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ABSTRACT

The need for fast time to market of new embedded processor-based designs calls for

a rapid design methodology of the included processors. The call for such a method-

ology is even more emphasized in the context of so called soft cores targeted to re-

configurable fabrics where per-design processor customization is commonplace.

The C language has been commonly used as an input to hardware/software co-design

flows. However, as C is a sequential language, its potential to generate parallel op-

erations to utilize naturally parallel hardware constructs is far from optimal, leading

to a customized processor design space with limited parallel resource scalability. In

contrast, when utilizing a parallel programming language as an input, a wider pro-

cessor design space can be explored to produce customized processors with varying

degrees of utilized parallelism.

This Thesis proposes a novel Multicore Application-Specific Instruction Set

Processor (MCASIP) co-design methodology that exploits parallel programming lan-

guages as the application input format. In the methodology, the designer can explic-

itly capture the parallelism of the algorithm and exploit specialized instructions using

a parallel programming language in contrast to being on the mercy of the compiler

or the hardware to extract the parallelism from a sequential input. The Thesis pro-

poses a multicore processor template based on the Transport Triggered Architecture,

compiler techniques involved in static parallelization of computation kernels with

barriers and a datapath integrated hardware accelerator for low overhead software

synchronization implementation. These contributions enable scaling the customized

processors both at the instruction and task levels to efficiently exploit the parallelism

in the input program up to the implementation constraints such as the memory band-

width or the chip area. The different contributions are validated with case studies,

comparisons and design examples.
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1. INTRODUCTION

Contemporary embedded systems can include Multiprocessor System-on-

Chips (MPSoC) which integrate multiple processors and other peripherals on a single

chip. Commercial examples of MPSoC platforms in 2012 include the OMAPTM [1]

family from Texas Instruments, the SnapdragonTMfamily from Qualcomm [2], and

the NVIDIA R© Tegra R© [3] family. Each of these platforms include multiple pro-

cessors to be used for, e.g., general-purpose computing, graphics acceleration and

Digital Signal Processing (DSP).

In contrast to general-purpose multiprocessors with a large expected set of different

applications to execute, the design of a processor targeted to an embedded system can

be customized to the requirements of an application domain such as video coding or

Software Defined Radio (SDR). This can be seen in the special instruction sets of the

processors or in the choices of the used processor architecture styles. For example,

the OMAP 4 SoCs of Texas Instruments include a DSP core (C64x) designed for

accelerating contemporary multimedia codecs. It has an instruction set optimized for

fixed-point computation, and a statically scheduled multi-issue architecture which is

expected to perform suboptimally for control-intensive and dynamic workloads, but

is able to provide sufficient computation performance for algorithms used in main-

stream multimedia codecs. [4]

The number of new hardware design engineering efforts has increased with the im-

provements in reconfigurable logic such as Field-Programmable Gate Arrays (FPGA).

The designs targeting FPGA implementation can include so called soft cores where

per-design processor customization is commonplace. Thanks to the flexibility of the

implementation platform, soft core architectures can be freely customized according

to the software running in them, which is their main benefit in comparison to their

“hard core” alternatives.

The need for fast time to market of new processor designs targeted for ASIC imple-
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mentation of new embedded SoCs or softcores in FPGAs calls for a rapid co-design

methodology of the included application (domain) specific processors.

More generally, Electronic Design Automation (EDA) tool vendors are developing

methodologies that expand the usability of their offerings from the hands of relatively

low number of hardware-skilled engineers also to the hands of software engineers or

algorithm designers. The aim is to provide easy-to-use mechanisms for High Level

Synthesis (HLS) of hardware starting from algorithm descriptions in programming

languages instead of hardware design languages. [5]

The C language has been commonly used as an input to HLS and hardware/software

co-design flows [5]. The C program is used to drive a design flow to produce, au-

tomatically or manually, hardware accelerators or customized processors executing

the described algorithm faster than an off-the-shelf processor would. However, as C

is a sequential language, its capability to express parallel operations to utilize natu-

rally parallel hardware constructs is far from optimal, leading to hardware designs

with limited parallel resource usage. In contrast, when utilizing a parallel program-

ming language as an input, wider hardware design space can be explored to produce

designs that exploit multiple levels of hardware parallelism [6, 7].

This Thesis proposes a Multicore Application-Specific Instruction Set

Processor (MCASIP) co-design methodology that exploits parallel programming lan-

guages as the application input format. In the proposed methodology, the designer

can explicitly capture the parallelism of the algorithm and exploit special instruc-

tions using a parallel programming language in contrast to being on the mercy of the

compiler or the hardware to extract the parallelism from a sequential input.

The multicores produced using the proposed design methodology can be used as

replacements to fixed function hardware accelerators and as more general “domain-

specific“ co-processors. The design methodology is independent of the final imple-

mentation technique, thus is suitable both for soft core designs in FPGAs and hard

core designs implemented as ASICs or ASSPs (application-specific standard prod-

ucts).

The Thesis proposes several enabling components required for customized multicore

design: a multicore processor template tailored for Single Program Multiple Data

(SPMD) programming languages, compiler techniques involved in static instruction-

level parallelization of SPMD computation kernels with barriers, and a simplified
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instruction set for low overhead software synchronization implementation. These

contributions enable the designer to scale the customized processors both at the in-

struction and task levels to exploit the parallelism in the input program up to the

implementation constraints such as the memory bandwidth or the chip area. The pro-

posed techniques are validated with case studies, comparisons and design examples.

1.1 Research Objectives

The higher-level objective of the research conducted for this Thesis was to develop

a methodology and its related techniques for customized parallel processor design.

The scope of the methodology under research was limited to the case where the input

is a program that expresses parallel execution in the Single Program Multiple Data

(SPMD) style, and the output is an homogeneous parallel processor which can be

potentially used in a larger heterogeneous system as an accelerating building block.

An objective within the research was to study the benefits of the Transport Triggered

Architecture (TTA) in providing finer-grain parallelism (TTA is an exposed datapath

static multi-issue architecture that has been proposed as a more scalable VLIW [8]).

More generally, a research goal was to identify benefits of the Multiple Instruction

Multiple Data (MIMD) programming model of static multiple issue architectures in

comparison to the common Single Instruction Multiple Data (SIMD) model.

In addition to the single core customization aspects, a research goal was to propose

a processor template that enables task level parallelism customization with minimal

designer effort. The scope of this research was limited to shared memory architec-

tures. Within this scope, efficient hardware accelerated synchronization between the

cores was identified as a main topic to study in more detail.

In order to map the parallel software to the parallel processor hardware, a research

objective was to produce static parallelization techniques for SPMD programs. In this

part of the research, the scope was limited to programming languages with kernels

that include barrier synchronization. The Open Computing Language [9] was used

as an example input language in that work.
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1.2 Main Contributions

The main contribution of this Thesis is a methodology for producing customized

parallel processors that can support the parallelism available in parallel programs at

multiple granularities. Within this work at least the following novel contributions are

presented:

• A customizable multicore processor template tailored for scaling parallel pro-

cessor resources at multiple levels. Part of this work was a comparison of the

TTA to other parallel datapath design styles in the context of instruction or data

level parallel workloads.

• Techniques for efficient scheduling of parallel barrier-synchronized kernels to

statically scheduled instruction-level parallel datapaths.

• A simplified memory system isolated data path integrated hardware lock unit

to reduce the overheads of the common software synchronization primitives

and their impact to the shared memory traffic.

1.3 Author’s Contribution and Collaboration

This Thesis is based on previous publications [10–13] in which the Thesis Author has

acted as the main or a second author with major contributions. The Thesis contains

edited and augmented text from these publications.

The author has been heavily involved in the design, implementation and team coor-

dination effort of the TTA-based Co-design Environment (TCE), a software toolset

laying the foundations for the work presented in this thesis. For the TCE software

implementation contributions, the author has been the main programmer of the in-

struction set simulator [14], the fundamental multicore features, the TCE OpenCL

support, and parts of the retargetable compiler chain.

The collaboration with Mr. Carlos Sánchez de La Lama of Universidad Rey Juan

Carlos (URJC), Madrid produced many of the ideas in this Thesis. This collabora-

tion led to the research on using TTAs for highly parallel graphics-style workloads.

Results from this work were published in [10]. In addition, the fundamental ideas on
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how to exploit the (then recently released) OpenCL standard to extract abundance of

static instruction-level (and data-level) parallel code by means of parallelizing code

from multiple kernel instances were produced with Mr. Sánchez de La Lama. The

initial results from this work were published in [12, 15]. For these publications, Dr.

Pablo Huerta of URJC contributed the AES benchmark. The implementation work of

the static OpenCL C kernel parallelization techniques was conducted in co-operation

with Mr. Sánchez de La Lama.

The proposed multicore processor template was largely inspired by contemporary

GPU designs which were also used as basis for the platform and memory models

of the OpenCL standard. However, generalizing and adapting the template to a cus-

tomizable processor design methodology was proposed by the Author. Implementa-

tion of the template in an architecture description language, and the first experiements

were published in [11].

Finally, the author’s research on reducing the effects of synchronization primitives

to the shared memory traffic in customized manycore designs with a shared address

space lead to the Author’s idea of the datapath integrated lock unit, published in [13].

The first hardware design of the lock unit was produced by Dr. Erno Salminen and

Mr. Otto Esko who also produced an FPGA prototype of the 48-core TTA processor

used in the synthetic synchronization benchmark presented in Section 8.5.

1.4 Thesis Outline

The rest of the Thesis is organized as follows. Chapter 2 revises the concepts related

to parallel embedded computing that are referred to in the rest of the Thesis. Further

background is given in Chapter 3 where a class of processor architectures called

“the exposed datapath architectures” is defined. In addition to studying the other

work in exposed datapath architectures, the Transport Triggered Architecture which

is the single core exposed datapath processor template used in the proposed design

methodology is discussed in more detail in the chapter.

Chapter 4 describes the high-level of the proposed parallel processor customization

methodology in which new processors are instantiated from a processor template

detailed in Chapter 5.

While the processor template is designed to support multiple parallel programming
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language standards, support for the OpenCL standard was the first priority in this

research due to its increasing popularity. Its adaptation to the design flow and the

related compiler techniques are described in Chapter 6.

The synchronization instructions that use a simplified lock hardware to minimize

synchronization overheads in the thread execution are described in Chapter 7.

Benchmarks and experimental designs are presented in Chapter 8. Finally, the Thesis

is concluded in Chapter 9 along with examples of ideas for future work.



2. PARALLEL COMPUTING

This Thesis refers to several concepts and techniques related to parallel computing on

embedded devices. This chapter shortly revisits these concepts. The definitions can

be started with the concepts of “parallelism” in comparison to the concept of “con-

currency”. A concurrent program is defined to be a set of processes of execution that

might communicate and synchronize with each other. Parallelism can be described

as executing multiple operations from a program simultaneously for improved exe-

cution time, or for other benefit such as reduced power consumption. A concurrent

program, on the other hand, can also be executed in an interleaved manner without

actual simultaneous computation taking place, thus can be seen as a way to struc-

ture programs [16]. In the rest of this thesis, the term parallelism is used both when

writing about programming languages that can be used to express parallel execution

(with the goal of improving performance) and also when writing about the processing

hardware that executes operations simultaneously.

The rest of the chapter visits concepts from the point of view of the parallelism sup-

port in software and processor microarchitecture techniques that implement parallel

execution at multiple levels of granularity.

2.1 Expressing Parallelism in Software

Experience has shown that it is very difficult, computationally expensive, and of-

ten just plain impossible to automatically extract parallelism from sequential pro-

grams [17]. Even if the algorithm at hand was inherently parallel, a sequential pro-

gramming language does not provide the expressiveness to communicate it to the

compiler, thus it forces the compiler to extract the parallelism by means of complex

compiler analysis. Therefore, exploiting parallel processor resources efficiently re-

quires the use of parallelism programming languages and libraries [16].
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#pragma omp parallel for

for(i = 0; i < width; i++) {

result[i] = A[i] + B[i];

}

Fig. 1: A parallel for-loop computing a vector addition using the OpenMP pragmas in a C program.

Several parallel programming languages have been proposed. Their adoption has

been hindered by the additional difficulty of parallel programming in comparison to

sequential programming [16]. Afterall, the design of many parallel languages and

libraries has been driven by the characteristics of the platforms at hand with less con-

sideration to the programmer-friendliness [18]. For example, the POSIX threading

library pthreads [19] allows describing task level parallelism in C programs using

shared memory communication. It provides means to spawn “threads of execution”

in a single process which shares memory, thus provides a low-level API for describ-

ing Thread Level Parallelism (TLP).

Describing massively parallel programs, such as ones that exploit loop level paral-

lelism, using lower level threading libraries such as pthreads is burdensome. There-

fore, more programmer-friendly APIs such as OpenMP [20] have been proposed to

ease this task.

For example, the OpenMP parallel for construct (see Fig.1 for an example) allows

describing Single Program, Multiple Data (SPMD) parallelism. In SPMD, the same

program code (in this case, instructions forming a loop iteration) is executed on par-

allel processing elements over different sets of data (different locations in the input

arrays). This style of parallelism is called Data Level Parallelism (DLP). Programs

with DLP can be mapped to the computational resources of different processor archi-

tectures in multiple ways as can be seen later in this chapter.

Instruction Level Parallelism (ILP) can be seen as a superset of DLP. It loosens

the restriction of Single Instruction stream Multiple Data streams (SIMD) perform-

ing the same operation to parallel data to Multiple Instructions streams Multiple

Data streams (MIMD). That is, a processing platform that can support ILP can exe-

cute multiple different operations to multiple different data simultaneously, therefore,

widening the scope of types of programs that can be parallelized. Figure 2 presents a
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sum = a + b;

diff = a - b;

Fig. 2: A snippet of a program with instruction-level parallelism.

simple program that can be parallelized using ILP-capable hardware that can execute

both the addition and the summation at the same time.

The examples of OpenMP and pthreads were given as ways to describe parallelism

in the C language which is popular especially in the embedded domain. The C lan-

guage itself is an example of an imperative language and is sequential in nature.

That is, the compiler or the processor hardware has to extract the finer granularity

parallelism from the program descriptions as there is no means to explicitly express

parallel computation at the statement level.

An example of compiler analysis that is needed when automatically parallelizing C

programs is the alias analysis. The example in Fig. 3 shows a basic case which al-

ready makes the compiler analysis non-trivial. In this case, the vector addition is a

function which takes in three pointers to the input buffers and a result buffer. In order

the compiler to be able to parallelize or reorder instructions from multiple iterations

of the inner loop, it has to prove that the writes to the result buffer do not also write

to some locations of A or B because of overlapping memory regions in the pointer

buffers. Without interprocedural alias analysis it is impossible to know at compile

time if the pointers given as the function arguments indeed point to overlapping re-

gions in memory. [21]

void vec_add(float *A, float *B,

float *result, int width) {

int i;

for(i = 0; i < width; i++) {

result[i] = A[i] + B[i];

}

}

Fig. 3: Vector addition in ANSI C.
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This particular case was addressed in ISO C99 [22] with the introduction of the re-

strict qualifier. The qualifier can be used to mark pointers to be such that their mem-

ory region is accessed only through that pointer in the scope of the pointer declaration.

This is a simple way to communicate hints to the compiler for improving parallelism.

However, it is not a general solution as it applies only to the simple case. It cannot be

used to improve parallelization of more complex access patterns such as independent

accesses to different locations in the buffer or accesses to arrays with indices read

from an another array, etc.

Functional languages describe the programs as stateless function calls which result

in parallelizable computation trees. While functional programming is convenient

for software engineers with a mathematical background, imperative programming,

especially with the C-based languages, is still used by the majority of software engi-

neers [23].

An important consideration with parallel programming is the means to communicate

between the “units of computation” (later referred to as threads). In case of OpenMP

and pthreads, for example, a random accessible shared memory is used to transfer

data between the threads. Mutual accesses to the shared data are assumed to be syn-

chronized using primitives such as locks and semaphores. Otherwise, data corruption

can occur when two or more parallel threads modify the same shared memory loca-

tions at the same time (race condition).

Another prevalent communication method is “message passing”. In this method,

explicit “messages” that contain the data are sent between the threads which can run

in the same multiprocessor or even in different computers in a networked cluster. The

explicit synchronization is avoided as the threads do not modify shared data directly

during the communication.

