1,037 research outputs found

    An Underwater SLAM System using Sonar, Visual, Inertial, and Depth Sensor

    Full text link
    This paper presents a novel tightly-coupled keyframe-based Simultaneous Localization and Mapping (SLAM) system with loop-closing and relocalization capabilities targeted for the underwater domain. Our previous work, SVIn, augmented the state-of-the-art visual-inertial state estimation package OKVIS to accommodate acoustic data from sonar in a non-linear optimization-based framework. This paper addresses drift and loss of localization -- one of the main problems affecting other packages in underwater domain -- by providing the following main contributions: a robust initialization method to refine scale using depth measurements, a fast preprocessing step to enhance the image quality, and a real-time loop-closing and relocalization method using bag of words (BoW). An additional contribution is the addition of depth measurements from a pressure sensor to the tightly-coupled optimization formulation. Experimental results on datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle from challenging underwater environments with poor visibility demonstrate performance never achieved before in terms of accuracy and robustness

    A Multi-Sensor Fusion-Based Underwater Slam System

    Get PDF
    This dissertation addresses the problem of real-time Simultaneous Localization and Mapping (SLAM) in challenging environments. SLAM is one of the key enabling technologies for autonomous robots to navigate in unknown environments by processing information on their on-board computational units. In particular, we study the exploration of challenging GPS-denied underwater environments to enable a wide range of robotic applications, including historical studies, health monitoring of coral reefs, underwater infrastructure inspection e.g., bridges, hydroelectric dams, water supply systems, and oil rigs. Mapping underwater structures is important in several fields, such as marine archaeology, Search and Rescue (SaR), resource management, hydrogeology, and speleology. However, due to the highly unstructured nature of such environments, navigation by human divers could be extremely dangerous, tedious, and labor intensive. Hence, employing an underwater robot is an excellent fit to build the map of the environment while simultaneously localizing itself in the map. The main contribution of this dissertation is the design and development of a real-time robust SLAM algorithm for small and large scale underwater environments. SVIn – a novel tightly-coupled keyframe-based non-linear optimization framework fusing Sonar, Visual, Inertial and water depth information with robust initialization, loop-closing, and relocalization capabilities has been presented. Introducing acoustic range information to aid the visual data, shows improved reconstruction and localization. The availability of depth information from water pressure enables a robust initialization and refines the scale factor, as well as assists to reduce the drift for the tightly-coupled integration. The complementary characteristics of these sensing v modalities provide accurate and robust localization in unstructured environments with low visibility and low visual features – as such make them the ideal choice for underwater navigation. The proposed system has been successfully tested and validated in both benchmark datasets and numerous real world scenarios. It has also been used for planning for underwater robot in the presence of obstacles. Experimental results on datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle (AUV) Aqua2 in challenging underwater environments with poor visibility, demonstrate performance never achieved before in terms of accuracy and robustness. To aid the sparse reconstruction, a contour-based reconstruction approach utilizing the well defined edges between the well lit area and darkness has been developed. In particular, low lighting conditions, or even complete absence of natural light inside caves, results in strong lighting variations, e.g., the cone of the artificial video light intersecting underwater structures and the shadow contours. The proposed method utilizes these contours to provide additional features, resulting into a denser 3D point cloud than the usual point clouds from a visual odometry system. Experimental results in an underwater cave demonstrate the performance of our system. This enables more robust navigation of autonomous underwater vehicles using the denser 3D point cloud to detect obstacles and achieve higher resolution reconstructions

    Probabilistic Hybrid Action Models for Predicting Concurrent Percept-driven Robot Behavior

    Full text link
    This article develops Probabilistic Hybrid Action Models (PHAMs), a realistic causal model for predicting the behavior generated by modern percept-driven robot plans. PHAMs represent aspects of robot behavior that cannot be represented by most action models used in AI planning: the temporal structure of continuous control processes, their non-deterministic effects, several modes of their interferences, and the achievement of triggering conditions in closed-loop robot plans. The main contributions of this article are: (1) PHAMs, a model of concurrent percept-driven behavior, its formalization, and proofs that the model generates probably, qualitatively accurate predictions; and (2) a resource-efficient inference method for PHAMs based on sampling projections from probabilistic action models and state descriptions. We show how PHAMs can be applied to planning the course of action of an autonomous robot office courier based on analytical and experimental results

