of the five steps is shown in Figure 5.9

and described in detail below.

56

Servt'f Configuration Http

Opod< .. _..d

FUlan POIt . 101Xl0 SondlolP' 117001 POll 10500

Figure 5.8: NetMosaics UDP Server

Web ,/,/~.~~
Request ,/,/

,/ 4 3
,/,/ Response Fraud

,/ with tracking code Score so' '""'.''''':'
Tracking code sends
client information back.

Monitored site with
software

Global
Fraudulent
Database

Figure 5.9: Data Collection Process in CCFDP

1. A public internet user requests a webpage from client 's website.

The server side data collection starts at this moment . The server module (that waits

on IIS) performs three primary tasks.

• Intercepts user web page requests.

• Collects server information using various API from IIS and Windows Server

2008 , then creates a UDP packet from this information, and finally sends the

packet over to UDP Net Mosaics Data Collection Server using UDP protocol

(discussed in detail in step 3).

• Attach client side tracking code.

57

2. The NefMosaics module executes on the IIS server, generates a permanent and a

temporary tracking code and writes a JavaScript to the webpage. The server DLL

module attaches a short string to outgoing HTML reply to the user. This module

does not actually insert any final JavaScript code. (That would be inefficient and

unscalable.) Instead, the module adds a reference to a JavaScript file. Thus, when

the HTML page arrives to the users web browser the first thing that will happen is

that web browser is going to download the reference and insert that reference into

the HTML page, and only then the user sees the final page and JavaScript code

that N etMosaics inserted finally runs. If the user looks at the source page of the

received webpage, there should be a JavaScript that looks similar to the Figure 5.5.

The attached javaScript code tells the web browser that before displaying a page

to the user, the browser must go to the above address, load and insert that java

script file into HTML code that the web user will finally see. The java script code

and setup will be discussed later. This code will later record and send all client

interactions with the webpage. Thus, anytime a user clicks or closes the page, a

JavaScript event will occur, which will run Ket Mosaics JavaScript code and send

over a UDP packet that will contain the information about the event (for example,

the location of the click).

;\fIost of the parameters in step 2 are defined in Hypertext Transfer Protocol HTTP /1.1

(RFC 2616 [(IETF), 1999]). ·We added two extra cookies and a tracking ID besides

the RFC header for tracing purpose. A permanent cookie is the cookie we implant

to client computer with the expiration date of 1 year and a session cookie will be

expired whenever the client closes the connection session. We use those two cookies

to identify client computers. Whenever the client computer connects to the same

web site, the client permanent cookie will be sent to web server as part of the web

request. A tracking ID will be added to the javascript code and sent to the client.

The tracking code inside every page is presented in Figure 5.10.

The number 52lf5c9939d4463d886a905c2a2af8e9 in Figure 5.10 is the tracking ID.

58

<script language='Javascript" src= .. http://www.clickfraudresearch.comlactivity.js?site=mysite&trackingid=
521f5c9939d4463d886a905c2a2af8e9"><lscript>
<noscript><img src= .. http://www.clickfraudresearch.comIUserAct.js?site= mysite &js=false& trackingid =
521f5c9939d4463d886a905c2a2af8e9" height=O width=O><lnoscript>

Figure 5.10: javaScript code added to each web page

The purpose of this tracking id is to match the client side log with its corresponding

server side log. In step 5 of the logging process, when the javaScript code executes

on client side, it will collect the client side setting and log to the GFD.

Let us illustrate how the logging process works with an example. Suppose user A

opens a browser and navigates to site www.mysite.com. the web browser sends the

web request define in HTTP 1.1 to site www.mysite.com. Site www.mysite.com

sends the web request parameters along with serialized tracking ID to GFD. GFD

returns a fraud score S for a given click back to site www.mysite.com. If the fraud

score S is less than a threshold value, site www.mysite.com sends the requested page

and the tracking code to above client's browser. The client browser will display the

page. and at the same time the above tracking code will execute on user As browser

and report As activity to GFD. Since the same tracing ID appears in the two logs,

it reveals the two log entries are connected.

3. The initial HTTP request packet (shown in a dashed arrow from process (1) to

process (3) in Figure 5.9) and tracking ids are sent to port 10500 ofthe Net Mosaics

web server. This process is managed by the DLL modules. This can be achieved in

two ways .

• With a buffer database .

• Without using a buffer database.

(a) Data sent with a buffer database

This is shown as the optional buffer in Figure 5.S. A buffer database is simply

a mirror image of the final database. It is used to store the data until the

data can be moved over to the final database server. in case the final server

59

is experiencing slow performance or some network lag. Remember that this

database is completely optional. This database is created on the client's web

server.

(b) Data sent without a buffer database

The NetMosaics module installed inside the client 's web server intercepts user

web page requests, collects server information using various API from IIS and

Windows Server operating system, then creates a UDP packet from this in-

formation , sends it over to UDP port 10500 of the NetMosaics data collection

server through port 10000 of the local web server. As noted before, DLL mod-

ules create UDP packets and send them over network to the address and port

you have specified (Figure 5.11).

• .1 Net MoW<$ Oata Slor,.
-- - ---- ---~ II!!"tJ x

5efver co"rtguration Help

NetMosaics Data Storage Server

C-:S::-l

bon PCII'!: : 10500

Figure 5.11: NetMosaics Data Storage Server

4. All packets are written to the NetMosaics SQL server.

DBTransfer Application: DBTransfer application runs on the NetMosaics hardware.

The DBTransfer application receives UDP packets from servers all over the Internet

running the NetMosaics Module. Packets are sent over port 10500 from the clients'

web server module and are received on the port 10500 of the NetMosaics hardware.

After they are received , they are written to the database so the algorithms can be

60

run on the new rows.

5. The JavaScript executes on the user's browser and keep sending user activities to

the ~etMosaics web server.

5.4 Click Fraud Detection Model: Initial Version

The main characteristics of this system were,

(i) Integrates server side and client side activities to better detect click fraud activities.

(ii) Use more data from server and client compared to other available system, with the

assumption that more data gives better analysis/results.

(iii) Introduce a fraud score between 0-1 instead of classifying clicks into valid/invalid.

Figure 5.3 shows the data sources used by the CCFDP initial version. Those sources

can be divided into two categories as shown below. The logical structure of the click

record is shown in Figure 5.12.

1. Direct sources which includes

(a) Server computer

(b) Client computer

(c) Clicktracking

2. History data

(a) Fraudulent Database

(b) Blocking Database

61

ttl
ttl

C\
OJ

"0
Vi
"­
OJ
~
OJ
VI

ttl
ttl

C\
OJ

"0
Vi c
.!!!
o

Figure 5.12: Logical Structure of the click record

5.5 Click Fraud vs. Click Quality

Sometimes it is hard to get solid evidence of click fraud just based on the data collected.

The click fraud is about the intention of the web users, who has no objective of buying

the products or services advertised.

In other words, classification of clicks as valid or invalid is either impossible or not

accurate. Just like Google, who does not like the concept of "fraudulent" click, and uses

the term "invalid" click instead, we also found sometime it is difficult to determine the

real intention of the clicks. The example from Dr. Thzhilins [Thzhilin, 2006] explains the

difficulties in determining the intention of clicks: a person might have clicked on an ad,

looked at it, went somewhere else but then decided to have another look at the ad shortly

thereafter to make sure that he/she got all the necessary information from the ad. Is

this second click invalid? To make things even more complicated, the second click may

not be strictly necessary since the person remembers the content of the ad reasonably

well (hence there is no real need for the second click). However, the person may not

really like or care about the advertiser and decides to make this second click anyway (to

make sure that he/she did not miss anything in the ad and his/her information is indeed

correct) without any concerns that the advertiser may end up paying for this second

dick (since the person really docs not care about the advertiser and his/her own interests

of not missing anything in the ad overweigh the concerns of hurting the advertiser).

Therefore, in some cases the true intent of a click can be identified only after examining

deep psychological processes, subtle nuances of human behavior and other considerations

in the mind of the clicking person. Moreover, to mark such clicks as valid or invalid,

62

these deep psychological processes and subtle nuances of human behavior need to be

operationalized and identified through various technological means, including software

filters. Therefore, it is simply impossible to identify true clicking intent for certain types

of clicking activities and, therefore, classify these clicks as valid or invalid.

Therefore, in the CCFDP initial version, we do not try to determine the real intention

of the web users. We give each click a score which measure the difference between each

click and average users activities. For example, the average user makes 5 clicks during

the stay on a site, a user make no click on this site means the low quality of this visit.

Web users activities on a web page can indicate their interests, browsing habit, and

most important, estimating their intention. Because of lack of recorded user activities,

the searching engines, ads commissioners, and other advertisement agent have difficulty

in detecting many kinds of suspicious clicks. Since the CCFDP system logs both client

and server side logs, we have a reeord about each click with detailed activities. Analyzing

web users activities CCFDP system gives a quality score.

We study the user activities in detail by comparing different website contents, and

different origins, e.g. Natural Traffic (Non-paid traffic) and Pay-Per-Click traffic (Paid

traffic), thus, finding the suspicious activities. To define precise score for each click, we

analyze large number of potential factors which define suspicious activates and potential

click fraud.

Based on this analysis, we selected and formalized set of factors which determine the

quality of clicks. The factors are defined as follows:

l. Software clicks

Software click means that a click has a server side entry without corresponding

client side entry. If software requests a web page, there will be a server side log

entry. However, the software neither request the following javascript code nor run

the javascript code. There should be no corresponding client side log entry for this

request. We exclude the search engine crawler traffic from click fraud detection

although the search engine traffic is a form of software click. The software click rate

63

is defined as:

L: CZient side Zog
Rsoftware click = 1 - L: S ·d Z erver sz e og

(5.1)

If the client user closes the browser or press the "Stop" before the web page is

fully executed, there will be no client side log too. In normal situation for any site,

this exception rate is low. If there is jump of Software Click Rate, the traffic is

SUSpICIOUS.

2. No User Activities

The normal web page user will perform certain amount of activities during the

viewing period. These activities could be mouse over, mouse click, keyboard input,

scroll bar move, etc. If there are no activities inside a page, the click will likely be

click fraud. The no activities rate for a site is defined as:

R . .. _ _ L: No existing activities
No acttvttws - 1 ~ CZ· t ·d Z

Lt zen sz e og
(5.2)

In some cases, the user closes the web browser before he makes any mouse or key-

board movements. In normal situation for any site, this exception rate is low, if

there is jump in "No activities" rate, the traffic is suspicious.

3. Repeated Visitors

There are two ways to count repeated visitors. Since we implemented a permanent

cookie on the client computer. if the same user repeatedly visits the monitored web

site, their permanent cookie will be recorded in our database. It is unlikely the two

new assigned permanent cookies are identical. If the client browser does not accept

cookies, the users' IP address can be an alternative way to identify repeated visitors.

If the user keeps deleting cookies while visiting the website, factor (8) can be used.

Sometimes. the AOL users or large intranet users may share the same gateway IP

addresses when connecting to the internet. We may miscalculate the repeat visitor

count for shared IP. In that case, IP and permanent cookies are complementary

for repeat visitor detection. In some situations, the repeat visitors come from the

64

same class "C" network (with net mask xxx.xxx.255.255) if they use a big proxy

pool for outbound connection. For those visitors, we can detect them by IP location

analysis.

It is normal for a user to repeatedly visit a site during a period of time. However, if

the repeat count is substantially greater than the average repeat visitor count, we

will flag the visitor as suspicious.

4. Suspicious User Agent Keyword

Every normal web request carries a User Agent field. A lot of click fraud from

adware or spyware uses suspicious keywords inside their User Agent field. We can

immediately identify this kind of click fraud from the field. Some fraud includes

well-known keywords such as Google, Yahoo, or Bing in their User Agent field, to

give the impression that the traffic is from those sources. However, the IP is not

from those companies based on the IP location match database.

5. History Count

Javascript can report how many other web pages the current browser visited before

visiting this page, although Javascript docs not report the details of the visited web

sites, this count is useful for detecting click fraud.

First, if a site is referred by a search engine or other advertisement agent, the history

count should not be O. This is because the current browser must have the search

engine or advertiser agent in its history. The conclusion is based on the fact the

advertisement link docs not bring up a new pop up browser. The condition is easy to

be satisfied for many search engines, such as google.com, because neither google.com

nor its Adsense program use pop up browser for their advertisement link.

6. No Cookie and JavaScript allowed

Through our research, we find that for normal users, the rate to allow JavaScript and

Cookie is very high for any site, from 95% to 99%. For some Per-Per-Click traffic,

the setting is significantly different compared to normal traffic. The Per-Per-Click

65

traffic may allow JavaScript and Cookie in 50% of the visitors. If the traffic does

not allow Cookie and JavaScript, we will have a reason to suspect the intention of

the user.

7. IP and Permanent Cookie inconsistency

This criterion is directly linked to case (3) of repeated visitors. In normal cases, the

IP and permanent cookie for a web user should be consistent. That means if a user

revisits a website, the IP a.ddress and his permanent cookie should be a fixed pair. If

a user cleans his cookies every time before visiting a monitored web site, we will log

a new permanent cookie for each repeated visit. This will create an inconsistency

between the IP and permanent cookie.

There is still another case for IP and permanent cookie inconsistency, which is, a

web user connects to the monitored site with the same permanent cookie, while his

IP address is changing for every visit. "Most likely the web user is changing proxy

server for different visit. This IP and permanent cookie inconsistency should be

flagged as suspicious.

8. Web users location and IP location mismatch

In CCFDP system, Three location related parameters are logged, IP, web users local

time, and time zone. The location indicated by those three parameters should be

consistent by any web visitor. The web visitors location is calculated in three ways.

Location!? = Longitude!?

LocationTime zone = Time zoneJava script

LocationLocal time = H our(Log server time - java script local time

(5.3)

(5.4)

5) (5.5)

If we find the IP time zone and Javascript time zone are significantly different, we

can suspect the visitor uses a proxy server to connect to the web server. In the

system, we set the time wne threshold difference to be +/-2 to accommodate for

the day light saving time and other mobile situations.

66

9. IP location analysis

IP country analysis is a very important method to detect click fraud, especially for

those making advertisements world wide. The IP country distribution is relatively

fixed for a web site. If we observe a substantial shift of the IP country distribution

from its history distribution, the traffic is suspicious.

10. Page Activity Analysis

For the page activity analysis, we focus on three parameters: Click Count, Page

Depth and Page View Time. The average value for these three parameters over a

period of time is calculated. The Click Count is the number of clicks during a web

visitors staying on the web site. The average of Click Count for a web site over a

period of time is defined as:

R
. _ L~=l L~:::l Clicks from the nth visitor on the mth page

Average clzck connt - ,\,N

L..m=l MN
(5.6)

The Page Depth is the number of unique pages a visitor viewed for a web site. The

average of Page Depth for a web site over a period of time is defined as:

R
_ L~=l page depth for the nth visitor

Average page depth - N (5.7)

The Page View Time is the staying time on web page by a visitor. The average of

Page View Time is defined as:

R
_ L~=l L~;;:l Page view for the nth visitor on the mth page

Average page view time - ,\,N

L.,..n=l MN
(5.8)

We constantly monitor the average click count for a web site. A dramatic change in

any of the average values will indicate the change of activities and some suspicious

event on a web site.

67

11. Referrer Rate analysis

If a web site makes an advertisement with an advertisement agent, the time rate re-

ferred by a location is relatively fixed. For example, we observed the incoming traffic

referred from .. www.domainsponsor.com .• was 12.3 per hour. The advertisement was

with Google.com for "Music download" keywords and ··www.domainsponsor.com ..

is Google.coms search partner. The definition of the referrer rate is:

2::Traf fie referred by site A
RRejerrer rate jor website A = T· . d (5.9) zme perw

The rate referred from a particular site is relatively fixed based on the facts that

every site has its own visitor base. If we see a dramatic increase in referrer rate, the

traffic is suspicious.

The total quality score is the weighted summation of all the scores for factors and it

is normalized to range [0, 1].

5.6 Disadvantages of the CCFDP Initial Version

Despite the better performance compare to other commercial solutions. CCFDP initial

version also has considerable drawbacks.

(i) Similar to existing commercial solutions, CCFDP initial version was run offline. As

t he amount of pay-per-c lick traffic grows over the years the demand for an online/real

solution was apparent.

(ii) CCFDP initial solution did not usc baselines that analyze trends and outliers in the

history of traffic. Fraudsters came up with low noise click fraud attempts which

then required analyze of traffic in the history.

(iii) Software clicks were treated generally in the initial version but sophisticated click

bots came into action, which required special solutions.

68

(iv) Initial version did not have a traffic visualization methods. For example "geographic

distribution of traffic" etc. It also did not have a reporting tool that generates

automatic reports for a click campaign.

(v) Since the CCFDP was not launched online client cannot register or manage their

click campaigns online.

5.7 Can the model be improved with context data?

As new technologies evolve to combat click fraud, fraudsters find new ways to achieve

their targets. By taking the advantage of advances in malware, they try to profit from

click fraud, while making it harder to detect. As the botnets get more sophisticated, they

are able to perpetrate more click fraud. They are discovering new ways to distribute and

this can be seen in the data we have being collecting continuously.

The current situation requires the use of proactive technologies, which can detect

unknown threats by examining their behavior. Click bot detection methods cannot just

focus on aggressive patterns, such as in Bahama bot, but also need to examine the low

rate patterns that are mixed with normal traffic. Also, attackers can constantly craft new

attacks to make them appear different and legitimate; thus we cannot use the training­

based approaches that derive patterns from historical attacks. Therefore, with the lack of

ground truth, evaluating detection results is non trivial and requires different methodology

and metrics than the detection methods.

We continue to craft more and more ideas to detect new types of click fraud. We

develop data mining methodologies and tested them through the CCFDP system. Some

of these solutions are inspired by the recent research conducted in the area of click fraud

detection and prevention. These new ideas are reflected in the second phase of this

research. The main goal of the second phase of research activities is to provide our initial

CCFDP system with additional functionality.

The improved CCFDP, which we discuss in the next chapter, will include automatic

scoring of click traffic with extended set of context-based parameters which are not in-

69

cluded in our initial version. These parameters are derived attributes showing significant

differences or outliers from baselines empirical distributions. The robust, online method­

ology for modeling and comparison of web click distributions will be developed. New

extended descriptions of web clicks (context-based) will enhance the quality of a click

score value by better describing characteristics of each click and intentions of the user.

It will be calculated automatically in the CCFDP extended version using the technique

known as incremental, semi-supervised support vector machines (SSVM).

Also, new algorithms are proposed and developed that improve the time and space

performances because the CCFDP improved version should support online prevention

capabilities. The suspicious clicks will be blocked from reaching the advertised site based

only on server data and dynamically, online maintained variety of "black lists". This

proactive emphasis on the prevention of fraud clicks will reduce significantly the number

of highly suspicious clicks, and directly produce financial benefits for advertisers. We

believe that prevention mechanisms as an addition to existing but improved detection

mechanisms are key to success of the CCFDP system.

The new version will efficiently and seamlessly meet the demanding requirements of a

growing Internet advertising business by qualifying users elicks on advertising web sites,

and discovering and documenting click fraud events in real time. We will show that us­

ing our CCFDP (Collaborative Click Fraud Detection and Prevention) model will give

advertisers, publishers, and advertisement networks powerful analytical tools to improve

the performance and quality of their revenue generating models, increase the satisfac­

tion level of their customers and affiliates, and most importantly, raise the individual

consumers level of trust and confidence in the integrity of conducting business and pur­

chasing transactions online.

70

CHAPTER 6

CLICK FRAUD DETECTION WITH EXTENDED CONTEXT DATA

Most of Current research and industrial solutions for click fraud detection use only either

client side or server side data. In the previous chapter we have shown that use of both

client side and server side data enhance the click fraud detection probability. In this

chapter we further consider the ways to extend the data about each click. Two main

goals in this chapter are:

1. Formalizing new approaches in click fraud analysis by defining new concepts such

as:

• click context, click baselines and fusion of click data.

• applying some theories to formalize these concepts and build new architecture

to detect previously undetected activities.

2. Based on introduced new theoretical concepts and appropriate formalisms we ex­

tended and enhanced our CCFDP architecture. We proved using real world data

set that click fraud detection with extended click context improves the detection

capabilities.

6.1 Context of the click

We assume that use of more context data about the click may help to better estimate its

quality. Among the data we collect is spatial in nature while some is temporal in nature.

Therefore, we define the context of the click record considering both spatial and temporal

properties of the click.

71

Spacial data is also known as geo-spatial data or geographic information. It is the

data that ident ifies the geographic location of features and boundaries. For example

Figured 6. 1 shows t he geographical location of two cities(Louisville and Frankfort) in the

state of Kentucky. IP addresses are usually assigned based on the geographical location .

Therefore, in Figure 6.1 the IP can be a representative of the city. It is also possible to

use Referrer and Count ry as spatial information providers in the click context.

Figure 6.1: Relationship between IP address and location

On the other hand , temporal domain data encodes t ime aspects. More specifically the

t emporal aspects of data is usually associated with a valid-time. Valid t ime denotes the

t ime period during which a fact is t rue with respect to the real world. For example "click

insert t ime", which is the time a click is recorded in t he database, provides temporal

information (See Figure 6. 2). A double click which measures with respect to IP or

"t racking id" can also be considered as temporal information.

When a click is considered separately, its spatial and temporal dat a may not pro­

vide much useful information. But when the click is considered with other clicks in the

neighborhood it can provide much meaningful information. For example, the concept of

"double click" is not defined for a single click. Therefore, particularly for the click fraud

detection, ··context of the click" means the spatial and temporal characteristics of clicks

that occur before or after the current click which is being observed. If we are considering

the current click as the most recent click (Figure 6.3 left) the context of the current

click includes all the clicks occurred before that . Vie will stick to this definit ion in all t he

72

Id INeltdilte ~ trockngId ref..,..,.

1 Q?J 2007-01·1813:2G:42.857 19-9.231 .146.254 626JEI5EBDBF4Bil:0C7486DM7OBD228

23 2007-01·1821 :30:12.403 203.81 .64.34 CFECW557D34F57S16G5EA684B44919 httpJ Iwww .~ comIseorch ?t-/..,,&l-www my.

26 2007-01·1822:09:13.810 222.124.78.19 05FF34COOB04466A9E92CEF03889G4EO http ://www .~ comIseart:h'hl...,&Ir>&q..,., ..

33 2007-01·1823:04:21 .717 80.97.12.133 BEF66.5DDD36041A789891816F2D33DAD http ://www .~.com/se.rt:h'''._q_lohI_

5 J8 2007-01·182343-11250 195.229 241181 3EC2D6FF660541M81641DI98196AFDE http://www \IOO\1e .com/search?q"fTlUSic&IXnG.S.

6 39 2007-01-1900:01 :47.390 217.219.223.49 mAAB03E9C24572B3.ACBB2882EA9A2E http ://www .~ comIseorch?qodownioadilree<

40 2007-01 ·1900:14:24.233 200 35.164.122 OOBE4BF3OC7F43EDSE6342502CCD296D http://www .~ com/ .. orch?sorn:eId~avdien

41 2007-01·1500:31 :24.123 202. 123.13.239 0A6BA0J934FF423A9EMABBC9535EB6F http.lIwww .~.comI .. ort:h?souceld~vcloen

9 42 2007-01 ·19 00:32:42.733 196.3.94 225 EFF0806E1DA3436CBI471CF7B5311F8F http://www .~.com.no/search 1t.I..,,~.ISO· !

Click Insert ~ 2007-01 ·19 00:41 :22.607 66.36212.61 il:FFEESCB3E6415BAlB2D8OB710BAA66 httpJIwww .~ co.zm/ .. ort:h?t-/""&lahttp~.3

1 44 2007-01 ·19 00:55:43.873 196.25.255.246 42A3A lC9B02D4S8D9OCB3BBE6598B331 http://www .lJOO!1ecom/search?q-afrikaans-omuili<

Time 12 45 2007-01·1901 :07:26.140 2OJ.m .1B2.183 8FC1B0444B5A4AD9&4COCDE8F8B9E3CB httpJ Iwww.netst com,ln,suls/results_OIb.asp?pic

13 46 2007-01 ·1901 :07:59.043 196.209.254.2 3626AOO95DD24G46A 13077F5C450FOFC http ://www .~.co.zo/ .. a'''''?q •• WMulicilc

14 47 2007-01 ·19 01:11 :39.340 65.57.245.11 7F6DOJ8242364F36A386J 14359PC906A httpJlwww .~ comI<.rto.a.D&lahttp~.JA'-2~

15 48 2007-01 ·1901:11 :58.937 65.57.245.11 271 F8J869948447EBCBOAD7481 D93DE8 httpJ Iwww.goog1ecom/<.rt?sa·D&lahttp%3A'1,lF:

16 49 2007-01·1901 .12:21170 202.1 .192.5 0516BAE44158491 BAB5.'C4EEB1 1ABC74 http://www .~.comI..,orch?q-music&>tn.Se.

17 50 2007-01·1901 :16:35.873 125.4.161.60 C4751DI2AE504FJI£BBFA7D7E02B26247 httpJIwww .~ comI""orch?sorn:eld...,avdien

Figure 6.2: Records in a database

algorithms that run in realt ime. But for offline processes, the current click can be any

click in t he click stream (Figure 6.3 right), the context of the current click will be clicks

occurred before and after it.

(Click n)
(Click n-l)
(Click n-2)

• • •

f,- Current Click

Click n

Click n-l
• • •

Click 2

Figure 6.3: Context of the click

6.1.1 Local and Global context of a click

Current Click I

"T he easiest way to go undetected while commit ting click fraud is to execute the actions

in long t ime intervals. For example, clicking an ad once a day. Even if it is clicked once,

the associated parameters such as IP, referrer and country should be changed if possible."

This is advice given in a website that promotes click fraud. The vital information m

this message is that click fraud may be committed within a short time interval (such as

10 clicks within a minute) or within a long interval as described above. Therefore, it is

73

important to include mechanisms to detect both of these types of attacks.

We define local and global context of the click using the concepts of temporal and

spatial data mining. Temporal data mining deals with the harvesting of useful information

from tcmporal data, whilc spatial data mining is the process of discovering intcrcsting

and previously unknown, but potentially useful patterns, from large spatial datascts.

Extracting interesting and useful patterns from spatial datasets is more difficult than

extracting the corresponding patterns from traditional numeric and categorical data due

to the complexity of spatial data types.

Local/Short term context

For data mining algorithms that work online, we define a short context. A short context

can be the analysis of behavior of the 10 most recent clicks received by the system. For

example if we receive 20 clicks from the same IP continuously, we can detect it by observing

only the most recent clicks.

Global context

Global context of the click is defined as analyzing behavior of long term data such as clicks

in the past 24 hours. Offline modules in our system use long context of data because the

time restriction is minimal. For example a traffic from a certain country (India) may

be significant today compare to yesterday or last week. We cannot detect this kind of

variation using local context. It has to be analyzed considering all the traffic as a batch.

6.2 Mechanisms developed to detect click fraud in local context

Performance of any online solution largely depends on the amount of data it analyze or

process in a given time. The amount of data that can be processed depends on how

fast the results are required. For example, if the results should be available within a

second, the amount of data that can be processed is lower than if the results are required

within five seconds. Also, in such applications time consuming databases accesses should

74

be eliminated or at least minimized. Therefore, complex algorithms are not appropriate

for online solutions. Usually we have to depend on simple algorithms in the form of

if-then-else rules.

The local context in CCFDP strict its neighborhood to most recent 10 clicks. Behavior

of the clicks in this local context is done using a rule based system. Rules are designed

utilizing standard industry heuristics for detecting click fraud and new concepts that we

have developed. Each rule is triggered whenever a new anomaly record matches patterns

given in the rule. A suspicious score is assigned for each such rule, based on the predefined

threshold values. Details of the rule based system follows next.

6.2.1 Fraudulent traffic scoring using improved rule based module

In the CCFDP improved version we incorporate an improved rule base that detects sus­

picious clicks. Scoring the level of fraudulent activities in the given click requires:

(i) Partially scoring some characteristics of the fused click record

(ii) Combining these partial scores into final integrated score S

The current rule base consists of over 25 rules. Score values are normalized on [0, 1]

intervaL where S = 0 represents valid clicks, S = 1 is a fraud click, and 0 < S < 1 values

are interpreted as suspicious clicks. Sum of all scores for the clicks in the given campaign,

normalized by the total number of clicks, represents a percentage of invalid click traffic.

When the new clicks are coming, the scoring process includes:

(i) Collecting the values for partial scores Ti from GFD database for IP, UserAgent and

Rcferrer (at the beginning they are not in database, so Ti values are 0)

(ii) Computing score values Ti for all other parameters (using corresponding heuristic

"rules")

(iii) Combining all score values for the final score S for the given click. If partial scores

are Tl, T2,· .. Tn for a given click, then the final integrated score is expressed as

75

(6.1)

(iv) If click score in (iii) is 5 = 0, do not include any new records in GFD database (for

IPs. User Agents or Rcferrers)

(v) If click score in (3) is 5 > 0, and there is no previous records for key click attributes

(IP, UserAgent or Referrer), create these new records with corresponding 5 values

(and increase the count of the number of clicks for a given attribute)

(vi) If some attributes of the click with 5 > 0 already exist in the GFD database, then

adjust their historic scores by weighted averaging 5 for each attribute separately

(IP, UserAgent, Referrer, etc.)

(vii) Based on values in fraudulent database GFD for each key attribute, dynamically

are modified "blocked lists" in the blocking database BD. Specific predictor is going

in the "blocked list" if its score value in GFD database is above the given threshold

T (not necessarily T = 1, the threshold may be T = 0.9)

In the following section we explain in detail the rules that are used in the CCFDP

system. These rules are designed utilizing standard industry heuristics for detecting click

fraud and new concepts that we have developed. All the rules follow a simple IF-THEN-

ELSE structure.

1. Server side IP and Client side IP mismatch

The click fraud detection system assigns a unique identifier for each session between

the web user and the web server. This identifier is known as the tracking id and

it is saved in a form of a cookie. XetMosaics combines the client side record and

server side record based on this tracking id value which should be the same for each

session. In some situations, NetMosaics has found the server side and client side

IPs do not match, indicating software-driven click fraud. An example is shown in

Figure 6.4.

76

server side ip client side ip tracltingid(server side) and tempcookie (client side)

196.25.255.246 198.54.202.194 42A3A1C9B02D468D9DCB3B8E6598B331

198.54.202.226

210 .24S. 31. 16

198.54.202.194

42A3A1C9B02D468D9DCB3B8E6598B331

OB68BC304AB74F9FB790EB1AS5BBE458

OB68BC304AB74F9FB790EB1AS5BSE45S

C93CEA47754D4AB1B9A65 B1 OBCEBB074

C93CEA47754D4AB7B9A65B10BCEBB074

Figure 6.4: Server side IP and Client side IP mismatch

The rule for this detection compares the server and client IP addresses to ensure

that they are the same. The rule also checks that the client IP is not nulL

Fraud score:

IF the server side IP and client side IP match = 0

IF the server side IP and client side IP do not match 1

2. Empty userAgent

A user agent is a text sequence that a browser reports to a web site containing

information such as the brand, version, plug-ins, and toolbars installed on a browser.
"-

Usually it looks like "l\lozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;

.:\'"ET CLR 1.1.4322; .NET CLR 2.0.50727)." The basic information is this browser

is Ylicrosoft Internet Explorer version 6.0 and it is running on a Windows NT 5.1

platform. This information helps web sites to determine what capabilities a browser

has, and helps the web site provide pages that cater to the browser. In addition

to normal web users, robots, spiders, and bots that browse the Internet also report

a user agent to web sites. Bots are automated software that browse web sites

looking for information. Popular bots include Coogle bot, Bing bot, and Yahoo!

Slurp. These bots crawl the Internet to find about content to include in their search

engines. These user agents are stored and updated in the CCFDP. Fraudulent bots

usually do not report their user agent. Therefore, the algorithm takes an empty

user agent into consideration, making a null user agent score higher.

77

partial Fraud Score:

IF user agent is not empty = 0

IF user agent is empty = 1

3. Server side entries with no client side entries (Software click)

In our system a software click is defined as a click with server side entries without

corresponding client side entries. This is similar to what is shown in Figure 6.5.

In this figure, SIP, strackingid, and suseragent are server side parameters and CIP,

cuseragent and clientside parameters that do not exist.

sop

"::[-'

S'tra.ck.inqid

cusera.qents·",rr

!IlJser agent

OSFF34COC<BO~ 466A!iE92CEro3eB96~O

Mozilla./4_0 icam.patible; MSIE €.O; ifl.ndows NI 5.1; SV'"1)

NllIJ.

2 C·; .Uf. ;;:41 103 88FOE7CCBC0340EBB5AllB€D04S34543S

Mozilla/4.0 (canpa.tl.ble; HSIE 6.0; Windows NT 5.1; S"vl; SIMBAR Enabled; SIMBAR={64BSF237-

C60C-44fa-ACS 4-62DDE1:5t5F4C4}; Fun1iebProducts}

NllIJ.