The benefits of shared memory communication include the potential to reduce copy-

ing of data which is required in the message passing implementation. Additionally,

load balancing is easier when there is a ready queue of threads in the shared mem-

ory from which to fetch threads to an idle processor. The main drawback is that

the implementation of the shared memory hierarchy in hardware becomes expensive

with larger number of processor cores. Therefore, a common solution is to use both

methods: message passing for higher granularity communication (e.g., between com-

puters in a cluster or separate processors in a heterogeneous MPSoC) and a shared
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s p i n l o c k ( l o c k v a r ∗ A) {

l o c k v a r o l d ;

do {

o l d = CAS(A, 0 , 1 ) ;

} whi le ( o l d == 1 ) ;

}

un lock ( l o c k v a r ∗ A) {

∗A = 0 ;

}

Fig. 4: Spin lock and unlock implementations using the atomic Compare-And-Swap instruction.

memory model inside a multicore for faster pointer based communication between

tightly coupled threads [24].

2.1.1 Synchronization Primitives

Locks, barriers, and semaphores are basic synchronization primitives used to orches-

trate the execution of a multithreaded program. Lock variables typically reside in

shared memory and atomic Read-Modify-Write (RMW) instructions are needed for

manipulating them without corruption. Locks are used to perform mutual exclusion

to ensure critical sections that manipulate shared data structures are executed only by

one thread at a time.

A common synchronization primitive heavily used in system code is the spin lock.

It performs busy wait until the lock variable is marked “free” (usually by writing 0

to the variable). It can be implemented with a loop that ”spins“ until it manages to

write 1 to the target lock variable before other threads do. The atomicity of the lock

acquiring operation can be implemented with RMW instructions in the instruction

set.

In case a spin lock is implemented using RMW instructions, the spin lock loops until

it manages to swap a 0 to a 1 at address A, meaning it obtained the lock without

it being locked before by another thread. The basic primitives can be implemented

using the atomic Compare-And-Swap (CAS) operation as shown in Fig. 4. Note that

the unlock can be implemented with a simple store to the lock address location in

case the program is known to be well-behaved and there is no need to check for lock

ownership.

Another common synchronization primitive used especially in SPMD programs is the

barrier. Barriers are used to synchronize the control flow of all threads co-operating

in the execution of the multithreaded program. The semantics of the barrier is to wait
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at the barrier call site until all other threads have reached the barrier. After all threads

have reached the barrier, the execution of the threads continues freely. The simplest

barrier implementations use counter variables that are protected with locks [25]. They

count how many threads have reached the barrier and block the waiting threads until

the counter reaches the total number of threads.

2.1.2 Open Computing Language

In December 2008, a joint effort between major companies and other interest groups

related to parallel heterogeneous programming led to the standardization effort of

Open Computing Language (OpenCL) [26]. Albeit the background of OpenCL is

clearly in the General-Purpose computing on Graphics Processing Units (GPGPU)

community, and its version 1.2 highly resembles the proprietary CUDA language

from NVIDIA [27], the aim of OpenCL is to become a universal programming stan-

dard for platforms with heterogeneous processing devices such as GPUs, CPUs and

DSPs.

OpenCL programs structure the computation into kernels defined in OpenCL C ker-

nel language, and specify that there shall be no data dependencies between the “kernel

instances” (work-items, analogous to loop iterations) by default. The implementation

is free to execute code from the different kernel instances sequentially, in parallel,

or in an interleaved fashion, as long as the explicit synchronization primitives (e.g.,

work-group barriers) present in the kernel descriptions are respected.

The example OpenCL C kernel in Fig. 5 computes a dot product for a single location

in two input buffers a and b, and places the result in the result buffer c. This kernel

can be executed on different sized vectors in parallel, using as many work-items as

there are elements in the vector. get global id(0) is used to query the index of the

work-item in the global index space which in this case maps directly to the index in

the buffers.

One point of difference to standard C notation in this example is the use of the global

qualifier in the kernel arguments. This is used to mark the pointers to point to buffers

in global memory. Other disjoint explicitly addressed memory spaces in OpenCL C

include the local memory visible to single work-groups (groups of work-items within

the global index space that can synchronize with each other) at a time, the private
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k e r n e l void

d o t p r o d u c t ( g l o b a l con s t f l o a t 4 ∗a ,

g l o b a l con s t f l o a t 4 ∗b ,

g l o b a l f l o a t ∗c )

{

i n t g i d = g e t g l o b a l i d ( 0 ) ;

c [ g i d ] = d o t ( a [ g i d ] , b [ g i d ] ) ;

}

Fig. 5: Vector dot product in OpenCL C.

memory visible only to single work-items, and the constant memory for storing read-

only data.

The OpenCL runtime API (a separate API in standard C) is used to launch kernels

and data transfer commands in one or more compute devices with event synchroniza-

tion. Portability of OpenCL programs across a wide range of different heterogeneous

platforms is achieved by describing the kernels as source code strings which are then

explicitly compiled using the runtime API to the targeted devices.

While the OpenCL standard provides an extensive programming platform for portable

heterogeneous parallel programming, the version 1.2 of the standard lacks in means

to achieve automatic performance portability. It is burdensome to write an OpenCL

program that performs efficiently on multiple heterogeneous computation

platforms [28]. Recently it has been proposed that the performance portability of

OpenCL could be improved with an introduction of a “virtual device” abstraction or

a higher-level programming layer that would hide the device-specific optimization

problems from the programmer [29, 30]. In addition, auto-tuning has been used to

improve the performance portability of the OpenCL programs [29, 31].

OpenCL is an attractive candidate to act as an input for a customized parallel pro-

cessor design flow such as the one proposed in this Thesis because it allows explicit

definition of parallel execution at multiple granularities. Operations on OpenCL C

vector data types express data level parallelism within a single work-item and the

work-groups themselves implicitly describe data parallel execution across multiple

work-items that is explicitly synchronized with barriers. Task level parallelism can

be described at the higher level with parallel execution of multiple kernels and work-

groups.
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2.2 Parallelism in Processor Architectures

Parallelism is a means to improve the performance of a program without increasing

the clock frequency. Processor architectures expose parallel computation resources

to programs in different ways at the different granularities which are discussed in the

following.

2.2.1 Instruction Level Parallelism

Pipelined execution in an in-order scalar processor can be seen as a way to exploit

instruction-level parallelism by overlapping different stages of the instruction exe-

cution from multiple instructions. In such a case, data dependencies between in-

structions might cause pipeline stalls which can be reduced by compiler instruction

scheduling [32], a compiler optimization that places independent instructions after

each other to promote the overlapping for decreased pipeline idle time. Real parallel

execution of multiple instructions requires, by definition, multiple parallel function

units (multi-issue) [33].

Whether it is the responsibility of the compiler or the processor hardware to exploit

the instruction-level parallelism places multi-issue processors somewhere between

the classifications of dynamic and static architectures. Dynamic multi-issue architec-

tures rely on processor hardware to extract and exploit the parallelism in a sequential

input program while static multi-issue architectures rely on the compiler. This classi-

fication is not binary, that is, the real processor architectures have different levels of

reliance on the compiler.

Superscalar processors can exploit hardware techniques such as hardware data de-

pendency detection, out-of-order execution, and speculation to issue multiple instruc-

tions from the sequential program input to the multiple function units in the proces-

sor pipeline. The main benefit of such dynamic exploitation of parallelism include

binary compatibility: old sequential programs run in the newer versions of the same

architecture family without program recompilation. The main drawback is the added

complexity in the control hardware to recognize the parallel instructions at runtime

which leads to increased chip area and power consumption. [34]

Very Long Instruction Word (VLIW) architectures belong to the class of static multi-

issue architectures. VLIW designs go towards the idea of exposed datapath archi-
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tectures (discussed more thoroughly in the next Chapter) where the compiler (or the

programmer) is given the responsibility to describe which instructions should be ex-

ecuted in parallel. The instruction latencies are also exposed to the programmer in

VLIW architectures. Instructions have to be scheduled in such a way that they do not

read their results too early or too late. The benefit of the VLIW style is clearly the

simplified control logic which enables potentially very wide instruction issue widths

which is achieved by placing the complexity to the compiler. In addition, the instruc-

tion windows of dynamic hardware are more limited in size while compilers see the

whole function when they look for parallelism, which can lead to more parallelization

opportunities. [35, 36]

How much weight should be put to the drawback of the binary incompatibility issue

of static architectures depends on the usage target. In general-purpose computing

where source codes of all input programs are not commonly available, it naturally is

problematic [37]. On the other hand, with embedded processors, especially in case of

customized architectures where the hardware and software is often co-designed using

an automatically retargetable toolchain, the harm is diminished. Moreover, with the

advent of programming standards targeted to platforms with heterogeneous devices,

compilation from an intermediate language to the target instruction set has been made

a step in the application execution [9].

Another consideration between dynamic and static architectures is how well they can

deal with dynamism in the input programs. For example, dynamic architectures can

react better to variable length runtime events such as those from cache accesses. An

out-of-order processor can hide the cache misses more naturally than a static archi-

tecture of which instruction execution is scheduled according to static instruction

latencies. [38]

Branches in the program are another source of dynamism. Dynamic architectures can

use techniques such as dynamic branch prediction [39] and speculation [34] to sched-

ule instructions from a predicted path of the program ahead of time. Similar results

can be achieved using the compiler by means of predicated execution (e.g., using

if-conversion [40]) or speculative code motion (e.g., with trace scheduling [41]).
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Fig. 6: Illustration of how the instruction bit fields control a SIMD datapath. SIMD instructions can refer

to wide vector registers with subwords instead of defining the independent elements, thus compacting

the instruction word. The opcode field controls all the four parallel function units (FU). In this case the

SIMD instruction expresses four parallel operations on independent elements 0..3 of the vector registers.

2.2.2 Data Level Parallelism

Data level parallelism is a more restricted form of parallelism than ILP. In contrast to

ILP where multiple different parallel operations can be applied to multiple different

data, DLP is limited to same operation applied to multiple data.

A major benefit of limiting the parallelism to DLP in the processor architecture is re-

quiring less instruction bits per executed parallel operation. In case of DLP, multiple

parallel operations can be described by using a single opcode field and vector register

identifiers (see Fig. 6). In comparison, the ILP architectures each operation requires

a separate opcode field and one or more scalar register identifiers (see Fig. 7).

Single core architectural support for data-level parallel programs is provided by means

of vector instruction set extensions (e.g., Intel R© Advanced Vector Extensions [42]

and the ARM R© NEONTMgeneral-purpose SIMD engine [43]) or with more SIMD-

oriented instruction sets (e.g., the Synergistic Processor Unit in the Cell Broadband

Engine [44]).

In order to efficiently utilize a SIMD datapath in SPMD-style execution, parallel

operations are extracted from multiple SPMD program “threads” or loop iterations

with loop vectorization. The matching operations from the different iterations are

scheduled to execute in lockstep in the vector lanes (parallel scalar function units

controlled by the SIMD instruction). This results in parallel execution of N iterations

using a single SIMD instruction stream, where N is the issue width of the SIMD
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Fig. 7: Four parallel instructions controlling an ILP architecture with four parallel function units (FU).

The instructions specify scalar operations. Each instruction can define a separate opcode for the com-

puted data. The drawback is the program memory overhead of the four separate instructions.

hardware.

The “lockstep SIMD” style of execution is efficient as long as the iterations do not

have diverging control paths such as an if-else-structure of which execution path de-

pends on the iteration (thread id). In case of diverging branches, some of the vector

lanes should be disabled in case all of the parallel iterations are not executing the

branch at hand. This problem is discussed in more detail in the next chapter.

In some SIMD instruction sets, vector masks provide architectural support for di-

verging branches. In such cases, some of the vector instructions in the instruction

set include a mask register operand which communicates the set of lanes that are en-

abled, thus providing the ability to “squash” the execution of the diverging iterations.

Intel’s Advanced Vector Extensions, for example, support load/store masking which

can be used to squash the loads and stores of the disabled lanes. In addition, its blend

instructions can be used to pick selected elements from input vectors to implement

conditional branches as conditional data selection. [42]

Contemporary manycore processors originally designed for graphics processing, which

are nowadays used also for general-purpose high performance computing, have their

architectures optimized for SPMD programs. [27, 45]

An example of a processor architecture feature tailored for SPMD programs is Single

Instruction Multiple Thread (SIMT). SIMT is a term used mainly by NVIDIA. It dif-

fers from the lock-step SIMD execution in its ability to handle diverging branches in
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the program code transparently. SIMT hardware includes a separate program counter

per each function unit that is used to disable the execution in case the processor is cur-

rently executing an instruction from a branch that should not be taken by the SPMD

thread mapped to the unit. In the SIMT case, instead of decoding statically paral-

lel wide SIMD instructions, the processor hardware inputs a single thread/iteration

of the SPMD program which is distributed to the parallel scalar cores at processor

runtime. [27, 46, 47]

2.2.3 Task Level Parallelism

Instruction scheduling, implemented by either the compiler, the processor microar-

chitecture, or both, can be used to hide latencies in the instruction pipeline. However,

parallelism at the instruction-level has its limits. Most programs do not have enough

independent instructions to hide very long latencies (hundreds or even thousands of

clock cycles) that occur with cache misses. Furthermore, such latencies are usually

dynamic, thus they cannot be efficiently alleviated with static compiler instruction

scheduling. [36]

Multithreading is a technique that can be used to hide long latencies with useful

computation by switching the execution to other independent threads of execution

whenever long latencies occur (coarse grained or “block“ multithreading [48]) or

even at every cycle (fine grained multithreading [49]) for hiding also shorter latencies.

In order to benefit from Task Level Parallelism (TLP) (also called Thread Level Par-

allelism), the program must be structured in independent threads of execution. The

idea in TLP is to utilize the execution resources in the processor to advance other

parts of the program (or even a completely different program running in another

process) while another thread waits for a long latency operation to be served. Fast

context switches require duplication of some resources, usually the register file, in

the hardware to avoid slow copying and restoring of context data residing in a slower

storage [48]. One interesting implementation of multithreading is Symmetric Mul-

tithreading (SMT). SMT extends the dynamic processor hardware used for extract-

ing ILP from a single thread to schedule instructions from multiple threads simulta-

neously to the function units in the machine, therefore interleaving execution from

multiple threads on every cycle. [50]

Multithreading implements TLP by duplicating the processor resources only par-
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tially. Fully parallel TLP requires duplicating the resources of the whole core to

implement independent execution of multiple threads.

Multiprocessors include two or more full instances of processor cores to support ex-

ecuting multiple threads simultaneously. In case the processors are implemented in

separate chips, the thread communication bottleneck is high. The increasing number

of available transistors per chip has made it possible to include multiple cores in a

single chip (Chip Multiprocessors, CMP). CMP allows cores to communicate with

fast lower level caches for enhanced inter-thread data transfer speed. [51]

The connectivity, the level of memory sharing, and the datapath uniformity among the

multiple cores leads to different categorizations of the multiprocessors. A Symmetric

Multiprocessor (SMP) is a homogeneous multicore setup where the cores with iden-

tical instruction set architectures (ISA) access a shared memory. The shared memory

is usually cached using cache coherence logic in hardware to maintain a consistent

view to data from all the cores. This style of setup is easy to program as any thread

can be assigned to any core uniformly which also eases load-balancing.

A major drawback in the SMP setup is the single shared memory bus and the asso-

ciated cache coherence logic which becomes a bottleneck with increasing number of

cores attached to it. Non-Uniform Memory Access (NUMA) improves the situation

by dividing the memory hierarchy to local memories that are fast to a subset of cores,

and remote memories that are slower to access (but are local to another subset of

cores). [52]

In contrast to homogeneous multiprocessing where the cores are identical, heteroge-

neous computation platforms include multiple processors with different microarchi-

tectures and varying memory hierarchies. The benefits from such setups are clear

whenever the platform is supposed to run a varying set of algorithms from different

application domains, or just a large application using a range of varying algorithms.

The assumption is that a processor tailored to a specific application domain can exe-

cute the application more efficiently (e.g., with less power or area, or faster) compared

to a more general-purpose core. This potentially leads to better utilization of the pro-

cessing resources as the best matching cores can be picked for each algorithm. For

example, running a serial control-oriented program in a 12-issue VLIW architecture

is waste of the computational resources, while, on the other hand, a statically parallel

algorithm can be executed very quickly on such an architecture after which the core
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can be switched off for power saving. [53]

Heterogeneous platforms are common in the embedded domain. In embedded System-

on-a-Chip (SoC) platforms, processors with different ISAs, hardware accelerators

and peripherals are integrated to a single chip. A subcategory of SoCs is the Mul-

tiProcessor SoC (MPSoC) which means a SoC with more than one programmable

processors on the same chip [54]. Another heterogeneous processing style that has

received interest in the recent years is the GPGPU setup where a general-purpose pro-

cessor runs an operating system and more serial parts of the program which is accel-

erated using a different processor originally designed for high performance graphics

processing.

