579 research outputs found

    A proof calculus which reduces syntactic bureaucracy

    Get PDF
    International audienceIn usual proof systems, like the sequent calculus, only a very limited way of combining proofs is available through the tree structure. We present in this paper a logic-independent proof calculus, where proofs can be freely composed by connectives, and prove its basic properties. The main advantage of this proof calculus is that it allows to avoid certain types of syntactic bureaucracy inherent to all usual proof systems, in particular the sequent calculus. Proofs in this system closely reflect their atomic flow, which traces the behaviour of atoms through structural rules. The general definition is illustrated by the standard deep-inference system for propositional logic, for which there are known rewriting techniques that achieve cut elimination based only on the information in atomic flows

    Normalisation Control in Deep Inference via Atomic Flows

    Get PDF
    We introduce `atomic flows': they are graphs obtained from derivations by tracing atom occurrences and forgetting the logical structure. We study simple manipulations of atomic flows that correspond to complex reductions on derivations. This allows us to prove, for propositional logic, a new and very general normalisation theorem, which contains cut elimination as a special case. We operate in deep inference, which is more general than other syntactic paradigms, and where normalisation is more difficult to control. We argue that atomic flows are a significant technical advance for normalisation theory, because 1) the technique they support is largely independent of syntax; 2) indeed, it is largely independent of logical inference rules; 3) they constitute a powerful geometric formalism, which is more intuitive than syntax

    Cut Elimination for a Logic with Induction and Co-induction

    Full text link
    Proof search has been used to specify a wide range of computation systems. In order to build a framework for reasoning about such specifications, we make use of a sequent calculus involving induction and co-induction. These proof principles are based on a proof theoretic (rather than set-theoretic) notion of definition. Definitions are akin to logic programs, where the left and right rules for defined atoms allow one to view theories as "closed" or defining fixed points. The use of definitions and free equality makes it possible to reason intentionally about syntax. We add in a consistent way rules for pre and post fixed points, thus allowing the user to reason inductively and co-inductively about properties of computational system making full use of higher-order abstract syntax. Consistency is guaranteed via cut-elimination, where we give the first, to our knowledge, cut-elimination procedure in the presence of general inductive and co-inductive definitions.Comment: 42 pages, submitted to the Journal of Applied Logi

    On Berry's conjectures about the stable order in PCF

    Full text link
    PCF is a sequential simply typed lambda calculus language. There is a unique order-extensional fully abstract cpo model of PCF, built up from equivalence classes of terms. In 1979, G\'erard Berry defined the stable order in this model and proved that the extensional and the stable order together form a bicpo. He made the following two conjectures: 1) "Extensional and stable order form not only a bicpo, but a bidomain." We refute this conjecture by showing that the stable order is not bounded complete, already for finitary PCF of second-order types. 2) "The stable order of the model has the syntactic order as its image: If a is less than b in the stable order of the model, for finite a and b, then there are normal form terms A and B with the semantics a, resp. b, such that A is less than B in the syntactic order." We give counter-examples to this conjecture, again in finitary PCF of second-order types, and also refute an improved conjecture: There seems to be no simple syntactic characterization of the stable order. But we show that Berry's conjecture is true for unary PCF. For the preliminaries, we explain the basic fully abstract semantics of PCF in the general setting of (not-necessarily complete) partial order models (f-models.) And we restrict the syntax to "game terms", with a graphical representation.Comment: submitted to LMCS, 39 pages, 23 pstricks/pst-tree figures, main changes for this version: 4.1: proof of game term theorem corrected, 7.: the improved chain conjecture is made precise, more references adde

    Cirquent calculus deepened

    Full text link
    Cirquent calculus is a new proof-theoretic and semantic framework, whose main distinguishing feature is being based on circuits, as opposed to the more traditional approaches that deal with tree-like objects such as formulas or sequents. Among its advantages are greater efficiency, flexibility and expressiveness. This paper presents a detailed elaboration of a deep-inference cirquent logic, which is naturally and inherently resource conscious. It shows that classical logic, both syntactically and semantically, is just a special, conservative fragment of this more general and, in a sense, more basic logic -- the logic of resources in the form of cirquent calculus. The reader will find various arguments in favor of switching to the new framework, such as arguments showing the insufficiency of the expressive power of linear logic or other formula-based approaches to developing resource logics, exponential improvements over the traditional approaches in both representational and proof complexities offered by cirquent calculus, and more. Among the main purposes of this paper is to provide an introductory-style starting point for what, as the author wishes to hope, might have a chance to become a new line of research in proof theory -- a proof theory based on circuits instead of formulas.Comment: Significant improvements over the previous version

    A Strong Call-By-Need Calculus

    Get PDF
    We present a call-by-need ?-calculus that enables strong reduction (that is, reduction inside the body of abstractions) and guarantees that arguments are only evaluated if needed and at most once. This calculus uses explicit substitutions and subsumes the existing strong-call-by-need strategy, but allows for more reduction sequences, and often shorter ones, while preserving the neededness. The calculus is shown to be normalizing in a strong sense: Whenever a ?-term t admits a normal form n in the ?-calculus, then any reduction sequence from t in the calculus eventually reaches a representative of the normal form n. We also exhibit a restriction of this calculus that has the diamond property and that only performs reduction sequences of minimal length, which makes it systematically better than the existing strategy. We have used the Abella proof assistant to formalize part of this calculus, and discuss how this experiment affected its design

    Canonical Proof nets for Classical Logic

    Full text link
    Proof nets provide abstract counterparts to sequent proofs modulo rule permutations; the idea being that if two proofs have the same underlying proof-net, they are in essence the same proof. Providing a convincing proof-net counterpart to proofs in the classical sequent calculus is thus an important step in understanding classical sequent calculus proofs. By convincing, we mean that (a) there should be a canonical function from sequent proofs to proof nets, (b) it should be possible to check the correctness of a net in polynomial time, (c) every correct net should be obtainable from a sequent calculus proof, and (d) there should be a cut-elimination procedure which preserves correctness. Previous attempts to give proof-net-like objects for propositional classical logic have failed at least one of the above conditions. In [23], the author presented a calculus of proof nets (expansion nets) satisfying (a) and (b); the paper defined a sequent calculus corresponding to expansion nets but gave no explicit demonstration of (c). That sequent calculus, called LK\ast in this paper, is a novel one-sided sequent calculus with both additively and multiplicatively formulated disjunction rules. In this paper (a self-contained extended version of [23]), we give a full proof of (c) for expansion nets with respect to LK\ast, and in addition give a cut-elimination procedure internal to expansion nets - this makes expansion nets the first notion of proof-net for classical logic satisfying all four criteria.Comment: Accepted for publication in APAL (Special issue, Classical Logic and Computation
    • …
    corecore