BS8€F~ge. alE4EEAlI08D11AEAOFlFEAFF

Mozilla/4 .. 0 (compalable; MSIE S.C'; 1fl .. ndows 98; DiqE:xe; Bellas On Line)

NULL

Figure 6.5: Software Click

If the user is a human, for each request there will be a server side log and a client

side log entry. However, if its a software, there will be no corresponding client

side entries. There is one exception for search engine crawlers. Search engines use

software bots to index their web pages; known as search engine crawlers that perform

software clicks. In our research we have filtered out the search engine crawlers before

processing of click traffic.

Partial Fraud Score:

Server side and matching client side entry exist = 0

Server side and matching client side entry do not exist 1

78

4. No user activities

A normal user will perform certain amount activities during the period that the web

page is viewed. These activities could be mouse over some text, clicking a link or

image, typing, scrolling up or down, etc. If there are no activities on the page, the

click will likely be generated by a bot and it is click fraud. We consider the behavior

of natural traffic without user activities to decide on a score for traffic. We allow

the same percentage of traffic without user activities in natural traffic to exist in

paid traffic.

To calculate a score we have considered the average click fraud percentage found in

pay per click traffic in search engines including Google AdSense and Yahoo Publisher

~etwork was 28.1 % in 3rd quarter of 2007. We take this value as the total fraudulent

traffic to calculate other corresponding score values.

Partial Fraud Score:

Total fraudulent traffic = 28%

No activities in natural traffic = 4%

No activities in paid traffic = 30%

Score for paid traffic without user activities = 28%*(30% - 4%)

= 0.07

5. Suspicious keywords in the user agent

A user agent is a text sequence that a browser reports to a web site containing

information such as the brand, version, plug-ins, and toolbars installed on a browser.

Usually it looks like "Mo~illa/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;

.~ET CLR 1.1.4322; .NET CLR 2.0.50727)." The basic information is: the browser

is ~licrosoft Internet Explorer version 6.0 and it is running on a Windows NT 5.1

platform. This information helps web sites to determine what capabilities a browser

has, and helps the web site provide pages that cater to the browser. In addition

to normal web users, robots, spiders, and bots that browse the Internet also report

79

a user agent to web sites. Bots are automated software that browse web sites

looking for information. Popular bots include Google bot, Bing bot, and Yahoo!

Slurp. These bots crawl the Internet to find about content to include in their search

engines and usually they carry keywords such as "Google I3ot," or "Yahoo! Slurp"

in the user agent.

A lot of click fraud from adware or spyware uses suspicious keywords inside their user

agent field. For example Figure 6.6 is extracted with the keyword "Fun WebProd-

ucts" in the user agent field. After processing these records we have found that they

are all fraudulent clicks.

213.55.89.84 Mozilla/4.0 (compatible; MSIE 6.0; Windows
NT 5.1; SV1; FunWebProducts)
121.247.221.209 Mozilla/4.0 (compatible; MSIE 6.0; Windows
NT 5.1; SV1; FunWebProducts; .NET CLR 1.1.4322)
125.99.244.44 Mozilla/4.0 (compatible; MSIE 6.0; Windows
NT 5.0; FunWebProducts)
24.132.32.13 Mozilla/4.0 (compatible; MSIE 6.0; Windows
NT 5.1; ciIENL; FunWebProducts)
125.60.240.205 Mozilla/4.0 (compatible; MSIE 6.0; Windows
NT 5.1; SV1; FunWebProducts)

Figure 6.6: Suspicious keywords in user Agent

In rare situations even normal traffic has such keywords. We have found out this

rate in normal traffic and the same rate is allowed in the paid traffic.

To calculate a score we have considered the average click fraud percentage found in

pay per click traffic in search engines including Google AdSense and Yahoo Publisher

~etwork was 28.1 % in 3rd quarter of 2007. We take this value as the total fraudulent

traffic to calculate other corresponding score values.

Partial Fraud Score:

Total fraudulent traffic = 28%

Suspicious keywords in natural traffic = 0.94%

Suspicious keywords in paid traffic = 11%

80

Score for paid traffic with Suspicious keywords = 28%*(11% - 0.94%)

0.028

6. Repeated visits

Duplicate detection algorithm that we developed detect repeat visitors in two ways.

The system implements a permanent cookie on the client computer for every new

visitor. This permanent cookie is designed to use as a 128 bit globally unique iden-

tification number. Chances are highly unlikely that an assigned permanent cookies

written to different client computers are the same. If the same user repeatedly visits

the monitored web site, their permanent cookie will be recorded in the database. If

the number of visits is beyond the allowed threshold value the click is suspicious. If

the client browser does not accept cookies then its IP can be used as an alternative

to detect multiple visits.

09

08

07

06

0.5

04

0.3

02

01

0'~--~----~--~4----~----~--~

number of cKcks

Figure 6.7: Repeated Visits scoring

At the beginning of the algorithm a table is pulled from the database that indexes

the last 10 clicks to the system. If a click to a page and IP match within five seconds,

they are added the match array. One match is a double click, two is a triple click,

four matches is an invalid as are any matches after that. When four or more clicks

occurs, the complete group of clicks is tagged as invalid. This means that the user

81

has clicked in a session at least four times and is classified as suspicious activity.

When five group Invalids take place, the IP is blacklisted. The score calculation is

shown in Figure 6.7.

7. History count

If the client computer permits Java script to be run in its web browser, our algorithm

can find how many web pages the current browser visited before visiting the current

website. Although Java script does not report the details of the visited web sites,

this count is useful for detecting click fraud provided that the client computer uses

Internet Explorer as the web browser. If Mozilla or FireFox is used, sometimes these

browsers ignore the previous visits and set the history count to zero.

If a site is referred by a search engine or other advertisement agent. the history

count should not be O. This is because the current browser must have the search

engine or advertiser agent in its history. This conclusion is based on the fact that the

advertisement link does not bring up a new pop up browser. The condition is easy

to be satisfied for many search engines, such as Google because neither google.com

nor its Adsense program use a pop up browser for their advertisements. Yahoo and

the Yahoo partner network program do not use a pop up browser link either.

We check to see if the user is using Internet Explorer using the browser field, then

we also check that the history length field is not null. If there is a history length,

we check that there was a referrer, to ensure that the history length is valid.

In rare situations even normal traffic reports history count as 0, while using Internet

Explorer and being referred by a website. We have found out this rate in normal

traffic and the same rate is allowed in the paid traffic.

To calculate a score we have considered the average click fraud percentage found in

pay per click traffic in search engines including Google AdSense and Yahoo Publisher

X etwork was 28.1 % in 3rd quarter of 2007. We take this value as the total fraudulent

traffic to calculate other corresponding score values.

82

Partial Fraud Score:

Total fraudulent traffic = 28%

Zero history count in natural traffic 0.074%

Zero history count in paid traffic = 7%

Score for zero history count = 28%*(7% - 0.074%) = 0.019

8. Cookie and Javascript are not allowed

Through our research, we have found that 95% to 99% of normal users allow

J avaScript and cookies in their web browsers. Most of the commercially available

click fraud solutions use Java script and cookies to collect information about the

client user. Traffic generated by fraudulent computers usually show as Java script

and cookie disabled. We have seen in pay per click traffic the percentage that allow

Java script and cookie is around 50%. Therefore, if the traffic does not allow cookies

and Java script, the traffic is suspicious. Within the algorithm we check to see if the

CCFDP previously set cookies are read and if the Java script generated text was

recorded with the click.

To calculate a score we have considered the average click fraud percentage found in

pay per click traffic in search engines including Google AdSense and Yahoo Publisher

X etwork was 28.1 % in 3rd quarter of 2007. We take this value as the total fraudulent

traffic to calculate other corresponding score values.

Partial Fraud Score:

Total fraudulent traffic = 28%

Percentage of natural traffic that does not allow cookie and

Java script 5%

Percentage of paid traffic that does not allow cookie and

Java script = 14%

Score for cookie and Javascript not allowed =28%*(14%-5%) = 0.02

83

9. IP and permanent cookie inconsistency

The cookie that our algorithm installs in a client computer in its first visit is a

globally unique identification number for a client computer. This id is part of a the

information that is sent to the web server by a client computer when a request is

made. If the client user has not visited the web site previously the client's computer

will be assigned a new cookie. Therefore, usually IP and permanent cookie for a

client computer should be consistent. That means if a user revisits a web site, the

IP address and its permanent cookie should be a fixed pair. If a cookie is deleted,

the system will assign a new permanent cookie. This will create an inconsistency

between the IP and permanent cookie. There is still another case for IP and perma­

nent cookie inconsistency in which a web user connects to the monitored site with

the same permanent cookie while their IP address is changing for every visit. Most

likely the web user is changing a proxy server for different visits.

In certain situations even normal traffic reports inconsistencies between cookie and

IP. We have found out this rate in normal traffic and the same rate is allowed in

the paid traffic.

To calculate a score we have considered the average click fraud percentage found in

pay per click traffic in search engines including Google AdSense and Yahoo Publisher

X etwork was 28.1 % in 3rd quarter of 2007. We take this value as the total fraudulent

traffic to calculate other corresponding score values.

Partial Fraud Score:

Total fraudulent traffic = 28%

Percentage of natural traffic with IP and cookie inconsistency = 10%

Percentage of paid traffic with IP and cookie inconsistency = 40%

Score for IP and cookie inconsistency =28%*(40%-10%) = 0.08

10. Page activity analysis

User or page activities that we track include mouse over text, clicks on text or

84

image, use of browser scroll bar, and use of keyboard. Existence of at least once

of these activities gives positives evidence towards a genuine click. But in some

situations we have observed user activities are not reported in actual user sessions.

This percentage is about 4.5%. Therefore, in paid traffic page activity analysis is

considered suspicious only when its rate increases beyond 4.5%.

To calculate a score we have considered the average click fraud percentage found in

pay per click traffic in search engines including Google AdSense and Yahoo Publisher

Xetwork was 28.1 % in 3Td quarter of 2007. We take this value as the total fraudulent

traffic to calculate other corresponding score values.

Partial Fraud Score:

Total fraudulent traffic = 28%

Percentage of natural traffic without user activity = 4.5%

Percentage of paid traffic without user activity = 43%

Score of percentage of users without user activity = 28%(43%-4.5%)

=0.108

11. IP time zone and Javascript time zone mismatch

In our data there are three location related parameters. IP, web users local time, and

time zone. The location indicated by those three parameters should be consistent

by any web visitor. Our location verification algorithms check that the timezone

and click time are valid.

In rare situations even normal traffic reports inconsistencies between IP and actual

time wne, which is about 3.09%. We have excluded this percentage in the paid

traffic.

To calculate a score we have considered the average click fraud percentage found in

pay per click traffic in search engines including Google AdSense and Yahoo Publisher

:\etwork was 28.1 % ill 3Td quarter of 2007. We take this value as the total fraudulent

traffic to calculate other corresponding score values.

85

Partial Fraud Score:

Total fraudulent traffic = 28%

Percentage of natural traffic with location mismatch = 3%

Percentage of paid traffic with location mismatch = 5\%

Score for IP time zone and Javascript time zone mismatch

= 28%*(5\%-3\%) = 0.006

12. Traffic is too dense

If the administrator is familiar with the traffic flow to a web server, for example 100

requests per minute from a particular referrer. and all of a sudden if the server gets

100 requests within 10 seconds it is suspicious. I3ased on the variable think time for

humans, their click flaw does not follow a pattern and there is a maximum number

of clicks per given time period that they can make. For example there is no reason

for a human to click 20 times on the same link within 10 second time interval. If

the click count is high for a given time period it may be due to robotic activity that

generates artificial clicks.

Partial Fraud score:

IF (page view time) is between 0 and 1 seconds

IF (click count) $>$ 10)

Score for dense traffic 0.7

13. Mouse click location analysis

We collect information about the location of the user clicked on the page, through a

Java script. This click location information tells where user clicked in the browser.

There are two ways of displaying advertisements in a web browser, either as a text

link or as an image. If this click landed on either of these the click will generate a

request for the target web page. But if it generates a request with a click without

a mouse move, the click must have been originated by a click bot. Because, a click

86

bot does not necessarily have to click on an advertisement to request a web page.

Our algorithm checks the running click count and mouse movement count to see if

the mouse has moved and if this is the first click. A higher score is given when no

movement is detected.

Partial Fraud score:

IF (mouse move count)$<$O

IF (click count)$>$O

Score for mouse click location analysis = 0.007

14. Blacklists

Blacklists are lists of IP addresses, domain names, email addresses or content of the

headers or the body, or some combination of these different types, that can be used

to help identify fraudulent traffic. A special subset of IP address and domain name

lists exist which can be queried using DNS, which are called DNS Blackhole.

If we identify that the traffic is referred from certain source that has a high per­

centage of click fraud in the history this referrer will be added to the blacklist. For

example according to the data in fraudulent database, we can easily identify that

the traffic from some referrer sites has very low mouse activities and high software

click rate. Those sites are added to blacklist referrer, and this list is maintained

dynamically where IPs are added and removed considering the baselines of traffic

they generate.

Partial Fraud score:

Score for blacklisted IP/referrer/country/etc. = 1

6.3 Mechanisms developed to detect click fraud in global context

Global context of click traffic is defined using behavior of the data in the past. Specifically

we define global context for each click parameter such as IP, referrer, country, ISP, etc. We

87

compile counts or histograms of these attribute-value distributions over time to determine

"normal"" activity for a particular attribute-value pair. We then compare the aggregation

of previous data with an aggregation of a current data. Observed behavior is flagged as a

potential fraud if it deviates significantly from expected behavior, which we rcferrer here

onwards as "outliers".

6.3.1 Dynamic baselines

A number of definitions have been given to the term "outlier" depending upon the task

at hand. For example Hawkins [Hawkins, 1980] defines outliers by the following: "an

outlier is an observation that deviates so much from other observations as to arouse

suspicions that it was generated by a different mechanism." This description points out

two important points for our task. First. that an outlier should be considered suspicious.

The deviation from "normal" data gives rise to suspicion, suspicion that some unusual

mechanism has generated this data point. Second, what is considered normal must be

modeled in such a way that points that deviate from what is considered normal can be

detected and separated from the rest of the data. This section will describe how we model

normal data, or in our case normal click traffic.

Each click record is made up of a number of attributes such as browser, operating

system, IP, referrer, etc. We model each attribute separately. We will determine normal

behavior for referrer separate from all other attributes and browser separate from other

attributes and so on. For each attribute we create histograms which maintain counts for

the most common values in each attribute. These histograms are called baselines. An

example of such a histogram can be seen in Figure 6.8 (left). In Figure 6.8 (left) one can

see the number of clicks for each of four values of the referrer attribute. These histograms

are then used to calculate the percentages for each value.

In addition to absolute counts being maintained in the baseline, we also measure

variance. Over time certain values were found to vary greatly in the percentage of traffic

with a given value. For example traffic with Google as the referrer varied through out

88

-

e -. o ..

"m.
.JJ L -=:J

442 (~Ia,'j<) TIt I'!T3"fi{

Figure 6.8: (left) Global baseline for four referrers as of 1/ 22/08. (center) Aggregated

window for 1/ 22/08. (right) Counts and thresholds for referrer on 1/22/08. Thresholds

are dark gray and counts in light gray.

time from nearly 100% to less than 50% of traffic in a given day. This variance made

comparisons with the baseline difficult . Variance is calculated using the formula to follow.

(J = t Pi (Xt _ p,) 2

i=l Ci,

(6.2)

This formulation of variance takes into consideration time periods varying in number

of clicks. In the above formula each time period within the baseline is given by i. The

Xi is the count within that time period for the attribute-value pair. The Ci is the total

number of clicks within the time period. The value p, is the percentage of clicks for the

current attribute-value pair throughout the entire baseline. Lastly, Pi gives the percentage

of clicks in the baseline from the current time period.

Our baselines are used to identify outliers in incoming traffic among the attributes.

Since we are identifying outliers based on context, we must necessarily accumulate clicks

for a comparison of short term context with past context. These short term accumulations

of clicks are called aggregated windows. An aggregated window is also treated as a

histogram. An example of the comparison of an aggregated window to a baseline can be

seen in Figure 6.8 (left and center) .

We assume that percentages for a given attribute-value pair are distributed normally

through time. An outlier is detected when a count for an attribute-value pair in an

aggregated window is found in the upper 5% tail of the normal distribution, or is 1.645

89

standard deviations above the mean as shown in Figure 6.9. We calculate the threshold in

terms of number of clicks using the following formula to ensure whole number thresholds:

threshold = [(f.l + 1.645 * 0") * windowsize] (6.3)

where f.l is the percentage of the baseline made up by the attribute-value pair and 0"

is the standard deviation of that percentage in the baseline. Additionally, window size

refers to the number of clicks in the current aggregated window. If the number of clicks in

the aggregated window for a particular attribute-value pair is greater than the threshold,

then it is considered an outlier. An example of calculated thresholds can be seen in Figure

6.8 (right).

~
0

>-
1ii ~ c:
Qj 0

0

~

0

C=!
0

-3 -2 -1 o 2 3

Standard Deviations

Figure 6.9: Gaussian (Normal) distribution with the top 5% highlighted

Outliers are detected for each attribute in a given aggregated window. The results are

then applied to the following context fields for each record: referrer, browser, operating

system, country, ISP, and IP. If a record has an outlying referrer for the current aggregated

window, it is reflected in the referrer context field . An example of an extended record can

be seen in Table 6.1. Baselines are then recalculated adding in the current aggregated

window to keep baselines up to date and for comparison to future aggregated windows.

90

Table 6.1: Example record after outlier detection preprocessing. Record now contains

server side data, client side data and context based on a number of attributes

Click data

Server side

Context fields

Client side Referrer Browser OS Country ISP IP

2 3 401 121 0.18 0.12 0.03 0.13 0.02 0

6.3.2 Fraudulent Traffic Scoring

The CCFD P system scores each incoming click. The score will be a value in the range

[0,1]' where a :lero represents no evidence of fraudulent behavior, and a one represents

100% confidence in the click being fraudulent. Within the CCFDP system, the outlier

detection module provides relevant context to each attribute for scoring each click. Each

click is provided a partial score for each attribute based on the variation of that click

within the current context from normal behavior. Zero signifies that no evidence was

found of suspicious activity for the given attribute-value pair in the current context.

We will discuss two approaches for scoring an attribute-value pair when the count

exceeds the calculated threshold. The first approach to scoring attach a context score

to a click record which conveys the extent to which a count has exceeded its threshold

or the degree of suspicion for that particular count. Take for example referrer X. In the

case where referrer X's calculated threshold is 2, it would seem logical to give a higher

partial context score if the actual count were 38 compared to 3. A different partial score

is given to counts that far exceed their threshold, compared to counts that barely exceed

their threshold. This provides more information to the overall scoring algorithm. This

could allow for more refined overall scoring by providing a range of values for suspicious

activity.

This approach to scoring uses the difference between the attribute-value pair count in

an aggregated window and the corresponding threshold. Then take that as a percentage

of the total number of clicks in the aggregated window. A score in this first approach is

given by the following formula:

91

counti - thresholdi
partial context score Ai = . d .

wzn owszze
(6.4)

This type of scoring will be referred to as "variable scoring" by later sections. The

closer to one the score gets, the more certainty given by the outlier detection system that

something suspicious is happening. When the score is close to zero, then little evidence

for suspicion is available. The second approach is to simply give a constant score to all

attribute-value pairs exceeding their thresholds. Click fraud is perpetrated in a large

number of ways, some approaches [Daswani and Stoppelman, 2007] expect that a large

number of clicks over a short period of time raises suspicions, and attempt a "low-noise

click fraud attack" .

6.4 Fusion of Data

We initiated this research with an assumption that more data about each click collected

from different sources will result in better estimation of the click quality.

Our data sources can be classified into three categories:

(i) Direct sources which include server computer, client computer with clicktracking

information.

(ii) Indirect sources real time buffer and fraudulent database GFD (data are generated

in extended real time).

(iii) History data baselines and Blocking Database (BD).

Data belonging to direct sources are collected in real-time and stored as a record of

the click without any preprocessing. Indirect sources define some derived click attributes

which require a significant amount of preprocessing. These transformations take place in a

real-time for buffer data (recent server data about clicks), and require extended real-time

for detection and recording outliers in the current time window compared with various

baselines.

Data fusion from these sources includes the following activities:

92

(a) Server and client side data are fused based on identical tracking ID. If IDs are not

the same, the equivalence of IPs is used as an alternative criterion for fusion of

partial records.

(b) Fusion of clicktracking data with client data is much more complex because of

their l:n relation: for each record in client side there may be more several user

activities recorded in clicktracking. Because we are performing data fusion in real

time we don't have possibility to "wait" for all click tracking data, and we make

"temporarily" integration based on pre-specified window of clciktracking records.

(c) Characteristics of the clicks are not only "static" based on server and client infor­

mation. There are also "dynamic" data about each click describing the context

which depends on clicks before and after the current one. For example, a single

click for a given IP may not be suspicious, but hundred of consecutive clicks from

the same IP will make this IP highly suspicious. Similar analysis can be performed

with other parameters registered at server side such as referrer or country. We are

using real time buffer (recent server click records) to detect these outliers online and

to transform them into additional context based characteristics of clicks.

(d) Collection of data about clicks is extended real-time that gives information about

clicks when comparing with standard baselines for key parameters.

(e) Each IP, referrer, etc. (key parameters) may have some history on the given site.

These characteristics are included in the record about current click. For example, if

the current click is based on referrer which has history of suspicious clicks, this fact

will be included in the record and computation of a click score.

(f) Blocking database describes highly suspicious clicks from some IPs, referrers, or

countries. Our implementation of blocking database allows online changes and

therefore more efficient blocking process comparing with traditional commercial so­

lutions.

93

Previous steps are only illustrative examples of a data fusion process, while the details

are given in the CCFDP documentation[~etMosaics, 2009]. The integrated structure of

a click record which includes all context information is shown in Figure 6.10.

Clknt S~r\er Real-tilllc fraudulent Ba,dine' Blo.:king
<-"'mpmcr Computer Buller Datab:"c DaHlha»l'

---.. 0
~

I

Figure 6.10: Integrated structure of the click

6.4.1 Why Data Fusion?

Data fusion is "a process dealing with the association, correlation, and combination of

data and information from single and multiple sources to achieve refined position and

identity estimates, and complete and timely assessments of situations and threats, and

their significance" [Lambert, 2009]. The resulting information is more satisfactory to the

user when fusion is performed than simply delivering the raw data [\Vald, 2001]. Waltz

and Llinas have described important features related to the development of data fusion

architecture essential also for any click fraud analysis system.

They include:

1. Robustness and reliability: The system is operational even if one or several sources

are missing or malfunctioning.

11. Extended coverage in space and time.

94

Ill. Increased dimensionality of the data space: It increases the quality of the deduced

information while reducing vulnerability of the system.

IV. Reduced ambiguity: More complete information provides better discrimination be­

tween available hypotheses.

v. Solution to information explosion [Waltz and Llinas, 1990].

Data fusion techniques arc widely used for target identification and tracking, situa­

tion awareness [Fusheng and Feng, 2008], threat assessment [Jane~ et al., 2000], military

[Tian et al., 2005] and public security applications [Zeng and Xu, 2008, Yukun et al., 2009].

In most of these applications the fusion model has been selected mainly considering the

practical application since there is still not a universal fusion model available. In this

paper, specific fusion process architecture has been introduced to our application based

on the Joint Directors of Laboratories (JDL) model [DOD, 1991] and we differentiate

between the following levels of abstraction:

1. Data/Observation level fusion: Measurements which can be univariate, multivari­

ate, and/ or multidimensional, measurements may also exhibit temporal, spatial

properties etc. are fused at this level.

11. Variable level fusion: A variable is derived from data using a data analysis algorithm.

Transformed domain variables are fused at this level.

lll. Decision Level: When the results of the high level fusion are available, variables

can be interpreted for decision making. The final result is obtained at the deci­

sion module by fusing the local decisions of the system to get a more precise and

comprehensive understanding to the system's situation.

Different fusion methods are used in different fusion levels, such as statistical estimation

[Durrant-Whyte, 1987, Hager et aL 1993], Kalman filter [Yukun et al.. 2007], fuzzy inte­

gration [Solaiman et al., 1999], neutral networks [Dai and Khorram, 1999], D-S evidence

theory [Wu et al., 2002] and so on. Of these fusion methods, D-S evidence theory is widely

95

known for better handling uncertainties. Moreover, it provides flexible information pro­

cessing and can deal with asynchronous information [Ouyang et al., 2008].

6.5 Dempster-Shafer Evidence Theory

The Dempster-Shafer theory, also known as the theory of belief functions, is a gener­

alization of the Bayesian theory of subjective probability. Whereas the Bayesian theory

requires probabilities for each question of interest, belief functions allow us to base degrees

of belief for one question on probabilities for a related question. These degrees of belief

mayor may not have the mathematical properties of probabilities; how much they differ

from probabilities will depend on how closely the two questions are related.

The Dempster-Shafer theory owes its name to work by A. P. Dempster (1968) and

Glenn Shafer (1976), but the kind of reasoning the theory uses can be found as far back

as the seventeenth century. The theory came to the attention of AI researchers in the early

1980s, when they were trying to adapt probability theory to expert systems. Dempster­

Shafer degrees of belief resemble the certainty factors in MYCIN, and this resemblance

suggested that they might combine the rigor of probability theory with the flexibility of

rule-based systems. Subsequent work has made clear that the management of uncertainty

inherently requires more structure than is available in simple rule-based systems, but the

Dempster-Shafer theory remains attractive because of its relative flexibility.

In the following section, terminology of theory of evidence [Shafer, 1976] and the no­

tation used in this paper are defined.

1. Frame of discernment: If 8 denotes the set of ON (ON E 8) corresponding to N

identifiable objects, let 8 = 01 , O2 , ... ON be a frame of discernment. The power set

of 8 is the set containing all 2N possible subsets of 8, represented by P(8):

P(8)={ <I> , {01 }, {02} , ... {ON}, {01 ,02} ,{ 01 ,03},' .. 8}

where <I> denotes the null set.

11. Basic Probability Assignment function (BPA) : The BPA is a primitive of evidence

theory. The BPA, represented by m, defines a mapping of the power set to the

96

interval between 0 and 1, where the BPA of the null set is 0 and the summation of

the BPA's of all the subsets of the power set is 1. The value of the BPA for a given

set A, represented as m(A), expresses the proportion of all relevant and available

evidence that supports the claim that a particular clement of 8 belongs to the set

A but to no particular subset of A. The elements of P(8) that have none-~ero mass

are called focal elements. Formally, this description of m can be represented with

the following three equations:

m: P(8) '* [0,1]

I: m(A) = 1
AEP(8)

m(<1» = 0

lll. Belief function Bel(A) : Given a BPA m, a belief function Bel is defined as:

Bel(A) = I: m(B)
B~A

(6.5)

(6.6)

(6.7)

(6.8)

The belief function Bel(A) measures the total amount of probability that must be

distributed among the elements of A.

IV. Combination of rule of evidence m(C) : Supposed mI and m2 are two mass functions

formed based on information obtained from two different information sources in the

same frame of discernment; according to Dempster's orthogonal rule we define m(C)

= (ml 1) m2)(C)

if (C=<1»

else

(6.9)

Where K represents basic probability mass associated with conflict defined as:

K = I: ml(A)m2(B) < 1
AnB-lip

97

(6.10)

In our system, evidence supports a click to either be valid or invalid. Therefore

it becomes a two class problem. Accordingly we have modified the calculation of

m(C) for the CCFDP system [NenIosaics. 2009]. For a two class problem, we can

simplify the equation for combination of evidence to:

(6.11)

where ri is the output from each model and n is the number of models.

6.6 Fusion of Evidences of Click Fraud in the CCFDP System

The collaborative click fraud detection and prevention (CCFDP) system was developed to

collect data about each click, involving the data fusion between client side log and server

side log [Ge and Kantard~ic, 2006]. In CCFDP there are three modules that contribute

to the process of finding fraudulent clicks. They are rule based module, click map module,

and outlier detection module. In each of these modules, output is a probabilistic measure

of evidence for the click being fraudulent. Authors have discussed the functionality of

each of these modules in detail before [Kantardzic et al., 2008, Kantardzic et al., 2009].

In addition, CCFDP maintains an online fraudulent database of suspicious sources of

clicks in terms of IP, referrer, country etc. When the score of an IP or a country etc.

reaches a predefine threshold value the CCFDP system moves it to the online fraudulent

database and inform the service providers with the instructions to block future traffic

originating from these sources. Scores for each parameter are updated after a click found

suspicious based on the combined evidences of the modules that we mentioned above. In

the following section we differentiate between an event and an evidence.

6.6.1 Event vs. evidence

Incoming click is the event we consider in the CCFDP system. The evidence provides

support information for this event's past and present activities. For example consider the

following four pieces of evidence of CF.

98

1. Evidence A: IP associated with the click generates software clicks (Software clicks

are generated by automatic agents such as click Bots).

11. Evidence B: Search engine crawler is associated with some clicks.

Ill. Evidence C: The referrer for these clicks is associated with fraudulent clicks detected

in the past .

IV. Evidence D: Click does not have user activities.

. :~~~~.:
" "

A { B ~ i , , .:
... :: ~.::-.. .::-.:~:.~.:~~.~.::::::::~ ...

,
\

Figure 6.11: Event Vs. Evidence

A piece of evidence can be associated with multiple possible events (click i and i- I)

unlike traditional probability theory where evidence is associated with only one event. For

example the click event i in Figure 6.11 is associated with evidences A, C, and D. Click

event i- I is only associated with evidence D. The two events share event D. Evidences

can overlap (A and C), one evidence can be a specific case of more general evidence (A

and B) etc. In CCFDP we try to maximize the detection of evidence associated with an

event. We achieve this by using extended context of the click, rule based module, baseline

module and click map module.

1. Evidence in the rule based module

In the rule based module evidence about CF is represented as rules. Each rule

has a value between 0 and 1. This module extensively analyzes the context of the

incoming click. Final score of this module is obtained by fusing these individual

scores. Fusion is done in data level using the D-S evidence theory.

99

11. Evidence in the outlier detection module

The outlier detection module defines outliers based on baselines for each click pa­

rameter (IP, referrer, country etc.) considering the data collected in the past. We

maintain two sets of outliers, Local and Global. Local outliers are based on one set

of click parameters and Global outliers are defined using another set of click param­

eters. Baselines are compared with the variations in the current context of the click

to detect suspicious patterns in the data. The variation (evidence) in each param­

eter is represented as a probabilistic score. A variable level fusion is performed to

combine the individual pieces of evidence using D-S evidence theory.

111. Evidence in the click map module

The "click map" tracks the current activities being performed by the user while the

user's session is active. "Click map" assigns a score for each click based on click's

location relative to the positions of the advertisements in the webpage the user is

viewing. In the current version click map module works as a classifier. It filters out

clicks recorded away from the actual advertisement area.

6.6.2 Assumption of Click Orthogonality

The Dempster-Shafer theory requires evidence to be orthogonal to perform its sum of or­

thogonality. Therefore any method of proof should be first used to verify this assumption.

In our system we will be using Pearson's correlation.

6.6.3 Model-driven fusion process

CCFDP combines the past and present evidence for each click to better understand its

current and future behavior. If the click is found fraudulent (combined score greater than a

threshold), the associated sources of the click will be moved to a suspicious database, which

will be immediately used by modules discussed above, to score the next new incoming

click.

The model-driven fusion process of CCFDP is depicted in Figure 6.12. Real-time data

100

... c c 0
.~ 'ilI

" III u. u
III e u

Co C
~ III

-C 0- .;;
'" UJ
t;;

l:':l Cl

n

Figure 6.12: Model-driven fusion process of CCFDP

feeds from three sources (k=3): server side, client side, and extended context of the click

(51 ,52 ,53), This is represented by sensors in Figure 6.12. In the data preprocessing

stage we standardize (align) the input data [Waltz, 1998]. The concept of alignment is an

integral part of the fusion process, and assumes "common language" between the inputs

and includes the standardization of measurement units. The scores from the rules based

module (DM model 1), outlier detection module (DM model 2), and click map module

(DM model 3) are then combined using D-S evidence theory at the decision level (m=3).

The combination of scores will be used to dynamically adjust advertising profiles in such

a way that low quality sources of traffic will no longer be shown advertisements.

6.6.4 A case study

In this section, we demonstrate the application of D-S evidence theory to combine evi-

dences of sources.

Evidence 1: Repeated clicks from IP during past minute detected by the rule based

module.

Evidence 2: Java Script is allowed in the browser detected by the rule based module.

Evidence 3: Country Morocco is detected suspicious by outlier module.

Our task is to use these evidences to show a click to either be fraud or non-fraud. Therefore

it becomes a two class problem. Fraud is represented by F, and non-Fraud is represented

by N.

Let 8 = {F, N}, We define the power set P(8)={<I>.{F}.{N}}. Assuming local suspicious

101

scores based on evidences, we define:

m1(<1»=0, m1({F})=0.6, m1{N}=0.4

m2(<1»=0, m2({F})=0.5, m2{N}=0.5

m3(<1»=0. m3({F})=0.7, m3{N}=0.3

Calculation of M1 EEl M2

For the convenience we use the fusion tables, introduced by Shafer [Shafer, 1976], to show

the calculations. Fusion tables are given in Table 6.2 and Table 6.3.