2.3 Customized Parallel Processors

In general, hardware-software co-design is a means to design an electronic system

as a combination of application software running in instruction set processors and

parts implemented with fixed function hardware. In hardware-software co-design

methodologies, consideration of the hardware resources available in the designed

system, the software organization, and the mapping of algorithms to the different

resources in the system is performed concurrently. [55] In this Thesis, the focus is

on a smaller subset of the co-design problem, that is, the co-design of instruction-

set processors. Such processor co-design is performed at a phase of the electronic

system design when a piece of application is mapped to a software-reprogrammable

processor of which datapath resources should be customized to meet the requirements

of the application at hand.

The line between the definitions of Application Domain-Specific Processors (ADSP),

Application-Specific Instruction-set Processors (ASIP) and Application-Specific Pro-

cessors (ASP) is thin. The difference is defined to be in their level of specialization

and compromises made to the generality in programmability. ADSPs are designed to

be used for a wider range of algorithms within a single domain, such as processors

tailored for popular multimedia codecs [56]. The concept of ASIP and its difference

to ASP, however, is not so strictly defined in the literature. ASIP is commonly un-

derstood as a programmable hardware accelerator, a specialized replacement for a

fixed function accelerator implemented as an ASIC or on an FPGA. Corporaal [8]

proposes an additional level of specialization. He describes the difference between
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an ASIP and ASP being in the software reprogrammability. In his definition, ASIP,

while tailored for a single application, can still support (albeit perhaps not as effi-

ciently) all programs defined in a higher-level language, while ASP can run only the

targeted program, thus can be seen as merely a means to implement a fixed function

accelerator.

The design methodology described in this Thesis supports all the above levels of

processor specialization. Therefore, a common definition of customized processor

will be used in the rest of this Thesis to describe the general case of a processor

tailored for a known set of targeted applications (where the size of the set can vary

from one to many).

A suggested difference between customized processors and “off-the-shelf” proces-

sors is that with customized processors the fabrication volumes can be lower and their

“turn-around-time” shorter [57]. In other words, the design effort per manufactured

chip is expected to be higher. In order to lower the design time, the customized pro-

cessor design methodologies should be supported by design toolset with automatic

toolchain retargeting. Especially important tool in such toolsets is an automatically

retargetable higher-level language compiler, in order to avoid manual porting of as-

sembly language programs to the designed processor variations, or manual retarget-

ing of the compiler backend. Otherwise, the process of finding the desired processor

alternatives (design space exploration) for the programs at hand is not feasible.

In order to make implementing a processor design toolset feasible, the design space

of the customized processor alternatives is usually limited using a processor template

which defines the set of parameters within which the new designed processors can

differ [58]. Some processor templates limit the customization capabilities to one or

more extra special instructions (also known as custom operations or special function

units) attached to a predefined processor datapath. In some cases, the special instruc-

tions can also be runtime reconfigurable. Some templates allow customizing also the

issue-width and the number of general purpose registers to match the provided ILP

or DLP in the processor with the parallelism available in the programs at hand. In ad-

dition, the provided TLP can be varied in some templates (such as the one proposed

in this Thesis) by defining the number of processor cores or the processor contexts

available for multithreading. In these cases, the processor template supports the cus-

tomization of the level of parallel execution resources provided by the processor, thus

leading to the subcategory of customized parallel processors. [59]
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3. EXPOSED DATAPATH STATIC MULTI-ISSUE

ARCHITECTURES

The term “exposed datapath” is seen in the literature being attached to processor

architectures where the processor datapath resources and even in some cases the data

transports between the register files and function units are exposed for the direct

control of the programmer. [60–62]

The Transport Triggered Architecture (TTA) which is used as the single-core pro-

cessor template in the proposed processor customization flow can be classified as

an exposed datapath architecture as it presents very low level details of computation

to the programmer. The motivation for using an exposed datapath comes from the

assumption of a parallel input program. As the input is parallel, as little additional

hardware as possible should be dedicated to the runtime extraction of parallelism.

This chapter introduces the TTA, compares it to the other common parallel datapath

paradigms, and reviews the work in the exposed datapath architectures.

3.1 Transport Triggered Architectures

VLIWs are considered interesting processor alternatives for applications with high

requirements for data processing performance [63] and with limited control flow.

Transport Triggered Architecture (TTA) is a modular processor architecture template

which can be used as a design paradigm for wide static multi-issue architectures. The

main difference between wide TTAs and VLIWs can be seen in how they are pro-

grammed: instead of defining which operations are started in which function units

(FU) at which instruction cycles, TTA programs are defined as data transports be-

tween register files (RF) and FUs of the datapath. The operations are started as side-

effects of writing operand data to the “triggering port” of the FU. Fig. 8 presents a

simple example TTA processor [8].
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The programming model of VLIW imposes limitations for scaling the number of FUs

in the datapath. Increasing the number of FUs has been problematic in VLIWs due to

the need to include as many write and read ports in the RFs as there are FU operations

potentially accessing it the same time. Additional ports increase the RF complexity,

resulting in larger area, critical path delay and power consumption. Register file

complexity of wide VLIW architectures has been identified as an obstacle in adoption

of large VLIW architectures as soft-cores in FPGAs [64].

In case the VLIW supports register file bypassing, adding an FU to the datapath

requires new bypassing paths to be added from the FU’s output ports to the input

ports of the other FUs, increasing the interconnection network complexity. Thanks

to its programmer-visible interconnection network, TTA datapath can support more

FUs with simpler RFs [65]. Because the timing of data transports between datapath

units are programmer-defined, there is no obligation to scale the number of RF ports

according to the worst case number of FUs accessing the RF at the same time [66]. As

the register file bypassing is done in software instead of hardware, it is often possible

to avoid the use of general-purpose registers as temporary storage, thus reducing

both register pressure and register file port requirements even further. In addition,

as the datapath connectivity is part of the architecture (visible to the programmer), it

can be tailored according to the set of applications at hand, including only the most

beneficial connections.

3.2 Benefits of TTA in Single Program Multiple Data Computation

The SIMD/vector or SIMT processors provide a good balance between hardware

complexity and programming flexibility, but, in order to be efficient, the executed

program must be data parallel, i.e. contain parts that can be efficiently vectorized

with minimal branch divergence. Otherwise, diverging branches where the number

of parallel instances of the SPMD program going into each branch is not a multiple

of the issue width size will cause resource underutilization.

For example, let us assume a lockstep SIMD-programmed machine with 16 parallel

function units, thus capable of running 16 instances (“threads”) of a given program in

parallel. Each thread is given a unique identifier (thread id or an iteration number).

In order to see the level of function unit idle time the SIMD execution model can

cause, let us consider a couple of example branching conditions:



26 3. Exposed Datapath Static Multi-Issue Architectures

(thread id % 2 == 0) Every two consecutive threads take different branches.

This causes half of the FUs to be idle.

(thread id == 0) Only the first thread enters the branch, rest of the 16 FUs are

idle.

The underutilization results from the fact that SIMD/SIMT is limited to a single op-

eration code per SIMD instruction. Therefore, in the case of branch divergence the

diverged lanes must be “squashed” at run time using “vector masks” in case of static

SIMD instructions or with per-FU program counters in case of SIMT scalar units.

In other words, the squashed function units are waiting for the correct branch to be

executed for their thread without doing any useful work.

On the other hand, when the program is scheduled for a TTA or VLIW with predi-

cated execution support it is possible to reach higher utilization of FUs for programs

with compile-time known control flow given that there are independent parallel op-

erations to schedule at the idle function units. Two clear cases where TTA/VLIW

machines can outperform the SIMD/SIMT machines with similar FUs can be iso-

lated:

1. Number of function units in the architecture does not equally divide the num-

ber of “threads” in the program.

If a program cannot be split perfectly to the SIMD lanes in the core, TTA/VLIW

processors allow using the extra FUs to execute independent parts of the code

within the threads itself. Consider a simple program structure like the follow-

ing:

A;

if (P)

B;

C;

where A, B and C are data-independent. This program is to be run for two

pieces of input data. Figure 9(a) shows how this example could be scheduled

on a 3-way SIMD group. It can be clearly seen that one of the execution lanes

is never used. Figure 9(b) shows how a predicated TTA/VLIW machine with



3.2. Benefits of TTA in Single Program Multiple Data Computation 27

Cycle 2

Cycle 1

FU
 3

FU
 2

FU
 1

C

C

P?BP?B

AA

AACycle 1

Cycle 3

Cycle 2

FU
 3

FU
 2

FU
 1

X

X

P?B

C XC

P?B

(b)(a)

Fig. 9: An operation scheduling example showing MIMD scheduling freedom. Schedule for (a) predi-

cated 3-way SIMD, and (b) predicated TTA/VLIW. Question mark denotes the predication of the suc-

ceeding operation with the preceding predicate register. Each function unit (FU) can execute all the

operations (A, B, C).

the same number of function units can save a cycle out of three thanks to the

scheduling freedom.

2. Runtime conditions allow “overcommitting” of datapath resources by means

of predicated execution.

A TTA/VLIW architecture that supports overcommitting of resources allows

scheduling of two predicated operations to be executed in the same function

unit at the same time cycle, in case it is known at compile time that the pred-

icates of the two operations are never simultaneously true [67]. Code suitable

for overcommitting is usually generated from if...else constructs. For example,

consider the following program structure:

if (P)

A;

else

B;

C;

Let us assume that all operations (A, B and C) in the program are data indepen-

dent, and that there are two threads scheduled on two FUs. Fig. 10(a) shows

the resulting schedule for a SIMD machine: one third of the execution time is

wasted for each lane. An overcommitting schedule for VLIW/TTA, as shown

in Fig. 10(b) saves that third cycle and results every computing element being

used on each cycle.
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Fig. 10: Resource overcommitting example. Schedules for (a) predicated SIMD machine without over-

committing support, and (b) predicated TTA/VLIW with function unit overcommitting support. Ques-

tion mark denotes the predication of the succeeding statement with the preceding predicate, the possible

negated statement is given after a colon.

Clearly the programming freedom of overcommitting TTA/VLIW has its benefits in

function unit utilization point of view. However, the obvious drawback is that in order

to express the additional programming freedom, more program bits are required. The

actual impact of this is program dependent and cannot be generalized. While the

SIMD style provides excellent instruction density in comparison to the VLIW/TTA

approach, the reduced scheduling freedom (single operation code per instruction)

might mean that more SIMD instructions are needed due to the diverging branches

to encode the whole program. The overcommitting predication support requires the

capability to describe, in addition to the predicate, the execution of two operations

per each FU, growing the instruction word even wider for the VLIW datapaths. In

case of the bus programmed TTA, the number of buses per FU, thus the number of

move slots, has to be doubled.

3.3 Review of Work in Exposed Datapath Architectures

The fundamental ideas in exposing most or all of the control of the processor internal

components to the programmer can be traced back to the idea of microcoding. Mi-

crocoding was proposed in the early 1950s to be used to simplify and modularize the

processor control unit implementation by allowing the processor designer to describe

the processor control signals to be produced from programmer-visible instructions

as small microprograms instead of hard-wired logic. In horizontal microcoding the

microprogram for each instruction describes precisely what happens at each cycle of

the execution of the coded instruction in the processor datapath, including the register
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enable signals, data routing through multiplexors etc. In vertical microcoding, on the

other hand, the microprogram contains instructions that need some level of further

decoding by the processor hardware and expand to control signals for multiple exe-

cution cycles. One of the earliest commercially successful machines that employed

microcoding was the System/360 series from IBM in the 1960s. [68, 69]

Microprograms are typically stored in read-only memories or programmable logic

circuits (called control stores) inside the processor control unit. In some cases, the

control store is writable, which enables on-the-field updates of the so called firmware

of the processor. In the early days of microcoded machines the writable control stores

were used for instruction set emulation and to implement instruction sets customized

for different higher-level programming languages within a single processor microar-

chitecture. [69]

In the light of the microprogramming and writable control stores, the concept of the

so called “exposed datapath architectures” can be interpreted to reflect the fact that the

details that have been typically visible only to the microcode programmer are exposed

to the common programmers of the processor. That is, an extremely “exposed archi-

tecture” fetches the datapath control signal values directly from the program memory

instead of indirectly from a microcode control store. All the proposed exposed datap-

ath architectures follow this principle to some degree. They mainly differ in the level

of additional instruction decoding needed, which places their programmer-interface

somewhere between horizontal and vertical microcoding.

The Reduced Instruction Set Computer (RISC) can be seen as a step towards “exposed

datapath architectures”. It was proposed in the late 1970s with the argument that the

earlier, so called Complex Instruction Set Computers (CISC) included overly complex

instruction decoding and execution logic (implemented commonly using the micro-

programs) given the widespread use of higher-level programming language compilers

that hide the details of the processor instruction set from the programmers. [70]

FPS-164 was a scientific co-processor introduced in 1981 that included an instruction

set similar to the ones in horizontal microprograms. With this architecture it became

clear that such detailed instruction sets demand an efficient higher-level language

parallelizing compiler for it to be usable. A Fortran-77 compiler for FPS-164 was

introduced in [71]. Research in horizontal microcode compaction (producing paral-

lel microprograms automatically) led to the ideas on the Very Long Instruction Word
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(VLIW) architectures and compilation techniques for global extraction of instruction

level parallelism (trace scheduling) required by such statically parallel architectures

in the early 1980s. In essence, the original VLIW was a statically scheduled multi-

issue RISC, thus resembled the horizontal microcoded machines which expose par-

allel hardware resources to the programmer. [41]

The concept of data transport programmed architectures was first proposed for con-

trol processors in the mid-1970s. The work published by Lipovski can be seen as

one of the pioneering research efforts in exposed datapath architectures and transport

programmed processors [72,73]. This processor included only one instruction: a data

move between memory mapped control registers. The ALU was attached to the core

as an I/O device.

In the early 1990s, Corporaal et al. from the Delft University of Technology pro-

posed their MOVE architecture for general-purpose applications and high perfor-

mance computing [74]. One of the key discoveries they made was the potential of

transport programming in reducing the register file complexity bottleneck of wide

VLIW architectures [66, 75]. They proposed a new classification for processor ar-

chitectures according to the way their instructions trigger the operation execution.

In this classification, their MOVE architecture belonged to the class of Transport

Triggered Architectures (TTA) while the “traditional” architectures were classifed as

Operation Triggered Architectures (OTA). The MOVE project also produced an ASP

design framework [76] with a retargetable C compiler, instruction set simulator and

automated design space exploration tools.

The work from the Delft MOVE project was continued in the Tampere University

of Technology (where the work for this Thesis was conducted). Part of this effort

was to produce a more extensible rewrite of the MOVE tools, study the use of TTA

processors in the context of low-power DSP applications and to research issues in

ASP design flows, such as retargetable compilation and fast retargetable instruction

set simulation. The toolset project was named TTA-Based Co-Design Environment

(TCE) [77].

In 2003, a processor concept later to be called FlexCore [60] was proposed within the

FlexSoC [78] research project. FlexCores are programmed using so called Native-ISA

(N-ISA) instructions that are seemingly similar to horizontal microcode instructions.

For instruction width reduction they propose the use of a “reconfigurable instruction
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decoder” which is an instruction compression unit that expands instructions encoded

in so called Application-Specific ISA (AS-ISA) format to the more detailed N-ISA

format [79]. This is a concept similar to vertical microcoding with a writable con-

trol store. The reconfigurability of the instruction decoder/decompressor allows the

emulation of multiple traditional ISAs with a single FlexCore datapath, an idea some-

what similar to the dynamic translation used in the Crusoe processors [80] where the

translation is done using a more complex software layer. FlexCore is supported by a

compiler with an instruction scheduler [81].

Similarly to FlexCore, the No Instruction Set Computer (NISC) proposed in 2005 uti-

lizes the idea of horizontally microcoded programming with no additional decoding

logic. Their compiler can also generate a Finite State Machine (FSM) based con-

trol logic, making their design flow an interesting candidate as an implementation

technique for a C to RTL flow. [82]

The Efficient Low-power Microprocessor (ELM) project studied techniques to reduce

power consumption of embedded processors [62]. In their work they identified that

the main source of energy inefficiency in embedded RISC processors is the instruc-

tion and data supply, more specifically the caches. In order to reduce this bottle-

neck, they proposed the use of explicitly controlled instruction register files [83] and

operand register files [84]. Both of these improvements increase the programmer-

visibility, i.e., expose more details of the microarchitecture to the programmer. The

operand registers enable explicit operand forwarding which is similar to the software

bypassing optimization in case of TTAs. The main difference is that the TTA tem-

plate used in the design methodology proposed in this Thesis includes at most only

one register per function unit input or output.

