101,592 research outputs found

    A Weakest Pre-Expectation Semantics for Mixed-Sign Expectations

    Get PDF
    We present a weakest-precondition-style calculus for reasoning about the expected values (pre-expectations) of \emph{mixed-sign unbounded} random variables after execution of a probabilistic program. The semantics of a while-loop is well-defined as the limit of iteratively applying a functional to a zero-element just as in the traditional weakest pre-expectation calculus, even though a standard least fixed point argument is not applicable in this context. A striking feature of our semantics is that it is always well-defined, even if the expected values do not exist. We show that the calculus is sound, allows for compositional reasoning, and present an invariant-based approach for reasoning about pre-expectations of loops

    Using Probabilistic Temporal Logic PCTL and Model Checking for Context Prediction

    Get PDF
    Context prediction is a promoting research topic with a lot of challenges and opportunities. Indeed, with the constant evolution of context-aware systems, context prediction remains a complex task due to the lack of formal approach. In this paper, we propose a new approach to enhance context prediction using a probabilistic temporal logic and model checking. The probabilistic temporal logic PCTL is used to provide an efficient expressivity and a reasoning based on temporal logic in order to fit with the dynamic and non-deterministic nature of the system's environment. Whereas, the probabilistic model checking is used for automatically verifying that a probabilistic system satisfies a property with a given likelihood. Our new approach allows a formal expressivity of a multidimensional context prediction. Tested on real data our model was able to achieve 78% of the future activities prediction accuracy

    ProCAVIAR: Hybrid Data-Driven and Probabilistic Knowledge-Based Activity Recognition

    Get PDF
    The recognition of physical activities using sensors on mobile devices has been mainly addressed with supervised and semi-supervised learning. The state-of-the-art methods are mainly based on the analysis of the user\u2019s movement patterns that emerge from inertial sensors data. While the literature on this topic is quite mature, existing approaches are still not adequate to discriminate activities characterized by similar physical movements. The context that surrounds the user (e.g., semantic location) could be used as additional information to significantly extend the set of recognizable activities. Since collecting a comprehensive training set with activities performed in every possible context condition is too costly, if possible at all, existing works proposed knowledge-based reasoning over ontological representation of context data to refine the predictions obtained from machine learning. A problem with this approach is the rigidity of the underlying logic formalism that cannot capture the intrinsic uncertainty of the relationships between activities and context. In this work, we propose a novel activity recognition method that combines semisupervised learning and probabilistic ontological reasoning. We model the relationships between activities and context as a combination of soft and hard ontological axioms. For each activity, we use a probabilistic ontology to compute its compatibility with the current context conditions. The output of probabilistic semantic reasoning is combined with the output of a machine learning classifier based on inertial sensor data to obtain the most likely activity performed by the user. The evaluation of our system on a dataset with 13 types of activities performed by 26 subjects shows that our probabilistic framework outperforms both a pure machine learning approach and previous hybrid approaches based on classic ontological reasoning

    Probabilistic Relational Model Benchmark Generation

    Get PDF
    The validation of any database mining methodology goes through an evaluation process where benchmarks availability is essential. In this paper, we aim to randomly generate relational database benchmarks that allow to check probabilistic dependencies among the attributes. We are particularly interested in Probabilistic Relational Models (PRMs), which extend Bayesian Networks (BNs) to a relational data mining context and enable effective and robust reasoning over relational data. Even though a panoply of works have focused, separately , on the generation of random Bayesian networks and relational databases, no work has been identified for PRMs on that track. This paper provides an algorithmic approach for generating random PRMs from scratch to fill this gap. The proposed method allows to generate PRMs as well as synthetic relational data from a randomly generated relational schema and a random set of probabilistic dependencies. This can be of interest not only for machine learning researchers to evaluate their proposals in a common framework, but also for databases designers to evaluate the effectiveness of the components of a database management system

    Reasoning with conditionals

    Get PDF
    This paper reviews the psychological investigation of reasoning with conditionals, putting an emphasis on recent work. In the first part, a few methodological remarks are presented. In the second part, the main theories of deductive reasoning (mental rules, mental models, and the probabilistic approach) are considered in turn; their content is summarised and the semantics they assume for if and the way they explain formal conditional reasoning are discussed, in particular in the light of experimental work on the probability of conditionals. The last part presents the recent shift of interest towards the study of conditional reasoning in context, that is, with large knowledge bases and uncertain premises

    SMILE: smart monitoring intelligent learning engine. An ontology-based context-aware system for supporting patients subjected to severe emergencies

    Get PDF
    Remote healthcare has made a revolution in the healthcare domain. However, an important problem this field is facing is supporting patients who are subjected to severe emergencies (as heart attacks) to be both monitored and protected while being at home. In this paper, we present a conceptual framework with the main objectives of: 1) emergency handling through monitoring patients, detecting emergencies and insuring fast emergency responses; 2) preventing an emergency from happening in the first place through protecting patients by organising their lifestyles and habits. To achieve these objectives, we propose a layered middleware. Our context model combines two modelling methods: probabilistic modelling to capture uncertain information and ontology to ease knowledge sharing and reuse. In addition, our system uses a two-level reasoning approach (ontology-based reasoning and Bayesian-based reasoning) to manage both certain and uncertain contextual parameters in an adaptive manner. Bayesian network is learned from ontology. Moreover, to ensure a more sophisticated decision-making for service presentation, influence diagram and analytic hierarchy process are used along with regular probabilistic rules (confidence level) and basic semantic logic rules

    Modeling crime scenarios in a Bayesian Network

    Get PDF
    Legal cases involve reasoning with evidence and with the development of a software support tool in mind, a formal foundation for evidential reasoning is required. Three approaches to evidential reasoning have been prominent in the literature: argumentation, narrative and probabilistic reasoning. In this paper a combination of the latter two is proposed. In recent research on Bayesian networks applied to legal cases, a number of legal idioms have been developed as recurring structures in legal Bayesian networks. A Bayesian network quantifies how various variables in a case interact. In the narrative approach, scenarios provide a context for the evidence in a case. A method that integrates the quantitative, numerical techniques of Bayesian networks with the qualitative, holistic approach of scenarios is lacking. In this paper, a method is proposed for modeling several scenarios in a single Bayesian network. The method is tested by doing a case study. Two new idioms are introduced: the scenario idiom and the merged scenarios idiom. The resulting network is meant to assist a judge or jury, helping to maintain a good overview of the interactions between relevant variables in a case and preventing tunnel vision by comparing various scenarios

    Representing and Evaluating Legal Narratives with Subscenarios in a Bayesian network

    Get PDF
    In legal cases, stories or scenarios can serve as the context for a crime when reasoning with evidence. In order to develop a scientifically founded technique for evidential reasoning, a method is required for the representation and evaluation of various scenarios in a case. In this paper the probabilistic technique of Bayesian networks is proposed as a method for modeling narrative, and it is shown how this can be used to capture a number of narrative properties. Bayesian networks quantify how the variables in a case interact. Recent research on Bayesian networks applied to legal cases includes the development of a list of legal idioms: recurring substructures in legal Bayesian networks. Scenarios are coherent presentations of a collection of states and events, and qualitative in nature. A method combining the quantitative, probabilistic approach with the narrative approach would strengthen the tools to represent and evaluate scenarios. In a previous paper, the development of a design method for modeling multiple scenarios in a Bayesian network was initiated. The design method includes two narrative idioms: the scenario idiom and the merged scenarios idiom. In this current paper, the method of Vlek, et al. (2013) is extended with a subscenario idiom and it is shown how the method can be used to represent characteristic features of narrative
    • …
    corecore