Table 62' Fusion of Evidence 1 and Evidence 2 ..

(M1 EEl M2) {F}0.5

{F}0.6 {F}0.3

{N}0.4 <1>0.2

Using equation 6: K =0.5*0.6 + 0.4*0.5 = 0.5

m({F}) = ml {?~;2{F} = ~:~ = 0.6

New belief function

Belmltflm2({F}) = l:B<:;:{F} m(B)=O + 0.6 = 0.6

Calculation of M1 EEl M2 EEl M3 using equation 6:

{N}0.5

<1>0.3

{N}0.2

Table 6.3: Fusion of Evidences 1,2 and Evidence 3

(M1 EEl M2 EEl M3) {F}0.7

{F}0.3 {F}0.21

<1>0.3 <1>0.21

<1>0.2 <1>0.14

{N}0.2 <1>0.14

K=0.09 + 0.21 + 0.09 + 0.14 + 0.06 + 0.14 = 0.78

m({F}) = ml{F}*m2{F}*m3{F} = 0.21 = 0 78
1-K 0.27'

102

{N}0.3

<1>0.09

<1>0.09

<1>0.06

{N}0.06

New belief function

BelmlQlm2Qlm3({F})=2::B~{F} m(B)=O + 0.78 = 0.78

In this example we considered the local suspicious scores of 0.6,0.5, and 0.7. D-S evidence

theory is used to find the final evidence. The belief value that the dick is fraudulent is

0.78.

6.7 Experimental Results and Discussion

~re developed the CCFDP improved version based on the its initial version developed by

Dr. Li Ge [Ge and Kantardzic. 2006]. The real time version of CCFDP is now available

online at http://www.netmosaics.com. All of our experiments use click data from Host­

ing.com and thebestmusicsites.org websites. The process was started on January 7th.

2007 and is still in collecting data. As of March 30th, 2011 we have collected around

1,400,000 natural and 25,000 paid click data.

Initial version of CCFDP was designed using only a rule based system. The new

CCFDP has outlier module and the click map module in addition to an improved rule

based system with additional click context information. Experiments are performed on

both old and new versions of CCFDP. Experiments are performed under five categories.

They are:

1. Verification of Click Orthogonality

11. Comparison of results for change in score of IP, Referrer, Country etc. in two

versions of CCFDP

lll. Comparison of distribution of final score

IV. Comparison of improvements in quality of traffic

v. Comparison of results with Google Adwords

103

6.7.1 Calculation of Click Orthogonality

We have calculated the Pearson Correlation coefficient between the results of the outlier

module and the rule based module. It is 0.0071. Based on the results, safely assume the

evidences are orthogonal and perform the Dempster-Shafer orthogonal summation.

6.7.2 Comparison of results for change in score of IP, Referrer, Country etc.

in two versions of CCFDP

After all paid click data has been processed we have selected the top 10 IPs, countries,

and referrers with the highest fraudulent scores to see if the fusion process has any effect

on updating individual scores of these parameters. Tables 6.4, and 6.5 list the IPs,

countries, and referrers that have the highest fraudulent scores respectively. The results

are slightly modified to protect privacy of some publisher websites. For example the actual

domain names and referrer names are replaced with dummy identifiers.

Table 6.4: Top IP and Countrv Counts
"

Top IP Count Top Country Count

IP Count Country Count

71.235.26.170 122 US 19784

68.88.239.191 112 IN 1278

136.165.67.74 94 CA 856

199.231.146.254 86 GB 666

89.139.234.179 82 NULL 574

203.162.3.146 80 MX 544

170.20.96.116 80 AU 534

71.193.114.12 72 TR 518

74.133.47.66 68 BR 506

74.192.144.103 68 PH 456

In Figure 6.13 (left) the variation of scores for IPs are depicted. Except for one

104

Table 6.5: Top Referrer Counts

I Referrer I Count I

No referrer (NULL) 8800

http://www.r1.com/ 4568

http://www.r2.com/ 2192

http://www.r3.com/ 604

http://www.r4.com/ 546

http)/www.r5.com/ 538

http://www.r6.com/ 510

http://www.r7.com/ 450

http://www.r8.com/ 420

http://www.r9.com/ 414

IP address (136.165.67.74) all others have higher fraudulent scores after combining the

evidences from all the modules. In the rule based system, evidence is collected by consid­

ering only the changes detected in a limited neighborhood 1. For example with only the

rule based system, it will be difficult to detect a Bot associated to a particular IP which

sends http requests in the time intervals greater than 15 minutes. But with the outlier

detection module that covers larger neighborhood1 of the clicks, the pattern becomes ob-

servable. Once a suspicious activity is detected this evidence will contribute to increase

of corresponding partial scores in the CCFDP system. IP address with higher scores have

increased probability of being blacklisted sooner. Once the IP addresses are on the black-

list the search provider will be notified to eliminate future traffic from the corresponding

sources. This will improve the quality of the traffic redirected to the advertiser's website.

One of the biggest advantages of using a multi-model system in CCFDP is its ability

1 A neighborhood is a window of clicks. It can be defined as fix amount of most recent clicks or

clicks arrived in a fix time interval. In the CCFDP system, rule based module uses a small (limited)

neighborhood of 10 most recent clicks. The outlier detection module uses a large neighborhood which is

all clicks received in the past 24 hours.

105

Score

O.S

0.6

0.4 • ... • 0.2 -j,-

0

• Multi modal fusion .. Rule based Score
• Multi modal fu~ion .to Rule based

0.6

0.7 •
• 0.6 • If -.-.---. --w _.

- . - A

0.5 , • • • • • 0.4 . .. - • 0.3

0.2 ------- ~
0.1 • 0 , J... A •

US IN CA GO NULL MX AU TR OR PH

IP Address Country

Scote

0 .8

0.7

0.6

O.S

0.4

0.3

0.2

0 .1

o

•
• Multi modal fusion .. Rule based

._-.. --- --• ----_._-. • • •
------ - .. -

Figure 6. 13: Variation of IP Score (left), Country Score (center), and Rcferrer Score

(right)

to cover wider area in the t ime domain. While the rule based module deals with events

within couple of minutes of each other the outlier detection module handles events in a

24 hour window. Figure 6.13 (center) shows the final scores of top 10 countries from

which we have received most of the traffic. With the rule based module alone we were

unable to detect patterns and variations in the time axis. Therefore almost all count ries

have a score less than 0.1, which implies clicks from these countries are not suspicious at

all. But with the outlier module, which keeps track of t raffic for extended period of time,

we were able to detect abnormal traffic from most of the countries. For example some of

106

these countries send traffic only during certain hours of the day.

A similar behavior is observed with the top referrers of traffic to hosting. com site.

Figure 6.13 (right) shows the variation of scores of top 10 referrers. All these referrers

appear normal when they are evaluated only with the rule based system. But when t hey

are evaluated together with click map module and the outlier detection module referrer

scores were drastically increased. Some of these referrers are from outside the US. When

the countries suspicion score increases so does the scores of associated referrers. For

example we mentioned in the above example that certain countries send traffic only in

certain hours of the day. When we include the click context it is observed that most of

these referrers are associated with those countries. This behavior will be very hard to

detect if we are using only the rule based score.

In traditional system (rule based) country and referrer did not influence on the score

almost at all. Inclusion of addit ional modules make country score and referrer score

become much more sensitive. For example the new system include country parameter in

73% of clicks from US in the final score.

• ••• •• Rulebase module score outlier module score - final score

1.2 .,..--------------------

1 +-TT---r-r-r-r-TTTT-r-,-,-~-------

0.8 +-HR,.---.... -8--A--I-HH-A::---fIHh~----

~
oX 0.6

0.4

0.2
Count

o i j i jill i jill Iii Ii" iii i II iii (j Ii iii iii Iii I I Ii iii Ii Ii I Ii iii iii ii' i " Iii i i It

1 4 7 1013 16 19 22 25 28 3134 37 40 43 46 49 5255586164677073

Figure 6.14: Variation of score for a blacklisted IP

We have mentioned that highly suspicious members of IP, referrer , country, etc. are

blacklisted once they are detected by the CCFDP system. Figure 6.14 shows the variation

of scores for such a blacklisted IP. In this graph 0 corresponds to a valid click and 1 is

assigned for an invalid click. Even a valid IP can have many Is recorded as its final

score due to situations like double clicks. We usually do not penalize users for double

107

clicking on an advertisement since the user may be accustomed to Microsoft's default

way of choosing something on the screen. This can be clearly observed in Figure 6.14

where there are clicks for the same user that hit the score 1 even before it gets blacklisted.

The situation changes if the clicks are repeated more than 2 times during a given time

interval. Once enough suspicious activities are detected the IP is finally moved to the

blacklisted database and the search providers are notified. For example In Figure 6.14

this IP is moved into the fraudulent database after 59 clicks. With the support from

search providers our system will block future traffic generated from this particular IP

reaching a client's website.

6.7.3 Comparison of distribution of final score

Click Count
....... Multi modal fusion -++-Rule based

12000 -rr----c-:-:-r-~_,_--_,_--:-:-:--.__:_:_:_-___,

10000 ty--t\-r---;----;----;---t--;

8000 ~--I'-+T----T---T---T---I--i

6000 ~~~~--T---T---T--~-,

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Click Score

Figure 6.15: Score distribution

Figure 6.15 shows the distribution of final scores for all the clicks with two versions of

CCFDP. The lighter graph (L) corresponds to the first version of CCFDP where only rule

based module was used. The darker one (D) is the new version with multiple modules.

Area I represents most of the valid clicks. This corresponds to the records with attributes

which do not have presence in the fraudulent database and all key attributes satisfies the

requirements defined in the algorithm to be a legitimate click. The percentage of traffic

present in Area I with system L is much higher than that of system D. With the inclusion

of multiple models the suspiciousness of clicks has increased and the graph is shifted to

108

the Area II with the system D, which is still in the safer region. Area III shows the

suspected clicks. These are records with the attributes present in the fraudulent database

or attributes that exceed certain threshold values. It can be clearly seen in the graph how

the scores have increased after fusing multiple pieces of evidence from different modules.

Area IV includes invalid clicks. Blocked traffic is identified as clicks with highly suspicious

scores usually greater than 0.9. As shown in Table 6.6 with the t raditional system (rule

based system) we were able to block only 520 fraudulent clicks but with the muti model

system it was 643, which is about 24% additional clicks. We believe that advertisers

should not be billed for any of these clicks.

Table 6.6: Distribution of clicks in each region in Figure 6.15

I I I II I III I IV I

Rule based system 12198 1 3 520

M ulti-model system 4197 4650 3817 643

• Rule based module percentage Outlier module percentage

100% ,---~--' ---------------------
90%

80% -,,",,,,, ,,~

70% ..
60%

E 50% ..
~

40% .. a.
30%

20%

10%

0%

Click 10 (Scale X 100)

Figure 6.16: Percentage Participation

Figure 6.16 shows the percentage participation of each module in the final score

calculation. Remember that the click map module is already used as a screening module

to filter invalid clicks, where mouse clicks are recorded off-positioned to the advertisement .

Light area of Figure 6.16 represents the rule based module participation and dark area

109

represents the outlier detection module participation .

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

'. Avg. Score of traffic ~ Avg. Quality of t raffic

0% +-__ LU~~ __ -r __ ~~LU~ __ ~ __ /J~~~ __ ~

Rule based module
alone

Outlier detection
module alone

Combined system

Figure 6. 17: Improvement of quality of t raffic

6.7.4 Comparison of improvements in quality of traffic

We looked at t he changes in quality of t raffic after implement ing the mult i-model based

CCFDP system. A summarized version is depicted in Figure 6. 17. The dataset was used

in t he rule based module alone and found t hat the average 53% of t raffic is suspicious

[Kantardzic et al. , 2008]. \ iVhen running the out lier detection module alone on t he dataset

we discovered that about 34.6% of all clicks had one or more attributes t hat were found

to have an outlying attribute-value pair count [Kantardzic et al. , 2009]. Clicks found to

have an out lier will contribute evidence effecting part ial scores. T he CCFDP system will

compute t he final score measuring suspicion for each click. And with the multi-model

system classified about 64% of paid t raffic as fraudulent . In addit ion we have observed

the changes in the online fraudulent database. In the t raditional system, only with rule

base , the fraudulent database has recorded 71 IPs as fraudulent . The multi-model system

recorded 283 IPs as fraudulent with the same data set, which is nearly 4 t imes more than

the t radit ional system. This is a greater improvement in terms of prevention of fraudulent

traffic. As we discussed in Figure 6. 13, the t radit ional system has very lit tle effect on

country score and referrer score when calculating the tot al score. But with the mult i-

modcl system scores for countries such as India, Morocco, Mexico have shown enough

SusplclOn. Clicks came from these count ries received a higher fraudulent score but the

110

system did not have enough suspicious clicks to block any of the countries completely. A

similar results are observed for referrers.

We defined the quality of traffic as (1 - score). Using only the rule based module

and the outlier module we have about 47% and 65% quality scores respectively. With

the combined model we were able to get much better traffic with about 36% of quality.

With these results we can see that the multi-model based CCFDP system is capable of

improving the detection of fraudulent traffic at least by 10% compared to same models

working alone.

600

500

~ valid ~ invalid

400 .,~=====~.a.fSi== 300]i

200

100

(a) Second month

'* va lid ... invalid

3000

2500

c 2000
~
0
u 1500 ...
v 1000

500

(b) Eighth month

Figure 6.18: Click traffic in second and eighth months of 2007

Additionally, we looked at the number of suspicious clicks in the Hosting.com adver­

tising traffic during two different periods, where we had considerably more clicks. Figures

6.18 (a) and 6.18 (b) show advertising traffic during these periods (second month and

eighth month). In these time periods outlier detection module has found increasing num­

ber of suspicious alarms2 . The multi-model system found 10740 clicks (out of 24528 total

clicks) to be fraudulent, while the rule based system only detected 6990(not shown in the

figure). In addition we analyzed the volume of total clicks from Google and its partner

network during these two periods of time.

Figure 6.19 shows the total and invalid traffics from Google and Google partner

networks for the second month and the eighth month. First thing to observe is there is

2 A closer inspection of the data shows that a number of factors contributed to this higher rate of

outlier detection. One such factor was that there was a major shift in the keywords used in the Google

advertising campaign for the website.

111

3000

2500

2000

1500

1000

500

o

2444

22

2/14/07·2/29/07 8/24/07·9/6/07

Google direct traffic Google partner network traffic

" valid traffic for Google direct _, invalid traffic for Google direct

?< valid traffic for Google partner S$ invalid traffic for Google partner

Figure 6.19: Traffic analysis for Google

much higher volume of traffic in the eighth month compared to the second month. Second

thing to observe is that traffic from Google partner networks in the eighth month is almost

negligible. In the second month out of 307 direct Google referrals 71 are observed invalid,

while 138 of 583 Google partner network referrals are detected invalid. In the eighth

month total Google only traffic is 2444 and nearly 50% (1036) of that traffic is found to

be invalid.

70 ~ Total ~ Invalid
60

~ 50
:J

40 0
u
.>< 30
.~
U 20

10

0

Google Publisher ID

Figure 6.20: Referrer analysis with Google Publisher ID

We also looked at the top referrers in the Google partner network during the second

month. Figure 6.20 shows these referrers identified by their Google publisher ID. These

statistics are generated using the extended context of click data. We looked at the top five

countries , other than the US , present in the invalid Google only traffic. They are depicted

in Figure 6.2l. Both India (IN) and TUrkey (TR) remained as a common candidate in

112

both lists. It is the outlier detection module that detected traffic from these countries

becoming suspicious. These evidence is added to the overall system for the purpose of

detecting fraud.

20

18

16

14

~12
1: 10
OJ

~ 8
0. 6

4

2

o
IN MA MY PH TR CA TR GB IN AU

2/14/07-2/29/07 Country 8/24/07-9/6/07

Figure 6.21: Top 5 country lists for invalid Google only traffic

6.7.5 Comparison with Google Adwords

In the previous section we have shown the comparative study between the initial and

the improved version of the CCFDP system. In this section we discuss the comparative

analysis that we have carried out with Google Adwords program. We have partnered

with hosting.com. All of our experiments use click data from Hosting.coms website.

Hosting.com is a global company which provides hosting solutions to "business critical

data assets" as explained on their website. The data which will be used for the experiments

to follow comes from the paid traffic of their advertising campaign. Figure 6.22 shows

the list of advertisements that we have used in the Google Adwords campaign.

In the year 2007 data collected during the period from 01-18-2007 to 12-31-2007 and

in the year 2008 data collected during the period from 01-01-2008 to 07-15-2008. During

analysis we have found out that data are not continuous and changes are made in search

advertising networks. Even though the company made available all the data to us, the

official Google Adword reports are available only for 3 months of the year 2008. Therefore

for the year 2007 we did not do any comparisons.

113

Ad Group: Virtualization

fKeyWordVirtualization}
Providing virtualized hosting for
enterprises and small biz since '03
I/I.I/.IN_H osiin g. (;om?{Ke:~Mli ord :\/tl.rtl:eoh}

Ad Group: Managed Hosting - US

fKeyWordManaged Hosting}
Managed Hosting. Managed Belter.
100% uptime at 70% of iIle cost.
V .. IM"J.Hosiin~. com

Colocation-US

Ad Group: Data Center
{KeWVord:Colocation Trends}
Download free 20C13 Colocation
Trends Report. No obligation.
Ift.I/'.I.!'IJ. H C6ting .(;(1 m',{Ke'yW ord:C ¢ I\J_ Survey}

\ KeyWord: Hosting.com Colocation}
Enterprise colocation and business
continuance from CA. MIl. and KY.

1JJJJ\IJl.I. Hosting .co nv'fKeWl/ ord:C olo}

Ad Group: SFO - local Searches
Colocation Trends
Download free 20C13 Colocation

Trends Report. No obligation.
Hortin g.COnv'{K~iword:C(l!(Ioatjo)n_ Tr~n m}

{Ke\IYVord: Data Center)
Qualitv data centers in downtown
San Fran and in Silicon Valley.
Hostin9_com/{I·(eyword:Dat.:u::enter}

SOF-Collocation

Ad Group: Colocation - louisville
Colocation Trends
D ownl oad fr ee 2000 Col ocation
Trends Report. No obligation.
H ClSting .co rr~ Ke~~Jl((lrd:C () 1o_Survey}

Hosting.com {KeyWord: Data Centers}
Kentuckys Largest DC. Colocation &

Ma nag ed H ostin 9 in Lo uisvill e. KY.
H ostin g. com"{Keyt.il,ord:D afD C ente rs}

Ad Group: SNA -local Searches

Colocatjgn Trends
Download free 20C13 Colocation

Trends Report. No obligation.

H >,>tin g. Q9m1 Vf:.\W Q[d;D .liI_C enter)

IKeyWord:Oata Center}
100% uptime. 24<7 s upp ort staff.
world- class facility in Irvine. CA
H ostin g. com~ Ke\hAl Qrd:D ala _C enter}

Ad Group: Colocation - CPM

(KeyWord: Data Center Colocation}
Managed Colo""tion.
Mana ~e d Be1ler.
"' , .• (oJ.HostinQ.ooml{l<""WQrd',

Ad Group: General Hosting Words

Nlanaged Hosting
Managed Be1ler. Superior support&
100 % uptime at EO% of ill e cost.
li~I{I.I/I.I.H 051]09. com

CFX ManagedNPS

Ad Group: CFX Macromedia

Nlacromedia Webhosting
ColdFusion. Flash. JRun. MX hostin~
Secu re. rei iabl e. Dedicate dis har ed.
l(l,1.1\IJ\I.otxhosting. ro m

Ad Group: CFX ManagedNPS

Nlanaged CF Hosting
CF virtualization and managed
hosting fr om ill e C F h osting lead er.
tl)",AI)\I.h a=:tirH1. co m?cf;< 1\11aoro rned ia

Ad Group: Managed Hosting - Australia

Nlanaged Hosting Australia
Managed hosting tailored to you.
Toll free s u ppo rt. Great newo rk.
IArAl"".H ostin g. oOtrnAIl5tr al ia

Ad Group: HOC ASP 2JJ & SQl 2005

{KeyWord: Microsoft Hosting}
start hostin 9 your n AS P 2.0 an d
SQL2005 apI'S now with the leader.
HostinQ.oom.H:ev\Oiord: Microsoft1

Ad Group: Complex Hosting

Nlanaged C omP! ex Hosting
Choioe provider ofthe Fortune 500.
Managed Hosting. Managed Belter.
t'I.IflAAI.H ostin g. com

Ad Group: COG.com

Grid Computing via a CDG
Pioneers of content delivery grids.
The next gener ation CDN is here now
ll·'A.l.IJ\I.cdg. com

Figure 6.22: Ad Groups used in the campaign

(a) Monthly Click Traffic Distribution

Table 6.7 and Figure 6.23 summarize the CCFDP results for each month of the year 2007

for traffic from Google and Google partner network. During this period we have analyzed

total of 17586 clicks and CCFDP has determined 12258 of 17586 as valid clicks. i.e.

about estimated click fraud of 30.3%. Blocked traffic are the clicks that were invalidated

immediately from the CCFDP system because t.hey were found fraudulent in previous

analysis and were recorded in the blacklisted dat.abase. For example in the month of

January, 528 clicks from 9 different IP addresses were immediately invalidated. Rest of

114

the clicks are further analyzed and 1623 of them are found to be invalid.

Month

January

February

August

September

October

November

December

.. . , Table 6 7' CCFDP Traffic Analysis for Hosting com in 2007

Total traffic

9230

4316

447

1380

1434

547

232

10000
9000
8000

~ 7000
.;< 6000
o 5000
~ 4000
>- 3000

2000
1000

a

CCFDP

Blocked traffic Blacklisted IPs Invalid clicks

528 9 1623

84 0 818

2 1 183

64 3 878

72 2 1336

11 0 377

5 0 113

:- Total Traffic :s, Valid Traffic

232114

Month

Figure 6.23: Comparison of Valid vs. Invalid Clicks

Valid clicks

7080

3414

50

478

26

159

114

Table 6.8 and Figure 6.24 summarize the CCFDP results for each month of the

year 2007 for traffic from Google and Google partner network. During this period we

have analyzed total of 8167 clicks and CCFDP has determined 4042 of 8167 as valid

clicks. Blocked traffic are the clicks that were invalidated immediately from the CCFDP

system because they are found fraudulent in previous analysis and were recorded in the

blacklisted database. For example in the month of January, 7 clicks from an IP addresses

were immediately invalidated. Rest of the clicks are further analyzed and 4042 of them

115

are found to be invalid.

Table 68' CCFDP Traffic Analysis for Hosting com in 2008 ..

CCFDP

Month Total traffic Blocked traffic Blacklisted IPs Invalid clicks Valid clicks

January 787 7 1 282 498

February 1617 8 0 744 865

March 1473 37 3 498 938

1Iay 611 3 2 400 208

June 3679 135 6 2201 1343

.\ Total Traffic ~ Valid Traffic

4000 3679

3500 ~ 3000 ~ VI
2500 -'"

I.
,;,!
U 2000 1617 'iii 1473
C 1500

1787 Ii l-

Ii -1000 611
l :-,498 • I • 500 I.~ ~ ~ ~C 0

January February March May June

Month

Figure 6.24: Comparison of Valid vs. Invalid Clicks

Table 6.9 summarizes the Google Adsense reports for each month of the year 2008

for traffic from Google and Google partner network. In YIarch Google has reported 1247

valid clicks and they have charge $2.67 on average per click. Similarly for the months of

May and June total ad expenditure is $15,562 and $9,624 respectively. At the end of the

campaign Hosting.com paid $28,516.

Figure 6.25 shows the comparison of CCFDP and Google Adsense analysis for three

months of the same campaign. In the months of 11 arch , May, and June CCFD reported

to have received 1473, 611, and 3679 paid clicks. Among those it has invalidated 498,

400. and 2201 clicks as fraudulent in the corresponding months. This resulted total valid

116

Table 6.9: Google Adsense Traffic Analysis for Hosting.com in 2008

Google Adsense

Month Valid clicks A vg.cost per click Total cost

March 1247 $2.67 $3330

May 3304 $4.71 $15562

June 2839 $3.39 $9624

traffic of 938, 208, and 1343 for the months of March, May, and June respectively. One

thing to notice here, that there was a problem in the data collection in the month of May

and because of that total traffic does not represent the traffic of the entire month.

We requested the Google Adwords reports for the same duration. They have reported

1247, 3304, and 2839 of valid clicks in the months of March, May, and June. In all 3

months CCFDP has deterrnined more invalid traffic compare to Google. If we stick to

the same average cost per click, this analysis suggest that Hosting.com could have saved

more than $20,480 during this period.

,'CCFDP ~ Google Adsense

3500 3304

3000 2839

2500
."

"" .!:! 2'000 i
iJ
iii 1500 0 1247
f-

1000

500

0

March May June

Month

Figure 6.25: Comparison of valid traffic in CCFDP and Google Adwords in 2008

Current version of the CCFDP system provides better results compared to its first

version. This is mainly due to the use of extended click context to analyze and estimate

the quality of a click. There are further improvements to be done to make it much more

robust and reliable to detect robot clicks, which are clicks generated by software programs

117

known as clickbots. These clickbots click on ads and issue HTTP requests for advertiser

web pages. There are many types of clickbots used on the Internet. Some are "for­

sale" clickbots, while others are malware. For-sale clickbots such as the Lote Clicking

Agent, I-Faker, FakeZilla, and Clickmaster can be purchased online. They typically use

anonymous proxies to generate traffic with different IP addresses. An anonymous proxy

server generally attempt to anonymize web surfing. However IP diversity usually is not

enough to hide click fraud attacks conducted by such software, and traffic generated

by them is identifiable. Malware type clickbots infect machines in order to achieve IP

diversity, and their traffic may or may not be as easily identifiable as that generated

by for-sale clickbots. In order to detect and remove robots, we need to have a better

characterization of the distribution of click behavior. Current version of the CCFDP

system detects some types of clickbots. but improvements are necessary especially with

a wide variety of new clickbots occurring on Internet. In Chapter 7 we detail the new

improvements to the CCFDP which we have made in its development phase 3.

118

CHAPTER 7

EXTENDED ANALYSIS OF CLICK BOTS IN CCFDP

One of the most significant threats to the Internet advertising today is the threat of click

bots, which are networks of compromised machines under the control of an attacker. It

is difficult to measure the extent of damage caused on the Internet by these bots, but it

is widely accepted that the damage done is significant. In future, most of the fraudulent

activities will be carried out by these bots because they are less expensive to develop or buy

and easy to maintain. Therefore, future cliek fraud detection systems must incorporate

robust detection techniques to protect their customers from these sophisticated click bot

attacks.

On the other hand, users of a practical click fraud detection solutions expect these

duplicate detection mechanisms to run in realtime. In order to provide real time results,

solution providers should utilize data structures that can be updated in real time. In

addition, If the actual volume of clicks (per unit time) is high, space requirements per

click should be the lowest possible thus data structures with constant space requirements

or sublinear space requirements such as O(log(n)) or O(log(log(n))) are desirable (n is

the number of clements processed).

Most of the click fraud solution providers, including search engines and third party

solution providers, claim their rule-based expert system is the best among the others

taking the advantage of keeping rules as a secret weapon. They do not disclose information

about the set of rules due to fear of competition. This situation even led to multi­

million dollar settlements in the recent years. Due to the lack of verifiability of click

fraud solutions, it is inevitable that the trust between service providers and advertisers

is degraded. Since real-world click fraud solutions are usually kept secret for fear of

119

competition, it is practically impossible to study many of them in a single context.

In the "new CCFDP", that we have developed in phase 3, we have addressed the above

Issues. In section 7.1 we discuss the naive Bayesian classifier that we have developed to

detect Smart ClickI30t type clicks. In section 7.2 we elaborate on the proposed space

efficient Bloom filter based data structure to process clicks. In section 7.3 we discuss the

modeling of knowledge and validation (KV) model for rule based expert systems used in

click fraud detection.

7.1 Extended analysis of click hots

Click bots represent one of the fastest growing threats on the Internet advertising, given

that they adapt perfectly to the new malware dynamic in which threat creators are no

longer searching for notoriety, but for financial returns. With this in mind, they try to

ensure their creations are installed without arousing the suspicions of users or security

compames.

The current situation reqUIres the use of proactive technologies, which can detect

unknown threats by examining their behavior. A click bot does not necessarily click on

an ad to issue a click. It is programmed to generate "fake" clicks that mimics actual

clicks. Most of the time it is an HTTP request that is artificially generated. Therefore it

is important to verify whether the click is originated from an authentic browser such as

Internet Explorer, Mozilla, etc.

A number of challenges make this task difficult. First, the amount of data to process

is often huge, on the order of terabytes per day. Thus any method that mines the data

for identifying bot traffic has to be both efficient and scalable. Secondly, most of these

data are not disclosed due to privacy, security and business policy issues. Furthermore,

with many bot-net hosts available, attacks are getting increasingly stealthy with each host

submitting only a few clicks to evade detection. Therefore, click bot detection methods

cannot just focus on aggressive patterns, such as in Bahama bot, but also need to examine

the low rate patterns that are mixed with normal traffic. Third, attackers can constantly

120

craft new attacks to make them appear different and legitimate; thus we cannot use the

training-based approaches that derive patterns from historical attacks. Finally, with the

lack of ground truth, evaluating detection results is non trivial and requires different

met hodology and metrics than the detection methods.

In the new CCFDP it was one of our goals to achieve the target of developing a robust

detection mechanism against these low noise click bot. Vve have developed a novel classifier

that for this purpose. It was successfully tested to detect the clicks from SmartClick Bot,

an advanced and intelligent click bot. Before detailing the machine learning techniques

that we have used, the following section gives a brief introduction to the Smart Click Bot.

7.1.1 An Overview of the Smart ClickBot

The Smart ClickBot is a software Web robot that clicks on ads (by issuing HTTP requests

for advertiser web pages) to help an attacker conduct click fraud 1. It was first detected and

reported by the Netl\Iosaics click fraud detection system in 2010 [Kantardzic et al., 2008,

Kantardzic et al., 2010a, Kantardzic et al., 2010bj. Smart ClickBot is a for-sale click bot

and it can be purchased[Walgampaya and Kantardzic, 2010j. Once installed and config-

ured the Smart ClickBot is able to act by itself. It uses anonymous proxies to generate

traffic with IP diversity. It also has a random user-agent generator that generates user-

agents registered to well known HTTP browsers. By doing so, it can mimic a request

originated from a valid browser because click fraud detection solutions usually suspect

clicks without a valid user-agent field [Tan and Kumar, 2002j. To make it look more real-

istic it can even attach a rcferrer field. Referrer in pay-per-click system is a website that

helps a web user to reach another website. Therefore if the referrer field carries values

correspond to famous search engines or other popular websites it will be least suspicious

to anybody observing the server logs.

Operator of the Smart ClickBot can set the time interval between successive clicks,

known as the Click-Through-mte(CTR)2 and configure to run multiple click campaigns

lthe act of generating illegitimate clicks to make profit or deplete competitor advertisement budget.

2CTR is a way of measuring the success of an online advertising campaign. A CTR is obtained by

121

simultaneously. The Smart ClickBot has 3 distinct campaign modes. They are: single

hit, list-like, and banner-like, which are especially designed to suit different webpage

structures. Once the bot loads the webpage that has the advertisements the user can

specify where to click.

In the next section, we discuss in detail the systematic approach taken by the NetMo­

saics system to detect click patterns generated by the Smart ClickBot.

7.1.2 Methodology for Smart Clickbot detection

1. Data Collection, Pre-processing and Session identification

Interactions with a Web server, either by humans or software. are recorded in the

server access logs. To characterize the behavior of bots statistically, we need to be

able to isolate the behavior of robots from that of the general population of (human)

"reb users.

:vIost of the existing bot detection systems uses only the server side data in their

analysis and therefore entirely depends on these server log data to identify robot

sessions. A session is the duration that a user (either human or software bot)

maintains an active HTTP connection with the server. But, because of the stateless

nature of HTTP traffic, incoming requests are considered and logged as independent

events. Therefore, access logs do not contain any information that could relate

together requests issued during a single "visit" of one user to the Web-pages of a

Web server [Stassopoulou and Dikaiakos, 2009].

Furthermore, in [Tan and Kumar, 2002] Tan and Kumar stated that "Without client­

side tracking, cookies or embedded session identifiers, it is extremely difficult to

identify the individual sessions in the Web server logs reliably". Even though there

were some alternative attempts[Pirolli et al., 1996] to group server logs into sessions,

dividing the "number of users who clicked on an ad" on a web page by the "number of times the ad was

delivered" (impressions). For example, if a banner ad was delivered 100 times (impressions delivered)

and 1 person clicked on it (clicks recorded), then the resulting CTR would be 1 percent.

122

none of them showed promising results.

Web ,,-'"
Request ././

./ 4
././ Response

./ with tracking code
It./ and tracking ID

5
Tracking code sends
client information back.

NetMosaics Global

Figure 7.1: The NetMosaics data collection process.