MOVE-Pro proposed improvements to the original TTA template used by the MOVE

project [61]. Similarly to the Stanford ELM, their architecture adds a small set of reg-

isters local to the function units to improve the possibilities of the software bypassing

optimization. In their work the register file is located at the function unit output, in

contrast to Stanford ELM where the register files store function unit input operands.

However, it is not clear from this or the ELM work whether the additional complexity

of multiple output or input registers is justified in the common case. In [61] the com-

parisons were made only against a simple RISC architecture instead of the previous

TTA processors. For example, in [85] the authors observe that the vast majority of

temporary values are short lived which can be read that they are used once or maybe
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twice by the program, which speaks against the additional complexity.

Another improvement proposed by MOVE-Pro is to avoid a specific trigger port like

in the original MOVE architecture, thus increasing instruction scheduling freedom

by allowing arbitrary operand move ordering for each operation. The other way to

look at it is that, in fact, all of the ports in their architecture are potentially trigger-

ing, which means the instructions need to encode the triggering info (add an opcode

field) for all types of operand move instructions. The programming simplification of

allowing all move instructions to any operand to trigger the operation execution has

been proposed also in 2004 by another research group [86].



4. CUSTOMIZABLE PROCESSOR DESIGN METHODOLOGY FOR

PARALLEL PROGRAMS

General-purpose multiprocessors are commonly implemented as homogeneous shared

memory computers to achieve easier programmability and scalability for certain types

of workloads. On the other hand, the multiprocessors in embedded systems can be

customized more freely according to the application domain (e.g., video processing)

which is possible in part thanks to the lack of the legacy instruction set support bur-

den present in general-purpose computing. In addition to special instructions, the

customized multiprocessors can provide varying degrees of instruction-, data- and

task-level parallelism in order to meet the performance goals placed by the targeted

set of algorithms while staying in a limited area and energy consumption budget. At

the same time, programming such devices should be as simple as possible in order to

reduce software porting and development costs.

Fuller et. al [87] suggest that getting more performance with additional cores will

eventually reach it limits, e.g., due to excessive power consumption [88]. They con-

sider application-optimized processing units as a potential solution in the longer run.

However, in order for such a solution to be feasible, the multiprocessor customization

should be supported with a flexible design methodology.

This Chapter describes the higher level overview of the proposed methodology sup-

porting design of Multicore Application-Specific Instruction Set Processors (MCASIP).

The designed MCASIPs can be implemented, e.g., as standalone processors or as

building blocks in heterogeneous systems. The design methodology is implementa-

tion technology independent, thus the MCASIPs can be implemented on FPGAs or

as ASICs. Fig. 11 shows an example of a heterogeneous system where the process-

ing nodes are composed of multiple MCASIPs with various issue widths and local

memory sizes. In this picture, a separate host/control processor is depicted. The host

processor can run a complex general-purpose or real time operating system. It should
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Fig. 11: Example of a generic heterogeneous system with multiple MCASIPs designed using the pro-

posed design methodology accompanied with a control/host processor. Each MCASIP can differ in

their instruction set, core count, single core issue width and local memory size. The details of the

interconnection network between the MCASIPs is abstracted away in this picture.

be noted, however, that as the MCASIP template is fully programmable and incorpo-

rates an independent thread scheduler (described in Section 5.5), decentralized task

coordination can be implemented to reduce the host-to-devices communication bot-

tleneck.

The main goal in the design methodology is to enable scalable parallel processor

architecture co-design for programs described in established parallel programming

paradigms such as OpenCL or OpenMP. The design methodology is based on a com-

piler supported parallel processor template (described in Chapter 5) that combines the

ease of programmability from using a common shared memory with the ability to op-

timize shared memory usage with core-private local memories. Supporting compiler
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techniques for OpenCL C kernel parallelization on the proposed static multi-issue

template are described in Chapter 6.

4.1 Related Work

The design methodologies for processor customization flows have only until recently

concentrated on single core optimization aspects without paying much attention to

exploring the homogeneous multicore processor design space [58]. A good survey of

the current processor customization flows can be read from [59]. These customization

methodologies can be used to produce multiple decoupled customized cores to form

a heterogeneous multicore. An example of a paper proposing such a methodology

is [89] where the Chess/Checkers ASIP design suite is proposed for customizing the

single cores in MPSoCs.

In addition to the single core customization aspects also present in previous proces-

sor customization flows, the proposed design methodology enables the design of cus-

tomized homogenous multicores with local and shared random access memories. The

emphasis of the proposed design flow is on SPMD multiple address space program-

ming languages. The benefits of the single-ISA multicore in comparison to multi-ISA

include easier programming and dynamic workload balancing. However, it should be

emphasized that the multicores produced with the proposed design methodology can

be used as building blocks in larger heterogeneous systems, and connected to various

interconnection topologies. The combination of homogeneous multicore processing

elements in a heterogeneous multicore system has the potential to provide the benefits

of the both alternatives to the designed system.

A design methodology for heterogeneous multicores for parallelizing dataflow appli-

cations using task level pipeline parallelism is proposed in [90]. Their implemen-

tation uses the Tensilica Xtensa LX configurable cores for processing elements. A

heuristics for mapping applications organized in dataflow manner in such pipelined

multicore system is presented.

Single-ISA heterogeneous multicore space was explored in [91]. In that work, pro-

cessor cores were customized in a 4-core heterogeneous multiprocessor, unlike in the

previous work which had used a given heterogeneous architecture. The paper shows

that the best heterogeneous designs are found when the cores in the multiprocessor
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are customized to the set of applications at hand. In the proposed methodology the

scope of customizing the cores is similar but smaller. The end result that is optimized

for a given application, is a parallel customized (multi)core that can be attached to a

larger heterogeneous multi-core. In the proposed methodology, the input programs

are assumed to express parallelism which the exposed datapath single core template

supports with minimal control overheads. The processor template in the proposed

design methodology adds the degree of task level parallelism available in each pro-

cessing core as a parameter, therefore enabling customization of both fine-grained

and coarse-grained levels of parallelism for each core in a heterogeneous system

which executes highly-parallel SPMD workloads.

Regarding scalable multicore generation, related work has been conducted in the

MOSART project [92]. In the MOSART project, the focus is on global interconnect

and the memory bottleneck inherent in multicores and other heterogeneous multicore

system design issues. It is widely acknowledged that the shared memory bottleneck

is one of the main problems to solve in multicore scalability [52].

While acknowledging the importance of memory hierarchy design exploration in the

focus of the MOSART project, the proposed customized processor design method-

ology relies on the idea of co-design where the hardware and software are designed

mutually. The assumption of the use of a relaxed memory consistency model and the

explicitly addressed scratchpad memories in the supported programming languages

moves the problem of reducing the memory bottleneck more towards a software op-

timization challenge.

4.2 Parallel Processor Design Flow

Fig. 12 illustrates the MCASIP design flow that is described in the following subsec-

tions.

4.2.1 Software Development

The first phase is the software development phase. It is often faster to develop the

basis for the software using native compilation and execution using a 3rd party Soft-

ware Development Kit. This allows rapid implementation of the software along with
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Fig. 12: The toolset supported design flow of parallel customized processors. The design flow adds an

additional multicore exploration phase after the standard single core customization flow of TCE.

its verification data without using an instruction set simulator which is always slower

than native execution. In practice, the parallel program can be implemented and

tested, for example, on a desktop PC using one of the supported input languages

while paying attention to program portability. The output of the software develop-
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Fig. 13: The single core customization flow.

ment phase is a verified portable program description, which is then fed into the

TTA-based Co-design Environment (TCE) single core customization design flow.

4.2.2 Single Core Customization

Once the program description is completed and verified, the single core datapath is

customized for the application. The steps in the single core customization methodol-

ogy are illustrated in Fig. 13. The methodology usually starts from implementation

and verification of the application using, for example, a GPU-based Software De-

velopment Kit (SDK) or just the native C compiler running in a PC, and continues

using the TCE tools for the co-design of the customized single core processor that

can execute the application as efficiently as possible.

In the first phase of the single core customization flow, the designer uses his or hers

algorithm expertise to choose the potential custom operations that can accelerate the
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implementation. The custom operations are called from the kernel code using macros

hiding inline assembly blocks (in case of basic C code) or the vendor extension API

(in case of OpenCL C) with fallbacks to software only execution in order to maintain

the portability of the code.

In this phase, a generic architecture is used in order to isolate the benefits of the cus-

tom operations. In addition to calling special instructions with the extensions API, at

this stage the designer should also ensure that the kernel does not call unwanted soft-

ware floating-point emulation libraries in case of floating-point kernels. Hardware

floating-point support can be added to the designed architecture by picking one or

more floating point units from a hardware database. The units and the special func-

tion units can be added to the architecture using the graphical Processor Designer

(ProDe) tool of TCE.

After the potential custom operations have been added to the generic architecture, the

next phase includes growing the architecture with “standard datapath components” to

exploit ILP. It should be noted, however, that the ordering of custom operation selec-

tion and architecture enlargening phases depends on the level of specialization the

designer wants to apply. In case a processor with more generally usable resources is

desired, it might make sense to first grow the ILP capabilities with FUs supporting

standard operands from the input language (such as additions and multiplications)

after which the custom operations are used only as “the last measure” if the perfor-

mance goal is not reached.

The goal in the architecture enlargening phase is to find a minimal set of function

unit (FU) and register file (RF) resources that satisfy the ILP demands of the exe-

cuted kernels. This “architecture enlargening” phase starts from a minimal architec-

ture that can still execute any program, or the generic architecture augmented with

custom operations in the previous (optional) phase. The architecture is grown with

additional FUs and RFs until the obtained kernel cycle count improvement is negligi-

ble. The iterations consist of architecture modification, recompilation of the code to

the new architecture, and architecture simulation to analyze the potential cycle count

decrease.

In order to assist the designer in finding the set of adequate FU and RF resources

for the kernels, the retargetable compiler provides textual feedback that can guide

the design decisions. The feedback includes statistics from an optimal resource un-
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constrained schedule of the kernel critical path, the number of variable spills and the

number of register anti-dependencies that limit the parallelism.

The optimal schedule of the kernel critical path is used to estimate the number of

parallel FUs the kernel can efficiently utilize. The number of spills and the anti-

dependencies in the Data Dependence Graph guide the choice of the number of reg-

isters. The designer usually wants to add enough registers to allow all variables to

stay in registers for the whole kernel execution to get the best possible performance.

The number of anti-dependencies, on the other hand, might not be such a self-evident

designer guidance. When a pre-pass register allocator is used, the anti-dependencies

resulting from reuse of registers can ruin the parallelization opportunities presented

to the post-pass instruction scheduler. Especially, when executing multiple C loop

iterations or OpenCL C work-items in parallel, the anti-dependencies between the

work-items might take away the benefits of inserting additional work-items or loop

iterations to the code, thus only growing the instruction memory footprint. Therefore,

the designer might want to try to increase the register count until the parallelism lim-

iting anti-dependencies disappear. Due to the ability of the TTA template to partition

register files efficiently, the complexity of a single register file can be kept low when

the total register count is increased [75].

Ideally, after the kernel cycle count has been saturated by adding enough FU and

RF resources, the kernel schedule should be limited only by the true dependencies in

the program. In reality, the data memory bandwidth usually limits the architecture

enlargening phase. The number of parallel Load-Store Units (LSU) is always limited

by the memory system implementation in realistic designs. Thus, the saturation point

of the kernel cycle count is often limited by the number of LSUs that can be supported

by the memory implementation instead of the parallel arithmetic function units the

kernel critical path could exploit.

The final stage in the single core customization methodology is the interconnection

network optimization. Until this stage, the customized architecture is grown only by

adding FUs and RFs, without paying attention to optimizing the interconnection net-

work between them. A fully connected TTA interconnection network is not usually

realistic to implement, especially with large architectures. Therefore, the network

should be reduced to improve the cycle time, reduce the power consumption and to

save chip area.
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Finding a customized interconnection network for the application would be a tedious

manual task, thus an automated interconnection network optimizer was developed

to automate this phase. The connectivity sweep algorithm goes through the inter-

connection network by first removing connections to the RFs one transport bus at a

time. The effects of each of the connection removal to the cycle count are measured

and the least affecting connections are removed first. The algorithm is similar to

the connectivity optimization done in [93] and in [94] except the proposed algorithm

emphasizes the more expensive register file connections (the bus read/write muxes

are in the same critical path as the register read/write selection muxes). The inter-

connection network optimizer produces a set of architectures with varying number

of connections and statistics of the application cycle counts for each of the variation.

As the number of these alternatives can be huge and it is too time consuming to syn-

thesize them all to obtain the exact area and delay, the user is also presented a set of

pareto optimal architectures with regard to their number of connections and the cycle

count. In case of TTAs, the number of connections in the interconnection network

has a strong relation to the consumed chip area and the longest path delay.

Finally, after the architecture has been designed, the hardware implementation can

be generated automatically by using an RTL generator. The standard Processor Gen-

erator (ProGe) tool of TCE is used for implementation generation. ProGe generates

both a VHDL implementation of the core and the necessary files for integrating it to

various platforms such as FPGA chips. The final synthesis is conducted with a third

party synthesis tool.

In case the designer wants to exploit task level parallelism in addition to the special

instructions and the instruction-level parallelism, the customized single core archi-

tecture is entered to the optional multicore exploration phase.

4.2.3 Multicore Exploration

In essence, the multicore exploration phase of the design flow (later referred to as

TCEMC as in TTA-based Co-design Environment for MultiCores) consists of in-

creasing the core count parameter of the architecture description file and measuring

its effects on the processor performance.

The designer can test the potential for speedup using the fast architecture simulator

that does not include a detailed model of the shared memory microarchitecture but
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assumes ideal memory access latencies without contention. This allows the designer

to measure the potential benefits of adding more cores without going through the

rest of the slower more detailed evaluation steps. In case the architecture simulation

shows significant enough speedup potential, the designer continues to the detailed

evaluation phase. Otherwise, the design flow exits to processor RTL generation.

In the detailed evaluation phase the designer has two options: FPGA evaluation and

SystemC simulation. At this point the shared memory hierarchy must be described

in more detail to evaluate its effects to the multiprocessor performance. In the case of

FPGA evaluation, the processor RTL is automatically generated along with its shared

memory hierarchy implementation. The detailed cycle counts are then obtained by

running the design on an FPGA. Another alternative for more detailed performance

evaluation is a system level simulation where also the memory hierarchy is modeled.

This can be done by using SystemC-based simulation. TCEMC provides SystemC

hooks for connecting the TTA core architecture simulation model to SystemC sim-

ulations, thus enabling incremental simulation detail level addition while still using

faster higher-level simulation model [14] for simulating the core.

After the evaluation phase, the effects of the shared memory are known which can

lead the designer to modify the memory hierarchy or to optimize the program to ex-

ploit local memories more efficiently. In case the FPGA evaluation was chosen, also

the FPGA resource consumption and maximum execution frequency is now known

which also adds a limit to the number of cores that can be still added. Depending if

these results show potential for more task-level parallelism to be exploited, the de-

signer either exits the design flow to RTL implementation generation or goes back to

adding more cores to the multicore.

The final step in the design flow is the processor RTL implementation generation step.

RTL generation is implemented with an hardware library-based approach where only

the custom operations need to be described in a hardware description language [95].

The rest of the implementation is generated automatically for the designer. In addi-

tion to producing the RTL implementation, this step also generates the possible files

and interfaces required for integration on, for example, different FPGA platforms. A

more detailed description of this phase is available in [96].



5. CUSTOMIZABLE PARALLEL PROCESSOR TEMPLATE

This chapter describes the proposed parallel processor template from which new

multicore ASIPs are instantiated in the proposed design methodology. Section 5.1

presents the work related to the proposed template, Section 5.2 describes the proces-

sor template concentrating on the resources that can be scaled to support the paral-

lelism in the software and Section 5.3 provides a description of the memory model of

the processor template. The implications of the processor template and the memory

model to the supported programming models and the threading runtime are presented

in Section 5.4 and Section 5.5.

