9 research outputs found

    A flexible approach to interprocedural data flow analysis and programs with recursive data structures

    Full text link
    A new approach to data flow analysis of procedural pro-grams and programs with recursive data structures is described. The method depends on simulation of the in-terpreter for the subject programming language using a retrieval function to approximate a program’s data structures. 1

    Type determination in an optimizing compiler for APL

    Get PDF
    This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or "target " for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or dupUcate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find

    Integrated testing and verification system for research flight software design document

    Get PDF
    The NASA Langley Research Center is developing the MUST (Multipurpose User-oriented Software Technology) program to cut the cost of producing research flight software through a system of software support tools. The HAL/S language is the primary subject of the design. Boeing Computer Services Company (BCS) has designed an integrated verification and testing capability as part of MUST. Documentation, verification and test options are provided with special attention on real time, multiprocessing issues. The needs of the entire software production cycle have been considered, with effective management and reduced lifecycle costs as foremost goals. Capabilities have been included in the design for static detection of data flow anomalies involving communicating concurrent processes. Some types of ill formed process synchronization and deadlock also are detected statically

    Incremental Analysis of Programs

    Get PDF
    Algorithms used to determine the control and data flow properties of computer programs are generally designed for one-time analysis of an entire new input. Application of such algorithms when the input is only slightly modified results in an inefficient system. In this theses a set of incremental update algorithms are presented for data flow analysis. These algorithms update the solution from a previous analysis to reflect changes in the program. Thus, extensive reanalysis to reflect changes in the program. Thus, extensive reanalysis of programs after each program modification can be avoided. The incremental update algorithms presented for global flow analysis are based on Hecht/Ullman iterative algorithms. Banning\u27s interprocedural data flow analysis algorithms form the basis for the incremental interprocedural algorithms

    The reduction of data dependencies in high level programs

    Get PDF

    From Parallel Programs to Customized Parallel Processors

    Get PDF
    The need for fast time to market of new embedded processor-based designs calls for a rapid design methodology of the included processors. The call for such a methodology is even more emphasized in the context of so called soft cores targeted to reconfigurable fabrics where per-design processor customization is commonplace. The C language has been commonly used as an input to hardware/software co-design flows. However, as C is a sequential language, its potential to generate parallel operations to utilize naturally parallel hardware constructs is far from optimal, leading to a customized processor design space with limited parallel resource scalability. In contrast, when utilizing a parallel programming language as an input, a wider processor design space can be explored to produce customized processors with varying degrees of utilized parallelism. This Thesis proposes a novel Multicore Application-Specific Instruction Set Processor (MCASIP) co-design methodology that exploits parallel programming languages as the application input format. In the methodology, the designer can explicitly capture the parallelism of the algorithm and exploit specialized instructions using a parallel programming language in contrast to being on the mercy of the compiler or the hardware to extract the parallelism from a sequential input. The Thesis proposes a multicore processor template based on the Transport Triggered Architecture, compiler techniques involved in static parallelization of computation kernels with barriers and a datapath integrated hardware accelerator for low overhead software synchronization implementation. These contributions enable scaling the customized processors both at the instruction and task levels to efficiently exploit the parallelism in the input program up to the implementation constraints such as the memory bandwidth or the chip area. The different contributions are validated with case studies, comparisons and design examples
    corecore