Therefore, we developed a click fraud detection system, NetMosaics, that uses both

server side data and client side data to better understand the context of the click,

while providing an easy platform to generate user sessions. Figure 7.1 shows the

high-level processing flow of the Net Mosaics system. In this system user sessions

are easily matched with a unique tracking number that is shared by both server

side and client side data. Robot generated traffic usually do not have client side

entries. Therefore, none of the bot traffic will be merged , and they will be left in the

server side log. The matched traffic is further analyzed by the etMosaics system

for more suspicious activities to improve the quality of the incoming traffic. Only

the improved matched traffic will be delivered to the Net Mosaics clients. What is

left in the server side is separately analyzed, which is the scope of this section, for

potential bot networks.

Our system has been collecting and analyzing click data continuously since it was

launched in 2004. While delivering higher quality traffic to our clients we periodically

analyze what is left in server side, which are mostly bot data, collectively to identify

unknown bots and their behavioral patterns. Discovery of Smart ClickBot is a

result of such an attempt. One of our honeypot3 servers was infected with the

3honeypot is a trap set to detect, deflect, or in some manner counteract attempts at unauthorized use

of information systems. Generally it consists of a computer , data, or a network site that appears to be

part of a network, but is actually isolated and monitored, and which seems to contain information or a

resource of value to attackers.

123

Smart ClickBot. After the detection of the bot we were able to reverse engineer it

to obtain a copy.

Multiple copies of the isolated click bot is then installed and used to carry out

attacks in a controlled environment . Bot clicks are collected for a period of 7 days

from 3/3/2011 to 3/9/2011. 1000s of different IP addresses are generated through

proxy servers. Also, another 100s of referrer sites are used. Time between clicks

is varied randomly between 0 - 1000 seconds. They are configured to issue HTTP

clicks at www.thebestmusicsites.org, a Web site that we have designed, that has

both text and banner advertisement links. A bot is set to issues clicks between 0-5

in a given session. During the experiment, bot configurations are randomly changed

to maximize the diversity. This data set will be available publicly to researchers who

wants to test their click fraud detection systems against this new type of click bot.

Since Smart ClickBot has been developed with utmost care to not to be detected,

the techniques that we have developed may help to detect even other types of click

bots.

Unmatched

NetMosaics
Robot detection

and analysis
module

Client side
(Tracking

10)

Server side +
Client side

NetMosaics real
time click fraud
analysis system

Figure 7.2: Robot data collection process.

Figure 7.2 shows the high level view of the flow diagram for bot traffic isolation.

These isolated potential bot traffic is pre-processed to remove known bots. These

include search engine crawlers such as Coogle's googlebot, Yahoo!'s Yahoo slurp,

124

and Bing's bingbot, known click bots such as Clickbot.A and Bahamabot. link

crawlers and news bots etc. For this purpose, we have used the data available at

[Database, 2011]. Top 10 of those filtered bots are shown in Table 7.1 with their

user agent and frequencies. Data what is left after filtering is then divided into

sessions based on the techniques explained in [Tan and Kumar, 2002].

Once the bot data is grouped into sessions, our main idea in the experiment is to

classify server side data into two classes: Class 1, and Class 2, where Class 1 will

have "clicks" originated from Smart ClickBot and everything else will belong to

the Class 2. For example, Class 2 may contain human clicks that do not accept

cookies or javascript in their devices or they may be clicks that has only server side

information due to an error in HTTP communication between server and client or it

may be even new software bots that are not discovered yet. Therefore the next step

is to experimentally derive the properties of each session that will distinguish clicks

in Class 1 from that of Class 2. Table 7.2 presents a summary of attributes that

can be derived from the sever sessions. Some of these features are temporal, while

some are binary. Extraction process of these features is discussed in the following

section.

2. Context Feature Extraction

~etMosaics explores the distributed nature of stealthy attacks. Since click bots are

pre-configured, the generated traffic by them is usually similar in nature. NetMo­

saics leverages this property and aims to identify groups with similar activities.

(a) Periodicity of Smart ClickBot

\\leb robots, especially click bots, usually exhibit periodic behavior because

they are preset to activate after a certain time interval. At this point they

randomly select a (IP, referrer, user agent) combination from the predefined

lists and issue clicks in the form of HTTP requests. By observing the collected

data we have seen these lists are updated daily. Therefore we can assume the

125

Table 7.1: Filtered UserAgents

I User Agent I Requests I

google.com 244

search.msn.com 149

Mozilla/5.0 (compatible YandexBot/3.0 http://yandex.com/bots) 120

yahoo.com 105

Sogou web spider/4.0(http://www.sogou.com/docs/) 79

Mozilla/5.0 (Windows U Windows NT 5.1 en rv:1.9.0.13)

Gecko/2009073022

Firefox/3.5.2 (.NET CLR 3.5.30729) SurveyBot/2.3 (DomainTools) 55

Mozilla/5.0 (compatible bingbot/2.0 42

http://www.bing.com/bingbot.htm)

Netcraft 32

whois.sc 21

values in the lists to be the same for at least 24 hour period. Previous studies of

Web robots also support the 24 hours threshold time[Tan and Kumar, 2002].

For each IP we extracted all requests originated within the past 24 hours. I3y

plotting the time activity (i.e. the active and inactive periods of time) of bot

processes issuing requests, we observed that several of them seem to exhibit,

at least partially, a periodic pattern. We investigated further this observation

and verified the periodicity for several IP addresses used by the Smart ClickBot

and estimated their time cycles.

For this task. we used the Fast Fourier Transform (FFT). The FFT maps a

function in the time fielel to a, complex in general, function in the frequency

field [Dikaiakos et al., 2005]. The idea is that by observing peaks of magnitude

in the frequency field we can easily conclude that time activity has periodicity.

The frequency coordinate of each possible peak is inversely proportional to the

126

Table 7.2: Summary of attributes derived from the Server sessions.

Id I Attribute ~ arne I Remark I Purpose

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Periodicity Periodicity of the attack Feature

trackingIDs Tracking IDs per IP Feature

multiAgents Unique user agents recorded per single IP Feature

referrer Pattern Referrer and IP distribution Feature

HEAD Page requests made with HEAD method Classify

GET Page requests made with GET method Feature

POST Page requests made with POST method Feature

clickRate Maximum clicks per session Feature

Duration Duration of session Feature

imageRequests Percentage of image requests Feature

pdfjps Percentage of pdfjps requests Feature

4xx Percentage of 4xx error responses Feature

Robot.txt Whether Robot.txt file accessed during the session Classify

% proxy Percentage of proxy servers used Feature

time cycle of the periodicity. Since we are not interested in the phase of the

frequency plot, we illustrate the spectral density function, which is the square

of the magnitude of the FFT.

Before implementing the FFT, time is assumed to be sliced; we used a 30

second time interval (granularity). Ideally, the granularity should be as small

as possible, but we tried to keep the number of resulting points relatively small

for a faster FFT computation.

We count the requests issued from an IP address of interest in each time in-

terval. Because our focus of interest at this stage is on the presence of some

periodic action, we assign the value of one to the intervals that have at least one

hit and the value of zero to the ones with zero hits. Consequently, we produce

127

an ON-OFF signal that represents the Smart ClickBot's time activity for the

selected granularity. This signal is passed as input to the FFT function. The

resulting diagrams reveal a periodicity in the requests issued by IP addresses

belonging to the click bot; in some cases this phenomenon is rather intense.

Figure 7.3 presents the ON-OFF signal of an IP address. In Figure 7.4,

we plot the power spectral density function. FFT specifies the main periods

observed on that signal. For example, in Figure 7.3, we observe a periodic

behavior between 05: 15 - 08: 15, which corresponds to the peak of around 0.15

in the Figure 7.4.

Similar results arc observecl for couple of other IP addresses. We have not

seen similar patterns from IP addresses that do not belong to Smart ClickBot,

which were left in the server logs. We can therefore conclude that periodic

activity can be expected from the Smart ClickBot. Hence this feature will be

binary and for IPs that shows periodicity we assign a value 1, while the rest,

including some of Smart ClickBot IP addresses that does not show the same

behavior, are assigned O.

1.2

1

0.8

0.6

0.4

0.2

o
LJ) LJ) If) ll) LI) Lf) LI) LI"l Lf) If) lI) lI"l I./"l LI1 LI) L/') lI'l I./') Lf) LI1 LI1 LI) 1.1) Lf'I
'I"""i 'I"""i rl-l 'I"""i ,..... or-! rl 'I"""i \""'I 'I"""i 'C"""'I M 'l"""'l 'C"""'I n rl .-I rl M M ,.-t 'I"""i

N ;..; N m .¢ Ui ~ " co ~ 0 rl N M ~ Ui ~ ,:...: 00 a; 0 .:.i N m
....-4 0 0 0 a a a 0 0 0 ..-t-t rl 'I"""i M rl rl 'I"""i 'I"""i N N N N

888888888888888888888888
N rl N M ~ Lri ~ ,:...: co en 0 ;..; N M .;.; Ui u; " cici en 0 .:-f N M
'I"""i 0 0 0 0 a 0 a a 0 t'""'I rl 'I"""i ,.-t-i M 'l""'1 rl 'I"""i rl N N N N

granularity

Figure 7.3: ON-OFF Signal for an IP used by Smart ClickBot.

(b) Tracking ID per IP

The Net Mosaics system generates a 128bit unique tracking id (in the form of

a cookie) for every server side request. This tracking id is installed in the

128

1.2

0.8

0.6

0.4

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
time per cycle

Figure 7.4: Power spectral density for an IP used by Smart ClickBot.

client's computer and will be incorporated with every revisit request to the

same website by the client in the next 24 hours. Usually software bots do

not accept these cookies. Therefore, they generate new tracking id for every

visit to the same website. Smart ClickBot is no different. It generated multiple

tracking IDs for the same IP and almost all of these IP addresses belong to free

proxy servers. Table 7.3 shows the summary of average number of tracking

IDs generated for a 24 hour period by the top 10 IP addresses used by the

Smart ClickBot. If the IP address does not belong to a proxy server we usually

treat it as a non software bot. For example it may be a human clicker, which

does not allow cookies to be installed or who deletes cookies every time the

sessIon IS over.

We also discovered a secondary property of these IP addresses, which has large

number of tracking IDs. We have seen that almost 90% of the time the same

set of IPs contain in all the lists of 24 hours. Even though we assumed they are

randomly picked, it seems that the bot has some preference to certain proxy

servers may be based on the level of animosity of the proxy.

We have also observed a unique pattern in the wagon wheel for visitor distri-

bution. For example, in Table 7.3, day 1 corresponds to 24 hours while day 2

corresponds to visitors for 12 hour period. But the contribution from each IP

129

Table 7.3: Tracking ID per IP

IP Address I day 1 II IP Address I day 2 I

200.29.216.146 88 115.248.202.21 49

187.4.128.12 85 208.253.158.6 40

190.203.69.69 81 187.11.201.164 39

221. 7.145.42 72 200.29.216.146 36

203.153.25.218 59 222.255.28.33 34

115.78.227.155 46 190.203.69.69 33

115.78.224.215 45 203.153.25.218 31

222.255.28.33 43 187.4.128.12 28

125.162.92.233 42 221. 7.145.42 26

190.128.218.90 40 89.187.142.113 21

looks alike, immaterial of the day or the number of hours observed. Figure 7.5

shows the wagon wheel distribution of visitors for those two days (day 1 (left),

day 2(right)).

Figure 7.5: Frequency of TrackingID generation.

(c) User Agent per IP

User Agent identifies the type of browser someone is using to surf the Internet.

There is a favorite browser for all of us and at least we stick with it for a

130

while. \Ve mark our favorites, bookmark certain websites, maintain history

etc. and it will be inconvenient for us to switch browsers. Therefore for a given

non-shared IP address variation of the user agent is minimal. User Agent is

not defined only for browsers. Even for all the legitimate software bots there

are unique user agents. They identify themselves as bots whenever visiting

websites if they are cooperative. Bots that are created to carryout fraudulent

activities use these user agents to mimic themselves as valid user agents. Smart

ClickBot seems to pick a user agent randomly from a pre defined list and does

not care about the history of user agents assigned to a particular IP. Therefore,

we have seen a large number of user agent values assigned for any given IP.

Sometimes the variation exceeds 50, and it is highly unlikely that somebody

who is legitimately browsing Internet has over 50 user agents.

Among this list, we have also found some outdated user agents. With normal

traffic these type of user agents are rarely reported but a higher percentage can

be seen with the traffic generated from the Smart ClickBot. Table 7.4 lists

few of these outdated user agents with its average request per 24 hours.

Table 7.4: Frequency of Outdated UserAgents

User Agent I Frequency I

Mozilla/4.0 (compatible; MSIE 4.01: Windows 95) 39

Mozilla/4.0 (compatible; MSIE 5.01; Windows 95) 36

Mozilla/4.0 (compatible; MSIE 5.5; Windows 95) 33

l\Iozilla/4.0 (compatible; MSIE 5.0; AOL 5.0; Windows 95; DigExt) 30

Mozilla/4.0 (compatible; MSIE 5.0; Windows 95; DigExt) 27

(d) Referrer and IP distribution

The referrer field is provided by HTTP protocol to allow a Web client (partic­

ularly. a Web browser) to specify the address of the Web page that contains

the link the client followed in order to reach the current requested page. U nas-

131

signed referrer field is often considered one of the most apparent characteristics

of Web robots [Lu and Yu, 2006]. As typical Web robots parse a page and build

up the list of pages to be visited, referrer field is frequently left blank. In inter-

active Web surfing environment, the field would contain the URL that led to

the current request. Our analysis reveals that such observation is generally, but

not always, true. Especially with the Smart ClickBot to avert the detection

they have randomly assign a referrer value. But since this list is concise we

have seen a pattern that pretty much every referring site is recorded the same

amount of referrals. This does not happen with human clicks and the variation

of referrals is usually high. Table 7.5 shows an example for a referral traffic

for the www.thebestmusicsites.org website within a 24 hour period.

Table 7.5: Frequency of top rcferrer sites

Referrer I IP frequency I

http:/ /www.rcferrerl.edu/ 30

http:/ /www.rcferrer2.com/ 29

http://www.rcferrer3.com/ 28

http:/ / www.rcferrer4.com/ 27

http:/ /www.cecs.referrer5.edu/ 27

http) /www.rcferrer6.com/ 26

http) /www.referrer7.com/ 26

http:/ /www.rcferrer8.C'om/ 26

http:/ /www.rcferrer9.org/ 23

http:/ /www.rcferrcrlO.com/ 23

(e) Percentage of HEAD and GET Requests

Many suggest sessions containing a large number of HEAD requests as those

generated by web robots [Tan and Kumar, 2002, Dikaiakos et al., 2005]. For

example, if all the requests are made using the HEAD method, then the session

132

is most likely created by a Web robot. Guidelines issued to web robot designers

strongly recommend that only HEAD method be used to minimize performance

impact on web servers. However. [Dikaiakos et al., 2005] reported that many

Web bots used HEAD method in less than half (e.g., 10 to 50%) of their

requests. In our data, almost all (e.g., over 99.9%) the requests made by

Smart ClickBot used GET method. Therefore when the HEAD/GET request

percentage is high, we use this feature as a strong feature to separate non Smart

ClickBot requests from the server logs.

(f) Percentage of POST Requests

A POST request is used to send data to the server to be processed in some

way, like by a CGI script. It is highly unlikely that a Web bot sends POST

request to a Web server. Therefore, we can use this feature to isolate human

issued requests that are left in the server logs.

(g) 1Iaximum clicks in a session

A click is a request for an HTML file in a Web server. The "Maximum clicks

in a session" is a feature corresponds to the maximum number of such HTML

requests received within a certain time-window inside a session. The intuition

behind this feature is two fold:

1. To isolate human clicks from bot clicks: there is an upper bound on the

maximum number of clicks that a human can issue within some specific

time-frame t, which is dictated by human factors. To capture this feature,

we first set the time-frame value of t and then use a sliding window of time

t over a given session in order to measure the maximum sustained click

rate in that session. For example, if we set t to 10 seconds and find that

the maximum number of clicks within some 10-second time-window inside

that session is 40, we conclude that the maximum sustained click rate is

4 clicks per second. This indicates a robot-like rather than a human-like

behavior. The sliding window approach starts from the first HTML request

133

of a session and keeps a record of the maximum number of clicks within

each window, sliding the window by one HTML request until we reach the

last one of the given session. The maximum of all the clicks per window

gives the value of this feature.

ll. To isolate Smart ClickBots from other software bots: Smart ClickBot can

issue 0 - n number of clicks during a session. But we have seen that for

every such click Smart ClickBot changes its IP address, tracking id, refer­

rer, and the user agent. Therefore, there is no way to recognize all the

clicks belong to a one session. In the server logs all the clicks generated in

a session appears as several single click sessions. We can use this imple­

mentation drawback to recognize and isolate Smart ClickI30t clicks from

other type of software bots.

(h) Duration of session

Duration of session is the number of seconds that have elapsed between the

first and the last request. Crawler-induced sessions tend to have a much longer

duration than human sessions. Smart ClickBot can issue any number of clicks

during a session. But we have seen that for every such click it changes its IP

address, tracking id, referrer, and the user agent values. Therefore, there is

no way to recognize all the clicks belong to one session. In the server logs, all

clicks belong to one session, appear as multiple single click sessions. Therefore

for this feature, which is binary, sessions having only a single click caries value

0, while the rest carries value 1.

(i) Percentage of image requests

This feature denotes the percentage of requests to image files (e.g. jpg, gif).

An earlier study showed that crawler requests for image resources are negligi­

ble [Stassopoulou and Dikaiakos, 2009]. In contrast, human generated traffic

will have access records to images in a website, because all images are loaded

within the user session. Therefore, we can use this feature to differentiate 11U-

134

man generated traffic, that for some reason did not have client side activities,

from bot generated traffic. The percentage of requests seeking postscript(ps)

and pdf files is also a possible feature to use. But in our experiment we did

not consider this feature. Previous studies show that, in contrast to image

requests, some crawlers, tend to have a higher percentage of pdfjps requests

than humans[Stassopoulou and Dikaiakos, 2009].

(j) HTTP response codes

Web bots such as link validators and email harvestors may havc a higher pro­

portion of 4xx error codes in their requests, as they arc blindly traversing the

web infrastructure. But, clicks from the Smart ClickBot should be very pre­

cise because these links are previously checked by humans before launching the

attacks, hence we expect fewer 4xx error codes. Human clickers may stand

between these two extreme ends because human users are able to recognize,

memorize and avoid erroneous links, unavailable resources and servers. Table

7.6 shows the percentages of response codes received from bot and non-bot

traffic for a 7 days period. We can clearly see that bot traffic has lesser 404

errors compared to non-bot traffic.

We can also expect lesser 304 response codes with Smart ClickBot traffic.

HTTP 304 response code is for "not modified". \Vith this message the web

server is basically telling the browser "this file has not changed since the last

time you requested it." If a client gets a 304 Not Modified message, then it

is the client's responsibility to display the resource in question from its own

cache. Since Smart ClickBot does not cache any information it usually gets only

HTTP 200 response codc. HTTP 200 is telling the browser "here is a successful

response," which should be returned when it is either the first time your browser

is accessing the file or the first time a modified copy is being accessed. Table

7.6 shows the differences in HTTP 200 and HTTP 304 response percentages.

(k) Robots.txt file request

135

Table 7.6: Percentage of Bot vs. non-Bot HTTP response codes

Response code Percentage m Bot Percentage in non-Bot

traffic traffic

200 - OK 97.0% 10.3%

304 - Not Modified 1.7% 80%

307 - l\Iovcd Temporarily 0% 2.9%

404 - Not Found 1.2% 6.7%

500 - Internal Server Error 0.1% 0.2%

The Robot Exclusion Standard, also known as the Robots Exclusion Protocol

or robots.txt protocol, is a convention to prevent cooperating web crawlers

and other web robots from accessing all or part of a website which is otherwise

publicly viewable. If a site owner wishes to give instructions to web robots they

must place a text file called robots. txt in the root of the web site hierarchy

such as www.thebestmusicsites.org/robots.txt. Robots that choose to follow

the instructions try to fetch this file and read the instructions before fetching

any other file from the web site. If this file does not exist web robots assume

that the web owner wishes to provide no specific instructions.

We made available the robot. txt file for the experimented website. If a request

to the robots. txt file was made during a session, we consider it as a strong

evidence to believe that the session belongs to a bot. However because com­

pliance to the Robot Exclusion standard is voluntary, and many robots simply

do not follow the proposed standard, we can not totally rely on this criteria to

detect \Veb robots.

(1) Distribution of countries

Table 7.7 lists the top 20 countries that Smart ClickBot uses to generate IP

diversity. Even though highest number of proxy IPs are from the US, there is

a large amount proxy IPs recorded from Indonesia, Brazil, China, and India.

136

Collectively their traffic is larger than the US alone. Since we have used an

experimental website to collect data, at this time we do not have enough traffic

to find out its actual (non-Robot) country distribution. Therefore, we did not

include this as a feature, even though we will use it as soon as the information

is available.

Table 77' Distribution of countries ..

Country Requests Visitors Country Requests Visitors

United States 4249 824 Korea. Republic of. 423 81

Indonesia 3105 822 Spain 407 94

Brazil 2224 409 Austria 363 36

China 2148 367 South Africa 287 35

India 1121 85 Puerto Rico 271 35

Chile 912 63 Kenya 267 108

Vietnam 865 133 Croatia 262 36

Thailand 841 162 Singapore 256 48

Venezuela 618 106 Turkey 255 69

Russian Federation 429 216 Czech Republic 250 40

7.1.3 Classification of Bot traffic

After deriving the session features, classification models are built using the Bayesian Net­

works. We adopted the Bayesian approach due to many successful similar research that are

reported in the literature [Strayer et al., 2006, Strayer et al., 2008, Kondo and Sato, 2007J.

Figure 7.6: Bayesian Network as a classifier.

137

Bayesian Networks [Friedman et al., 1997, Pearl, 1988] are directed acyclic graphs in

which the nodes represent multi-valued variables, comprising a collection of mutually

exclusive and exhaustive hypotheses. The arcs signify direct dependencies between the

linked variables and the direction of the arcs is from causes to effects. The strengths

of these dependencies are quantified by conditional probabilities. More specifically, each

node Xi has a conditional probability distribution P(XiIParents(Xi)) that quantifies the

effect of the parents on the node, where Parents(Xi) denotes the parent variables of Xi.

This conditional probability distribution, which defines the conditional probability table

of the variable, describes the probability distribution of the variable for each configuration

of its parents. The graph encodes that each node is conditionally independent of its non-

descendants, given its parents [Friedman et al., 1997].

Naive Bayes is a special case of a Bayesian network, where a single cause (the class)

directly influences a number of effects (the features) and the cause variable has no parents.

This network structure is shown in Figure 7.6. Again, the independence assumption

encoded by this model is that each feature is conditionally independent given the class

value.

Considering Figure 7.6, assume that Fl , F2 , ",}'n are n features and fi represents the

value of feature Fi . Assume also that C is the class variable and let c represent a possible

value (label) of C. Using Bayes rule and the conditional independence assumption, we

can derive the posterior probability of each class label c E C, i.e. the probability of the

class label given the features observed, to be given by the formula:

P(clh, 12, "., fn) = P(c) rr~=l P(Jil c)
P(J1, f2, "., fn)

(7.1)

The class variable C is assigned the label that gives the maximum posterior probability

given the features observed. More specifically:

n

class = argmaxcEcP(c) II P(Jil c) (7.2)
i=l

For Smart ClickBot detection we used one, similar to Bayesian Network structure

138

shown in Figure 7.6. Each child node corresponds to one of the features we presented

earlier in section 7.1.2(2). The root node represents the class variable.

In the following section we present the experiments performed in order to apply our

methodology and evaluate the performance of the Smart ClickI30t detection system.

7.1.4 Experimental Results and Discussion

There are two main objectives in this experiment:(a) to use features described in section

7.1.2(2) to identify as many Smart ClickBot sessions as possible, (b) to find a good model

for predicting Smart ClickBot sessions based upon their access features.

We have collected 22991 server side clicks during the period from 3/3/2011 to 3/9/2011.

A human expert has labelled the entire data set so that it can be used for model eval­

uation. To build the classification model we have used the first 5000 samples. In this

training data set there were 4501 Smart ClickBot (Class 1) clicks and 499 non-Smart

ClickI30t (Class 2) clicks. Since class representation is not balanced, training the model

was a challenging ta!:lk. If a model is built using an imbalanced dataset, its characteristics

tend to be biased towards the majority class. Especially with the Naive Bayes classifier,

the prior probability in the majority class overshadows the differences that exist in the

conditional probability entries that quantify the relationship between feature and class

variables [Stassopoulou and Dikaiakos, 2009].

There are a few ways to compensate the imbalanced class distribution. We can use

techniques such as bagging and boosting or resampling. We used res amp ling as it was

used successfully in a similar study discussed in [Stassopoulou and Dikaiakos. 2009]. Re­

sampling modifies the prior probabilities of the majority and minority class by changing

the records on each of the two classes. For this purpose we have used both random over

sampling and random under sampling. Over sampling is used with the minority class

(Class 2), while Under sampling is used with majority class (Class 1). Table 7.8 shows

the resampled data that we have used to build the classifiers (C1 , C2 , C3 , C4 , and C5) along

with the new prior probability distributions. C1 is built with the original data set without

139

resampling. Both C2 and C3 are built with oversampling Class 2, while C4 and C5 are

built with under sampling Class l.

Tablc 7X Training data sct configuration

Data Set Classifier Class 1 Class 2 Prior Probabilities

1 C1 4501 499 (0.90, 0.10)

2 C2 4501 4501 (0.50, 0.50)

3 C3 4501 899 (0.83,0.17)

4 C4 2436 499 (0.83, 0.17)

5 C5 499 499 (0.50, 0.50)

We have tested the five Bayesian classifiers with the rest of the 17991 records. For the

evaluation purposes "Accuracy" is a reasonable metric but it has the underline assumption

that the data set remains evenly distributed i.e. between Class 1 (Smart ClickBot), and

Class 2(non-Smart ClickBot). When equal class distribution is not present we can use

Precision and Recall to compare the models.

P
.. () no. of SmartClickBot sessions found correctly

reczswn p = -------------------
total no. of predicted SmartClickBot sessions

R ll()
no. of SmartClickBot sessions found correctly

eca r = ------------------­
total no. of actual SmartClickBot sessions

(7.3)

(7.4)

A classifier that assigns the value 1 to every session will have perfect recall but poor

precision. In practice, the two metrics are often summarized into a single value, called

the F1-measure [Tan and Kumar, 2002].

The Fl scorc can bc intcrpreted as a weighted average of thc precision and recall. It

summarizcs thc two mctrics into a single valuc, in a way that both mctrics are given equal

importance. Recall and precision should therefore be close to each other, otherwise the

}l-measure yields a value closer to the smaller of the two. Fl score reaches its best value

140

Table 7.9: Training data set configuration

Classifier Precision Recall FImeasure

CI 0.921 0.824 0.869

C2 0.889 0.943 0.915

C3 0.939 0.827 0.879

C4 0.964 0.834 0.894

C5 0.834 0.953 0.889

~ Precision ~ Recall ~ F-Measure

1

0.95 , 1 ""~"m~'Om,~'''"~

0.9

0.85 "

0.8 ~

0.75

C1 C2 C3 C4 C5

Figure 7.7: Comparison of Bayesian Classifiers.

at 1 and worst score at O. Table 7.9 and Figure 7.7 show the Precision, Recall, and FI

measure obtained by the five classifiers.

All the Bayesian classifiers that we have tested achieved a precision of above 83%

and a recall of above 82%. Minimum FI measure of 87% was reported by CI , where the

training is done with the original data set without resampling. The obvious reason for

a low FI measure is the class imbalance, where the prior probability of a session to be

Smart ClickBot is as high as 0.90. A model trained with such a training data set is biased

towards Class 1.

141

By over sampling Class 2 records for 0 3 , and by under sampling Class 1 records for

0 4 we have achieved a higher F1-measure than that of 0 1. In both of these cases we have

tried to increase the class representation of Class 2 records.

The best F1 measure is achieved by O2 which was trained using oversampling of Class

2 so that samples reach the number of Class 1 in the original set, hence leaving balanced

representation of classes.

In this experiment we have two cases where the class representation is equal. That is

with classifiers O2 and 0 5 . Training data for O2 is created by oversampling Class 2 records,

while training data for 0 5 is created by under sampling Class 1 records. A similar recall

values are reported by both O2 and 0 5 . However, there is a significant difference between

the precision values. Precision of 0 5 is 83%, while that of O2 is 89%. This means we have

an increase in the number offalse positives in 0 5 , i.e. Class 1 incorrectly classified as Class

2. The significant decrease in precision of 0 5 , is not surprising since, with random under

sampling there is no control over which examples are eliminated from the original set.

Therefore significant information about the decision boundary between the two classes

may be lost. This is always a risk with random oversampling where it would do over­

fitting due to placing exact duplicates of minority examples from the original set and thus

making the classifier biased by "remembering" examples that were seen many times.

7.2 Fast Detection of Duplicates

An important issue in defending click fraud is how to deal with duplicate clicks. If we

simply consider all identical clicks as fraudulent clicks, it is unfair to advertisers in some

scenarios such as that an interested client visits the same ad link several times a day.

On the other hand, if the advertisers are charged for any identical clicks, then it is very

easy for an attacker to make money by continuously clicking the same ad link. However,

it is very difficult to identify which scenario the identical clicks belong to. A reasonable

countermeasure is to prescribe that identical clicks will not count if they are within short

time interval, and will count if they happen sparsely. Therefore, a feasible duplicate

142

detecting algorithm should have a mechanism that is able to eliminate unrelated (or

expired) information.

On the other hand. users of a practical click fraud detection solution expect these

duplicate detection mechanisms to run in realtime. In order to provide real time results,

solution providers should utilize a data structure that can be updated in real time. In

addition, If the actual volume of clicks (per unit time) is high, space requirements per

click should be the lowest possible thus data structures with constant space requirements

or sublinear space requirements such as O(log(n)) or O(log(log(n))) are desirable (n is the

number of elements processed).

In this section, we consider the problem of detecting duplicates in click data streams.

Our solution uses a modified version of the Counting Bloom Filter. The Temporal Stateful

Bloom Filter (TSBF) extends the standard Counting Bloom Filter by replacing the bit­

vector with an array of counters of states. These counters are dynamic and decay with

time.

7.2.1 Data Stream Model

We consider a data stream, including click stream, as a sequence of numbers, denoted

by CN = Xl, X2, X3, ... , XN: where N can be infinite, which means that the stream is not

bounded. In general, a stream can be a sequence of records, but it is not hard to transform

each record to a number and use this stream model.

Our problem can be stated as follows: given a click data stream CN and a cer­

tain amount of memory space, !'vI, estimate whether each element Xi in SN appears in

Xl, X2, X3, ... , XN or not. Since our assumption is that M is not large enough to store all

distinct elements in Xl, X2, X3, ... , XN, there is no way to solve the problem precisely. Our

goal is to approximate the answer and minimi~e the false positives, where false positive

is a distinct element wrongly reported as a duplicate.

To address this problem we examine two techniques that have been previously used

in different contexts, namely the Buffering method and Bloom filters [Song et al., 2005,

143

Talbot and Osborne, 2007, Cuenca-Acuna and Xguyen, 2010].

7.2.2 Buffering Methods for duplicate detection

A straightforward solution, to detect duplicates, is to allocate a buffer and fill the buffer

with enough elements of the stream. For each new element, the buffer can be checked,

and the element may be identified as a distinct if it is not found in the buffer, and as a

duplicate otherwise. I3uffer can be implemented in many different ways including hash

table approaches. Traditional approaches for duplicate detection using hash table based

solutions are discussed in [Elmagarmid et al., 2007].

A hash table is made up of two arrays. First, the actual table where the data to be

searched is stored, and second, a set of mapping functions known as hash functions is

stored. The hash function is a mapping from the input space to the integer space that

defines the indices of the array. In other words, the hash function provides a way for

assigning numbers to the input data such that the data can then be stored at the array

index corresponding to the assigned number. We will explain this further with an example

related to Figure 7.~, that shows a hash table designed to map IP addresses.

Index
r------.,

o 1 192.168.234.123 I
1 I 216.212.12.123 1-71 12.123.143.45

2 ~I 110.12.34.23 I
3

4

_u ____ ;;,.1 98.34.12.112
1---........ I 21.32.43.23

5

6

1-------;;,.1 __ 18_2_.1_5_.3_2_.2_3_ 1-71 __ 12_7_.1_2_.4_3_.5_6_

I
7

-----'71 32.45.67.121
'---_....I

8

Figure 7.8: Storage of IP addresses in a Hash table.

First, we start with a hash table array of strings (we'll use strings as the data being

144

stored and searched in this example). Let's say the hash table size is 9. In order to insert

the IP address "98.34.12.112·· we run "98.34.12.112" through the hash function, and find

that hash("98.34.12.112", 9) yields 5. We insert IP "98.34.12.112" into the 5th index

of the hash table. If the same IP address is visited again, since the hash table already

contains the IP. then a signal for a duplicate will be returned.