5.1 Related Work

The proposed parallel processor architecture template and its memory hierarchy with

private local memories are similar to the Synergistic Processor Unit (SPU) of the

heterogeneous IBM Cell architecture [44]. A major difference with the SPU in com-

parison to the proposed template is that SPU concentrates on data level parallelism

for vectorizable code with a SIMD datapath which includes only limited support for

Instruction-Level Parallelism (ILP). In the proposed parallel processor template, the

emphasis is on the more general ILP. While ILP is easier to exploit as it does not

require vectorizable code for parallelizing program operations, it has the drawback

of potentially wider instruction word size in comparison to vector or SIMD instruc-

tions. This drawback has been addressed in research on instruction compression and

encoding methods [97].

Another difference between the SPU architecture and the proposed one is with the

access to the shared main memory. In case of SPUs, only the local store can be

accessed randomly. The shared memory supports only block transfers. The mem-

ory architecture in the proposed template includes separate address spaces and two
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LSUs for accessing the local memory and the shared memory simultaneously with

load/store instructions.

The proposed template has similarities to the contemporary GPU architectures. For

example, NVIDIA GPUs based on their G80 architecture include multiple Streaming

Multiprocessors (SMs). Each SM consists of several Scalar Processors (SP) than can

execute one scalar instruction at a time. However, these scalar cores do not execute

independent instruction streams as their operations are defined by instructions from

a single data parallel program (the SIMT execution model). [27, 98]

The NVIDIA GPU approach is an efficient solution for massively data parallel ap-

plications as it minimizes the instruction stream bottleneck. The aim in the proposed

template, on the other hand, is wider applicability and easier programmability. The

cores are fully independent, fed with independent instruction streams. Certainly, in

designs with many cores providing the instruction streams can become challenging.

However, one of the primary implementation targets is FPGA where the designer can

freely customize the instruction memory hierarchy, and, e.g., use private instruction

memory ROMs for feeding the cores with instructions with adequate throughput. An-

other notable factor is that the instruction memories are read-only from the point of

view of the program, thus they can be cached without a complex cache coherence

logic. In the NVIDIA GPU data memory model, the set of scalar processors access a

fast local memory that is shared among the cores. This resembles the memory model

in the proposed template where multiple function units on a single core share the

local memory.

Recent commercial GPU designs are moving towards more general purpose high per-

formance programmability, blurring the old GPU vs. CPU roles apparent in the pre-

vious generations. For example, the KeplerTMGK110 architecture of NVIDIA is la-

beled as a “high-performance computing architecture” instead of a GPU architecture.

The architecture introduced several features easing programmability for less uniform

workloads than the shader execution the original programmable GPU pipelines were

designed for. The architecture allows the device to spawn threads dynamically, in

contrast to the old model where the host processor orchestrated the work [99]. This

enables the device to act more independently, executing part of the task schedule by

allowing the device program to launch kernels and synchronize their execution with-

out frequently going back to the host CPU. The flexibility of programmability to,

e.g., allow offloading (part of) the task scheduling to the device has been the goal of
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the proposed processor template from the start. This is accomplished by a software-

defined task scheduler supporting dynamic thread creation.

5.2 Customizable Multicore Processor Template

The input programs to the design flow are assumed to express parallel computation,

thus the main responsibility for the proposed processor template is to provide ade-

quate level of parallel computing resources at the processor architecture side. There-

fore, the support for scalable parallelism was the first priority goal for the designed

processor template. The second goal was simplicity; as the compiled input program is

assumed to express the parallelism explicitly, as little additional hardware as possible

should be dedicated to the runtime extraction of it.

The customizable multicore processor template uses the TTA as the template for

customizing the single cores in the homogeneous multicore. It has the same datapath

customization properties as the single-core template augmented with extensions to

support explicit access to multiple address spaces from higher level languages and

minimal homogeneous multicore customization.

The single core datapath customization points in the Architecture Description Format

(ADF) of the single-core customization flow are described in [77,100]. Summarizing,

the most important data path customization points in the single core template follows:

• Function units (FU). Each core can have one or more FUs with one or more

operations. The operations can be fully pipelined or implement complex FU

pipeline resource sharing patterns.

• Register files (RF). The number and sizes of the general-purpose and boolean

RFs can be customized.

• Operation set. The template supports custom operations with arbitrary number

of operands and results.

• The interconnection network that connects the FUs and RFs. The connectivity

matrix can be application-tailored.

TTA, as described in Section 3.1, fulfills well the simplicity requirement being one

of the most “bare boned” processor design paradigms available [8]. Minimal control
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and execution scheduling hardware logic is required after the simple decode stage of

the instructions.

5.3 Memory Model

In the traditional terms, the processor template adheres to the Harvard architecture

where data and instructions are stored in separate address spaces. The only constraint

the processor template places to the instruction memory implementation is that each

core must be able to read one instruction during the programmer-visible fetch stages

of the control unit. In case the memory latency is dynamic, for example, due to a

cached memory hierarchy implementation, the additional cycles to fetch an instruc-

tion cause the entire core to be locked, leading to reduced performance.

The address spaces were already a customizable feature in the original single core

ADF proposed in earlier work [77, 100]. The described architectures could include

one or more load-store units which could each access independent address spaces.

The proposed extension to support multicore customization adds two new customiza-

tion points to the ADF address space properties:

1. An integer identification number for each address space.

Address space #0 denotes the default address space and higher ids denote ad-

ditional explicitly accessed address spaces. The address space ids are referred

to using the explicit address space attributes supported by the used compiler

front-end, thus enabling the use of multiple address spaces from higher level

languages.

2. Shared/local attribute. In case an address space is marked “shared”, it is acces-

sible by all cores in the multicore. Otherwise, the address space maps to a core

local memory.

These new address space customization points, along with an integer parameter for

the number of cores provides a minimal set of customization points for implement-

ing homogeneous multicore application-specific processor co-design with support for

programmer-optimized memory accesses.
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(a) Shared Default Data Memory (SDDM) configuration.

(b) Local Default Data Memory (LDDM) configuration.

Fig. 14: Two different configurations of the memory model depending on the placement of the default

data address space.
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The data memory model of the processor template assumes two or more disjoint

address spaces accessed using independent Load-Store Units (LSU), thus separate

memory operations. This is different from the usual scratchpad memory (SPM) setup

where the SPM is mapped to the same address space as the shared/main memory and

possibly shares the same address and data bus with it, or the SPM is the only random

accessible memory seen by the core [101]. The dual-LSU setup allows accessing

both memories simultaneously with compiler-exposed memory latencies. The choice

in which address space the global variables of the program reside is made by the

programmer using language-specific pointer type qualifiers.

One of the address spaces is mapped to a global memory that is shared across all

the cores in the multicore. The shared memory can be used for communication, load

balancing, and memory mapped I/O. In addition to the shared memory there is at least

one private address space that maps a fast per-core local memory. Thus, the memory

system is distributed, but not all the memory is visible to all the cores to reduce the

memory hierarchy implementation complexity.

The shared memory implementation and microarchitecture is left open for customiza-

tion. The threading runtime library presented in Section 5.5 assumes a weak ordering

model [102], thus does not rely on specific ordering of non-synchronization memory

operations leaving room for optimized parallel memory hierarchies.

The choice of mapping the “default address space”, the one which stores the stacks

and the heap of the threads, to the shared memory or the local memory leads to two

different memory configurations. This seemingly small choice also dictates the set

of programming languages and interfaces that can be efficiently supported on the de-

signed multicore. For example, Pthreads [19] assume the visibility of the thread stack

to all the other threads, which requires the use of SDDM. This configuration choice

is not so relevant in case the different address spaces are not explicitly accessed by

the programmer and, for example, when an automatic data scratch pad memory par-

titioning technique [103] is used to optimize the local memory usage.

5.3.1 Shared Default Data Memory configuration

Figure 14(a) represents the generic TCEMC template in a configuration where the

default address space is mapped to the shared memory (Shared Default Data Mem-

ory, SDDM). In this case, the stacks of all threads and the shared heap reside in the
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global memory leading to increased, and often unnecessary, shared memory traffic.

This creates higher demand for a cache hierarchy with potentially complex coherence

logic [104] and unpredictable latencies. The main benefit of this configuration is the

easy programmability for engineers familiar with shared memory threading libraries

and not comfortable declaring variables shared only when necessary.

5.3.2 Local Default Data Memory configuration

The second configuration is shown in Fig. 14(b). When the private local memory of

the core is set as the default address space, the cores use their local memories for

thread stacks and heaps (Local Default Data Memory, LDDM). The main benefit of

this is reduced unnecessary (accidental) shared memory traffic. As all shared memory

accesses are explicitly defined by the programmer, and data is local by default, higher

shared memory access latencies can be potentially tolerated than with SDDM. This

means that a simple shared memory queue/arbiter without data caching might be

sufficient for controlling the shared memory accesses. Of course, this distinction is

not strict since both configurations can use a complex cache hierarchy, or just a simple

queue for the shared data memory access. LDDM merely forces the programmer to

pay better attention to the shared memory accesses. It should be emphasized that

shared memory is available for communication also in LDDM but must be explicitly

accessed by marking the shared variables with the shared qualifiers in the program.

LDDM is the recommended memory configuration of TCEMC in case the chosen

programming language supports it. The common shared memory threading pro-

gramming models cannot be used because the default address space is not shared.

For example, passing pointers to stack or heap objects to other threads breaks when

the receiver thread is executing on a different core. A threading library supporting the

LDDM configuration that can be used for implementing various other programming

models is proposed in Section 5.5.

5.4 Software Stack

Small instruction memory footprint is a major requirement for the utilized software

stack because providing the instruction streams to potentially high number of inde-

pendent cores is challenging. Size optimized software stack allows more designs to



50 5. Customizable Parallel Processor Template

Fig. 15: The software stack of TCEMC. At the highest level, the application is described in one of

the supported parallel languages. The LLVM-based whole program compiler compiles the application

and the required threading libraries to LLVM bit code which is then converted to executable bit images

with the retargetable TCE code generation tools. The compiled program is executed without operating

system.

use private local instruction memories where large parts of the whole executed soft-

ware is replicated.

Fig. 15 shows the software stack in the generated MCASIPs. The application is

described using one of the supported parallel programming models. In addition, the

Dthreads library is an API implemented for this design methodology that can be used

directly for programming. In the picture Dthreads is drawn below OpenCL as it can

be used to implement the execution of multiple OpenCL work-groups and kernels

in multiple (distributed) threads. The retargetable LLVM-based [105] compiler is re-

sponsible for mapping the whole input program along with its threading library to the

customized instruction set in the single core customization methodology. The code

generation supports optional instruction compression to further reduce the required

instruction memory size.
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5.5 Thread Scheduling

In order to execute, coordinate and load balance threads in the designed multicores,

an efficient thread runtime scheduler is needed. In the proposed LDDM memory

configuration, the threads run in their own private cores accessing local memories

that are visible only to the threads executing in the same core while still being able to

random access the shared data address space.

The multithreading in the proposed customizable multicore template is assumed to be

implemented fully in software with the management structures optimized to exploit

the randomly accessible private and shared memories.

The threads run until completion unless they yield execution time to other threads,

for example, while waiting at a barrier. Real time features and pre-emption emulation

are supported by means of compiler assisted threading, as proposed in [106].

The design choices and the optimizations in the threading runtime on the proposed

processor template are discussed later in this Chapter.

5.5.1 Dthreads: a Distributed Threading Library

Traditional C-based threading libraries such as Pthreads (POSIX threads [19]) as-

sume that all threads share a single common address space where also the stacks of

the threads and the heap reside. This assumption can be seen for example in thread

creation; the thread argument data is passed as a pointer to some arbitrary data with-

out size information. The launched thread can then read the data on demand through

the passed pointer which can even point to the stack of the launcher thread.

Pthreads work well in the SDDM configuration where the default address space is

visible to all the threads in the system. In case of LDDM, each thread is created in a

local context and cannot make assumptions in which core it ends up executing.

From the programmer’s point of view, the API of Dthreads resembles the customary

Pthreads API. In fact, the main API difference is the aforementioned thread argument

passing example; the thread argument data must be copied to the thread table as there

is no guarantee the thread will execute in the same core (thus access the same local

memory) where it was created in. Therefore, in thread creation, the programmer must

pass the size of the argument data along with the argument data pointer.
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Another additional feature not present in the standard Pthreads is the possibility to pin

a thread to the core it was created in, enabling fast creation and execution of threads

inside a single core.

# inc lude <d t h r e a d . h>

# de f in e V N 800

# de f in e V WIDTH 2048

# de f in e THREAD N V N

v o l a t i l e s h a r e d f l o a t a [ V N ] [ V WIDTH ] ;

v o l a t i l e s h a r e d f l o a t b [ V N ] [ V WIDTH ] ;

v o l a t i l e s h a r e d f l o a t p r o d u c t s [ V N ] ;

vo id∗ d o t p r o d ( vo id∗ a r g s ) {

i n t i ;

i n t t h r e a d i d = ∗ ( i n t ∗ ) a r g s ;

p r o d u c t s [ t h r e a d i d ] = 0 . 0 f ;

f o r ( i = 0 ; i < V WIDTH ; ++ i ) {

p r o d u c t s [ t h r e a d i d ] +=

a [ t h r e a d i d ] [ i ] ∗ b [ t h r e a d i d ] [ i ] ;

}

return NULL ;

}

i n t main ( ) {

i n t t i d ;

d t h r e a d t t h r e a d s [THREAD N ] ;

d t h r e a d a t t r t a t t r ;

d t h r e a d a t t r i n i t (& a t t r ) ;

f o r ( t i d = 0 ; t i d < THREAD N; ++ t i d ) {

d t h r e a d a t t r s e t d e t a c h s t a t e (

&a t t r , DTHREAD CREATE DETACHED ) ;

d t h r e a d a t t r s e t a r g s (& a t t r , &t i d , s i z e o f ( t i d ) ) ;

d t h r e a d c r e a t e (& t h r e a d s [ t i d ] , &a t t r , d o t p r o d ) ;

}

return 0 ;

}

Fig. 16: Dot product using the proposed Dthreads API.

Fig. 16 shows an example of a Dthreads program that computes a dot product with

multiple threads and a parallelizable for-loop. It performs the dot product for 800

of 2048-wide float vectors using 800 threads. A reader familiar to Pthreads should

notice the API similarity. In addition to the aforementioned difference in thread cre-
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ation (argument data is passed with an additional API call), another notable detail is

that the input and output buffers are explicitly marked to reside in the shared memory

using the shared keyword. Other data such as the automatic variables reside in

the core local memories.

In addition to the similarity with Pthreads, other design requirements for Dthreads

with their implementation details are presented in the following subsections.

5.5.2 Requirement: Low Instruction Memory Footprint

The goal of having as low instruction memory footprint as possible for the thread-

ing runtime was reached by including only the most important thread programming

interfaces in the library and avoiding the use of complex standard library functions

such as malloc(). The supported functionality include thread creation, joining, the

mutex synchronization primitive, thread argument passing, and a thread scheduler

with threads running always to completion (no pre-emption). The aggressive full

program dead code elimination of the LLVM compiler infrastructure [105] used in

the TCEMC compiler removes threading functions not used by the program from the

final program image.

The measured ROM footprint for a minimal threaded program (such as the one in

the example of Fig. 16) is in the order of ten kilobytes, depending on the width

of the instructions and the instruction compression scheme of the designed core.

The thread scheduling and initialization functionality takes approximately half of

this space. Data memory consumption is highly dependent on the maximum thread

function argument size and the thread stack size.

5.5.3 Requirement: Autonomous Execution

All cores in the multicore are assumed to be identical and can execute autonomously

without any “master control/scheduler processor” orchestrating the thread execution.

Hence, each core can create and fetch new threads freely from the thread table re-

siding in the shared memory. The implementation involved a start-up function that

chooses one of the cores to execute the first thread that runs the main function. All

cores also initiate an idle thread which is executed when there are no active threads in
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the system. Thus, the other cores wait in their idle threads until the main function cre-

ates new threads for them to execute. The idle thread functions serve as places where

to implement power saving schemes to reduce power consumption during thread idle

time.

5.5.4 Requirement: Minimal Number of Shared Memory Accesses

Especially in the LDDM configuration, the shared memory accesses are assumed to

be much more expensive than the local memory accesses, and present a potential bot-

tleneck for the throughput of the multicore. Therefore, the threading library should

minimize accesses to its book keeping data structures in the shared memory and rely

on local memories as often as possible.

Dthreads splits the thread bookkeeping to two: the Shared Thread Table (STT) and

the Local Thread Table (LTT). The former resides in the shared memory and contains

only unstarted or dead threads. As soon as a core requests for threads to execute, a

thread is obtained from the STT to the LTT where also the thread stack is initialized.