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure

    Underwater localization using imaging sonars in 3D environments

    Get PDF
    This work proposes a localization method using a mechanically scanned imaging sonar (MSIS), which stands out by its low cost and weight. The proposed method implements a Particle Filter, a Bayesian Estimator, and introduces a measurement model based on sonar simulation theory. To the best of author’s knowledge, there is no similar approach in the literature, as sonar simulation current methods target in syntethic data generation, mostly for object recognition . This stands as the major contribution of the thesis as allows the introduction of the computation of intensity values provided by imaging sonars, while maitaining compability with the already used methods, such as range extraction. Simulations shows the efficiency of the method as well its viability to the utilization of imaging sonar in underwater localization. The new approach make possible, under certain constraints, the extraction of 3D information from a sensor considered, in the literature, as 2D and also in situations where there is no reference at the same horizontal plane of the sensor transducer scanning axis. The localization in complex 3D environment is also an advantage provided by the proposed method.Este trabalho propõe um método de localização utilizando um sonar do tipo MSIS (Mechanically Scanned Imaging Sonar ), o qual se destaca por seu baixo custo e peso. O método implementa um filtro de partículas, um estimador Bayesiano, e introduz um modelo de medição baseado na teoria de simulação de sonares. No conhecimento do autor não há uma abordagem similar na literatura, uma vez que os métodos atuais de simulação de sonar visam a geração de dados sintéticos para o reconhecimento de objetos. Esta é a maior contribuição da tese pois permite a a computação dos valores de intensidade fornecidos pelos sonares do tipo imaging e ao mesmo tempo é compatível com os métodos já utilizados, como extração de distância. Simulações mostram o bom desempenho do método, assim como sua viabilidade para o uso de imaging sonars na localização submarina. A nova abordagem tornou possível, sob certas restrições, a extração de informações 3D de um sensor considerado, na literatura, como somente 2D e também em situações em que não há nehnuma referência no mesmo plano horizontal do eixo de escaneamento do transdutor. A localização em ambientes 3D complexos é também uma vantagem proporcionada pelo método proposto

    Signal Processing and Restoration

    Get PDF

    Alluvial Substrate Mapping by Automated Texture Segmentation of Recreational-Grade Side Scan Sonar Imagery

    Get PDF
    Side scan sonar in low-cost ‘fishfinder’ systems has become popular in aquatic ecology and sedimentology for imaging submerged riverbed sediment at coverages and resolutions sufficient to relate bed texture to grain-size. Traditional methods to map bed texture (i.e. physical samples) are relatively high-cost and low spatial coverage compared to sonar, which can continuously image several kilometers of channel in a few hours. Towards a goal of automating the classification of bed habitat features, we investigate relationships between substrates and statistical descriptors of bed textures in side scan sonar echograms of alluvial deposits. We develop a method for automated segmentation of bed textures into between two to five grain-size classes. Second-order texture statistics are used in conjunction with a Gaussian Mixture Model to classify the heterogeneous bed into small homogeneous patches of sand, gravel, and boulders with an average accuracy of 80%, 49%, and 61%, respectively. Reach-averaged proportions of these sediment types were within 3% compared to similar maps derived from multibeam sonar

    Review and classification of vision-based localisation techniques in unknown environments

    Get PDF
    International audienceThis study presents a review of the state-of-the-art and a novel classification of current vision-based localisation techniques in unknown environments. Indeed, because of progresses made in computer vision, it is now possible to consider vision-based systems as promising navigation means that can complement traditional navigation sensors like global navigation satellite systems (GNSSs) and inertial navigation systems. This study aims to review techniques employing a camera as a localisation sensor, provide a classification of techniques and introduce schemes that exploit the use of video information within a multi-sensor system. In fact, a general model is needed to better compare existing techniques in order to decide which approach is appropriate and which are the innovation axes. In addition, existing classifications only consider techniques based on vision as a standalone tool and do not consider video as a sensor among others. The focus is addressed to scenarios where no a priori knowledge of the environment is provided. In fact, these scenarios are the most challenging since the system has to cope with objects as they appear in the scene without any prior information about their expected position
    corecore