Since the indices of the output range is a predefined number (in this case 9), different

IP addresses will be rnapped to the same index. In order to hold more than one item in

one location the strings are stored as a linked list. This is often called chaining. Chained

hash tables have the disadvantages of linked lists. It can be wasteful on rnernory, as

many of array positions might contain empty linked lists. \\Then storing small keys and

values, the space overhead of the next pointer in each entry record can be significant.

An additional disadvantage is that traversing a linked list has poor cache performance,

making the processor cache ineffective. The biggest disadvantage is the cost of the linked

list manipulation when strings are associated with expiring information. For example

update of IP addresses which are older than two minutes.

In this method, each distinct elernent will be mapped to a new location and it is

inevitable that size grows tremendously if the stream carries too many distinct elements.

Therefore this approach can be directly applied only to applications where there are a

few distinct elements. For series with rnore duplicates, such as IP number strearn, a

proper replacernent mechanism should be utilized. This mechanism will evict the least

important element frorn the buffer and replace with the new element. When the buffer

is full, a newly arrived elernent may replace another element out of the buffer before it is

stored. Broder et al. [Broder et al., 2003] discussed 5 different replacernent policies which

are briefly discussed here.

(a) Clairvoyant (MIN): This method was introduced by Belady et al. [Belady, 2010].

They showed that if the entire sequence of requests is known in advance, then the

best strategy is to evict the item, which is the one whose next request is farthest

away in time.

145

(b) Least Recently Used (LRU): The LRU algorithm evicts the item that has not been

requested for the longest time. The intuition for the LRU is that an item that has

not been needed for a long time in the past will likely not be needed for a long time

in the future.

(c) CLOCK: CLOCK is a popular approximation ofLRU. It was invented by Cobato et

al.[Corbato, 1968]. An array of mark bits Mo, M l , ... , Mk corresponds to the items

currently in the buffer of size k. The array is viewed as a circle, that is, the first

location follows the last. A clock handle points to one item in the buffer. When

a request X arrives, if the item X is in the buffer, then its mark bit is turned on.

Otherwise, the handle moves sequentially through the array, turning the mark bits

off, until an unmarked location is evicted and replaced by X.

(d) Random Replacement: Random replacement completely ignores the past. If the

item requested is not in the buffer, then a random item from the buffer is evicted

and replaced.

(e) Static: In this method, it is assumed that each item has a certain fixed probability of

being requested. This probability is independent of the previous history of requests.

An item is evicted, at any point in time to maximize the probability of an item

found in the buffer.

·We chose LRU mechanism as the replacement policy for Buffer implementation due

to the fact that newly arrived clicks have least impact on oldest clicks. We will use this

method in our experiments and compare its performance with the Bloom Filter based

methods introduced in Section 7.2.4 and the proposed method which will be introduced

in Section 7.2.5.

7.2.3 Bloom Filters for Duplicate Detection

Even with a replacement mechanism Buffering method requires enormous space because

each element has to be stored. Therefore it is not suitable for applications with stream

146

data. To overcome this drawback, we have researched a closely associated data structure

known as Bloom Filters [Bloom, 1970]. Bloom filters have been used extensively in net­

working applications (see [Reynolds and Vahdat, 2003, Broder and Mitzenmacher, 2004,

Li et al., 2000, Kumar et al., 2006, Ilowstron and Druschel, 2001, Fan ct aL 2000], and

[Est an and Varghese, 2003]) because they enable both high speed and low cost imple­

mentation of various hardware algorithms. A Bloom filter is essentially a compact repre­

sentation of a set. Standard exact representations of sets such as hash tables and binary

trees requires at least L bits per element to be stored, where L is the size of the element,

and often requires additional space for pointers. By contrast, a Bloom filter is an inexact

representation of a set that allows a few "false positives" when queried. In return, it allows

very compact storage: roughly 10 bits per element for a 1% false positive probability. It

also has a constant space requirement, which is independent of the size of the element in

the set or the size of the set itself [I3onomi et al., 2006].

Inspired by these properties, we have developed a solution to detect duplicates in

a click stream, based on modified Bloom filters and it is now a part of our real time

click fraud detection and prevention solution available at http://www.netmosaics.com.

Implementation details of the system are discussed in [Kantardzic et al., 2010b], and

[Walgampaya et al., 2010]. This work is primarily motivated by the tradeoff between

space usage and accuracy of the existing duplicate detection systems. In section 7.2.4 we

start with a brief discussion about the Bloom filter and its variants including Counting

Bloom Filters and Temporal Stateful Bloom Filters. Experimental results are given in

section 7.2.G, while rdated work are discussed in section 7.2.6.

7.2.4 Bloom Filter and Its Variants

(a) Classical Bloom Filter Bloom filter (BF) was proposed by Burton Bloom in 1970 and

used for space-efficient data structures that maintain a very compact inventory of the

underlying data, supporting membership queries over a given data set [Bloom. 1970].

The space requirements of Bloom Filters fall significantly below the information

147

theoretic lower bounds for error-free data structures. This efficiency is at the cost

of a small false positive rate (items not in the set have a small probability of being

recognized as in the set), but have no false negative (items in the set are always

recognized as being in the set). BFs are widely used in practice when storage is at

a premium and an occasional false positive is tolerable [Cheng et al., 2005].

A BF is a bit array, v of size m, and all of which are initially set to 0 (See Figure

l(a)). For each element(key 1, key 2, etc.), k bits in BF are set to 1 by a set

of hash functions {h1(x), h2 (x), h3(X), ... ,hk(x)}, all for which are assumed to be

independently uniform. It is possible that one bit in BF is set multiple times, while

only the first setting operation changes 0 into 1, and the rest have no effect on that

bit (Figure l(b) and l(c)). To know whether a newly arrived element Xi has seen

before, we can check the bits {h1(Xi), h2 (Xi), h3(Xi), ... ,hk(Xi)}. If anyone of these

bits is zero, with 100% confidence we know Xi is a distinct element. Otherwise, it

is regarded as a duplicate with a certain probability of error. An error may occur

because it is possible that the cells {h1(Xi), h2 (Xi), h3(Xi), ... ,hk(Xi)} are set before

by elements other than Xi [Deng and Rafiei, 2006].

Vector v

0

0
0

0

o
(a)

y
Key 1 hz

m
bits

0
1
0

0

1
(b)

Key 2

Figure 7.9: A Classical Bloom Filter

o

(c)

The salient feature of BFs is that there is a elear tradeoff between m and the

148

probability of a false positive, Perror' Observe that after inserting n keys into a table

of size m, with k number of hash functions, the probability that a particular bit is

still 0 is exactly

(7.5)

Hence the probability of a false positive, Perron in this situation is

1 kn k -kn k
perror = (1 - (1 - -)) ~ (1 - em)

m
(7.6)

For a given min we can find the minimum Perror:

OPerror k2
n (k n) k (k n) ok = e----:;n em - 1 log em - 1 -

k n (k n) k-l (k n) --;;;: em - 1 em - 2
(7.7)

The right hand side is minimized for k = ~ln2, in which case it becomes

(7.8)

Some example theoretical values for Perror for combination of min and k values are

given in Table 7.10 and Figure 7.10 shows the graph for variation of Perror with

min and k.

Obviously, Perror is at a minimum when min ~ 20 for any value of k. But higher

min yields sparse Bloom filter, which indeed waste a lot of memory. Therefore,

now it becomes a tradeoff between min, and k, when selecting the best possible

configuration. ~That really means by min? It actually indicates number of vacant

cells in the Bloom filter. When min is high the bloom filter has more slots to occupy

and chance of a false positive will be low. When min decreases it indicates that

the bloom filter is reaching its full capacity, and chance of a false positives in this

case will be high. On the other hand, if the number of hash functions, k is low,

149

Table 7.10: Variation of P error

I min I k I P error I

4 1 0.2212

4 2 0.1548

6 4 0.0560

8 6 0.0216

12 8 0.0031

16 10 0.0004

16 11 0.0004

and if min is low then there is a high chance for a false positive. But in the same

case when min increases then PerrOT decreases. Since n, which is the number of

clements present in the Bloom filter at a given time depends on the application, if

we want a bigger min, the only possibility is to increase the size of the Bloom filter

(m). But then this will lead to unnecessary memory wastage. Therefore it is at

utmost importance to define the ideal Bloom filter configuration for any practical

application. In section 7.2.6, we discus in detail the procedure of selecting an ideal

values for m and k for our application.

0.8

0.6

0.4

0.2

Figure 7.10: Variation of P error with min and k.

150

(b)

Although BF is simple and space efficient, it does not allow deletions. Deleting ele­

ments from a BF cannot be done simply by changing them back to zeros, as a single

bit may correspond to multiple elements. Therefore, in the data stream environ­

ment, if we apply I3F for detecting duplicates, when more and more new clements

arrive, the fractions of zeros in BF will decrease continuously, and the false positive

rate will increase accordingly, and finally reach the limit one. At this time every

distinct element will be reported as duplicate, indicating that BF fails completely.

'We call such a state of the BF as "full" [Shen and Zhang, 2008]. For the purpose of

allowing deletion of stale elements, Counting Bloom Filter (CBF) was proposed by

Fan et. al.[Fan et al., 2000]. Following section describes the functionality of CBF

that enables deletion of elements.

Counting Bloom Filter

0

0
0

0

o
(a)

Key

0 0 0 0

1 2
1 7

1 9

1 3
(b) (c)

Figure 7.11: Counting Bloom Filter

A CI3F uses an array of m counters, C, which replaces the bit vector v in the I3F

(see Figure 7.11(b)). The counters in C represent multiplicities of elements; all the

counters in C are initially set to O. When inserting an item, we increase the counters

by 1 as shown in Figure 7.11 (c). Also, deletion can now be safely performed with

decrementing the counters by 1. A BF can be derived from a CBF by setting all

151

non-zero counters to one. Size of the counters must be chosen large enough to avoid

overflow although from the following proof we can safely limit the size of counters

to 4 bits [Gonnet and Baeza-Yates, 1991].

The asymptotic expected maximum count after inserting n keys with k hash func-

tions into a bit array of size m is:

(7.9)

and the probability that any count, c, is greater or equal to i is:

(
nk) 1 enk . Pr(max(c) ~ i):S: m . -i:S: m(_._)l
~ m ~m

(7.10)

From equation (7.10), the optimum value for k is ln2~, assuming k <ln2~, we

have,

eln2 .
Pr(max(c) ~ i) :s: m(-.)l

~
(7.11)

Table 7.11 shows some sample values for the variation of probability that a counter

is greater than i bits.

Table 7.11: Variation of Perror

I Bits Per Count I Pr(max(c»i)

4 1.368 X 10-15 x m

3 9.468 x 10-06 x m

2 4.923 x 10-02 x m

1 1.884 x m

Therefore, for any practical value of m, with 4 bits per counter the chances of

overflow will be very small [Fan et al., 2000].

Selecting the deletion mechanism for CBF sometimes depends on the practical ap­

plication. Because the definition of expired data in one application may not be

152

suitable for another application. For example, in a click duplicate detection appli­

cation, two clicks are considered duplicates if they occur within a threshold time

interval. If not, they are considered distinct. Therefore, at the end of the threshold

interval counters should be adjusted. If x is the threshold time to decide if two dicks

from the same IP arc duplicates, at every x minutes counters can be decremented

by 1. In this case the deletion mechanism can be represented as a step function.

There are numerous other decaying functions discussed in the literature. Following

section discusses few other popular decaying functions and their properties.

(a) Time Decaying Counters Time sensitivity of data is important in many tradi­

tional and emerging applications. For example in medical applications current

data may have much weight to the decisions taken while in web tracking and

personalization applications recommendations are generated considering the

recent history. However, in many of these applications, older data items are

less significant than more recent ones, and thus should contribute less or not

at all to current decisions. This is because the characteristics or "state" of the

data generator may change over time, and, for an application such as predic­

tion of future behavior or resource allocation, the most recent behavior should

be given a larger weight [Cohen and Strauss, 2006].

Time sensitivity can be formalized in a variety of ways. We may only consider

elements that fall within a sliding window of recent time (last one hour), and

ignore (assign zero weight) any that are older; or, more generally, use some

arbitrary function f that assigns a weight to each element as a function of its

age [Zhang et al., 2009]. In this research we have adapted the later method

where counters in the CBF are defined using a time decaying function.

The manner of how a counter decays with time is determined by a special

non-increasing, non-negative function, called the time decaying function (tdf).

Any tdf should satisfy the following conditions:

i. 4>(0) = 1

153

11. ¢(t) is non-increasing

111. o:s: <p (t) :s: 1 for all t 2 0

Figure 7.12 shows three different tdfs, exponential, linear, and step. Since

our application investigates whether a new click is a duplicate or not (nothing

in between) the counters should not keep residues over time. Therefore our

counters are implemented using the step time decaying function. It decrements

every non zero counter by 1 at every predefined time interval(to). to is defined

as the time threshold where two clicks from the same IP are not considered as

duplicates if they occur closely.

1
« - Linear

~"""" - -- Step
1\
! 1" ... -- Exponential
I \
I \

......
I "' ...
I \ ...
I '\

..........
I "-
I "- '"
I
I , ,
I
I

....
I
I "
I + - _- --

o time

Figure 7.12: Decay functions.

Even though CBF provides a very simple approach to count the duplicates in

a stream, we cannot directly use it because of the following reason. Consider

the five scenarios shown in Figure 7.13. Horizontal axis corresponds to time

and indicators on top of the time axis corresponds to deletions from the CnF,

while indicators in the bottom of the time axis corresponds to insertions into

the CBF. For simplicity we assume deletions occur at regular time intervals.

This is shown with equal gaps between deletion indicators in Figure 7.13. On

the other hand insertions occur randomly, which is the usual case in practical

154

applications. If two clicks land between two deletions, we consider them to be

duplicates. Therefore case 1, and case 2 are not considered duplicates but case

3, and case 5 are considered duplicates. If we strictly follow this rule case 4

will be considered as non-duplicates, while case 5 will be considered duplicates,

even though both should be considered as duplicates because the time interval

between clicks in case 4, and case 5 are miniscule. This scenario occurs due

to small time interval 6t between consecutive insertions. This situation can be

expected more often in click stream data because clicks can occur very close

to each other. For example the time between a double click from the same IP

address may be very small. We want our system to consider both case 4 and

case 5 to be duplicates. Therefore we have slightly modified the ordinary CBF,

where it's counters C will contain status information instead of counters.

I

- Deletions
~ Insertions

\ I \ I Time
Case 1 Case 3 ~ ... _,; , ... _ ,... .,;

Case 2 \case 4 CaSe·S.

.. ' .. '

t
Click i

;.~.", \ ... :~,., .' ~ .
. "" \. ,

".~., '.~ : ..•. "

\ / AI
t t t

Click i+l Click j Click j+l

Case 4 Case 5

Figure 7.13: Real time Insertions and deletions in a click stream.

(b) Status information We represent the status information as an array with the

values in the range S : [1, V], where V represents the maximum number of

states. This is depicted in Figure 7.14(a). The value V depends on the

requirements of the application. Following is an example for the status vector

155

S, when V = 3, in a duplicate clicks detection system, and the unique situations

define by each state.

1. 1: Partially deleted, indicates that it is possible the same click has seen

prior to two deletions. (It is only probable because the state can be changed

by a different click, if it is mapped to the same location)

11. 2: Recently seen, indicates that the click may have occurred between the

new click and the last deletion.

iii. 3: Never seen 4, indicates that either the clicks is never seen or it has

expired.

Status
Vector (S)

o
o
o
o

o
(a)

1

Key 1

o
2
o
o

3

Key 2

hk

1

1

o
2 3
o
2 3

1 2
(c)

Figure 7.14: Modified Counting Bloom Filter with status information.

(c) Temporal Statcful Bloom Filter In this section, we describe our Temporal Statcful

Bloom Filter (TSBF). Again the underline structure is similar to CBF, where coun-

ters are decayed with time. TSBF cells are neither bits nor counters but instead a

value corresponding to the state. A TSBF consists of,

(a) An array of m counters, {GI , G2 , G3 , ... , Gm }, where each counter Gi is replaced

with the status vector, S.

4There is no difference between having 0 and having 3 in the bloom filter except that when it is 0, we

know that cell is never touched.

156

(b) A set of independent k hash functions {hI, h2' h3, ... , hd defined for the range

[1..m]

(c) A time decaying step function </J(t)

The TSBF carries out the following insertion, lookup and modify tasks.

(a) Ins ertion: If the cell counter is 0, set the count to 2. If the cell value equals 1,

set the count to 2 (Figure 7.14(b)).

(b) Lookup: Check all cells associated with the insertion. If all cell values are either

1 or 2, then it is a duplicate.

(c) Modify: When decaying function </J(t) decreased to the threshold level adjust

the cells accordingly. If the current status value is 2, change the cell value to

1. If the current status value is 1, change the cell value to 3. This is illustrated

in Figure 7.14(c).

We call the first and second operations the duplicate detection process, and the

third operation the update process.

7.2.5 Experimental Results and Discussion

In order to evaluate the proposed methodology for duplicate detection in dick streams,

we ran a comprehensive set of experiments, especially because it is now a part of a

commercial system.www.NetMosaics.com. that provides solutions for click fraud. The

experiments used both synthetic and actual data. Actual click stream data are collected

in the servers at the www.NetMosaics.com. Each click record contains several server side

and client side parameters, as well as user activities during the each session.

The integrated structure of a click record which includes all context information is

shown in Figure 7.15. There are two unique identifiers available for each click. The IP

and the TrackingID. IP is the IP address of the origin of the click. TrackingID is an 128

bit long globally unique identifier generated by the Net Mosaics servers. We have used IP

as the identifier for each dick, but the 128 bit tracking number can also be used instead.

157

.... Cli Cli C\ > Cli C\
C

"0 - rc "0 - .~ rc
VI b.O Cli Vi b.O U VI rc rc x a.. c "0 ~ C "0 Cli Cli - Cli :.£2 32 > Cli > Cli Cli C Cli C Cli Cli

..... rc u ..c Cli .~ u ..c c
Cli "0 Cli rc "0 "0 rc "0 0 rc 0 Vi 0 U 0 Vi VI VI VI VI U "0

Figure 7.15: Structure of the click record.

When a new click is arrived we first calculate the corresponding hash value of the IP

address. The hash functions are developed by first calculating the MD5 signature5 of the

IP address [Menezes et al., 1997], which yields 128 bits, then dividing the 128 bits into

m/k number of groups, and taking the modulus of each m/k bit word by the table size

m.

Initially, all counters in the TSBF are set to zero. When usmg TSBF to detect

duplicate clicks, for each newly arrived click, we execute the following three operations in

order.

(a) The IP is mapped to k counters by some uniform and independent hash functions.

(b) Change the status value in the hashed locations by according to the Insertion func-

tion defined above. If the IP is a duplicate, it can be determined by probing whether

all the k counters, hashed to are all 18 or 28.

(c) At a predefined time interval to change the status of all the non-zero cells according

to the Modify function defined above.

7.2.6 Accuracy of the Bloom Filter

Ordinary Bloom filters are discussed in literature for duplicate detection m streaming

data [Shen and Zhang, 2008, Deng and Rafiei, 2006, Metwally et al., 2005bj. Since the

5 also called as MD5 hash. It is a 128 bits long number. It is calculated from the contents of the string

being read. Once the entire string is read, the bytes combined numerically via a special algorithm and

the result is the MD5 hash. The algorithm for the calculation of that number is designed to be relatively

quick to compute, and, perhaps more importantly, very unique.

158

architecture of the proposed TSBF is based on ordinary Bloom filter we have experimented

BF on a streaming data series. There are three parameters that define the performance

of a BF , i.e. m, n , and k.

The streaming data series is a set of unique IP addresses that are generated randomly.

This will enable to find out the variation of true positives in a BF, which is the only type

of error found in BF. True positives are always created by unique elements , where it is

reported as a duplicate. We have selected m = 4096, and varied both sample size (n)

and number of hash functions used (k). We have varied n from 100 to 3000. Figure 7.16

shows the variation of false positives. Legend shows the variation of the number of hash

functions.

- 1 _ .. 2 _. - 3 - - 4 _ . - 5 - - - 6 ----- 7 8

1800

1600

1400

1200

1000

800

600
400

200

o

•• -0J'

..... >.'~ . /

-200 6---<;flfr--ttm-'1"\ftft-~jm--..z ,~<ffiNIft--"'!fli' ~'vlft-v---<!'c;bo

no. of data samples (n)

Figure 7.16: False positives in BF with m = 4096.

All the bits in the BF are initially set to zero. As new elements arrive they are mapped

to proper indexes by k hash functions and the corresponding bit is turned to 1. Since I3F

does not have a deletion mechanism, as new elements arrived, the percentage of zeros will

decrease. This will cause false positive rates to increase. In Figure 7.16, when the number

of samples reached about 1000, the false positives increases drastically. For example when

n = 1000, there are 70 false positives , with k = 8. i.e. an error rate of almost 7%. If

we use 3 hash functions instead of 8 the error rate reduced to 3%, which is the minimum

achievable at this settings. If somebody wants to operate at this level then a deletion

mechanism should be executed at this level in order to maintain the percentage of Os in

159

the BF. Otherwise, for smaller error rates, a BF with different set of parameters should

be chosen. Figure 7.17 shows BF configurations with lesser error rates. Legend shows

the variation of the number of hash functions.

- 1 -·· 2 -·-3 --4 _.- 5 --- 6 ---- 7 ······· 8

100

80

60
~
> .,
'a 40 Q.

~
~

20

0

./ v. ... ;
/:. ~". " ~ ,

"A'" ", .

~ :;;' ;..r<

/ "~""' '''''';' ~~

~
"'/ .. ~ ~~-.-~,

2 0 40 6 0
-20

80 lCpO 1,~ o
no. of data samples (n)

Figure 7.17: BF configurations with at most 10% False positives.

In Figure 7.17 despite the value of k, false positives increase when number of incoming

samples goes beyond 500. In this region except k = 1, and k = 2 false positive rate is less

than 1 %. Therefore, for the rest of the experiments whenever we configure a BF k is set

to 4.

If only four states(i.e. v = 4) are used in the TSBF, only 2 bits are required to present

all the information. In this case, four states can be one in the set 00, 01,10, 11. Compare

to the ordinary BF this requires as twice as much memory. But ordinary BF does not

support deletions , and TSBF is able to support deletions with an addition of one extra

bit in each cell. When compared with standard CBF, TSBF requires only half the space

or less with the same false positive probability, and it appears as simple or even simpler

to put into practice. (In Table 7.11, we have showed that optimum requirement of bits

per cell for CBF is 4).

Next set of experiments are conducted using the proposed TSBF approach to compare

the performance when detecting duplicates. First , We conducted experiments on streams

of synthetic data to illustrate how the theoretical and practical error rates vary with the

number of hash functions. Error rate introduced in equation 7.6 is used as an approx-

160

imation for the theoretical error rate in TSBF. We used a synthetic stream of 100,000

clicks without any duplicates. Since all clicks are distinct, any duplicates detected by the

TSBF will be erroneous. We have calculated the error rate as the percentage of duplicates

detected per total clicks encountered. We have simulated the incoming clicks stream by

randomly allowing 100 * n (where 1 ::; n ::; 1000) records to be processed between any

deletion period (i. e. before any click expired in the batch). Figure 7.18 shows the results

when n = 1000(i. e. 1000 clicks are processed before deleting any record). We have seen

similar results for all n values of the data sets.

- - - Practical -- Theoretical

0.1

0.08

'" 0.06 1;;

"" '" > . .,
0.04 .;;;

\
\
\ I

I

0
0-

:l(
0.02 ~

i'-...

----- I
0

-0.02

- - I

~ 1 ,
-

Number of hash functions

Figure 7.18: Theoretical and Practical error rates with n = 1000.

The graphs in Figure 7.18 shows how the error rate decreases as the number of hash

functions increases for the same BF configuration (i.e. for same m). The theoretical

error rate of BF shown in equation 7.6 is only an approximation. Therefore, we have

experimentally found out whether the assumption is safe to continue the experiments.

We have seen that the actual error rate is always less than the theoretical error rate, and

it is almost negligeable when we use 4 or more hash functions.

From equation 7.6, we have Perror ::::; (1 - e -::.n)k. Figure 7.19 shows the variation of

Perror with the exponent (-!n). It is required that for better performance of the TSBF

either kn ::; m or k ::; min. This shows clearly the t radeoff between space and error rate

in the TSBF. The more hash functions used in TSBF, the larger the required space and

the smaller the probability of producing errors. However , since the space usage of TSBF

161

1.2

1

~
'" O.S cr::
Q)

>
'';::;

0.6 'Vi
0

Cl.
Q) 0.4 ~

'" "-
0.2

0

_ kn/m=0.2 _ kn/m=O.5 _ kn/m=0.9 _ kn/m=l

_ kn/m=2 -.- kn/m=5 _ kn/m=15

2 3 4 5 6 7 s
Number of Hash Functions

Figure 7.19: False Positive Rate Vs. kn/ m.

is a constant , the number of hash functions should be chosen adequately to satisfy the

above requirement.

In the next experiment we have looked at the variation of error rate with the space

usagc(i .c. min), which gives us the flexibility to select a better size for m of our TSBF.

- -. k=l _ k=2 _- k=3)<1 ••• k=4 - ~ - k=5 ...•... k=6 -1-- k=S

0.1

0.09

O.OS
~ 0.07 ..
'" '" 0_06
> -;:;

0.05 .;;;
0
a. 0.04
:l(

0.03 ~
0.02

0.01

0

o

. '}
'\ .. \

__ x.l,!
----\~-- ------

5 10

min

15 20 25

Figure 7.20: min vs. False Positive Rate for n=1000.

Figure 7.20 shows the variation of false positive rate with the ratio min for the

data set size n = 1000. When t he min ratio is less than 5, false positive rate decreases

drastically. In this region it is important to see that higher the number of hash functions

used , higher the false positive rate is. Even though we expect the error to go down with

162

number of hash functions, due to the compactness of the array, the probability that a

counter , in the BF in this area, is 1 is high. Therefore false positive rate increases. This

phenomena gradually decreases after min is 5. It is almost negligeable when the min

ratio is greater than 10.

When the TSBF is launched in an actual situation, the si:te of the BF (m) will be fixed .

n which is the approximate number of clicks per unit time is also almost a constant,

which varies predictably. For example in a given web server average number of clicks

per unit time is usually known, which we refer to as baselines in our previous papers

[Walgampaya et al., 2010, Kantardzic et al., 2010b]. Therefore the only parameter we

can vary is the number of hash functions. When the value of n is found based on practical

experiences, we have to carry out sample runs with different values for m, and k to find

the best possible configuration for TSBF. For example Figure 7.21 shows the variation of

number of false positives with the number of hash functions , for an approximate incoming

click rate of 300 per unit time.

_ 512 .. · . .. · 1024 ··.·- 2048 - ~ - 4096

45

40

35
~ 30 Q)
> .,

25 .;;;
0
Cl. 20 .
~
~ 15

10

5

0

,
-~~~I---!-- .~ ___ -+ __ -+_

r-•.. \ -
I 4 ~-+----.-+-----t------j 52 ~:~~~ .. ~... ~+------I
o 2 4 6 8 10

Number of Hash Functions

Figure 7.21: False Positives vs. Number of hash functions.

We have varied m with the values 512,1024, 2048, and 4096 (these numbers are selected

only for experimental purposes) in this experiment. In Figure 7.21 , when m = 512, and

n = 300, as the number of hash functions(k) increases the number of false positives also

increases after k ~ 3. But when the BF size(m) grows, the compactness (min) of the BF

reduces, so does the false positives with increasing number of hash functions .

163

7.2.7 Experiments with real world data

The data which will be used for the experiments to follow comes from the paid traffic

of two very different websites. All of our experiments use click data from Hosting.coms

website. Hosting.com is a global company which provides hosting solutions to "business

critical data assets" as explained on their website. We also created thebestmusicsites.org,

a single webpage only displaying advertisements. It was created to attract fraudulent

traffic. Currently we have data for Aug. 2007 to June 2008 for Hosting.com and Jan.

2007 to Aug. 2007 for thebestmusicsites.org. Traffic was filtered before being run through

the outlier detection module. First, only paid traffic is being monitored. This includes

ads run on search results and network partners of Google, Yahoo, and Bing. Next, we

removed all known robots from the traffic. A known robot is a robot that declares itself

in the user agent field. Known robots are generally removed from paid traffic before an

account is charged.

Duplicate detection is first tested with an ordinary buffering implementation as dis­

cussed in Section 7.2.4. We have used a linked list to implement the buffer because of

its simplicity. In this experiment we considered two clicks are duplicates if they occurred

within a two minute time interval. Accordingly the buffering approach compares the time

stamps between IPs for two minute threshold, if an incoming IP is already recorded in

the buffer. This threshold time interval is chosen only for experimental purposes, and

duplicates detected in more finer intervals are discussed later in the experiments.

Buffering techniques are popular in applications where there are less number of distinct

elements in the data. For example if we expect data from only w (for example 5) data

sources, then for each incoming record there will be w comparisons in the worst case. Since

the number of elements to store are small, the size of the Buffer does not grow beyond w.

Therefore, we do not have to delete old elements to make space for new incoming elements.

In such situations implementing the duplicate detection using I3uffering mechanism may

be an easy option. We also tested the I3uffering without any deletion or replacement

164

mechanism. We have done this to investigate6 whether the requests are reaching from

the same set of IPs. If the requests always come from a manageable set of IPs our work

will be much easier. But we have realized that the size of the buffer grows exponentially

immediately after deployment.

Table 7.12 shows the duplicates detected by the buffering mechanism along with the

approximate size of the buffer. It also shows the duplicates detected by the proposed

method, TSBF, and its constant space requirement over time.

--Buffering - - - TSBF

25000

~ 20000 ~

:c
.E
l!:: 15000
'in
iii
c:
0 10000 "€
0
Co e 5000 0-

0

0 10000 20000 30000 40000 50000 60000

Number of clicks in stream data

Figure 7.22: Comparison of Memory Usage.

Since we do not lose any information in the buffering mechanism (in the case without

replacements) we can safely assume that there are no errors in the duplicate detection.

So that we can compare the accuracy and the memory usage of TSBF with the same data

set, which had more than 50,000 dicks. For the TSI3F we have used m = 256, k = 4 with

ueletion cycle executing every 120 seconus.

As shown in Table 7.12, number of duplicates detected by the both Buffering and

TSBF are almost the same even though there are few discrepancies in the later rows of

the table. In the rows where there are mismatches, TSBF always reported more duplicate

clicks. This is mostly due to the False Positives in our method and buffering do not have

GThe reason for our hypothesis is that we had several software filters that filters obvious invalid

requests. For example since the advertisements in these websites are shown only to the US customers

these filters do not allow requests from other IPs except those inside the US.

165

Table 7.12: Comparison of different methodologies for duplicate detection in a click stream

Clicks Pro- Duplicates Detected ex: Memory Used TSBF Accu-

cessed racy (%)

Buffering TSBF Buffering TSBF

10 5 5 20 256 100

50 27 28 68 256 96.3

75 40 41 108 256 97.5

100 53 54 144 256 98.1

200 105 107 292 256 98.1

300 168 170 408 256 98.8

400 247 249 464 256 99.2

500 303 305 604 256 99.3

750 444 448 904 256 99.1

lOOO 590 594 1164 256 99.3

2000 1251 1261 2020 256 99.2

3000 1881 1890 2996 256 99.5

4000 2569 2584 3828 256 99.4

5000 3115 3134 4872 256 99.4

10000 5939 5976 10124 256 99.4

20000 11168 11222 14320 256 99.5

30000 16385 16445 17540 256 99.6

40000 21449 21523 21524 256 99.6

50000 22332 22428 28500 256 99.6

166

false positives. False positives occur when an distinct element is wrongly reported as a

duplicate. In the Bloom Filter approach this error is inherited and we can minimize it

with utilizing a bigger size Bloom Filter. But, since the error rate is under 1% on average,

we allow that to occur to enjoy the other benefits from using a BF.

With the use of the status vector in the TSBF approach it is possible to minimi~ed the

false negative errors. False negatives occur when duplicate element are wrongly identified

as distinct. In order to identify a duplicate as a distinct, if an ordinary bloom filter is

used, at least one of the mapped bit positions of the vector must have a zero. Those bit

positions may have been changed by an operation associated with the another deletion,

because same bit position can be shared by few other elements. In contrast, if the TSBF

is used, the deletion in the shared bit position will be changed from "recently seen" to

"partially seen" to "unseen". Therefore, when the new element arrives, instead of a 0,

it will have "partially seen'· status, which will help to correctly identify the new clement

as a duplicate. The ability of TSBF to keep this history information will eliminate the

possibility for a false negative. If more values for the status vector are used it is possible to

totally eliminate the false negatives. Therefore, in this experiment we assume that there

are no false negatives present in the TSBF. The Buffering without replacement does not

have either false negatives or false positives. So, the difference in the duplicates detected

are solely due to the false positives in the TSBF. The average false positive rate from the

experiment is less than 1 % but we consider 1% false positive rate for TSBF that will be

used in the experiments to follow.

After this results we have reached to two conclusions. First, for our application if

one wishes to use a buffering technique then he/she must utilize a replacement method.