The thread accesses the STT next time only at its exit or when joining another thread.

At that point it informs the STT that it can be joined or its resources freed, depending

on the detach state of the thread.

In order to support synchronization of the shared memory accesses, the cores must in-

clude either an atomic Compare-And-Swap (CAS) operation or the proposed datapath

integrated lock unit instructions as described in Chapter 7. Both alternative synchro-

nization instruction sets are supported by the Dthreads runtime implementation and

can be chosen at the program link time.

5.5.5 Requirement: Scalability

The threading runtime library must adapt to the number of cores available without

software modifications. This enables fast experimentation with different number of

cores as recompilation of the code for each variation is not necessary. In addition,

the performance of the threading routines must not degrade dramatically when the

number of cores or threads are increased.

In the proposed multicore template, the number of cores is a single integer parameter

in the architecture description format. Dthreads implementation is unaware of this
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parameter and does not need any special core identification instruction to be present

in the multicore’s instruction set. The core identification and scaling is implemented

in Dthreads with a global counter in the shared memory. Each core gets their core id

from this global counter and copies it to their local memory for later use. The sizes

of threading book keeping data structures are not dependent on the total core count,

thus making the recompilation unnecessary.

Performance degradation when increasing the core or thread count is avoided by

using constant time thread creation and scheduling routines, and by minimizing the

critical sections to reduce the time multiple cores wait to access the STT.

In order to avoid a lock contention problem of a single Ready Queue (RQ) imple-

mentation, a solution was found by combining the work sharing and work stealing

techniques [107]. In the thread scheduler, each core has its own RQ in the shared

memory, guarded with a separate lock. When new threads are created, they are dis-

tributed to different RQs in a round robin manner (work sharing). In the case a core

runs out of tasks to execute, it tries to steal work from another core’s RQ (work

stealing). What is important in improving the performance is that neither the thread

creation nor work stealing waits for locks, but only tries to acquire one. In case a

core wanting to add or steal threads cannot acquire a lock to a core’s RQ at the first

attempt, it simply proceeds to the next core’s RQ until it manages to lock an RQ.

This distributes the lock contention problem to the number of cores in the system,

thus improves the scalability of the Dthread runtime scheduler when there are tens or

even hundreds of cores competing for work.
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6. OPEN COMPUTING LANGUAGE SUPPORT

This Chapter describes a methodology and compiler techniques involved in applying

the Open Computing Language (OpenCL) as an input programming standard in the

proposed design flow of customized parallel processors.

While the proposed design flow is input language independent, the first priority pro-

gramming standard within the research has been OpenCL. The OpenCL execution

model also has driven the design of the multicore template described in Chapter 5.

The key motivation to focus on OpenCL is its wide industry adoption which helps

program portability. Support for OpenCL has been announced from companies such

as Apple, NVIDIA, AMD, Intel, and S3. Thus, it seems OpenCL is an important

parallel programming standard to support in the future.

In this Chapter, compiler techniques for scalable static parallelization of OpenCL ker-

nels are proposed. The parallel nature of OpenCL C is utilized in the proposed kernel

compiler by extracting instruction-level parallelism (ILP) from the kernel instances

to improve the utilization of the available hardware resources in the statically instruc-

tion scheduled processor architectures designed with the proposed methodology. In

addition to the parallel execution, an additional important feature is a method for ex-

plicitly executing custom hardware operations from the OpenCL C kernels using the

OpenCL vendor extension API.

6.1 Related Work

In the recent years, there have appeared a few publications on using GPGPU program-

ming paradigms for generating code for non-GPU devices. Many of those papers

describe the use of the proprietary CUDA [27] language as the input while the pro-

posed work is based on the standardized OpenCL. However, as OpenCL and CUDA

are very similar, these projects are considered related to the proposed work.
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MCUDA [108] is a framework that aims to replace the suboptimal CUDA to x86

compilation tool of the NVIDIA SDK with a version that parallelizes the execution

on multiple host cores. The framework creates loops out of multiple work-item ex-

ecution to retain work-group barrier semantics. FCUDA [109] is a source-to-source

translator built on techniques implemented in MCUDA.

In MCUDA and FCUDA, the parallelization is considered only at the task level while

in our work the focus is on ILP. Exploiting the ILP within a single wide statically

scheduled core has its benefits as there are less off-core synchronization and commu-

nication required because more of the shared data between work items can be stored

in fast general-purpose registers.

CUDA is used as a starting point for hardware accelerator generation for FPGAs

in [110]. The approach is exemplified with a kernel used to implement the MrBayes

algorithm. The paper shows a procedure on how to map the relatively simple kernel

of this algorithm to a pipelined hardware design. The approach differs from the pro-

posed one mainly in the programmability. While the proposed approach is based on

a processor template with simplistic control logic, their approach generates directly

hardware constructs with control implemented as state machines. In addition, the ap-

proach they present is not automated while the aim in the proposed work is to provide

a fully operational co-design tool flow.

Soon after the OpenCL specification was published, interest arose to apply the pro-

gramming standard for FPGA design flows. Fletcher et al. [111] compare a hand-

optimized FPGA implementation of an OpenCL-based Bayesian inference applica-

tion between FPGAs and GPGPUs to study the performance potential from the cus-

tomizable hardware in comparison to the more general-purpose processing platforms

of GPU architectures. They conclude that the customization of the data paths and the

memory hierarchy can bring significant performance gains (speedups from 3.14 to

4.25). However, they also state that in order to make OpenCL to FPGA design engi-

neering effort feasible and easy enough, such flows call for a customizable many-core

template-based approach. Such an approach is presented in this Thesis.

The techniques proposed in this Thesis were one of the earliest published work (2010)

in the area of OpenCL-based customized processor implementations [15]. Open-

RCL [112] was proposed around the same time. The main difference is that Open-

RCL uses a simple scalar core based processor template while the proposed design



6.2. Open Computing Language in Hardware/Software Co-Design 59

flow exploits a fully customizable static multi-issue TTA processor template that can

also support fine-grained parallelism. SOpenCL [113, 114] uses a datapath template

that is very similar to the bare boned TTA processor template. However, their work

is aimed at generating non-programmable hardware accelerators while the proposed

design flow aims at retaining software programmability.

6.2 Open Computing Language in Hardware/Software Co-Design

In the context of hardware/software co-design, while OpenCL provides the most use-

ful characteristics of C, such as the low level programming model, the following

differences and additional features of OpenCL C stand out:

• Explicit independence between work-items and work-groups. As the execution,

including memory accesses not only to the “private” storage but also to shared

“local” and “global” memories, is assumed to be independent between work-

items, it is possible to parallelize code from multiple work-items at different

granularities of parallelism. All synchronization is done by explicit barrier and

memory fence calls.

• Support for multiple disjoint address spaces helps in intra-work-item alias

analysis and enables explicit access to multiple separate memories.

• No dynamic memory allocation. The data memory demands of the kernels can

be more accurately estimated at compile time.

• Vector data types. Allows defining vector computation which can be trivially

parallelized.

• Recursion not supported. Enables aggressive procedure call inlining.

6.3 Compiling OpenCL for Static Customized Processors

The core algorithms and concepts used in efficient compilation of OpenCL kernels

to the customized statically parallel processors are described in Sections 6.3.1-6.3.4.

Section 6.3.5 describes the way the compiler uses the OpenCL vendor extension API

to let the programmer access custom operations in the processor design.
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6.3.1 Standalone and Hosted Setups

OpenCL is a computing language that is primarily meant for programming hetero-

geneous multicore platforms. However, as one of the goals of OpenCL is to enable

portability across various platforms, it is possible to execute full OpenCL programs

purely using a single processor. This notion leads to two different setups for the

designs:

1. Standalone. The custom processor executes both the OpenCL host and device

code. In this mode, the compiler compiles and links both the host and kernel

programs together to a single processor binary to be executed on a standalone

customized processor. No OpenCL support is required from the (possible)

host processor of the custom processor. However, the whole source code of

the kernel must be available for offline compilation to produce binaries of the

kernels, unless the custom processor also includes an OpenCL C compiler,

which is usually unrealistic.

2. Host/device. The custom processor executes only the kernels implemented

with OpenCL C and is controlled by a host processor. This is the standard

CPU/GPU setup and requires OpenCL runtime and platform APIs to be imple-

mented in the host. It supports also kernel code modification at runtime as the

kernels can be recompiled on the host.

In the experiments presented in Chapter 8, the standalone setup was used to produce

standalone custom processors. I.e., in the terms of the OpenCL platform model, the

customized TTA processors act as the host, the compute device, and the compute unit

at the same time. The function units of the TTA can be considered to be processing

elements.

In the terms of the OpenCL memory model, the global memory and the constant

memory are mapped to the shared address space and the local and private memories

map to the local memory and general-purpose registers of each core.

6.3.2 Parallelizing Work-Items

According to the standard, the OpenCL work-items are completely independent from

each other. Thus, it is possible to chain code from multiple work-items in the same
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k e r n e l void

s o m e k e r n e l ( . . . . ) {

BB;

}

(a)

< e n t r y >

BB

< e x i t >

(b)

< e n t r y >

BB’+BB’’

< e x i t >

(c)

Fig. 17: Simple example on work-item chaining: (a) OpenCL C kernel source with a single basic block

(BB), (b) original kernel CFG, and (c) a CFG with two work-items chained and joined.

work-group by appending multiple instances of kernel code after each other and then

allowing the instruction scheduler to parallelize the code between the work-items

freely. In other words, generate a new kernel function with operations from multiple

work-items in the work-group.

The analogy to C-based compilation is to schedule multiple independent iterations of

a loop in parallel using loop unrolling or software pipelining. However, an important

benefit with OpenCL C kernels is that the basic assumption is that the “loop itera-

tions” (work-items) are independent from each other, in contrast to C loops where

data dependence analysis is required to prove the independence.

Figure 17(a) shows a simple OpenCL C kernel structure with a single basic block (a

sequence of instructions without branches which is always executed in its entirety).

Its original control flow graph (CFG) is shown in Fig. 17(b) and the CFG after work-

item chaining and joining to a single basic block in Fig. 17(c). The final form of

the code shows that the processor can execute instructions from two work-items in

parallel if there are free datapath resources.

While parallelizing a kernel with simple control flow and no synchronization is triv-

ial, some complexity to work-item chaining is introduced when the kernel uses the

work-group barriers for synchronization. In the presence of barriers, all work-items

in the same work-group are expected to synchronize their execution at the barrier call
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sites. That is, whenever a single work-item reaches a barrier, it cannot proceed its

execution until the rest of the work-items in the work-group have reached it. Thus,

in case the work-items are to be parallelized statically, the kernel has to be split at

the barrier call sites and the parallelization should be conducted independently in the

split parts.

The example in Fig. 18 shows the chaining of two work-items in case of a kernel

with a barrier call in the middle. In this case the kernels are chained by duplicating

and appending the basic blocks before the barrier and connecting the last basic block

in the copied chain to the “barrier pseudo basic block” (which is just an instruction

scheduling barrier in this case) and similarly duplicate and chain the basic blocks

after the barrier.

In this example, the code before the barrier also includes an if-else structure. In such

case, each control flow structure needs to be duplicated as a whole for each work-item

due to the single program counter execution. A succeeding if-conversion [40] pass

attempts to convert these control structures to single instruction level parallelizable

predicated basic blocks. However, the code after the barrier is a single basic block

without branching, thus the chaining algorithm can join the basic blocks of the two

work-items to a single one.

When there are barriers inside a conditional basic block or a loop body, the work-

item chaining becomes more complex as the problematic nature of static compilation

of independent execution using a single program counter becomes more apparent.

According to the OpenCL standard, in case of a loop with barriers, each iteration

of the loop is synchronized separately. Thus, when a single work-item reaches the

barrier in an iteration, it waits for the rest of the work-items to complete the code

before the barrier at that iteration. Conversely, when there is a barrier inside a loop,

it can be assumed that all the work-items execute the loop the same number of times,

otherwise the end result is undefined (the barrier causes a subset of work-items to

lock up indefinitely).

The work-item chaining in the case of barriers inside loops can be done by treating

the loop body independently from the loop construct as proposed in [108].
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k e r n e l void

s o m e k e r n e l ( . . . . ) {

i f (BB1 ) {

BB2 ;

}

b a r r i e r ( ) ;

BB3 ;

}

(a)

< e n t r y >

BB1

< e x i t >

< b a r r i e r >

BB3

F BB2

T

(b)

< e n t r y >

BB1

< e x i t >

< b a r r i e r >

BB3+BB3’

BB2

T

BB1’

F

F BB2’

T

(c)

< e n t r y >

BB1+?BB2+BB1’+?BB2’

< e x i t >

< b a r r i e r >

BB3+BB3’

(d)

Fig. 18: Work-item chaining with barriers: (a) OpenCL C kernel source with three basic blocks (BB),

(b) initial kernel CFG, (c) two work-items chained, and (d) the CFG after branching eliminated with

if-conversion. Question marks denote dependencies on a predicate register.

6.3.3 Work-item Chaining Algorithm

The algorithm for statically generating code for every work-item (effectively repli-

cating the kernel code the required number of times) was implemented as a set of

closely related LLVM optimization passes. The high-level structure of the replica-

tion process is shown in Fig. 19.

The first step for the algorithm is to find the barriers, i.e., calls to OpenCL C barrier()

API function, present in the kernel code. As the barriers do not need to be in the main

kernel function code, but might have been placed by the programmer in some of the

kernel called subfunctions, a prior “flattening” is required. This process performs

aggressive function inlining for all non-kernel functions, thus ensuring that kernels

themselves have no calls once flattened. Apart from easing the barrier detection,

flattening also improves the results of the instruction scheduling due to creating larger

basic blocks.

Each region between barrier calls is then processed independently. In order to follow

the OpenCL programming model, the regions need to be executed a number of times
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LLVMOPENCL(module)

1 for each Function f ∈ module

2 do if IsKernel( f )

3 then FLATTEN( f )

4 DETECTBARRIERS( f )

5 for each Region r ∈ f

6 do LOOPREGION(r)

7 REPLICATECODE(r)

8 return module

Fig. 19: Work-item code replication algorithm.

equal to the work-group size. This can be achieved by two different ways: creating

loops or replicating the code for each work-item. The former has the advantage of

keeping the code size small, but results in less ILP to be exploited, while the latter

creates more ILP but can lead to huge programs needing plenty of resources and

processing time to schedule.

In order to parametrize this tradeoff, the kernel compiler provides a runtime param-

eter to determine the maximum number of replications to be performed per region,

thus the number of work-items potentially executed statically in parallel, and gener-

ates the remaining work-item executions using loop structures.

The region replication algorithm works like the basic loop unrolling that is modified

to mark instructions belonging to different work-items with an unique annotation

to help alias analyzer in recognizing independent instructions. Each basic block is

replicated, maintaining the intra-region control flow structure, and an unconditional

branch is then added at the end of the previously existing region to ensure the repli-

cated code is run after the original. This process is repeated as many times as required

according to the number of parallel work-items to be created.

When processing references to data, it should be noted that only private variable def-

initions must be replicated. Kernels can also have local variables, which are shared

among work-items in the same work-group, and, therefore, must not be copied. This

variable sharing, however, does not hinder parallelization, because the OpenCL stan-

dard specifies a relaxed memory consistency model in which accesses to local vari-
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ables from different work-items are considered to be independent. The programmer

must ensure that different work-items do not access the same variable at the same

time by careful coding or by using explicit synchronization mechanisms such as bar-

riers or memory fences.

The region chaining algorithm is designed to generate valid and easy-to-debug code,

but it does not perform any optimizations. As such, it creates several basic blocks

connected by unconditional branches, which can be combined into larger basic blocks.

After the region replication has been performed for each kernel, the entire code is

linked with the host program (in case of the standalone execution mode) and a global

optimization stage takes place to reduce this unoptimized code to a smaller and more

efficient form.

6.3.4 Instruction Level Parallelization of Work-Groups

The processors generated with the proposed design flow are statically scheduled ar-

chitectures with possibly hundreds of programmer visible general-purpose registers.

In order to improve the parallelization opportunities presented to the post-pass in-

struction scheduler, the work-item independence should be communicated to the

register allocator (RA) in order to avoid allocating overlapping registers between

the work-items which cause additional restrictions to the scheduling freedom (also

known as register anti-dependencies).

A simple example of Fig. 20 shows a schedule with (a) two work-items sharing regis-

ters, and (b) work-items containing new registers assigned to the produced variables.