Second, we can use a TSBF for duplicate detection in click stream, if we allow a very

little error rate to occur.

Based on the first conclusion we have modified the buffering mechanism to utilize the

LRU replacement technique. which now replaces the Least Recently Used item with the

new item, when the buffer is full. But, with this modification, other than costly linked

167

lists deletions we will now have False Negatives(FN) in the buffering. FN is the occasion

where a duplicate element is wrongly interpreted as a distinct. FN occurs due to a gap

in the data stream, which is the number of elements between a duplicate and its nearest

predecessor. Since LRU get rid of least recently used item, it may be the item that is

newly arrived. But since its predecessor is already deleted, buffer will treat it as a distinct

clement. Table 7.13 shows the false negatives which we have seen in the iluffering with

LRU replacement. Compare to TSBF the error rate high. Therefore, even with the

replacement mechanism Buffering mechanism is not suitable for detecting duplicates in

the pay-per-click streaming data.

FN are the main reason for us to develop TSBF, comparing to its predecessor Counting

Bloom Filter (CBF). In the next section we discuss effect of F~ in the CBF in duplicate

detection.

7.2.8 False Negatives in CBF

A false negative(FN) is an error when duplicate element is wrongly reported as distinct.

It is generated only by duplicate elements, and is related to the input data distribution,

especially the distribution of gaps. A gap is the number of elements between a duplicate

and its nearest predecessor. Suppose a duplicate element Xi whose nearest predecessor is

xi-dxi = Xi - 6i) is hashed into k cells is decremented to 0 within the (\ iterations when

Xi arrives, then there will be FN. If there are no duplicates in the data stream, there are

no predecessors and therefore FN will be zero.

How FN are possible with CBF? In the CBF when its deletion cycle is executed the

counters are decremented by 1. For example, let us assume we are using a CBF with

k = 4 and that there are two clicks (click i, and click j) from the same IP, which are close

enough to consider as duplicates. After click i is inserted the corresponding counters are

(2,3,2, and 1). By this time if the deletion is executed the counters become (1,2,1, and

0). And now when click j comes, since one of the counters is zero, it will not be detected

as a duplicate.

168

Table 7.13: False Negatives in Buffering with LRU Replacement

Clicks Processed Buffering with- Buffering with LRU Error

out Replacement Replacement

10 5 5 0

50 28 27 1

75 41 40 1

100 54 51 3

200 107 100 7

300 170 158 12

400 249 234 15

500 305 286 19

750 448 411 37

1000 594 547 47

2000 1261 1162 99

3000 1893 1759 134

4000 2586 2409 177

5000 3136 2924 212

10000 5980 5601 379

20000 11231 10531 700

30000 16456 15471 985

40000 21535 20222 1313

50000 22442 20998 1444

169

Counting Bloom Filters have both false positives and false negatives. \Ve can conduct

experiments to find out the total error, but it is difficult to separate them as false positives

and false negatives experimentally. In one of the previous experiments we have shown

that on average TSI3F have 1 % false positive error. The architecture of the TSI3F and

CBF are almost the same except that the TSBF uses 2 bits to represent the status and

CBF uses 4 bits to represent the count. Therefore, we assume that CBF also has a 1%

false positive rate, and whatever remains from the total error will be false negatives.

\Ve have conducted several rounds of experiments to see the effect of the false positive

and negative errors of the CBF. Table 7.14 shows the results. In Figure 7.23 we have

plot the error with the stream size and the variation is linear. In the CBF compare to

false positive rate, false negative rate is high. What does this mean in the pay-per-click

model? If false negatives are high, that means duplicate clicks are wrongly detected as

distinct. In this case, advertisers will be charged for the click. On the other hand, if false

positives are high, distinct clicks are wrongly identified as duplicate and publishers will

not get paid for unique clicks.

To reduce the FN either we have to reduce the frequency of the deletion cycle or com­

pletely change the structure of the CBF. The deletion cycle depends on the application

and. in a system like pay-per-click, it is rather impossible to adjust the deletion cycle be­

cause the time period where two clicks are considered duplicate is almost fixed. Therefore

the approach is to change the structure of the CBF to leave some residue when counters

are decremented. For example a counter does not turn on and turn off immediately, dur­

ing an insertion or dcletion(i.e. to switch from 1 to 0), but it goes through several states

before turns to 0, For example state 1: recently seen, 2: partially deleted, and 3: never

seen. Therefore in the previous example when the first click arrives counter will be (2, 2,

2, and 2), and after the deletion cycle, they will be (1, 1, 1, and 1). When the second

click arrives counters will be at state 1, which will now correct the error and identify the

duplicate.

This modification 1Il TSBF eliminates the chances for FNs, but there IS a little

170

Table 7.14: False Negatives

Clicks Processed Duplicates detected Total Error False Negative

rate(%)

HT CBF

10 5 5 0 0.00

50 28 27 1 2.57

75 41 40 1 1.43

100 54 51 3 4.55

200 107 100 7 5.54

300 170 158 12 6.05

400 249 234 15 5.02

500 305 286 19 5.23

750 448 411 37 7.26

1000 594 547 47 6.91

2000 1261 1162 99 6.85

3000 1893 1759 134 6.08

4000 2586 2409 177 5.84

5000 3136 2924 212 5.76

10000 5980 5601 379 5.34

20000 11231 10531 700 5.23

30000 16456 15471 985 4.98

40000 21535 20222 1313 5.09

50000 22442 20998 1444 5.43

171

__ False Negatives

1600 -
1400 ~----

...
1200 - ~

:c /' ;> 1000 :;::;

/ ' '" OJ)

800 <II
Z /' :l: 600
~ /' 400

/ 200

0 '/
o 10000 20000 30000 40000 50000 60000

Input data size

Figure 7.23: False Negatives.

chance (about 1%) for FP with TSBF. Since buffering does not have FP, to compare

our results fairly and effectively, we used a variation of buffering called FPbuffering

[Deng and Rafiei , 2006] introduced by Deng et al.

In FPbuffering, the buffer is searched when a new element arnves. If found , it is

reported as a duplicate. Otherwise report it as a duplicate with probability q and as a

distinct with probability (1 - q). In the original buffering, if an element is not found in

the buffer , it is always reported as a distinct. This variation can increase the overall error

rates of buffering when there are more distincts in the stream, but can decrease the error

rates when there are more duplicates in the stream. Clearly, FPbuffering has both FPs

and FNs. In fact, as Deng et al. suggested q is the FP rate since a distinct element will

be reported as duplicate with a probability q.

In the following experiment we compared the error rates between TSBF (m = 256,k =

4) , FPbuffering with LRU replacement on the real data by varying the allowable FP rate

(i. e. q) and stream sizes. For the results in Table 7.15 , we calculated the Error rate as

(number of FPs/ number of distincts) with the assumption that with Buffering without

replacement gives correct number of duplicates. As the result shows TSBF error rate is

almost always less than 1 % except for the first five data sets. Even though the error rate

is high , the actual difference is maximum of 2 clicks. For the FPbuffering we have changed

the FP rate, which is the variable q, between 0.01 , 0.1 , 0.2, and 0.5. FPbuffering gives its

172

best performance when the allowable FP rate is 1%. The results are almost similar to

TSBF. When the q value is O.l,(or allowable FP rate is 10%) the maximum error rate

is slightly less than 10%, which may be acceptable in some applications but not in ours.

But when the allowable FP rate higher than 10% FPbuffering has its worst performance.

~ .1::
~

~ CO
;:::l if1

CO ~
,..q ,..q
+" +"
.~ .~

'"d rJJ rJJ
Q.) Q.) Q.)
rJJ +" +"
rJJ (Ij (Ij
Q.)

.S:; .S:; c.;;
0 P.. P.. Q.) +"

0... ;:::l ;:::l (Ij
'"d '"d

rJJ
~

...-<:.:: (Ij 0 .S:; +" +"
0 ~ ~

.....
Duplicates detected ~

~ ~ ~ ~

~ ~ ~ ~
'-../ '-../ '-../ '-../

Q.) Q.) Q.) Q.)
+" +" +" +"

,--f (Ij (Ij (Ij (Ij
0 ,--f N tn
0 0 c:i 0

0 0 0 0
II II II II
~ ~ ~ ~ ~ ~ ~ ~

10 5 5 0 5 0 5 0 5 0 5 0

50 27 28 3.7 28 3.7 29 7.4 30 11.1 37 37.0

75 40 41 2.5 41 2.5 43 2.5 45 12.5 47 17.5

100 53 54 1.8 54 1.9 57 7.5 61 15.1 69 30.2

200 105 107 1.9 107 1.9 112 6.7 120 14.3 141 34.2

300 168 170 1.2 169 0.6 184 9.5 192 14.3 210 25.0

400 247 249 0.8 249 0.8 254 2.8 270 9.3 299 21.1

500 303 305 0.6 305 0.6 314 3.6 330 8.9 378 24.7

750 444 448 0.9 445 0.2 469 5.6 475 6.9 543 22.3

1000 590 594 0.7 597 1.1 620 5.1 643 8.9 744 26.1

2000 1251 1261 0.8 1255 0.3 1314 5.0 1343 7.4 1491 19.2

3000 1881 1890 0.4 1895 0.7 1948 3.6 2042 8.6 2252 19.7

4000 2569 2584 0.5 2580 0.4 2660 3.5 2745 6.9 3048 18.5

173

5000 3115 3134 0.6 3125 0.3 3238 3.9 3372 8.3 3733 19.8

10000 5939 5976 0.6 5968 0.5 6188 4.2 6439 8.4 7197 21.2

20000 11168 11222 0.5 11198 0.3 11511 3.1 1185~ 6.2 1291 (15.6

30000 16385 16445 0.4 16431 0.3 16816 2.6 1721E 5.1 1857~ 13.3

40000 21449 21523 0.3 21509 0.3 21988 2.5 2253 5.0 2417~ 12.6

50000 22332 22428 0.4 22394 0.3 23078 3.3 2376~ 6.4 25934 16.1

Table 7.15: Comparison of error rates between

TSBF,FPbuffering, and Buffering

7.2.9 Double clicks Vs. Multiple clicks

Are multiple clicks on the same ad (usually known as impressions), always considered

duplicates? For example, consider the case of a double click, i.e., two clicks occur on

the same ad, where the second click follows the first one within a time period p. Is the

second click a double click always? Unfortunately, in most of these cases it is hard or

even impossible to determine the true intent of a click. Therefore in such cases we adapt

a simple measure, which is the time difference between the two clicks. If p is really small,

e.g. "fraction of a second", this click is considered invalid but not fraudulent because

the person who made the click may be accustomed to Windows ™ default method of

invoking options in an application. Therefore, we have to disregard such clicks when

duplicate clicks are detected. It can be easily done with Buffering approach, since it is

merely a comparison of two time stamps. In order to distinguish these double clicks with

TSBF, we have to increase the resolution of the status vector S. This can be done by

increasing the maximum number of states in V. Figure 7.24 depicts this extended status

vector with V = 5 along with the original TSBF. With the new configuration, states in

S change frequently than that of with V = 3. We have performed experiments to detect

174

such double clicks with the new status vector and results are shown in Table 7.16 and

Figure 7.25 show the break down of double clicks in one minute time intervals. For

example, in the dataset with 20,000 records 95 .6% of the duplicates are recorded within

the first minute and 3.3%,0.7%, and 0.4% duplicates are recorded in the second, third,

and fourth minute respectively.

0 0

hI 1 2 3 2 3 4
0 0

Key 1 Key 1

0 0

123 234

Figure 7.24: Extended status vector for duplicate detection.

- 1 st minute - 2nd minute - 3rd minute 4th minute

100%

98%
~
~ 96% 0

'"0
~ 94% C'j
(])
1-0

..0 92%
?f(

90%

88%
0 0 U"l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
.-I U"l r--.. 0 0 0 0 0 U"l 0 0 0 0 0 0 0 0 0 0

.-I N m o::t U"l r--.. 0 0 0 0 0 0 0 0 0 0
.-I N m o::t U"l 0 0 0 0 0

.-I N m o::t U"l

Clicks processed

Figure 7.25: Break down of duplicate clicks.

175

Table 7.16: False Negatives

Clicks Total Second click detected within

Pro- dupli-

cessed cates

pt 2nd 3rd ;:::: 4th minute

10 5 5 0 0 0

50 28 26 1 0 1

75 41 39 1 0 1

100 54 50 2 1 1

200 107 101 3 2 1

300 170 163 4 2 1

400 249 238 8 2 1

500 305 292 10 2 1

750 448 426 16 4 2

1000 594 567 18 7 2

2000 1262 1178 63 15 6

3000 1894 1787 83 17 7

4000 2600 2445 120 26 9

5000 3154 2971 137 32 14

10000 6006 5692 223 62 29

20000 11266 10767 370 82 47

30000 16496 15854 494 95 53

40000 21586 20757 644 112 73

50000 22479 21518 730 143 88

7.2.10 Time Complexity Comparison for Duplicate Detection

Since our goal is to minimize the error rates given a fixed amount of space and acceptable

FP rate, we focus only on time complexity. There are several parameters to be set in our

176

method. For each newly arrived element (click) we probe m cells to detect duplicates.

After that we pick k cells and update the states of them. Last we update all non-zero

cells « m) when the decaying function is invoked. Therefore time required for TSBF,

CBF, and BF to process one element is 0(1), however, the exact time depends on the

parameter settings.

For buffering and FPbuffering processing time is depends on two processes: clement

searching and clement evicting. Searching can be quite expensive without an index struc­

ture. Vie used a hash table to accelerate the search process. The extra space that is

needed for a hash table to keep the search time constant is linear in the number of ele­

ments stored. The process of maintaining the LRU replacement policy (finding the least

recently used element) is also costly, and extra space is needed to make it faster. This

extra space can be quite large for LRU.

7.2.11 Comparison with similar work for duplicate detection in Streaming

data

In [Metwally et al., 2005b], the authors proposed to maintain a CBF for each sub-window,

and a main BF which is a combination of all CBF and represents the entire jumping win­

dow. When a new sub-window is generated, the eldest window is expired and subtracted

from the main Bloom filter. Combining two CBFs is performed by adding the correspond­

ing counters, deleting an old CBF is performed by subtracting its counters from the main

Bloom filter.

However, this scheme has two potential drawbacks. One is that subtracting an expired

Bloom filter from the main Bloom filter needs O(m) operations, and false positives increase

if new clements are inserted into the main Bloom filter before subtracting operation

completes. The other drawback is that this scheme may have high false positive rate,

especially when the number of sub-windows is large. There are two reasons for this

drawback. First, with the same limited available memory space, expanding bits in Bloom

filters to counters make the size of Bloom filter smaller. In worst case, the maximum value

177

in the counters of counting Bloom filters is N /Q, and the maximum value in the counters

of the main Bloom filter is N. Therefore, each counter must ave enough bits to avoid

saturation, which will generate both false negatives and false positives. Consequently, the

size of the Bloom filters in their algorithm is much smaller than the size of Bloom filters

in our TSBF algorithm, and the false positive rate will be much higher than that of TSBF

algorithm. Sccond, checking the prcsence of an clement in the main I3loom filters which

is the result of combination of all CBFs will generate very high false positive rate, since

it is as if all N elements are inserted into the single main Bloom filter(any entry with

non-zero value in any CBF will set the corresponding entry in the main Bloom filter to

non-zero).

7.3 Modeling of Knowledge and Validation

Most service providers currently approach the problem of click fraud by attempting to

automatically recogni)l;e fraudulent clicks and discount them. Fraudulent clicks arc rec­

ognized by machine learning algorithms, which use information regarding the naviga­

tional behavior of users to try and distinguish between human and robot generated clicks

[Immorlica et a1., 2005]. Such algorithms are mainly built using rule based techniques

and most of them are classification systems [Metwally et a1., 2005a], even though a few

score based systems are also reported [Ge and Kantardzic, 2006, Kantardzic et al., 2008,

Kantardzic et a1., 2009]. Most of the click fraud solution providers, including search en­

gines and third party solution providers, claim their rule-based expert system is the best

among the others taking the advantage of keeping "rules" as a secret weapon. They do

not clisclose information about the set of rules due to fear of competition. This situation

even led to multi-million dollar settlements [Hadjinian et al., 2006, Thzhilin, 2006] in the

recent years.

Due to the lack of verifiability of click fraud solutions, it is inevitable that the trust be­

tween service providers and advertisers is degraded. Since real-world click fraud solutions

are usually kept secret for fear of competition, it is practically impossible to study many

178

of them in a single context. In this research we discuss the modeling of knowledge and

validation (KV) model for rule based expert systems used in click fraud detection. We

have considered the case studies of one real-world click fraud detection rule-based expert

system [Kantardzic et al., 2009] for validation. In future, solution providers will be able

to use our tool to test their systems without revealing the implementation details of the

rule base.

7.3.1 Rules in Knowledge-based Systems

Knowledge-based systems have received great attention and have become an essential tool

in business, science, engineering, manufacturing, and many other fields. Because of the

natural representation and the powerful inference ability of production rules, knowledge­

based systems are usually implemented in the form of rule-based system (RBS). Usu­

ally a rule in an RBS describes an IF-THEN relationship of the form: "LHS '* RES,"

where LHS is a collection of conditions, and RHS is a collection of actions or conclusions

[Wu and Lee, 2002]. If the conditions are met a certain value is assigned and if not an­

other threshold value is assigned. Rule-based expert systems have been in use for a couple

of decades, and their usefulness has been demonstrated in many domains. However, they

also draw a lot of criticism [Ben-David, 2008]. In particular, deriving the "right" rules

proved a very difficult task. Another issue has been the need to adjust rule-based systems

to cope with changing conditions. Although rule-based systems provide the major ad­

vantage of being interpretable, as rule-based systems grow larger, it becomes increasingly

impractical to manually check each rule for consistency, redundancy etc. This topic. thus.

drew the attention of the research community, and algorithmic tools began to emerge

[Ayel and Laurent, 1991, Ben-David, 2008, Gupta et al., 1991].

7.3.2 Proposed Validation Framework

Despite the enormous capabilities of modern machine learning and data mining techniques

in modeling complicated problems, most of the available click fraud detection systems are

179

rule-based. This is mainly due to the fact that advertisement click streams are very hard

to be labeled as fraudulent because of the infinite situations in which a person could click

on an advertisement without getting through with the purchase. However, scenarios where

an advertisement is clicked 100 times in 1 second is definitely fraudulent. Therefore, rules

invented by experts to detect such fraudulent clicks arc manageable and their output is

clear. As the characteristics of a fraudulent click become more subtle, the output score

of a rule-based system becomes harder to interpret. This raises two questions a) are the

derived rules enough to model the fraudulent behavior? and b) what is the value of a

score threshold to announce a click fraudulent. Question (a) is about the validation of

the rule-based scores. In other words are we using the right rules/model.

The idea behind the proposed validation framework is basically to acquire another

model of the clicks data that is not rule dependent, a model that learns the inherent

statistical regularities of the data. Then the output of both models is compared. If both

models are consistent, then the rules are reflective of the actual inherent knowledge in the

data and therefore they provide a good interpretation of the structure of the problem in

hand. On the other hand, a discrepancy between the models indicates a lack of knowledge

about the system and thus it might be helpful to extract extra rules from the machine

learning model so as to be added to the rule-based system. Needless to say that the choice

of a proper machine learning technique is of utmost importance.

Rule-based click fraud detection systems are very reliable in extreme cases where a

dick is legitimate if a purchase is made while a dick is fraudulent if. for example. there

was no window opened to make the click (i.e. click bots). In the proposed validation

framework we train a classification algorithm to classify clicks as legitimate or fraudulent.

Using semi-supervised learning is natural as few samples (i.e. extreme cases clicks) have

verified labels while the scores for the rest of the clicks are not definitive and again the

threshold to classify them is not known. Due to the good generalization performance of

Support Vector :v1achines (SVM), we use Semi-supervised SVM (S3VM) [Joachims, 1999]

to model the inherent regularities of the click fraud data.

180

The validation process consists of following related steps.

(a) Select a subset of clicks with confident labels (legitimate/fraudulent) as described

earlier. The rest of the clicks are considered unlabeled samples and they are used

for their internal structure.

(b) Train S3YM on both labeled and unlabeled clicks. After training, each unlabeled

click will be assigned a label (legitimate/fraudulent).

(c) As click fraud systems produce scores rather than classifications, we transform the

S3YM classifications of unlabeled clicks into posterior probabilities using [Platt, 1999].

(d) Both scoring techniques are compared.

7.3.3 Results of validation model

We used a data set of 17,558 clicks produced using our CCFDP system (www.netmosaics.

com) [Kantardzic et al.. 2008, Kantardzic et al., 2009]. These data are from an actual ad

campaign conducted in 2008. The CCFDP system produced a score between 0 and 1 for

each click in the data set, where 0 is legitimate and 1 is fraudulent. To generate training

data set for the S3YM some of these clicks should be relabelled for the classifier. We

selected clicks with the scores in the range 0 and 0.1 as legitimate clicks. These clicks are

labelled as 0 for the S3YM data set. Similarly, we selected clicks with the scores in the

range 0.9 and 1.0 as fraudulent clicks. These clicks are labelled as class 1 for the S3YM

data set. The remaining data, with the scores between 0.1 and 0.9, are assigned to be

unlabeled.

Labelled data set is used to train the S3YM, and Figure 7.26 shows the scores obtained

from S3VM modeling compared with the original scores from the CCFDP system. It is

clear that the two sets of scores highly match. The Pearson correlation coefficient between

two series is 0.973. This indicates that the rules used in the CCFDP system are greatly

consistent with the structure of the click data. Does this give us the chance to get rid of

181

0.9 - S3VM Scores

-CCFDP Scores 0.8
I

-----r----~-----r---

I

I I I

-----~----~-----~--
I I I

~ 0.7
o

____ ~ _____ L ____ ~ _____ L ____ ~ _____ L __
I I I I

u I
I I I I I I

(/) 0.6
Q)

----,-----,----,-----,----,-----,-
I

u I I I I I I

~ 0.5 ----~-----~----~-----~----~-----
I I I I I

~ I I I I I I

-g 0.4 ----~-----~----~-----~----~-----
I I I

03 I
'-u.. 0.3

____ J _____ L ____ J _____ L ____ J_
I I I
I

I I I 0.2 - - - - , - - - - - , - - - - , - - -
I I I
I I I

0.1 - - - - -1 - - - - - I-- - - - - -1 - -
I

I I
--1-----~----

I

I I
_....J _____ ~ ___ _

I

I
____ J _____ L ___ _

I

I I ----,-----,----
I I
I I

-----1-----1-----­
I

2000 4000 6000 8000 10000 12000 14000 16000 18000
Sample Index

Figure 7.26: Comparison of scores produced using the CCFDP system and S3VM algo-

rithm.

the rules in the CCFDP? Yes, not only can it replace the rules but it can also eliminate

the controversy due to many rule based solutions offered in the market.

We have seen that due to the lack of verifiability of click fraud solutions, it is inevitable

that the trust between service providers and advertisers is degraded. Until today and

many more years ahead, real-world click fraud solutions will usually kept secret for fear

of competition. But, with the introduction of this validation model, click fraud solution

providers can validate their rule-based solutions without revealing the actual contents.

Currently we are applying the framework on several data sets. Also we are investigat­

ing the issue of using the output of S3VM to estimate a proper threshold on the scores

produced by the CCFDP system. In the near future, besides working on extracting rules

to model the differences between scoring methods. we will investigate semi-supervised

regression methods which might be more appropriate for continuous scoring purposes.

In the future work we will examine methods to modcl the differences between these

scoring methods and how to extract rules that will add to our understanding of the click

182

fraud problem in the form of new click fraud patterns and schemes.

183

CHAPTER 8

CONCLUSIONS

This dissertation presents new methodologies for click fraud detection and prevention

in real time. The proposed solution analyzes the detailed user activities on both, the

server side and client side collaboratively to better describe the intention of the click.

Data fusion techniques are developed to combine evidences from several data mining

models and to obtain a better estimation of the quality of the click traffic. Our ideas

arc experimented through the development of the Collaborative Click Fraud Detection

and Prevention (CCFDP) system. Experimental results show that the CCFDP system

is better than the existing commercial click fraud solution in three major aspects: 1)

detecting more click fraud especially clicks generated by software; 2) providing prevention

ability; 3) proposing the concept of click quality score for click quality estimation.

The existing commercial click fraud solutions cannot detect software clicks. which is

one of the major forms of click fraud. Also those solutions cannot prevent click fraud

beforehand. Our solution identifies click fraud by using both server side and client side

data. The server side differentiates our approach from existing commercial solutions, and

it allows detection of very frequent software click fraud. To improve the detection process,

we added extended parameters such as mouse movement, mouse click, key stroke etc. to

the client side data. Our analysis is extended with these parameters, and results show

that it improves the detection capabilities.

Due to the nature of inherent weakness of Googles solution (or any other search engine,

ISP based solution), which does not have enough data on post-click user activities, it is

hard or even impossible to determine the true intent of a click. There are even more

weaknesses in the Goolges online procedure: lack of deployment of data mining methods;

184

lack of use of conversion data, and lack of more advanced types of filters. Our approach

collects both the server side click and post-click user activities making better infrastructure

than the server side only solutions.

In the CCFDP initial version, we analyzed the performances of the dick fraud detection

and prediction model by using a rule base algorithm, which is similar to most of the

existing systems. We have assigned a quality score for each click instead of classifying the

click as fraud or genuine, because it is hard to get solid evidence of click fraud just based

on the data collected, and it is difficult to determine the real intention of users who make

the clicks.

The diversity of CF attack types makes it hard for a single counter measure to prevent

click fraud. Therefore, it is important to be able to combine multiple measures capable

of effective protection from click fraud. Therefore, in the CCFDP improved version, we

provide the traffic quality score as a combination of evidence from several data mining

algorithms.

We have tested the system with a data from an actual ad campaign in 2007 and 2008.

We have compared the results with Google Adwords reports for the same campaign.

Results show that a higher percentage of click fraud present even with the most popular

search engine. The multiple model based CCFDP always estimated less valid traffic

compare to Google. Sometimes the difference is as high as 53%.

Detection of duplicates, fast and efficient, is one of the most important requirement in

any click fraud solution. Usually duplicate detection algorithms run in real time. In order

to provide real time results, solution providers should utili~e data structures that can be

updated in real time. In addition, space requirement to hold data should be minimum.

In this dissertation, we also address the problem of detecting duplicate clicks in pay­

per-click streams. We proposed a simple data structure, Temporal Stateful Bloom Filter

(TSBF), an extension to the regular Bloom Filter and Counting Bloom Filter. The bit

vector in the Bloom Filter was replaced with a status vector. Depending on the insertions

and deletions these states take different values. By introducing the status vector we

185

have eliminated the false negatives occur in the Counting Bloom Filter. Therefore, our

experiments were focused on minimizing false positives that occur in TSBF. We have

carried out experiments both with synthetic and real world data sets. Results of TSBF

method is compared with I3uffering, FPBuffering, and CI3F methods. False positive rate

of TSBF is less than 1% and it does not have false negatives. Space requirement of

TSBF is minimal among other solutions. Even though Buffering does not have either

false positives or false negatives its space requirement increases exponentially with the

size of the stream data size. When the false positive rate of the FPBuffering is set to 1%

its false negative rate jumps to around 5%, which will not be tolerated by most of the

streaming data applications. We also compared the TSBF results with CBF. TSBF uses

only half the space or less than standard CBF with the same false positive probability.

CBF also suffer from false negatives. while TSBF does not have false negatives. Due to

these advantages TSI3F technique has replaced the I3uffering based duplicate detection

mechanism used in the NetMosaics click fraud detection system.

One of the biggest success with CCFDP is the discovery of new mercantile click bot,

the Smart ClickBot. We presented a Bayesian approach for detecting the Smart ClickBot

type clicks. The system combines evidence extracted from web server sessions to determine

the final class of each click. Some of this evidence can be used alone, while some can be

used in combination with other features for the click bot detection. During training and

testing we also addressed the class imbalance problem. Our best classifier shows recall of

94%, and precision of 89%, with Fl measure calculated as 92%. The high accuracy of our

system proves the effectiveness of the proposed methodology. Since the Smart ClickI30t

is a sophisticated click bot that manipulate every possible parameters to go undetected,

the techniques that we discussed here can lead to detection of other types of software bots

too.

Despite the enormous capabilities of modern machine learning and data mining tech­

niques in modeling complicated problems, most of the available click fraud detection

systems are rule-based. This is mainly due to the fact that advertisement click streams

186

are very hard to be labeled as fraudulent because of the infinite situations in which a

person could click on an advertisement without getting through with the purchase. This

raises two questions a) are the derived rules enough to model the fraudulent behavior?

and b) what is the value of a score threshold to announce a click fraudulent. Question

(a) is about the validation of the rule-based scores. In other words are we using the right

rules / model.

·We proposed validation framework to acquire another model of the clicks data that

IS not rule dependent, a model that learns the inherent statistical regularities of the

data. Then the output of both models is compared. If both models are consistent, then

the rules are reflective of the actual inherent knowledge in the data and therefore they

provide a good interpretation of the structure of the problem in hand. On the other hand,

a discrepancy between the models indicates a lack of knowledge about the system and

thus it might be helpful to extract extra rules from the machine learning model so as to

be added to the rule-based system. Needless to say that the choice of a proper machine

learning technique is of utmost importance.

Due to the uniqueness of the CCFDP system architecture, it shows better click fraud

detection than current commercial solution and search engine/ISP solution. The system

will protect Pay-Per-Click advertisers from click fraud and improve their Return on In­

vestment (ROI). The system can also provide an arbitration system for advertiser and

PPC publisher whenever the click fraud argument arises. Advertisers can gain their con­

fidence on PPC advertisement by having a channel to argue the traffic quality with big

search engine publishers. General consumer will gain their confidence on internet business

model by reducing fraudulent activities which are numerous in current virtual internet

world.

vVe have been carrying out click fraud related research studies since 2004, for the

benefit of the Internet community. It is worth mentioning that, we have to accept the

fact that well-undercover bots will not be spotted and we have to reach a sustainable

tradeoff for the detection model. Any attempt to identify deep undercover bots is likely

187

to produce high false positive rates. A high false positive rate will mean that we are

labeling many regular traverses as bot activities. Although we wish to detect as many

bots as possible, it is far worse to tag regular users as bots than to skip some detection,

because misclassifying regular users as bots may have unpredictable consequences. For

instance, blocking a proxy IP by mistake will represent the loss of many users that may

no longer visit the site.

188

CHAPTER 9

FUTURE WORK

The success of the CCFDP opens the door to some new areas of research in the click

fraud detection and prevention. We have provided the likely characteristics of future

click bots after dissecting an intelligent click bot. Since fraudsters always find ways to go

undetected, while committing click fraud, no solution will provide the ultimate protection

against click fraud. Therefore, continuous research should be a prime importance to detect

future click fraud attacks. In this chapter we provide more ideas that can be used towards

strengthening click fraud solutions.

l\Iost of the solutions including our CCFDP depends on how well a user is identified

and tracked during each of his Iher visits to a website. For example, CCFDP system

requires a user to allow third party cookies and run javaScript in his browser. In some

situations a user may disable cookies intentionally or may not allow javaScript to run on

his browser. In such cases it is difficult for CCFDP to track a user successfully. Some

of the ideas explained here are proposed by Shat et. [Shah, 2005J for different context. In

the following section we list few ideas that can be used towards user verification.

9.1 Browser Verification

User agent is an unique identifier of a browser. Click bots try to mimic the user agents

of known browsers to go undetected. They are programmed to generate "fake" clicks

that mimics actual clicks. Most of the time it is an HTTP request that is artificially

generated. Therefore it is important to verify whether the click is originated from an

authentic browser such as Internet Explorer, Mozilla, etc.

Two experiments are proposed to identify browser requests and they are explain below.

189

(a) Using extended context of the User Agent Header

(b) Using recently visited social network websites

9.1.1 Using extended context of the UserAgent Header

9.1.1.1 User Agent Header

\Vhen a browser requests a page from a Web server, the browser sends information about

itself along with the request. These value strings are called headers. Typically, this infor-

mation includes the browser type (Internet Explorer, Opera, ::vlozilla, etc.), the browser

version, and the underlying platform (Windows XP, Linux, ~Iac OS X, etc.). The server

then uses this information to select an appropriate page format for the browser, since

different browsers (and even different versions of the same browser) have varying incom-

patibilities in their support for HTML and JavaScript.

For example if Internet Explorer is to fetch the URL

http://www.amazon.com/index.html.this is what the browser might send to Amazon's

server:

GET /index.html HTTP/l.l
Host: www.amazon.com
Accept: */*
Accept-Language: en-us
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)

Figure 9.1: The User-Agent Header

The last four lines of this request are headers. Each header consists of a name and

a value, separated by a colon. All possible headers are defined by the HTTP protocol

specification. A browser identifies itself using the User-Agent header as shown in Figure

9.2. (User agent is a generic term for an application, like a browser, that is acting

as an Ftgent for the user). The header value consists of a series of product identifiers

and/ or comments. A product identifier is a string like "~Iollilla/ 4.0" or "Opera/7.02" that

identifies the product by name and (optionally) by version. Additional attributes about

190

the product, referred to as comments, are enclosed in parentheses, such as "(compatible;

MSIE 6.0; Windows XT 5.0)". The product identifiers and comments can come in any

order, but in general the most significant values are listed first.