The first schedule is only partially parallelized, while the second produces a com-

pletely instruction parallel execution of the two work-items, saving one cycle in the

execution time.

The register allocation can be performed using the default LLVM register allocator

(RA) implementations by adding a pre-RA variable partitioning pass that assigns

the variables used by the different work-items with different sets of registers. This

works especially well with homogeneous clustered datapath designs where the datap-

ath consists of symmetrical “cluster nodes” with their own register files and function

units. In case of a clustered machine, the partitioner assigns the work-item vari-

ables in round robin manner to different cluster nodes according to the work-item id,
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leading to minimal antidependencies due to register sharing between the independent

work-items. In case of a non-clustered machine design, the variables are allocated in

a round-robin manner to the possible multiple register files in the design.

cycle work-item 1 work-item 2

0 add r1, r2, r3

1 mul r4, r1, r3 add r1, r2, r3

2 stw #100, r4 mul r4, r1, r3

3 stw #104, r4

(a)

cycle work-item 1 work-item 2

0 add r1, r2, r3 add r6, r2, r3

1 mul r4, r1, r3 mul r7, r6, r3

2 stw #100, r4 stw #104, r7

(b)
Fig. 20: Effect of avoiding register reuse in work-item register allocation: a simple example when (a)

reusing registers, and (b) using separate registers. The first operand of the instruction is the destination.

Another source for data dependencies in programs that lead to unnecessary serializa-

tion are the memory accesses. In case the program contains stores to memory, it is

legal to move a succeeding load before or parallel with a store only if it is known that

the store and the load never access the same memory location (alias). When schedul-

ing instructions from multiple work-items of OpenCL C kernels in parallel there are

several useful properties to assist the alias analysis.

1. Accesses to the different address spaces cannot alias. That is, even in case the

global and local memories were mapped to the same physical address space,

the compiler can treat them as disjoint areas and reorder the accesses freely.

2. Accesses through pointers to the constant memory can be assumed to be only

reads. Thus, no overlapping with non-const pointers can happen. Furthermore,

as the constant memory is known to be truly read-only no write can alias with

constant memory reads, in contrast to the const pointers in C/C++, for example,

which can point to memory that is modified by non-const pointers.

3. Most importantly, in the regions between work-group barriers, the memory

accesses of different work-items can be considered not to alias due to the re-



6.3. Compiling OpenCL for Static Customized Processors 67

laxed consistency model of the OpenCL specification. This allows treating the

chained work-items as fully independent regions of code.

The alias analyzer of the instruction scheduler takes advantage of these special prop-

erties of OpenCL C to minimize the data dependencies that restrict parallelization of

the work-item chained code, resulting in more scheduling freedom.

6.3.5 Custom Operation Support

The use of custom operations also known as special instructions or special function

units (SFUs), is often the most important way to accelerate the execution of an ap-

plication running in a customized processor. The capability of a processor template

to support custom operations without restrictions to their complexity enables gradual

optimization of the architecture by increasing the specialization and complexity of the

custom operations until the performance is equal to an accelerator implemented as a

tailored fixed function hardware block. However, more complex the custom opera-

tion at hand is, less likely it is that the instruction selector finds it automatically from

the intermediate representation of the program. That is, in order to make complex

custom operations feasible, it is crucial to provide seamless support for programmers

to call custom operations at the source code level.

The OpenCL standard defines an API to provide support for vendor specific exten-

sions (see [26], Chapter 9). This API is used in the proposed implementation as a

means to access the custom operations available in the target processor. The stan-

dard requires the OpenCL C compiler implementation to generate specifically named

preprocessor macros when an extension is supported. In the proposed compiler, the

required headers and macros to produce the inline assembly that triggers the custom

operations are generated automatically from an architecture description file. Thus,

it is possible to compile the same OpenCL C kernel code both to targets that sup-

port and to targets that do not support the custom operation in question by using the

preprocessor to select the accelerated custom operation or the software-only version.

One important benefit from this is that the custom operation accelerated program

can still be compiled with a 3rd party OpenCL SDK without modifications in case a

software alternative of the custom operation functionality is provided.

An example code snippet that uses a 2-input-2-output custom operation ADDSUB,
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# i f d e f cl TCE ADDSUB

clADDSUBTCE ( a , b , c , d ) ;

# e l s e

c = a + b ;

d = a − b ;

# end i f

Fig. 21: Example of using a custom operation inside an OpenCL kernel in a portable way.

which adds and subtracts its operands in parallel is shown in Fig. 21. The #else

branch executes the same operation in software to maintain portability while the main

branch executes the custom operation using the automatically generated intrinsics.

The compiler techniques and the custom operation support are evaluated in Chapter 8.
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The customization point of core count in the proposed customization flow enables

matching the task level parallelism provided by the processor to the requirements of

the application at hand. However, improving the performance by adding more cores

to the design is often hindered by the overheads due to the need to synchronize the

execution of multiple threads running in multiple cores. This Chapter describes a

simple hardware unit called Datapath Integrated Lock Unit (DILU) that alleviates

the overheads from synchronization.

7.1 Related Work

Techniques to reduce overheads of software based synchronization implementations

have been studied widely. For example, Adaptive Backoff Techniques use simple

heuristics to compute a time to wait before polling the barrier variables again to re-

duce the traffic [115–118]. These approaches usually rely on a cache coherent mem-

ory hierarchy to enable fast spinning on a local cached copy of the lock variable.

However, cache coherence hardware brings additional chip area costs to the design

which are avoided in embedded multicores with explicitly accessed local memories.

Another approach is to use dedicated synchronization hardware. One of the earliest

works is presented by Beckmann and Polychronopoulos in [119] that supports barriers

by means of a barrier register hardware. Each 1-bit register denotes whether each

processor has reached the barrier or not. Their work relies on a synchronization

primitive specific hardware, while the DILU approach leans towards the software

side, thus adding more flexibility.

SGI Origin2000 implemented read-modify-write (RMW) operations inside memory

controllers [116], an approach referred to as Active Memory Unit in [120]. These

techniques implement simple RMW operations as atomic operations inside the mem-
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ory unit without producing unnecessary cache invalidation traffic. However, these

approaches still occupy the shared memory controller for the atomic memory opera-

tions while DILU can free the shared memory to be used purely for useful computa-

tion. In addition, they assume spinning can be done on a local cache, a luxury that is

not available in non-cache coherent multicore systems.

In general, many software-based synchronization optimization algorithms assume

availability of fast local globally accessible memory implemented by means of cache

coherence or distributed memory [115]. While such memory hierarchies clearly im-

prove programmer-friendliness in general-purpose computing, it is arguable that in

case the applications executing in the customized processor do not otherwise benefit

from such an expensive [104] memory hierarchy, synchronization should not pose

the sole motivation for adding one to the MCASIP design at hand.

The Synchronization-operation Buffer (SB) [121] reduces the spinning overheads by

performing the polling independently from the processor core using dedicated hard-

ware unit in the memory block. The unit sends notifications to the processor after a

memory location changes its content to a desired value. Like the proposed method,

also SB avoids the need for coherent caches. However, SB monitors the shared mem-

ory bus for updates to the interesting variables, in contrast to DILU which decouples

itself completely from the shared memory.

Synchronization counters (SC) [122] present a mechanism to attach synchronization

hardware to heterogeneous systems where the included processor architectures do not

support atomic operations. The memory mapped hardware implements atomic incre-

menting of counters when loads are issued to addresses mapped to them. Using the

counters the waiting cores are assigned integer identifiers that denote each core’s turn

to access the lock. While the scheme is interesting as its hardware is highly simplified

and can be easily integrated to existing systems, the checking for the turn (updated

by the core that releases the lock) still requires polling the memory. An optimization

that uses local memory for the turn variables to reduce the polling overheads is also

presented in the paper. However, the optimization requires globally visible random

accessible local memories (implemented via cache coherence or distributed memory)

which are not available in the simplified memory hierarchy in the proposed multicore

template.

Distributed Synchronization Controller (DSC) [123] is an approach close to DILU.
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Both consume two lock registers per barrier. The main difference is that in DSC the

monitoring synchronization traffic and updating the synchronization registers hap-

pens in hardware while DILU generalizes the concept of lock registers and pushes

the main synchronization implementation logic to the software side.

The idea of a set of memory mapped test-and-set registers implemented using a sep-

arate hardware unit is presented in [124]. Such registers are present in the Intel’s

Single-chip Cloud Computer (SCC) [125]. The lock registers are coupled with the

memory hierarchy.

The Lock Control Unit (LCU) presented in [126], similarly to DILU, decouples the

lock unit hardware from the shared memory hierarchy. The fundamental difference

between LCU and DILU is that LCU aims to provide a complete (but more complex)

solution for general-purpose computing while DILU is tailored for the customized

processor co-design use case. That is, the base assumptions for the DILU design are

that the multicore including the synchronization hardware runs well-behaved parallel

programs without complex operating system support and that the DILU is used for

synchronization only within a single multicore. Global synchronization of multiple

processor nodes in an heterogeneous system, if needed, is assumed to be implemented

with a separate synchronization hardware or another method. These assumptions

resulted in simpler hardware requirements.

DILU resembles SCC, DSC, SB and LCU in their idea of isolating the synchroniza-

tion logic to an independent hardware block. The distinctive feature of DILU is that

it minimizes the hardware requirements and exposes the lock register manipulation

operations to the instruction set of the processor. Moving complexity from hardware

to software provides more flexibility for implementing the synchronization software

library. Furthermore, isolating the synchronization hardware from the memory hi-

erarchy ensures the same synchronization libraries and hardware can be used with

various memory configurations.

7.2 Datapath Integrated Lock Unit

The polling during spinning in the lock variables used to implement the software

synchronization primitives causes spurious traffic to the shared memory hierarchy

causing unnecessary slowdown to other threads still executing their actual payload
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code. The need to reduce shared memory contention due to synchronization and the

varying synchronization needs among different customized multicore processors, led

to the design of the proposed hardware lock unit. The novel feature is to expose a

simple address lock book keeping hardware to the programmer by integrating it with

the processor datapath. Using this Datapath Integrated Lock Unit (DILU) the pro-

grammer is free to implement various atomic operations in software using the lock

variable book keeping functionality for mutual exclusion. The goal in the simplified

hardware interface was to produce a simple lock unit that can be generated automat-

ically according to the needs of the processor design at hand while providing enough

flexibility to support various synchronization primitive implementations in software.

The Lock Unit (LU) hardware consists of a custom sized lock register file. The num-

ber of registers, connected cores and address bits are configurable. Each lock register

stores the status of a shared memory address currently being locked. Unlocked shared

memory addresses do not consume any registers. LU ensures there is at most one lock

register reserved per address at a time. These requirements for the lock unit hardware

can be implemented in multiple ways.

The example hardware design of the LU is shown in Fig. 22. The inputs from the

cores are shown on the top and outputs on the bottom. Each core provides an address

and a 3-bit command. LU can stall the core until it can be served, and after that, LU

gives the status of the completed operation.

The example implementation of the LU needs two cycles for each operation (register

update or status reporting). During the status cycle it uses round-robin to arbitrate

which core gets the next access to the lock register file.

Most of the chip area of the LU hardware is consumed by the register file and the

comparators that find the slot to be reserved or released. In addition, comparators are

used to prevent double-locking of an address. The lock register file is split to two

blocks in the picture: locked address and an associated status bit. The lock status(i)

is 1 in case the address register (i) contains a valid locked address and 0 otherwise.

The control logic is rather simple. It controls the stalling of the cores and produces

the lock status based on the comparator outputs and the lock status bit.

The HW unit supports 4 basic operations: read, lock, unlock, and wait until unlocked.

Read and unlock operations are non-blocking, while the wait until unlocked and lock

can be implemented in both ways. The instruction set presented in this work utilizes
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Fig. 22: An example hardware design of the lock unit.

only the non-blocking operations.

Each of the cores in the MCASIPs designed with the methodology includes a function

unit, referred to as the SYNC FU, that is used to access the lock unit. Its operation set

is as follows:

got lock := TRY LOCK A Tries to acquire a lock at address A.

UNLOCK A Unlocks the lock at address A.

status := READ LOCK A Reads the lock status of the address A.

Additional blocking versions of the operations that stall the core until getting a lock

could be supported as well in order to reduce instruction fetch overhead. However,

the basic versions of the implemented software primitives presented in the following

assume non-blocking lock instructions.

Two alternative implementations for both the spin lock and the barrier synchroniza-

tion primitives were implemented using the above operations: one that minimizes the
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/ / s p i n l o c k f a s t

l o c k l u ( l o c k v a r ∗ A) {

whi le ( ! TRY LOCK(A ) ) ;

}

w a i t l u ( l o c k v a r ∗ A) {

whi le ( ! READ LOCK(A ) ) ;

}

/ / s p i n l o ck ba s i c :

l o c k v a r g l o b a l l o c k ;

s p i n l o c k ( l o c k v a r ∗ A) {

t r y l o c k :

l o c k l u (& g l o b a l l o c k ) ;

i f (∗A == 1) {

u n l o c k l u (& g l o b a l l o c k ) ;

goto t r y l o c k ;

} e l s e {

∗A = 1 ;

u n l o c k l u (& g l o b a l l o c k ) ;

}

}

Fig. 23: Two spin lock implementations using the lock unit instructions. The fast version uses the lock

unit operations solely while the basic version uses a single global lock register to guard accesses to all

lock variables. wait lu() will be used in a later barrier example to implement spin waiting on a lock

register without lock acquisition.

count of used lock registers per primitive and another that minimizes shared memory

accesses by relying more on the lock unit registers.

The spin lock implementations are shown in Fig. 23. spinlock basic uses a single

global lock unit register to guard accesses to all lock variables residing in the shared

memory. First, the function lock lu() is called and it blocks until the global lock is

acquired. If the actual lock variable contained in shared memory address A is locked

(contains value 1), the global lock is unlocked and the lock acquisition is retried by

jumping back. This consists the “spin loop” which is retried until the lock variable is

0 and can thus be locked by the core. Depending on the guarded critical section length

and a potential “spin backoff algorithm” used, this version generates heavy traffic to

the shared memory bus during its spin wait because the lock bit that is polled is stored

in the shared memory.

On the other extreme, spinlock fast in lock lu() assumes that lock information can be

stored fully into the lock unit registers, thus it does not access shared memory at all

during mutual exclusion. All spinning is done by using the instructions of the lock

unit. Thus, the number of these lock primitives that can be “alive” at the same time in

a program is limited by the number of lock registers in the DILU. Another restriction

is that the program should not rely on the shared memory value of the lock as that
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b a r r i e r f a s t ( b a r r i e r t ∗ b ) {

i n t e x e c u t i n g ;

l o c k l u (&b−>c o u n t l ) ;

b−>r u n n i n g −= 1

e x e c u t i n g = b−>r u n n i n g ;

i f ( e x e c u t i n g == −1) {

/∗ i n i t barr i e r ∗ /

e x e c u t i n g =

b−>r u n n i n g =

b−>t o t a l −1;

l o c k l u (&b−>b a r r i e r l ) ;

}

u n l o c k l u (&b−>c o u n t l ) ;

i f ( e x e c u t i n g == 0)

u n l o c k l u (&b−>b a r r i e r l ) ;

e l s e /∗ sp in wai t ∗ /

w a i t l u (&b−>b a r r i e r l ) ;

}

l o c k v a r g l o b a l l o c k ;

b a r r i e r b a s i c ( b a r r i e r t ∗ b ) {

i n t e x e c u t i n g ;

l o c k l u (& g l o b a l l o c k ) ;

b−>r u n n i n g −= 1

e x e c u t i n g = b−>r u n n i n g ;

i f ( e x e c u t i n g == −1) {

/∗ i n i t barr i e r ∗ /

b−>r u n n i n g =

b−> t o t a l − 1 ;

}

u n l o c k l u (& g l o b a l l o c k ) ;

/∗ sp in wai t ∗ /

wh i le ( b−>r u n n i n g > 0) {}

}

Fig. 24: Two barrier implementations using the lock unit instructions: basic uses a single lock register

to guard all atomic operations, fast uses two lock registers; one to guard the thread counter, another for

signaling the barrier completion.

value is not updated by the spin lock implementation at all.

The programmer or the compiler is responsible for deciding which synchronization

function version to use in which occasion. A middle ground implementation between

the basic and fast that would reduce contention on a single global lock register would

be to use two or more lock registers that each guard an even share of lock variable

memory addresses.