The Figure 9.2 shows a sample user-agent string reported by Internet Explorer that

highlights its tokens.

Application Name

r----------I Application Version I
~_l]...------1\ Compatibility Flag I
Mozilla/4.0 (compatible: MSIE 7.0; Windows NT 6.0)

~~_S_ion_T_~OO~I----~J I
Platform T ~en -

Figure 9.2: User-Agent String

For historical reasons, Internet Explorer identifies itself as a MOllilla 4.0 browser. The

sample user-agent string contains three tokens.

(a) The Compatibility flag ("compatible") is used by most modern browsers. It indicates

that Internet Explorer is compatible with a common set of features.

(b) The Version token identifies the browser and contains the version number. The

version token in the example ("MSIE 7.0") identifies Internet Explorer 7.

(c) The Platform token identifies your operating system and contains the version num­

ber. The platform token in the example ("Windows NT 6.0") indicates Windows

Vista.

In the example. Internet Explorer is the user agent. However. other programs also

provide user-agent strings when contacting servers over the Internet. For example, the

Windows RSS Platform provides the following user-agent header when requesting RSS

data [:"Iicrosoft, 2010].

191

Windows-RSS-Platform/l.0 (MSIE 7.0; Windows NT 5.1)

The header shown in Figure 9.1 defines a signature for each known browser. If a

click bot has to generate a fake click it should identify itself as one of those legitimate

browsers. But experiments have shown that it is difficult to break all signatures of browsers

completely. Some of the experiments are listed below but more theoretical understanding

and more complex implementations are necessary for successful detection of larger bot

population.

Figures 9.3, 9.4, and 9.5 show HTTP GET requests made to a common server from

different browsers.

Accept *r
Accept-Language: en-us

User-Agent Mozillaf40 (compatible; MSIE 80; Windows NT 60; Trident/40; SLCC1 .NET CLR

20.50727 InfoPath2;NET CLR 3521022; .NET CLR 3.5.30729; .NET CLR 3.0.30729)

Accept-Encoding gzip deflate

Host kluge.in-chemnltz.de

Connection. Keep-Alive

Figure 9.3: HTTP GET request generated by Internet Explorer

Host Kluge m-chemnitLde
User-Agent r.,lozilla150 (Windows. U Windows NT 60; en-US; rv191.8) GecKo/20100202
Firefoxl3 5 8 (NET CLR 3.5 30729)

Accept textlhtmLapplication/xhtml+xmLapplication/xml;q=O.9.*I*:q=0.8
Accept-Language en-us.enq=O 5
Accept-Encoding gzip.deflate
Accept-Cnarset ISO-B859-1utf-B.q=07".q=07
Keep-Alive 300
Connection keep-alive

Figure 9.4: HTTP GET request generated by Firefox

9.1.1.2 Observations

• In each request the order of appearance of the HTTP fields is different. For example

"Host" is placed. as the one before last in Internet Explorer while it appears first in

Firefox.

192

Host klugejn-chemnitz.de

Connection keep-alive

User-Agent Mozilla/5.0 (Windows: U; Windows NT 6.0; en-US) AppleWebKit/532.5 (KHTML, like Gecko)

Chromef41249 1036 Safari1532.5

Accept applicationlxml..applicationfxhtml+xml,textlhtmLq=0.9,textlplain;q=0.8,imageJpng.*!*;q=05

Accept-Encoding gzip,defiate.sdch

Accept-Language en-US,en:q=08

Accept-Charset ISO-8859-1 ,utf-8:q=O 7, ... c ___ ._~ __ ._. ____ ___ . __ .• __ . ______ ._ .. _. ___ . ___ . __ . _________ • ______ . __ _

Figure 9.5: HTTP GET request generated by Chrome

• Values in the "Accept" field are completely different.

Figure 9.7, 9.8, and 9.9 show the changes in headers when cookies are used. We use

cookies in CCFDP but never pay attention to how differently they are handled by the

browsers. The figures show different browsers respond to two cookies (cook1 and cook2).

We can identify the browser on the basis of these results.

<HTML>
<HEAD>

< f,1ETi .. HTIP~ EClUI\l=uSet-I::.ookie" CI)r\J1Fr\JT='·(o()~··l=l 11 >
('lETA HTTp·Ec)UIV="·:;et-i::'ookie'· C(J(·1Ip·iT="cook2=Z"

<!HEAD> .
< BODY> </B ODY>

</HTML>

Figure 9.6: HTML code to generate the cookies

GET / HTTP/l.l
Host: 192.168.7.60
User-Agent: MozillatS.O (Windows; U; Windows NT 5.0; en-US; 1"1:1.6)
Geci<o/20040113
Ao:ept:
text/xml ,application/xml,application/xhtml+xml,text/html; q=O. 9,text/plain; q=
o .8,image/png,image/jpeg,image/gifj q=O .2,*/* j q=O.l
Ao:ept-Language: en-us,enj q=O.5
Ao:ept-Encoding: gzip,deflate
Ao:ept-Q-,arset: ISO-8859-1,utf-8j q=O. 7, *; q=O. 7
Keep-Alive: 300
Connection: keep-al ive
took!e: .:00k2·'2: (ookl 1

Figure 9.7: HTTP request generated by Fircfox

9.1.2 User's frequently visited social websites

Most Internet users at least visits couple of social sites frequently. Examples for social

networking sites are FacebookTA!, Twitter™, Youtube™ etc. Globally, social networks

193

GET / HTTP/l.l
AlXept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, *1*
AlXept-Language: en-us
AlXept-Encoding: gzip, deflate
User-Agent: Mozilla/4,0 (compatible; MSIE 5,01; Windows NT 5,0)
Host: 192,168,7,60
Connection: Keep-Ali ve

(o"k! I;, ook?

Figure 9,8: HTTP request generated by Chrome

GET ;test HTTP/1,1
User-Agent: Mozilia/4,0 (compatible; MSIE 6,0; MSIE 5,5; Windows 2000)
Opera 7,0 [en]
Host: 192,168,7,60
AlXept: text/html, image/png, image/jpeg, image/gif, image/x-xbitmap,
1;q=O.l
AlXept-Language: en
AlXept-Charset: windows-1252, utf-8, utf-16, iso-8859-1;q=0.6, *;q=O,l
AlXept-Encoding: deflate, gzip, x-gzip, identity, *; q=O

0010"; 'noi< I 1; (ook;>-?
Cookie2: $Version="l"
Connection: Keep-Alive, TE
TE: deflate, gzip, chunked, identity, trailers

Figure 9.9: HTTP request generated by Chrome

and blogs are the most popular online categories when ranked by average time spent,

followed by online games and instant messaging.

According to The Nielsen Company, global consumers spent more than five and half

hours on social networking sites like Facebook™ and TwitterTM in the month of Decem-

ber 2009, an 82% increase from the same time last year when users were spending just

over three hours on social networking sites (see Figure 9.10). In addition, the overall

traffic to social networking sites has grown over the last three years [nielsenwire, 2010].

With 206.9 million unique visitors. Facebook™ was the No. 1 global social networking

destinat.ion in December 2009 and 67% of global social media users visit.ed t.he sit.e during

the month. Time on site for Facebook™ has also been on the rise, wit.h global users

spending nearly six hours per month on the site.

Based on this study we can safely assume t.hat almost all the Internet users today at

least. visit a couple of those websites in any single day. If we know a user visits these

websites, can we believe that it is not a robot in the other end?

The simplest way to access visited websites of a user's machine is to use the informa-

194

7:00
6:00
5:00

~ 4:00
~ 3:00

2:00
1:00

2:10:27
•

S~5:0S

0:00 '---- O-e-c-2-00-7------D- e-c- 2-0-0-S------D-ec-20-0-9---

350M

300M

250M

200M
210,928.000

Time Per Person (HH:MM:SS)

242.()39.000
•

307.428.000

1 50M ~--
Dec 2007 Dec 2008 Dec 2009

_. Unique Audience

$OUl-CO. Th" Nlels~n Company

Figure 9.10: Global Web Traffic to Social Networking Sites

tion leak introduced by CSS (Cascading Style Sheets). The browser colors visited links

different ly than non-visited links. Our javaScript will have URLs of most popular social

networking sites in an iframe. Then we can look at which of those links are blue and

which are purple wit h t he help of javaScript . We can even extend this idea to track what

other pages user frequently visits. Probably to track competitors clicking on their rivals

websites.

9.1.2.1 history.js

T he complcte source codc of history. js, can be found in the Appendix B. It was originally

published by Aza Raskin at www .azarask.in. history.js code enables anyone to detect

which social bookmarking sites your visitors use. The following javaScript will be added

to the webpage that is being t racked. This will force to the client computer to release

websites that the user has recent ly visited.

1 < s c r ip t s r c = " http: // 65. 182.2 01 .98 / his t 0 l ' Y . j s "> < / seT' i p t >

195

<script>

3 user = history () ;

var visitsDigg = user. doesVisit (" Digg' ');

5 var visitsSlashdot = user. doesVisit (" Slashdot");

var list Of Visited Sites = user. visited Sites ();

7 </script>

history.js has a list of the most popular social bookmarking sites which it checks

against. history.js can also check other sites. For instance, if we want to see if your visitor

has visited any of the competitors website:

1 moreSites

{

3 ' , competitor' ': [" http://competitorl.com/'', " http://cornpetitor2 . com

I")

};

5 user history (moreSites);

alert (user. doesVisit (" competitor' '));

CCFDP system installs a javaScript in each web site that it tracks. Therefore the

infrastructure required for this experiment is already setup. We can add the additional

functionality (i.e. history.js) to the existing javaScript. There will be an additional

"attribute" in the table that we install client activities, which we called "social sites

visited". We can either implement it as a boolean variable with values (0/1) or as a

String array that stores all the websites the user has visited.

When a user clicks on a website that has CCFDP javaSciprt, it will execute on the

user's browser and tell the CCFDP if the browser has any visited social networking sites.

A bot, which is trying to mimic a browser will not have any value for this variable, because

its browsers are implemented to serve only a simple purpose such as generating an HTTP

request.

196

9.2 Improve User Tracking

User tracking is a very important feature for CCFDP because some functionalities of its

rule based and the outlier modules arc depend on user profiles. When a user visits a client

site CCFDP system wants to know how long his visit lasted, which contents he visitcd,

what navigation path was followed and so on. Tracking of users is done with cookies. But

what if the user does not allow cookies to stored in its computer?

Two experiments are proposed to track users who do not allow to install cookies in

their computers.

(a) Using browser finger printing

(b) Using Super Cookies

9.2.1 Browser finger printing

Until recently, database tables, in which each row of information related to a person, were

shared somewhat freely provided none of the columns included explicit identifiers, such as

name, address. or Social Security number. This kind of "de-identified" data can often be

linked to other tables that do include explicit identifiers ("identified data") to re-identify

people by name. Fields appearing in both dc-identified and identified tables link the two,

thereby relating names to the subjects of the dc-identified data. For example, date of

birth, gender, ZIP, which commonly appeared in both de-identified and identified data,

uniquely identified 87% of the U.S. population [Sweeney, 2002].

The authors are interpreting the information from each individual parameter in (Birth­

day, sex, and zip) as entropy, [092(Prx = X), measure in bits. Where Pr(x = X) is

simply the probability that the fact would be true for a random person. So, if we as­

sume there are 337 million people in the USA, to identify someone we require around

[092 (1 /337million) = 28.9 bits.

197

Example

Let us consider a person John living in area 40217.

In 2009, 40217 population is 13600.

If somebody knows John's zipcode, he has l092(13600/337million) = 28.7 bits

If he knows John's DOB, he has l092(1/365) = 8.51 bits

If he knows John is male. he has l092(1/2) = 1 bit

Altogether he has total = (28.7 + 8.51 + 1) = 38.4, More than enough information.

In the CCFDP system, the current javaScript collects nearly 60 attributes of the server

client communication. But we use less than 15. If we combine, for example (UserAgent

+ Browser Pluggins + Screen size+ Color depth + System fonts + geo location + etc)

information for each client based on the above formalization we can generate a unique

identification for each client. For example see Figure 9.11 and Figure 9.12. They show

data collected through the javaScript in two different computers. We can easily see that

UserAgent combined with Fonts will easily make a unique identity for a computer. We

call this technique as browser finger printing. 1

9.2.2 Use of Super Cookies to track users instead of HTTP cookies

One of the disadvantages in the CCFDP system is the difficulty of tracking users if they

do not allow or delete cookies. The "cookie" we used in CCFDP system is an HTTP type

traditional cookie. These cookies are stored inside the browser control. For example, in

Internet Explorer you can manage the cookies by going to Tools and then to Preferences.

So that a user can easily either delete or block HTTP cookies. The only solution to

overcome this problem is to store cookies somewhere outside the browser control. A

solution to this problem is use of "super cookies". A super cookie is also known as "Flash

cookie" or "Shared Objects", a kind of cookie maintained by the Adobe Flash plug-in on

behalf of Flash applications embedded in web pages. Flash cookies can track users in all

1 Panopticlick inc. has conducted a similar research and you can find it at https: / /panopticlick.

eff.org/

198

bits of onem ..

identifying =1
informa_ , value I

vo/ue

User Agent

HTIP _ACCEPT'
Headers 1-

Browser Plugtn ;
De1;,its

~~ T~f'<'Ie "Zoo.e

ScreenS!ze
and Color

Depth

System Fonts

q,OS 304436 Mozlb:4.0 (W"'~: .. MS!E !.~: ~"'" NT 5 1. Trn:t.rtl".~: ... NET .CLR .2.0 :?:.~.~.: :NE.!.~.~. ~.?4SOe.Z152. t£f .. ~~ 3.5 JOi~l

7g1 l~7 l<~,"gl1p,MI~~

7.20

8.15

190+

15617

284.15

Java 1.6,0.''', 81'!~a~.11.0.3A7.2, AU/'l1Q,O,3;2,18, ~ 10,0.0,407.: 6A~30.5Q1OG.O.

Attar"",. AIltMVII E~SoG. ~Mrium. AibMt:A WT, ~tA MIlt,~, An.gHN New Afl~PC. Ar>!iQI,..-eav.. ~
'~.Ct~P6.A~0Iv.~.~Ql~.A!sbIcr~.A3 .• Jia!Bac\c.AAal~.MM~MS,8oOOrnP~.
:~P~BcOoniPS.BookAAtolNa. ~0tcI~.~~7.8fowda~.&~,C~,c.mo-..,

~~.~.CatIdO.(MW!y.CoIlturyIlolnic,CGOrMoa·CGT",-,Ct<eago.~CotI09I'I:i&e.~l¢!.

: ~P6.~SaqUS,C<r-sdu.,C~na.~BIack.~,~~.~,COI'dtaNew.~UPC.
: ~~.~.~n.w.COOMrPS,oaw;.Dav<cT~. 0IIi¢0.0IaI00f"'P'U\. ~Uf'G. ~~.~.-
, E~. ELfdodi. e.~Er.r •. Eudttl M.l<.tl>"". E~~p!O" •. EooIIcthlh Tm:.. eue:lr;:s~. E~UPC. e~. e~8<;4d,

! ElI'OItM Extv.dedTwo. FencM. Fad"UNm 1'r..,"' t. ~ ~~. r~~_!. FrMlAalJPC. Gat~. Ga!..~. ~a,
G&ofQl&.GI6aN.~~.G.IS~Ex:.·aBOOt.~LitflI.Gov.Jy,Gc.~E~.~ ~.~x.

j,!.at~I\.~.~Soecial.HIIiaiIl~T.ll,~~nca~,li6IIi:vJCaNII1!'""M-,~~ H61v6u:a-L'!JIn.Mc41*T.J.t.

:~rT.x!~HMJ6rl'UlOm~.I~~.1~2,i~CiwdI.I<'!~2~~.1~2~t.I<'!~2~.I ... ~~

7QC761 Text. IIlaUPC, m:; A~~, ITC.AY&M ~~, Ire ~ OV%. !TC~IP UgM. JTC Zt¢ Ch*'W8I'j. tTCZa¢ ~&!I,
')~!\'oJPC. Jc&,.,,.,. lIT ~~. ~. KOOChlllflgUPC. Lattla. Lett .. -Gath!:.lfimGattl!CPS. L~lI'" 1t\'T, lAyUPC. U.tt»n

G~. L~.~, Ll.<dodaS_ L~ Sana~. Mat!ruw.l).loIangal. Ua~, ~rS,Ma"'''t, MaW., ~Sat\.&trJf.

Mlt....,. ~F\X.o.~;rr.a:p.A:IW!t.~!.AafWwf.~.~ao«f.~Co:<aw4l.tI.S~. "SOvtk:<ok.USRef~tl$:
~S&<f..MSIW~~.MTEJrtq.VII8tr1.NariMw!I.Itew~n.fY~'" I'MwYork.~.OplOl.Ocu:so-~.~:.a i
C~ San;o, ~ Choa S~!I CC/IOe!Iaeo:. Opt,a F~ Ball. 01::.11 F.ijveo San EJt>u. Op",~ F~ S~. 0pus~.1"iMM

, CnO'm.()pIS~.Opi..IHo!e~,OJ:\nOm"-~l.OoIAP~ ~UII~,OciJ8~~.Op.UI~.

i 00 ... ~E.1ItfS,~T.!lt.0rl01i.Pa1a!il"(:.P~~l~.Ruv! ~_ ~C:hotc£.~~.~~

I Re-eril.~. ~-Sp.a.t R.p1tl.~, R~Tax! ~T~. R?:!: R.!:'3T'St'!~t. G.«1s..ri, Sego.lI1.~, SI'oM.

" ~A'abe. ~ArabcFIKfl.Slh1II'lw.n~\ ~.o~, ~.S)l"'Cd. S)'I'!\boIPS. Taffy. T~s. TI!I!'H.. Tim ..
w.wRoro&!'.~A~T!Wbud't.:~.Tl,:~Ur!Iveo.~45Uct>t,~47C~Lqrt,UM'~5S-.;;.w""'Sj

~.IJ1'W~~.lJ<I'¥ ... E~o.dPS. Vf«1ana. V~:la.~. ~.Wmp1~2,~3. ('I'1I;J.n;

Ye

Figure 9.11: Browser Signature of PC 1

on8trU; ,

-.,'
UserAoent 17.0 ~O~Iibta.MS!E80.Win(!ooQme-o. T~4!>.SlCCt. NETCLR2050727.If'ltcP.m2. NE1'CLR352'022. NEiCLFI

~ ::t.~.~: ... ~ZLFl3.?~?~ I· . •
HTTP_ACCEPT

HeodeB

"8~~~Plug!n "
Details

T!meZone:
Screen SIze
and Color
0_

AreCooioes
Enabled?

limited
supercookle 7.42

"i~"';'tt.~, ·T~ • ..m.A;j .. B*:·i".;CE. ~·CYR~·4~~,A~TUfi."&~·~~ ... G~·. ~;,.,c!" •. ~
· ~.eov-""'a.IIio,c-w.wCE,~~CV"-CCUiIIr~~.~Ne8TUR.~~n.~.EI~

Ea....E~,~.G.,~,O"'Im'.C~ ~.~FC!1l.~.K~.~.,LV<:idaC«>a~.~

iGot!'l~·~·UiI:rQI:oft~·~~~t)ftV~,",";liU.~U.~_HKSCS.Mlngl.>U-ElctS,~ilJ-Ed

~>\U.KSCS-Ext8.~., Bam. US Gc<&m;.lM>PGoN.MSVl~.MSMioo'>~. MS~. WBaii. ~ ~
ChItl":1l<_. ~YI. s.go.~. s.ooa.W, S1'1'1.<t-. ~llI", N6ielSUI'l, SimSUI'l-E.x:t8. S~Hll. Tlmfl ~~. T_ fWw Roma<l~,

;T_Ne>to~CE.T"_~~CYR.TImRI'M<Romar>~ ,_~~~ "vva.V.na..~Y,e.m Tat>otr.
• ~1)I'tS_Sanf.AAva-ana""".~"""'.a.l'l •• l~.~!'!U9'1\jf.~.S~.~.And"""'.~
T~,~A.·abC,~A./abc:.Find.'t'~"~.A.~.~,""~.L_MT.~,~F>HC

~.Rod,F~.~.~.~JlUPC.Br<:Mab~.~Upc.~upc,~,e~upc.~.

: IfG~. ~.uPC,~. LIytJPC. OfK..se.looidaS-~. MaiBlaG.'I. ~ ~ CambnaMaU..~. ~

'S&t1.M:S,C~,~_.CCrtlofII.Ftafl'IIinGW»e~.G.o!:sm,P~Unatype.~p,y,t T...o..c-Al~, Y~.~.

H_r.ohwdM.~O~. Book ~"bqua. C~~. ~S~7. ~A4~S."lSrl!, fK~~
< &~Hall(jrrc."-tyte.~.~~vr J~rrC,)(~ITC.L...::O:ia~.t.lbuN.Pa,.'")"\4,~. T~Gar>,!T'C

Garllr!>Ond. ~eor-•. ~ FS.. Ana! ~Jrft8c6cl, ~ITC. BcxIet!<MT. BoOoroMT~. BoOOrnMT~
£\ooI.ma<'lOlOStyt..~MT.~.c.ntu!y~.~~~.~~llghtcvm-m.E~'1

! &mpt lTC, e~Mt. E~,", E.fMBcId fre. E OrY rrc. e UV>t fTC. e ... ~ ITC. ",*T~. f~. F~ ~<IC 8oc:;i(.

7Q0740 F~~OwrNo.~~o.m.Cand F!.">ItIroG::olnlcH.."Y.F"~~~C=-e.Gogi.Gil5a,..,.MT.Gils....MT

'COflderlHCI. a.S- Ultra BcId. Gil SIfI&UUa Bdd~.!'3iI SA<!1 MT ExtCot!Mrlad Bold. Gtwou*MT Exl<aCC!"a-. Gouctr
OIdaty\e.~8t<wf.~t.!TSh.cklw,l~S-.l~~T~ ,""~OO.OCFIAE"~.~~I.n'.
~.~I,if;TftrlngMT,~ItIiIc.~.~~.~Ext<'8edd.~MT8c6cI.Tt¥~Ifr.Twc-MT

eo,,~..,-c, T .. c.nMT~Ex:tf.Bo\d;.~, ~Oc:tF_.~G3. WMT. a..tr>S_ FB. ~s.a.,.F8o.mt

~¥T~,Ib:tomJfTP_~~ ~8oid.~-r.BNIl">&oiptMT.G~FB ~.G""',~".

170.63

t.IT.eoc.p.Biadt.~MTWsf>I.~&:.ltdI,*.~.J.frQt>TO*«T""l .. ~.~~l. L~~ L~.
G~.LucmFu.MaQnMo.Matlnvt~c~,~N<:!.2IJ.~E~~.~SokI.OiaE~TntMT,~.
P~t. Pla)M, Poor"FlioNl!O.~. Il'lfom'ltll~. ~GetNc.s-prrc.~. VIr!+!'H&<>dITG. V!Ya/dI, V8dir0'W~. ~

l.tm.Nina.ZWA~.E..m&gn.~,s.go.~.Ma*.,C«>!'I>")'.~2.~3.A."01i~MS.III<U1!

1U'TO'4i'.JfTExn.~II&VT,Afl::wtLAvrLt.M!e<tul~.Ahm..Elrt<aBoid."'~~~.~~~.

A-1'lb!We0tnr.. AppIecn.-y. rrc A~al'!tGr.de o.-.!TC A~am~ SodoniPS.~, ~ ~~. m;; Booioman
o-.ITC~I.q>l,~.~.~PS.~L~l.~~.~~,COl)O«~,

,CG1'~.,pS.CO'Ol'!et,~S. Ell'OStitaBctl1.&woa.~TWQ.~,a-fi. ~ GillSa'leC~.a.:s-E~

· (YSarl.LogtII. Go!.dy.GoudJExtI1IBoki. ~TftI.~TfttBw:lk, He4,*Trt::~u. ~~. Hejr~.~~

: C~.~~.~JtaNow.~tI.T.um.Oahc IAtt Goh:Ps:.LOOattrt:Gra¢l.~,~ Mer.:.­
iRecul.~, 'c.tIttJly~."'-YJl!'k.CG~.~.O~.~~arno.tlC!~,~.Ta!'f».CG

r_&,T!II'>N,l.mivwfa4.5Ug;!1,~55,~4?C«I~.~~7Cot!Mr1ad.~.~~~

___ ~~~~~~ __ . __ ~~. rTCZapt~.ITCz.¢~~ ~~ ~(>(YiaRDi'2 __ ~_. ____ _

Figure 9.12: Browser Signature of PC 2

199

the ways traditionally HTTP cookies do.

Flash cookies offer several advantages that lead to more persistence than standard

HTTP cookies. Flash cookies can contain up to lOOKB of information by default (HTTP

cookies only store 4KI3). Flash cookies do not have expiration dates by default, whereas

HTTP cookies expire at the end of a session unless programmed to live longer by the

domain setting the cookie. Flash cookies are stored in a different location than HTTP

cookies, thus users may not know what files to delete in order to eliminate them. Addi­

tionally, they are stored so that different browsers and stand-alone Flash widgets installed

on a given computer access the same persistent Flash cookies. \\1eb browsers do not di­

rectly allow users to view or delete the cookies stored by a flash application. Users are not

notified when such cookies are set. Flash cookies are not controlled by the browser. Thus

erasing HTTP cookies, clearing history, erasing the cache, or choosing a delete private

data option within the browser docs not affect Flash cookies. Even the "Private I3rows­

ing" mode recently added to most browsers such as Internet Explorer 8 and Fircfox 3 still

allows Flash cookies to operate fully and track the user. These differences make Flash

cookies a more resilient technology for tracking than HTTP cookies [Soltani et a1., 2009].

The following example shows how to set a super cookie and how to retrieve it.

9.2.3 Creating the Flash Cookie

(i) Create a Flash Cookie with the getLocal method of Shared Object..

The sample movie sets a variable (myLocalSO) and assigns a Shared Object with

the name of "flashcookie" with the following ActionScript:

myLocalso = sharedobject. getLocal (" flashcookie");

If a Shared Object with the name "flashcookie" does not already exist, then the

~lacromedia Flash Player will create a Shared Object with that name.

(ii) Create a Flash Cookie with the 10calPath option.

An optional parameter called localPath can also be specified for the Shared Object.

This 10calPath parameter allows some control over where the Shared Object is stored

200

on the client machine. This path match or be contained within the URL that the

SWF came from. Therefore, if the sample movie that creates the Shared Object on

the client machine is at

1 lit tp : Ilunmv. mydomain. comlmovieslmymovie. sUlf

t hen the localPath parameter can be set to

1 http://11I11I11I.mydomain.com/movies/mymovie . sUlf';'; movies, or Imoviesl

mymovie. sUlf.

The code would look like this:

1 myLocalso = sharedobject. getLocal (" flashcookie" ," /movies/mymovie. swf")

This is useful when more than one Flash Cookies are used on a site.

9.2.3.1 Setting the value of the Flash Cookie

Information is stored in the Shared Object by assigning attributes to the data property

of the Shared Object. In this example, the user name entered in the text field is stored in

the Shared Object by assigning a name attribute to the data property of the local shared

object and setting it equal to the contents of the text field as follows:

1 118et the variable "name" equal to the text property

Ilof the textfield "userName"

3 myLocaLso. data. name = userName. text;

511increa8e the variable counter by one for each visit

myLocaLso. data. counter++;

The data is written to the Shared Object when the movie is removed from the Macro­

media Flash Player. To write the data immediately the method flush can be used as

follows:

myLocaLso. flush ();

201

9.2.3.2 Return the value of the Flash Cookie

When a user returns to the page the Shared Object is read and its values are displayed.

1 userName.text = myLocaLso.data.name;

num Visits. text = "You have been here" + rnyLocaLso. data. counter +" times.

Because the Shared Object "fiashcookie" has already been created on the client ma­

chinc,my LocalSO = sharedobjcct.get Local("fiashcookie") ; will get the data from the Shared

Object, which can be used to display the user name and number of visits. More informa­

tion can be found at [Adobe, 2010j.

202

REFERENCES

[Adobe, 2010] Adobe (2010). What IS a local Shared Object?

http://kb2.adobe.com/cps/161/tn16194.html accessed on 03/29/2010.

[AnupamL et al., 1999] AnupamL, V., Mayera, A., Nissimb, K., Pinkasb. B., and Reit­

era, M. (1999). On the security of pay-per-click and other Web advertising schemes.

Computer Networks, 31:1091-1100.

[Ayel and Laurent, 1991] Ayel, M. and Laurent, J. (1991). Validation, verification and

test of knowledge-based systems. John Wiley & Sons, Inc. New York, NY, USA.

[Banerjee and Ghosh, 2001] Banerjee, A. and Ghosh, J. (2001). Clickstream clustering

using weighted longest common subsequences. In Proc. of the Workshop on Web Min­

ing, SIAM Conference on Data Mining, pages 33-40. Citeseer.

[Belady, 2010] Belady, L. (2010). A study of replacement algorithms for a virtual-storage

computer. IBM systems journal, 5(2):78-101.

[Ben-David, 2008] Ben-David, A. (2008). Rule effectiveness in rule-based systems: A

credit scoring case study. Expert Systems with Applications, 34(4):2783-2788.

[Bloom, 1970] Bloom, B. (1970). Space/time trade-offs in hash coding with allowable

errors. Communications of the ACM, 13(7):422-426.

[Bonomi et al.. 2006] Bonomi, F., Mitzenmacher, M., Panigrah, R., Singh, S., and Vargh­

ese, G. (2006). Beyond bloom filters: from approximate membership checks to approx­

imate state machines. ACM SIGCOMM Computer Communication Review, 36(4):315-

326.

203

[Broder and Mitzenmacher, 2004] Broder, A. and Mitzenmacher, 11. (2004). Network

applications of bloom filters: A survey. Internet Mathematics, 1(4):485-509.

[Broder et al., 2003] Broder, A., Najork. M., and Wiener, J. (2003). Efficient URL

caching for world wide web crawling. In Proceedings of the 12th international con­

ference on World Wide Web, pages 679-689. ACyl.

[Buchner et al., 1999] Buchner, A., Baumgarten, M., Anand, S., Mulvenna, M., and

Hughes, J. (1999). Navigation pattern discovery from internet data. In WEBKDD99,

pages 74-91. Citeseer.

[Cheng et al., 2005] Cheng, K., Xiang, L., Iwaihara, M., Xu, H., and Mohania, M. (2005).

Time-decaying Bloom filters for data streams with skewed distributions. In Proceedings

of the 15th International Workshop on Research Issues in Data Engineering: Stream

Data Mining and Applications, page 69. IEEE Computer Society.

[Cohen and Strauss, 2006] Cohen, E. and Strauss, M. (2006). Maintaining time-decaying

stream aggregates. Journal of Algorithms. 59(1):19-36.

[Cooley et al., 1999] Cooley, R., Mobasher, B., Srivastava, J., et al. (1999). Data prepa­

ration for mining world wide web browsing patterns. Knowl. Inf. Syst., 1(1):5-32.

[Corbato, 1968] Corbato, F. (1968). A paging experiment with the multics system.

[Cuenca-Acuna and Nguyen, 2010] Cuenca-Acuna, F. and Nguyen, T. (2010). Text-based

content search and retrieval in ad-hoc p2p communities. Web Engineering and Peer­

to-Peer Computing, pages 220-234.

[Dai and Khorram, 1999] Dai, X. and Khorram, S. (1999). Data fusion using artificial

neural networks: a case study on multitemporal change analysis. Computers, Environ­

ment and Urban Systems, 23(1):19-31.

204

[Daswani and Stoppelman, 2007] Daswani, N. and Stoppelman, M. (2007). The anatomy

of Clickbot. A. In Proceedings of the first conference on First Workshop on Hot Topics

in Understanding Botnets, page 11. USENIX Association.

[Database, 2011] Database, R. (03/21/2011). Robots database,

http://www.robotstxt.org/db.html.

[Deng and Rafiei, 2006] Deng, F. and Rafiei, D. (2006). Approximately detecting dupli­

cates for streaming data using stable bloom filters. In Proceedings of the 2006 ACM

SIGMOD international conference on Management of data, page 36. ACM.

[Dikaiakos et al., 2005] Dikaiakos, M., Stassopoulou, A., and Papageorgiou, L. (2005).

An investigation of web crawler behavior: characterization and metrics. Computer

Communications, 28(8) :880-897.

[DOD, 1991] DOD (1991). DOD, Data fusion lexicon, Data Fusion Subpanel of the Joint

Directors of Laboratories, Technical Panel for C3, Environmental Research Inst. Of

Michigan Arlington VA.

[Durrant-Whyte, 1987] Durrant-Whyte, H. (1987). Integration, coordination and control

of multi-sensor robot systems. Dissertation Abstracts International, 47(10).

[Edelman et al., 2007] Edelman, B., Ostrovsky, M" and Schwarz, M. (2007). Internet

advertising and the generalized second-price auction: Selling billions of dollars worth

of keywords. The American Economic Review, pages 242-259.

[Elmagarmid et al., 2007] Elmagarmid, A., Ipeirotis, P., and Verykios, V. (2007). Dupli­

cate record detection: A survey. IEEE Transactions on knowledge and data engineering,

pages 1-16.

[Estan and Varghese, 2003] Estan, C. and Varghese, G. (2003). New directions in traffic

measurement and accounting: Focusing on the elephants, ignoring the mice. ACM

Transactions on Computer Systems (TOCS), 21(3):270-313.

205

[Fan et al., 2000] Fan, L., Cao, P., Almeida, J., and Broder, A. (2000). Summary cache: a

scalable wide-area web cache sharing protocol. IEEEI ACM Transactions on Networking

(TON),8(3):293.

[Friedman et al., 1997] Friedman, N., Geiger, D., and Goldszmidt, M. (1997). Bayesian

network classifiers. Machine learning, 29(2):131-163.

[Fusheng and Feng. 2008] Fusheng, Z. and Feng, D. (2008). Application of DS evidence

theory in flow regime identification of two-phase horizontal pipe flow. In 27th Chinese

Control Conference, pages 758-762.

[Gandhi et al., 2006] Gandhi, M., Jakobsson, M., and Ratkiewicz, J. (2006). Badver­

tisements: Stealthy click-fraud with unwitting accessories. Journal of Digital Forensic

Practice. 1(2):131-142.

[Garera et al., 2007] Garera, S., Provos, N., Chew, M., and Rubin, A. (2007). A frame­

work for detection and measurement of phishing attacks. In Proceedings of the 2007

ACM workshop on Recurring malcode, page 8. ACM.

[Ge and Kantardzic, 2006] Ge, 1. and Kantardzic, M. (2006). Real-time click fraud de­

tecting and blocking system. US Patent App. 11/413,983.

[Goldman, 2007] Goldman, E. (May 2007). Click Fraud. In Proceedings of the 20th Annual

Technology and Computer Law Conference.

[Gonnet and Baeza-Yates, 1991] Gonnet, G. and Baeza-Yates, R. (1991). Handbook of

algorithms and data structures: in Pascal and C. Addison-\\Tesley Longman Publishing

Co., Inc. Boston, MA, USA.

[Goodman, 2005] Goodman, J. (2005). Pay-per-percentage of impressions: an advertising

method that is highly robust to fraud. In Workshop on Sponsored Search Auctions.

Citct-lccr.

206

[Gupta et al., 1991] Gupta, U., Press, I. C. S., of Electrical, I., and Engineers, E. (1991).

Validating and verifying knowledge-based systems. IEEE Computer Society Press.

[Haddadi, 2010] Haddadi, H. (2010). Fighting Online Click-Fraud Using Bluff Ads. Arxiv

preprint ar Xiv: 1 002.2353.

[Hadjinian et al., 2006] Hadjinian, D. et al. (2006). Clicking away the competition: The

legal ramifications of click fraud for companies that offer pay per click advertising

services. Shidler JL Com. 8 Tech., 3:5-16.

[Hager et al.. 1993] Hager, G., Engelson, S., and Atiya, S. (1993). On comparing statis­

tical and set-based methods in sensor data fusion. In IEEE International Conference

on Robot Automation.

[Hawkins, 1980] Hawkins, D. (1980). Identification of outliers. Chapman & Hall.

[lAB, 2010] lAB Internet Advertising

enue Report

(2010).

conducted

lAB

by PricewaterhouseCoopers

http://www.iab.net/insightsresearch/94 7883 / adrevenuereport,

03/24/2001.

accessed

Rev-

(PWC).

on

[(IETF), 1999] (IETF), I. E. T. F. (1999). RFC 2616: Hypertext Transfer Protocol -

HTTP/l.l. http) /www.faqs.org/rfcs/rfc2616.html.

[Immorlica et al., 2005] Immorlica, N., Jain, K., Mahdian, M., and Talwar, K. (2005).

Click fraud resistant methods for learning click-through rates. Lecture Notes In Com­

puter Science, 3828:34-45.

[iProspect, 2004] iProspect (2004). iProspect search engme user attitude survey.

http://www.iprospect.com/premiumPDFs/iProspectSurveyComplete.pdf, accessed on

03/01/2010.

207

[Jakobsson et al., 1999] Jakobsson, M., MacKenzie, P., and Stern, J. (1999). Secure and

lightweight advertising on the Web. Computer Networks-the International Journal oj

Computer and Telecommunications Networkin, 31(11):1101-1110.

[Janez et al., 2000] Janez, F., Coretta, 0., and YIichel, A. (2000). Automatic map updat­

ing by fusion of multispectral images in the Dempster-Shafer framework. In Proceedings

oj SPIE, volume 4115, page 245.

[Joachims, 1999] Joachims, T. (1999). Transductive inference for text classification using

support vector machines. In Bratko, I. and Dzeroski, S., editors, Proceedings oj ICML-

99, 16th International ConJerence on Machine Learning, pages 200-209, Bled. SL.

Morgan Kaufmann Publishers, San Francisco, US.

[Juels et al., 2007] Juels, A., Laboratories, R, Stamm. S .. and Jakobsson, M. (2007).

Combating Click Fraud via Premium Clicks. page 1726.

[Kantardzic et al., 20 10 a] Kantardzic, M., Walgampaya, C., and Emara, W. (2010a).

Click fraud prevention in pay-per-click model: Learning through multi-model evidence

fusion. In Machine and Web Intelligence (ICMWI), 2010 International ConJerence on,

pages 20-27. IEEE.

[Kantarci7:ic ct al., 2008] Kantardzic, M., Walgampaya, C., Wencrstrom, 13., Lozitskiy,

0., Higgins, S., amI King, D. (2008). Improving Click Fraud Detection by Real Time

Data Fusion. In IEEE International Symposium on Signal Processing and InJormation

Technology, 2008. ISSPIT 2008, pages 69-74.

[Kantardzic et al., 2010b] Kantardzic, 11., Walgampaya, c., Yampolskiy, R, and Woo, R

(2010b). Click Fraud Prevention via multimodal evidence fusion by Dempster-Shafer

theory. In Multisensor Fusion and Integration Jor Intelligent Systems (MFI) , 2010

IEEE ConJerence on, pages 26-31. IEEE.

208

[Kantardzic et al., 2009] Kantardzic, M., Wenerstrom, B., Walgampaya, C., Lozitskiy, 0.,

Higgins, S., and King, D. (2009). Time and Space Contextual Information Improves

Click Quality Estimation. e-Commerce 2009, page 123.

[Kintana et al., 2009] Kintana, C., Turner, D., Pan, J., Metwally, A., Daswani, N., Chin,

E., and Bortz, A. (2009). The Goals and Challenges of Click Fraud Penetration Testing

Systems.

[Kondo and Sato, 2007] Kondo, S. and Sato, N. (2007). Botnet traffic detection tech­

niques by c&c session classification using svm. Advances in Information and Computer

Security, pages 91-104.

[Kumar et al., 2006] Kumar, A., Xu, J., and Wang, J. (2006). Space-code bloom filter

for efficient per-flow traffic measurement. Selected Areas in Communications, IEEE

Journal on, 24(12):2327-2339.

[Lambert, 2009] Lambert, D. (2009). A blueprint for higher-level fusion systems. Infor­

mation Fusion, 10(1):6-24.

[Lee. 2009] Lee, K. (2009). The Truth About Pay-per-click Search Advertising. FT Press.

[Li et al., 2000] Li. J., Jannotti, J., De Couto, D., Karger, D., and Morris. R. (2000). A

scalable location service for geographic ad hoc routing. In Proceedings of the 6th annual

international conference on Mobile computing and networking, pages 120-130. ACM.

[Lu and Yu. 2006] Lu, ~'. and Yu, S. (2006). Web robot detection based on hidden

Markov model. In Communications, Circuits and Systems Proceedings, 2006 Interna­

tional Conference on, volume 3, pages 1806-1810. IEEE.

[Ma et al., 2009] Yla, J., Saul, L., Savage, S., and Voelker, G. (2009). Beyond blacklists:

learning to detect malicious web sites from suspicious URLs. In Proceedings of the

15th ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 1245-1254. ACvL

209

[Mahdian, 2006] Mahdian, M. (2006). Theoretical challenges in the design of advertise­

ment auctions. In The Capital Area Theory Symposia. University of Maryland.

[McGrath and Gupta, 2008] McGrath, D. and Gupta. M. (2008). Behind phishing: an

examination of phisher modi operandi. In Proc. of the USENIX Workshop on Large­

Scale Exploits and Emergent Threats (LEET).

[Mehta et al., 2007] Mehta, A., Saberi, A., Vazirani, U., and Vazirani, V. (2007). Adwords

and generalized online matching. Journal of the ACM (JACM), 54(5):22.

[Menezes et aL 1997] Menezes, A., Van Oorschot, P., and Vanstone, S. (1997). Handbook

of applied cryptography. CRC.

[Metwally et al., 2005a] .Nletwally, A., Agrawal, D., and Abbadi, A. (2005a). Using asso­

ciation rules for fraud detection in web advertising networks. In Proceedings of the 31st

international conference on Very large data bases, page 180. VLDB Endowment.

[Met wally et al., 2005b] Metwally, A., Agrawal, D., and El Abbadi, A. (2005b). Duplicate

detection in click streams. In Proceedings of the 14th international conference on World

Wide Web, pages 12-21. ACM ::\ew York, XY, USA.

[Metwally et al., 2007] .Nletwally, A., Agrawal, D., and El Abbadi, A. (2007). Detectives:

detecting coalition hit inflation attacks in advertising networks streams. In Proceedings

of the 16th international conference on World Wide Web. ACM.

[1Ietwally et al., 2006] Metwally, A., El Abbadi, D., Zheng, Q., and FastClick, I. (2006).

Hide and Seek: Detecting Hit Inflation Fraud in Streams of Web Advertising Networks.

[Microsoft, 2010] Microsoft (2010). MSDN Library. http://msdn.microsoft.com/en­

us/library accessed on 04/14/2010.

[NetMosaics, 2009] Net Mosaics (2009). Net Mosaics Inc. Internal Documentation.

210

[nielsenwire, 2010] nielsenwire (2010). Led by Facebook, Twitter, Global Time Spent on

Social ~Iedia Sites up 82 percent Year over Year. http://blog.nielsen.com/ , accessed

on 03/21/2001.

[Ouyang et al., 2008] Ouyang, N., Liu, Z., and Kang, H. (2008). A method of Distributed

Decision Fusion based on SVM and DS evidence theory. In 5th International Conference

on Visual Information Engineering, pages 261-264.

[Pearl, 1988] Pearl. J. (1988). Probabilistic reasoning in intelligent systems: networks of

plausible inference. Morgan Kaufmann.

[Pedersen. 2008] Pedersen, J. (2008). Introduction to the Special Issue: Click Fraud.

International Journal of Electronic Commerce, 13(2):5-8.

[Pirolli et al., 1996] PirollL P., Pitkow, J., and Rao, R. (1996). Silk from a sow's ear:

extracting usable structures from the Web. In Proceedings of the SIGCHI conference

on Human factors in computing systems: common ground, pages 118-125. ACM.

[Platt, 1999] Platt, J. C. (1999). Probabilistic outputs for support vector machines and

comparisons to regularized likelihood methods. In Advances in Large Margin Classifiers,

pages 61-74. MIT Press.

[Provos et al., 2008] Provos, N., Mavrommatis, P., Rajab, M., and Monrose, F. (2008).

All your iframes point to us. In Proceedings of the 17th conference on Security sympo­

sium, pages 1-15. USENIX Association.

[Reynolds and Vahdat, 2003] Reynolds, P. and Vahdat, A. (2003). Efficient peer-to-peer

keyword searching. In Proceedings of the ACM/IFIP /USENIX 2008 International Con­

ference on Middleware, pages 21-40. Springer-Verlag New York, Inc.

[Rowstron and Druschel, 2001J Rowstron, A. and Druschel, P. (2001). Storage manage­

ment and caching in PAST, a large-scale, persistent peer-to-peer storage utility. ACM

SIGOPS Operating Systems Review, 35(5):188-201.

211

[Shafer, 1976] Shafer, G. (1976). A mathematical theory of evidence. Princeton university

press Princeton, N J.

[Shah, 2005] Shah, S. (2005). Browser identification for web applications. Net Square.

[Shen and Zhang, 2008] Shen, H. and Zhang, Y. (2008). Improved approximate detection

of duplicates for data streams over sliding windows. Journal of Computer Science and

Technology, 23(6):973-987.

[Solaiman et al., 1999] Solaiman, B., Pierce, L., and Ulaby, F. (1999). Multisensor data

fusion using fuzzy concepts: application to land-cover classification using ERS-1/ JERS-

1 SAR composites. IEEE Transactions on Geoscience and Remote Sensing, 37(3):1316-

1326.

[Soltani et al., 2009] Soltani. A., Canty, S., Mayo, Q., Thomas, L., and Hoofnagle, C.

(2009). Flash Cookies and Privacy.

[Song et al., 2005] Song, H., Dharmapurikar, S., Turner, J., and Lockwood. J. (2005).

Fast hash table lookup using extended bloom filter: an aid to network processing.

SIGCOMM Comput. Commun. Rev., 35:181-192.

[Soubusta, 2008] Soubusta, S. (2008). On Click Fraud. Information Wissenschaft Und

Praxis. 59(2):136.

[Stassopoulou and Dikaiakos, 2009] Stassopoulou, A. and Dikaiakos, M. (2009). Web

robot detection: A probabilistic reasoning approach. Computer Networks, 53(3):265-

27~.

[Strayer et al.. 2008] Strayer, W., Lapsely, D., Walsh, R., and Livadas, C. (2008). Botnet

detection based on network behavior. Botnet Detection, pages 1-24.

[Strayer et al., 2006] Strayer. W., Walsh, R., Livadas, C .. and Lapsley, D. (2006). De­

tecting botnets with tight command and control. In Proceedings of the 31st IEEE

Conference on Local Computer Networks, pages 195-202. Citeseer.

212

[Sweeney, 2002] Sweeney, L. (2002). k-anonymity: A model for protecting privacy. Inter­

national Journal of Uncertainty Fuzziness and Knowledge Based Systems, 10(5):557-

570.

[Talbot and Osborne, 2007] Talbot, D. and Osborne, M. (2007). Smoothed Bloom filter

language models: Tera-scale L:LvIs on the cheap. In Proceedings of the 2007 Joint

Conference on Empirical Methods in Natural Language Processing and Computational

Natural Language Learning (EMNLP-CoNLL), pages 468-476.

[Tan and Kumar, 2002] Tan, P. and Kumar, V. (2002). Discovery of web robot sessions

based on their navigational patterns. Data Mining and Knowledge Discovery, 6(1):9-35.

[Tian et al., 2005] Tian, J., Zhao, W., Du, R., and Zhang, Z. (2005). DS evidence theory

and its data fusion application in intrusion detection. Lecture notes in computer science,

3802.

[T);"S, 2010] TNS (2010). TNS Media Intelligence III the News. http://www.tns­

mi.com/newsindex.htm, accessed on 03/01/2010.

[Tuzhilin, 2006] Tuzhilin, A. (2006). The lanes gifts v. go ogle report.

[,,"'ald. 2001] Wald, 1. (2001). The present achievements of the EARSeL-SIG·Data Fu­

sion'. In A Decade of Trans-European Remote Sensing Cooperation: Proceedings of

the 20th Earsel Symposium, Dresden, Germany, 14-16 June 2000, page 263. Taylor &

Francis.

[Walgampaya and Kantardzic, 2010] Walgampaya, C. and Kantardzic, M. (2010). Net­

mosaics. In Internal Documentation.

[Walgampaya et al., 2010] Walgampaya, C., Kantardzic, M., and Yampolskiy, R. (2010).

Real Time Click Fraud Prevention using multi-level Data Fusion. In Proceedings of the

World Congres8 on Engineering and Computer Science, volume 1.

213

[Waltz, 1998] Waltz, E. (1998). Information understanding: integrating data fusion and

data mining processes. In IEEE International Symposium on Circuits and Systems,

pages 553-556. Institute of Electrical Engineers Inc (IEEE).

[Walt~ and Llinas, 1990] Walt~, E. and Llinas, J. (1990). Multisensor data fusion. Artech

House Boston, London.

[Wu and Lee, 2002] Wu, C. and Lee, S. (2002). Enhanced high-level Petri nets with mul­

tiple colors for knowledge verification/validation of rule-based expert systems. Systems,

Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on. 27(5):760-773.

["Wu et al., 2002] \Vu, H., Siegel, tv!., Stiefelhagen, R., and Yang, J. (2002). Sensor fusion

using Dempster-Shafer theory. In IEEE Instrumentation and Measurement Technology

Conference Proceedings, volume 1, pages 7-12. Citeseer.

[Yukun ct al., 2007] Yukun, C., Xicai, S., and Zhigang, L. (2007). Research on Kalman­

filter based multisensor data fusion. Journal of Systems Engineering and Electronics,

18(3):497-502.

[Yukun et al., 2009] Yukun, C .. Xicai, S., and Zhigang, L. (2009). A Data Fusion Based

Intrusion Detection Model. First International Workshop on Education Technology and

Computer Science, 1: 10 17-102 l.

[Zeng and Xu, 2008] Zeng, D. and Xu, J. (2008). Data Fusion for Traffic Incident De­

tection Using D-S Evidence Theory with Probabilistic SVMs. Journal of Computers,

3(10):36-43.

[Zhang et al., 2007] Zhang, Y., Hong, J., and Cranor, L. (2007). Cantina: a content­

based approach to detecting phishing web sites. In Proceedings of the 16th international

conference on World Wide Web, pages 639-648. ACM New York, NY, USA.

[Zhang et al., 2009] Zhang, Y., Shen, H., Tian, H., and Zhang, X. (2009). Dynamically

Maintaining Duplicate-Insensitive and Time-Decayed Sum Using Time-Decaying I3loom

Filter. Algorithms and Architectures for Parallel Processing, pages 741-750.

214

APPENDIX A

ISAPI filter design

As the client computer sends the request to the web server, e. g. Internet Information

Service (lIS), the server generates the requested page and sends back the to the client

computer. In this step, we create an ISAPI filter to qualify the request as displayed

in Figure A.I. As displayed in Figure A.l, we only concern about the successfully

generated page, which is the code 200. At the same time, we only qualify pages with

text/html response. Other contents, such as image, css, video clip etc are supplementary

contents and will be sent back to client computer directly. If the major text/html page

is blocked, there should have no following image, css, and video clip etc. request. The

system logs to Global Fraudulent Database (GFD), and query for fraud score before the

response is sent back to client computer. If the fraud score is higher than the threshold, a

warning page will be sent to client computer instead. Otherwise, a unique 128-bit number,

Globally Unique Identifier (GUID) will be added to the tracking javascript code as long

as the page.

215

Client web
request

Send

y

"4...,:.;R~es::!p:..:o:.:.:n~se=-__ 1 Send Response page to
Client Computer

Query
GFD

GFD return
fraud score

Figure A.l: IS API filter design

216

, ,
Global
fraudulent
patabase (GFO)
, ,

, , ,
L _____________ _

APPENDIX B

History.js

/*
* Social Limit - Only the social you care about.

*
* Enables your site to know which social bookmarking badges

to display to your

* visitors. It tells you all social sites the user has gone

to, or you can

* query for a specific one.

*
* For example:

*
* var sl = History();

* alert(sl. doesVi8it("Digg")); // Returns true/false, -1

if unknown.

* var listOfVisitedSites = sl. visitedSites ();

* var checkedSites = sl. checkedSites ();

*
* If you want to add more sites to check, you can pass that

l,n as a dictionary

* to History:

*

* var more { "Humanized": " http://humanized.com'' ,

217

3

8

13

18

*

*

*

"Azarask. in": i" http://azarask. in", "http

:/ / azarask. in/blog "}

};

var s l History (more);

* alert(sl. does Visit ("Humanized"));

* ~

* For a list of built-in sites, see the sites variable below.

*

var History function (moreSites) {

var sites = {

"Digg": [''http://digg.com'', ''http://digg.com/login''],

" Reddi t": [" http://reddit.com'' , " http://red d it. com/ new /" ,

" http://reddit .com/ controversial /", "http:/ / reddit . com/

top /", " http://reddit.com/ r / red d it . com /", " http : / /

reddit .com/r /programming/"] ,

"StumbleUpon": [" http://stumbleupon . com"] ,

"Yahoo Buzz": [''http://buzz.yahoo.com''],

"Facebook": [''http://facebook.com/home.php'', ''http://

facebook . com" , "https:/ / login. facebook .com/login .php"] ,

"Del.icio.us": ["https://secure.del.icio.us/login", "http

: / / del. i c i 0 . us /"] ,

" MySpace": [" http://www.myspace.com/ ..] ,

" T e c h nor a t i ": [" http://www.technorati.com "] ,

"Newsvine": [" https:/ /www. newsvine. com", "https: / /www.

new s v i n e . com / _ tools / use r / log in"] ,

"Songza": [" http://songza.com''] ,

" Slashdot": [" http://slashdot.org/''] ,

218

28

33

38

"rv1a. g n 0 1 i a": [" http://ma.gnolia.com/,, 1 ,

" B 1 ink 1 i s t ": [" http://www.blinklist.com ..] ,

"Furl": [" http://furl.net'',''h t t P : / / furl . net / mem bers / log i n

"] ,

"Mister Wong": [" http://www.mister-wong.com .. 1 ,

"Current": [" http://current.com'', " http://current .com/

login. html" 1 ,

" Menaeme" : [" http://meneame. net", " http://meneame. net/

login. php"] ,

"Oknotizie": [" http:/ / oknotizie . alice. it", ''http://

oknotizie . alice. it / login. html. php"] ,

"Diigo": [" http://www.diigo.com/.. , "https:/ / secure. diigo.

com/ sign -in"] ,

"Funp": [" http://funp.com'' , " http://funp . com/ account /

loginpage . php"] ,

"Blogmarks": [" http://blogmarks.net'' 1 ,

"Yahoo Bookmarks": [" http://bookmarks . yahoo . com"] ,

"Xanga": [" http://xanga.com''] ,

"Blogger": [" http://blogger.com''] ,

" Las t . fm": [" http://www.last.fm/,,,'' h t t P s : / / www.last.fm/

login /"] ,

"N4G": [" http://www.n4g.com ..] ,

" F a v e s": [" http://faves.com'' , " http://fa v e s . com/home", "

h t t p s : / / sec u r e . f a v e s . com / s i g n In"] ,

43

48

53

"Simpy": [" http://www. simpy. com", .. http://www.simpy.com/58

login"],

"Yigg": [" http:j /www.yigg.de .. 1 ,

" K i r t s y": [" http://www.kirtsy.com'',''htt p : / / www.kirtsy.com

/ login. php"] ,

219

" Far k": [" http://www.fark. com", " http://cgi.fa r k . com / c g i /

fark/users. pI? self=l"] ,

"Mixx": [" https : / /www. mixx. comjlogin / dual", ''http://www.

lnixx . COlll"] ,

"Google Bookmarks": [" http : / /www. google . com/bookmarks"," 63

http://www.google.com/ig / add? moduleurl=bookmarks . xml&hl

=en"] ,

" Sub b mit t": [" http://subbmitt.com/ "]

} ;

for(var site in moreSites) {

}

II If we don't have the site, create the URL list.

if(typeof(sites[site]) = "undefined") sites[site]

[] :

I I 1ft h e val u e z sst r i n g, jus t pus h t hat 0 n tot h e URL

lis t .

if(typeof(moreSites [site]) = "string"

sites[site].push(moreSites[site]);

else

sites[site] sites[site].concat(moreSites[site]);

var visited {};

function get Style (el, scopeDoc, styleProp) {

if (cl. currentStyle)

var y = el. currentStyle [styleProp];

else if (window. getComputedStyle)

220

68

73

78

83

}

var y = scopeDoc. default View . getComputedStyle (el ,null) .

getPropertyValue (styleProp) ;

return y;

function remove (el) {

el . parent Node . removeChild (el);

}

I I Code inspired by:

88

II bindzus. wordpress. com1200'l1121241 adding-dynamic-contents- 93

to-iframes

function createIframe () {

var iframe = document. createElement (" iframe") ;

iframe.style.position = "absolute";

iframe. style. visibility = "hidden";

document. body. append Child (iframe) ;

II Firefox, Opera

if (iframe . contentDocument) iframe. doc

content Document ;

II Internet Explorer

else if (iframe. content Window) iframe. doc

content Window . document;

iframe.

iframe.

I I Magic: Force creation of the body (which zs null by

default in IE).

II Also force the styles of visitedlnot-visted links.

iframe . doc. open () ;

221

98

103

108

}

iframe. doc. write ('<style>') ;

iframe . doc. wri te (" a{ color: #000000; display: none;}") ;

iframe . doc. wri te (" a: visi ted {color: #FFOOOO; display:

inline;}");

iframe. doc. write ('</style>');

iframe. doc. close () ;

I I Return the iframe: iframe. doc contains the iframe.

return iframe;

var iframe createIframe () ;

function embedLinklnIframe (href, text) {

var a = iframe. doc. createElement (" a") ;

a. href = href;

a.innerHTML = site;

iframe . doc. body. append Child (a);

}

for(var site in sites) {

var urls = sites [site];

for (var i =0; i<urls. length; itt) {

I I You h a vet 0 c rea tee l e men t sin the s cop e 0 f the

iframe for IE.

embedLinklnIframe (urls [i], sit e);

II Automatically try variations of the URLS with and

without the "WUJU)"

if(urIs [i]. match (jwww\.j)){

222

ll3

ll8

123

128

133

var sansWWW = urIs [i]. replace (lwww\.I, "");

embedLinklnIframe(sansWWW, site);

} else { 138

}

}

}

II 2 1 for length of string + 1 for slice offset

var httpLen = urIs [i]. indexOf(" I I") + 2;

var withWWW = urls [i]. substring (0, httpLen) + "www."

+ urls[i].substring(httpLen);

embedLinklnIframe(withWWW, site);

var links = iframe. doc. body. child Nodes ;

for(var i=O; i<links.lellgth; i++) {

}

II Handle both FirefoxlSafari, and IE (respectively)

var displayValue = get Style (links [i], iframe. doc, "display

") ;

var did Visit display Value != "none";

if(didVisit){

vis i ted [lin k s [i] . inner HTML true;

}

remove (iframe);

return new (function () {

var usedSites = [];

for(var site in visited){

223

143

148

153

158

163

}

usedSites.push(site);

}

II Return an array of visited sites.

this.visitedSites = function() {

return usedSites;

}

II Return truelfalse. If we didn't check the site, return

-1.

this. doesVisit = function (site) {

if(typeof(sites[site]) = "undefined"

return -1;

return typeof(visited[site])!= "undefined";

}

var checkedSi tes = [];

for(var site in sites){

checkedSites.push(site);

}

II Return a list of the sites checked.

this. checked Sites = function () {

return checkedSites;

}

}) () ;

224

168

173

178

183

188

CURRICULUM VITAE

Chamila Walgampaya

Candidate for the Degree of

Doctor of Philosophy

Dissertation: CLICK FRAUD: HOW TO SPOT IT, HOW TO STOP IT?

Data Mining Laboratory, Duthie Center for Engineering,
University of Louisville, Louisville, KY 40292, USA.
office: + 1-502-852-3626, mobile: + 1-502-819-8346.
e-mail: ckwalg01@louisville.edu.

Education:

Completed the requirements for the degree of Doctor of Philosophy, University of
Louisville, Louisville, KY 2007-to present.

Received the :V1.S. degree from the University of Louisville, Louisville, KY, 2004-
2006.

Received the B.S.Eng(Hons) degree in Computer Engineering from the University
of Peradeniya, Sri Lanka, 1996-2001.

Selected Publications:

1. Chamila Walgampaya, Mehmed Kantardzic, "Cracking The Smart ClickBot,"
Submitted for review in the 13th IEEE International Symposium on Web Sys­
tems Evolution, September 30, 2011.

2. Chamila Walgampaya, Mehmed Kantardzic, Brent Wenerstrom. "Duplicate
Detection in Pay-Per-Click Streams using Temporal Stateful Bloom Filters,"
First review received for publication the International Journal of Data Analysis
Techniques and Strategies, IJDATS, 2011.

3. Joung Woo Ryu, Mehmed Kantardzic, Chamila Walgampaya, "Building an
Ensemble of Classifiers Using Partially Labeled Streaming Data," First review

225

received for publication in the International Journal of Information Sciences,
Elsevier, 2011.

4. Chamila Walgampaya, Mehmed Kant ardzic , Roman Yampolskiy, '·Evidence
Fusion For Real Time Click Fraud Detection And Prevention," Accepted for
publication in Intelligent Automation and Systems Engineering. Springer 2011.

5. Chamila Walgampaya, Wael Emara, Mehmed Kantardzic, "Validation of
Click Fraud Detection Ylodels," Accepted for publication in 7th International
Conference on Machine Learning and Data Mining, MLDM 2011, August 30-
September 3, 2011.

6. :\lehmed Kantardzic, Chamila Walgampaya, Wael Emara, "Click fraud preven­
tion in pay-per-click model: Learning through multi-model evidence fusion,"
International Conference on Machine and Web Intelligence (ICMWI),pages 20-
27, 2010.

7. Mchmed Kantardzic, I3rent Wencrstrom, Chamila Walgampaya, Scan Hig­
gins, Darren King, "Click Fraud Detection Using Time and Space Contextual
Information,IADIS International Journal on WWW/lnternet, Volume: VIII,2
, Pages 101-117, 2010.

8. Chamila Walgampaya, Mehmed Kantardzic, and Roman Yampolskiy, "Real
Time Click Fraud Prevention using multi-level Data Fusion," International
Conference on Computer Science and Applications 201 (WCECS 2010), Oc­
tober 20 - 22, 2010, San Francisco, USA, pp514-519.

9. Mehmed Kantardzic, Chamila Walgampaya, Roman Yampolskiy, Joung Woo
Ryu, "Click Fraud Prevention via Multimodal Evidence Fusion by Dempster­
Shafer Algorithm,'· 2010 IEEE Conference on Multisensor Fusion and Integra­
tion (MFI201O), Salt Lake City, Utah, USA, September 5-7, 2010.

10. Mehmed Kantardzic, Joung Woo Ryu, Chamila Walgampaya, "Building a
:\'ew Classifier in an Ensemble using Streaming Unlabeled Data", The 23rd
International Conference on Industrial, Engineering & Other Application of
Applied Intelligent Systems (lEA-AlE 2010), Cordoba, Spain, June 2010.

11. Mehmed Kantard:.-lic, Chamila Walgampaya, Darren King, Sean Higgins,
Brent \Venerstrom, Chris Simpson, Joung Woo Ryu, "Real Time Click Fraud
Detection and Prevention", The 6th Kentucky Innovation and Entrepreneur­
ship Conference, Lexington, Kentucky, April 2010.

12. Joung Woo Ryu, Mehmed Kantardzic, Chamila Walgampaya, "Ensemble
Classifier based on Misclassified Streaming Data," The Tenth lASTED Inter­
national Conference on Artificial Intelligence and Applications (AlA 2010),
Innsbruck, Austria, Feb. 2010.

13. Mehmed Kantardzic, Chamila Walgampaya, Brent Wenerstrom, "Improv­
ing Click Fraud Detection by Real Time Data Fusion," In IEEE International

226

Symposium on Signal Processing and Information Technology, ISSPIT 2008,
pages 6974, 2008.

14. Mehmed Kantardzic, Brent Wenerstrom, Chamila Walgampaya, "Time and
Space Contextual Information Improves Click Quality Estimation" , e-Commerce
2009, page 123, 2009.

15. Chamila Walgampaya, Mehmed Kantardzic, "Selection of Distributed Sen­
sors in Multiple Time Series Prediction," In proceedings of the IEEE World
Congress on Computational Intelligence, Vancouver, CA, July 2006.

16. Chamila Walgampaya, Mehmed Kantardzic, "Cost-Sensitive Analysis in Mul­
tiple Time Series Prediction," In proceedings of The 2006 International Con­
ference on Data Mining, Las Vegas. USA, June 2006.

Honours and Awards:

1.Certificate of Merit (Student) for paper title "Real Time Click Fraud Prevention
using multi-level Data Fusion," published in the International Conference on
Soft Computing and Applications 2010.

2. E-EXPO Student Research Competition, Graduate overall 1st place and Best in
CECS Department, 2010.

3. Co-author, Best Paper Award, IADIS International Conference on ecommerce,
Portugal, 2009.

4. Grosscurth Scholarship, Speed School of Engineering, University of Louisville,
2007-2009.

5. Fulbright Scholar, University of Louisville, KY, USA, 2004-2006.

6. Ceylon Bank Employees' Union Scholarship, Sri Lanka, 1997-2001.

7. World Prize,Australian Computer Society Inc., Australia, 1997.

Professional Experience:

University of Louisville, KY, USA
Teaching/Research Assistant, 2004 to present

University of Peradeniya, Peradeniya, Sri Lanka
Lecturer, 2003 to present

227

	Click fraud : how to spot it, how to stop it?
	Recommended Citation

	tmp.1423685735.pdf.ITC0v