The barrier implementation alternatives are shown in Fig. 24. barrier basic uses a

counter variable in shared memory. The counter is used to count how many threads

are still to reach the barrier. Updates to it are protected with a single global lock

register. After acquiring the lock, a thread decrements the counter to denote that it

has arrived. If it was the first one, the counter goes to -1 and the barrier must be set

up. After releasing the global lock, it spin waits until the counter goes to zero.

The fast version, barrier fast, uses a counter variable similarly, but consumes two

lock unit registers per barrier, named count l and barrier l. The first lock guards

the counter variable updates and the latter records the whole barrier status. The first
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Table 1: Required lock registers and shared memory read (r) and write (w) accesses for the alternative

lock unit based synchronization implementations. The shared memory accesses are per thread partic-

ipating in the synchronization. C is a variable depending on the critical section length or the thread

imbalance in case of the barrier. L is the number of locks or barriers in use at the same time during the

program execution.

# of shared memory accesses Required

lock style acquire release spin wait # of lock regs

basic r+w w C× r ≥ 1

fast 0 0 0 1×L

barrier init reach wait others # of lock regs

basic w r+w C× r ≥ 1

fast w r+w 0 2×L

steps are similar to the basic algorithm except the barrier initialization locks also the

barrier l. It will be unlocked by the last thread reaching the barrier, i.e. when the

count of threads still to reach the barrier goes to 0. This version accesses the shared

memory when each thread reaches the barrier the first time (read, decrement, write).

However, after that it spins on the second lock register by calling wait lu() which

minimizes the shared memory traffic while waiting for the other threads.

The presented barriers are of “one shot” type, i.e., assume the barrier is not reused

after “discharged” once. Some additional logic, that was left out for simplicity, is

needed for barriers used in loops to ensure all threads have exited the previous barrier

call before any thread enters a new call.

Table 1 summarizes the shared memory and lock unit register costs of the alternative

implementations. Locks can be implemented without shared memory access at all.

In the both cases, the biggest difference is during spinning.



8. EXPERIMENTS

The experiments presented in this chapter evaluate the different parts of the proposed

customizable parallel processor design methodology. First, in Section 8.1 the envi-

ronment in which the techniques were implemented is briefly described. Section 8.2

compares the performance of the TTA approach, used as the single core processor

template, to commonly used data parallel datapath design styles: SIMD and SIMT.

Section 8.3 presents case studies where the single core customization capabilities

of the methodology are tested. Section 8.4 investigates the task level scalability of

the proposed multicore template and its accompanying threading library. Finally,

Section 8.5 inspects the overheads of the proposed synchronization mechanism by

means of a microbenchmark and a 48-core customized processor implementation on

FPGA.

8.1 Experiment Environment

The methodologies and techniques proposed in this thesis have been implemented in

an ASIP design toolset called TTA-based Co-design Environment (TCE) [77, 127].

TCE provides a full design flow from software written in higher-level language pro-

grams down to customized parallel program images and RTL implementations of the

customized processors.

The single core processor customization flow was extended with the task level cus-

tomization features accompanied with the proposed thread scheduler, the hardware

accelerated synchronization primitives, and the compiler techniques to map OpenCL

kernels to the designed TTA processors efficiently. This extended version was used

for the benchmarks presented in this chapter.

The most important tools used in the design flow of TCE are its cycle-accurate in-

struction set simulator [14] which was extended for multicore simulation to retrieve
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Fig. 25: Overview of the TCE compiler internals. The highlighted parts have been extended for per-

forming the experiments in this Thesis.

the instruction cycle counts, and the retargetable compiler for implementing the com-

piler techniques for the OpenCL support. The Processor Generator [128] was used

to produce the RTL implementations for the FPGA implementations.

The compiler techniques presented in this thesis were implemented as additions to the

standard TCE compiler. Fig. 25 shows the overview of the TCE compiler internals.

TCE compiler uses the LLVM Compiler Infrastructure [105] as the backbone, thus

benefits from its interprocedural optimizations such as aggressive dead code elim-

ination and link time inlining. In addition to the target independent optimizations

provided by the LLVM toolchain, the TCE code generator includes an instruction

scheduler with TTA-specific optimizations. The OpenCL-based program partitioner

proposed in this Thesis is placed between the instruction selector and the register al-

locator and the LLVM passes that implement OpenCL C work group parallelization

are performed at the whole program optimization phase. These passes have been
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published in an open source implementation of the OpenCL standard called Portable

OpenCL (pocl [129]) which also provided the OpenCL API implementations for the

OpenCL benchmarks.

8.2 TTA vs. SIMT in OpenGL Shader Execution

In this section, the TTA approach is compared to the common SIMT approach in the

context of graphics rendering. The programmable vertex and fragment shaders in the

OpenGL graphics standard represent SPMD-style computation. An example shader

is presented along with a benchmark against an existing implementation of the SIMT

approach. 1

8.2.1 The Shader Example

In order to study the practical advantages of TTA over SIMT, let us consider a shader

taken from [130] that gives the rendered surfaces a wood-like appearance by using

an externally (host-side) generated noise texture. The vertex shader is relatively sim-

ple and just prepares some data for later per-fragment computations. The fragment

shader, however, has some characteristics that make it adequate for showing how the

additional scheduling freedom of TTA/VLIW improves SPMD performance under

certain circumstances.

A streamlined version of the fragment shader code is given on Fig. 26. In the SIMT

model, each of the lockstep SIMT function units will execute that code over a differ-

ent fragment. This means that no vector operations are performed even when vector

types are used in shader code. The “vectorization” happens by computing several

fragments in parallel. In other words, each vector lane executes its instruction for a

different fragment.

1 Brief OpenGL terminology: A vertex is a point in a three dimensional space. Multiple vertices

form geometric primitives such as polygons or lines. A fragment is a square in the rendered image

that corresponds to a pixel in the final image written to a framebuffer (e.g., all the pixels between

two vertices forming a line primitive). A shader is a piece of program written in, for example,

the OpenGL Shading Language (GLSL) that performs customized computation on different pro-

grammable stages of the OpenGL graphics pipeline (such as the vertex or fragment processing

stages) in order to produce customized visual effects. [130]
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/∗ . . . ∗ /

un i fo rm sampler3D Noise ;

/∗ . . . ∗ /

vo id main ( vo id )

{

vec3 n o i s e v e c = vec3 ( t e x t u r e ( Noise , MCposi t ion ∗ N o i s e S c a l e ) ∗

N o i s i n e s s ) ;

/∗ . . . ∗ /

r = f r a c t ( ( MCposi t ion . x + MCposi t ion . z ) ∗ G r a i n S c a l e + 0 . 5 ) ;

n o i s e v e c [ 2 ] ∗= r ;

i f ( r < G r a i n T h r e s h o l d )

c o l o r += LightWood ∗ L i g h t G r a i n s ∗ n o i s e v e c [ 2 ] ;

e l s e

c o l o r −= LightWood ∗ DarkGra ins ∗ n o i s e v e c [ 2 ] ;

c o l o r ∗= L i g h t I n t e n s i t y ;

F r a g C o l o r = vec4 ( c o l o r , 1 . 0 ) ;

}

Fig. 26: Wood appearance fragment shader.
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In general, the SIMT approach performs optimally when the number of vertices to

be processed is an integer multiple of the number of SIMT lanes. As discussed in

Section 3.2, in the other cases the MIMD TTA/VLIW machines can benefit from their

capability to extract parallelism from within one thread. In this case, for example, the

multiplication of the color vector by scalar can be parallelized easily in case there are

free function units.

The other source of performance improvements comes from the if...else construct

in the code, in the very likely case that not every fragment being processed in par-

allel happens to run through the same conditional block. While one of the blocks

is executed, SIMT units corresponding to fragments which have to go through the

other block are going to be idle. This phenomenom is called branch divergence that

is caused by incoherent thread execution in an SPMD program. The proposed TTA

with an overcommitting-capable compiler allows processing both blocks in parallel,

reducing the resource underutilization.

These two situations correspond to the cases where the scheduling freedom in the

proposed single core template based on the TTA can provide performance benefits

over the common implementations of the SIMT execution model. Measurements of

these improvements for the wood-appearance shader are given in the following.

8.2.2 Benchmarking TTAs against a SIMT GPU

An OpenCL C equivalent of the wood appearance fragment shader was developed

in order to exploit the OpenCL C compilers available in both of the experimented

platforms. The OpenCL version follows closely the GLSL shader code and generates

the colored pixels of the image. The resulting image is shown in Fig. 27. This made it

possible to abstract the rest of the rendering pipeline, thus isolating the performance

of the shader at hand. The stimulus data was read from pre-generated buffers, and the

shaders were executed on a number of different TTAs and an nVidia GeForce 9400

graphic card.

As the TTA template and the TCE compiler lacked (at the time of this writing) sup-

port for vector load/store units, and while nVidia cores can coalesce different buffer

accesses into a single wide one, different TTA configurations with different number

of 32-bit scalar LSUs were benchmarked. The 2-LSU case is practical, but as the re-

sulting scheduled code is still slightly memory-access limited, results were generated
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Fig. 27: Output image for the shader benchmark.

Table 2: Resources in the TTAs used in the shader benchmark.

resource 1 LSU 2 LSU 4 LSU

32 bit load-store units 1 2 4

floating point units 8

extra floating point multipliers 8

512 x 32 bit register files 8

4 x 1 bit predicate register files 8

full integer ALUs 8

sqrt units 2

transport buses 48

also for an 4-LSU version, as the performance is expected to be similar to this once

the vector load/stores are added to the architecture. Aside from this, the resources in

the TTA used for the measurements closely match those present in a single core of

the compared GeForce GPU. The resources are summarized in Table 2.

Fig. 28 presents cycle-count results for the execution of a single 32-wide work-group.

The numbers for nVidia were obtained using the “Compute Visual Profiler” from their

SDK, while the TTA cycle counts were produced using the instruction cycle-accurate

simulator ttasim of TCE. The graph shows similar performance with the 2-LSU TTA

and GeForce. TTA is slightly faster when 4 LSUs are present, alleviating the memory

access bottleneck. Furthermore, when the execution causes the code to take diverging
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Fig. 28: Cycle counts for 32-wide workgroup execution.

branches, it causes a cycle count penalty on nVidia case of about 11%, while it has

no effect whatsoever on the TTA architecture due to the aggressive if-conversion

optimization and resource overcommitting.

In addition to reducing the effects of diverging branches to the throughput, the second

case where TTA is assumed to improve over SIMT is when the number of parallel

“threads“ does not efficiently cover the function units of the core. In order to measure

the effect from this, the same benchmark was executed with different work-group

sizes. Like expected, the cycle count does not change on the nVidia core when the

number of work-items is smaller than the available SIMT lanes, but on TTA, the extra

function units can be used to speed up the execution by scheduling parallel operations

from the same thread in them. Fig. 29 shows how the cycle count decreases with the

size of the work-group, with dashed lines marking the cycle count on the GeForce

9400. For work-group sizes of 16 and below, half of the function units on the nVidia

core are idle, while the more free scheduling of the resources allow TTA to execute

the kernel in much less cycles.

While overcommitting and scheduling freedom can be provided by both the TTA and

the VLIW approaches, the latter suffers more from increased register file pressure

when scaling the number of function units to match the instruction level parallelism

available in the shader code. The exposed datapath of TTA allows reducing this
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Fig. 29: Effect of the work-group size on the cycle count for running the kernel.

Table 3: Effects of software bypassing on register file pressure in the shader example.

No bypassing Bypassing Reduction

Register reads 4897 3304 33%

Register writes 3483 2258 35%

total accesses 8380 5562 34%

pressure by means of software (register) bypassing, often avoiding the need to save

intermediate results to general-purpose registers already at the compile time.

Results in Table 3 show about 34% decrease in register file accesses from software

bypassing for the OpenCL kernel under consideration. This significant reduction in

register file traffic highlights the benefit of TTA over a VLIW with similar datapath

resources.

8.3 Single Core Customization for OpenCL Kernels

In order to validate and measure the performance and feasibility of the use of OpenCL

as a starting point for customized processor design in practice, two example appli-

cations using the proposed design methodology were used. The first application, an
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Advanced Encryption Standard (AES) encoder was used to verify the scalability of

the static OpenCL kernel parallelization at the instruction level, and the ease of use of

custom hardware operations. The second application, the radix-2 Fast Fourier Trans-

form (FFT) was implemented to test customization purely using standard architecture

components and to verify the automated interconnection network optimization tool.

8.3.1 AES OpenCL Implementation

AES algorithm uses a data block of 128 bits and a key size of 128, 192 or 256 bits.

For the implementation a 128-bit key size was chosen. The operations involved in the

algorithm are substitutions, rotations and permutations, using the 128 bits of data as a

4x4 array of bytes. Many software implementations of the algorithm manage the data

to be processed as a buffer of chars, and all the operations are done in char size. For

minimizing the number of memory accesses a variation of the Gladman’s implemen-

tation [131] was used. It packs each four bytes of data in 32 bits unsigned values and

uses other similar optimizations in other steps of the algorithm for reducing memory

read and write operations.

The algorithm is divided into two steps: key expansion and encryption/decryption.

The key expansion takes a 128-bit key and generates a 1408-bit expanded key. This

step has to be done only once if the key does not change, and, therefore, this func-

tionality was implemented in the host main program.

The encrypt and decrypt steps are done for each 128-bit block on the source data.

These functions were implemented as OpenCL kernels. The encryption kernel re-

ceives several parameters from the host side: the global buffer to be encrypted, the

expanded key, the buffer to store the results, and the substitution tables needed by

the algorithm. Using these parameters and its own global identifier each work-item

executing the kernel calculates the piece of input data it must process.

The host program is responsible for copying the data, key, and substitution tables

to the device global memory. Once data is on device memory, the host launches as

many work-items as there are 128-bit blocks in the input data buffer that must be

encrypted or decrypted, and finally when all the work-items have finished it reads

back the results (see Fig. 30).
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Fig. 30: The OpenCL AES encryption implementation.

# of parallel WIs cycles speedup

1 35,729 1.00

2 18,209 1.96

4 9,505 3.76

Table 4: Effect of the parallel Work-Item count to the cycle count.

8.3.2 Instruction-level Parallelism

The first experiment with AES was conducted to verify the ILP scalability of the

OpenCL kernel compilation techniques. In order to measure this, an unrealistic ar-

chitecture that provided enough resources (e.g., 250 FUs and 63 RFs) for the schedule

length to be limited only by the data dependencies. The OpenCL kernel was com-

piled for this architecture with one, two and four parallel work-items. Due to starting

to stress the limits of the compiler (scheduling time exploded and reached the max-

imum number of registers supported by LLVM) and the simulator of TCE, adding

more units for additional work-items was stopped at the fourth parallel AES work-

item.

The benchmark program encrypted 4KB of random data. The cycle counts with

different number of parallel work-items are shown in Table 4. The numbers show

that the compiler optimizations described in Section 6.3 are able to take advantage of

the explicit parallelism in the OpenCL work-groups, and, given enough resources in

the target machine, parallelizing the work-items perfectly producing close to linear

speedup with relation to the number of parallel work-items.
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resource # of units notes

Arithmetic-logic unit 3 1 cycle latency

Register file 3 16 registers per file

Load/Store unit 1 2 cycle load latency

32-bit multiplier unit 1 3 cycle latency

Table 5: Resources in the AES TTA processor.

8.3.3 Custom Operations

In the second experiment with the AES, the use of custom hardware operations to

accelerate the application using the OpenCL C extension API (discussed in Sec-

tion 6.3.5) was evaluated. For this experiment, a realistic base architecture was

designed. The architecture, included datapath resources as shown in Table 5. The

connectivity between the datapath units was clustered VLIW-like with FUs and RFs

divided to three 1-FU-1-RF cluster nodes. The three nodes were interconnected with

a fully connected transport bus.

In order to verify that the architecture is practical without, e.g., long critical paths

ruining the performance due to low clock frequency, the architecture was synthe-

sized on two FPGA chips: Xilinx Virtex 5 and Altera Stratix II. The maximum clock

frequencies were 191 MHz for Virtex 5 and 149 MHz for Stratix II.

Two custom operations were designed and added to the base architecture:

• MUL GAL, a multiplication of two integers in the Galois field GF(28). The

software implementation needs two reads from a logarithm table, a read from

an antilogarithm table, an addition, and some control for performing this mul-

tiplication. In hardware, it can be done in a single clock cycle using two ROMs

for the tables and an 8-bit adder.

• SUBSHIFT involves searching in a look-up table, substituting and mixing some

elements of a 4×4 array. In software, it takes several clock cycles for reading

the look-up table and mixing the elements of the array, but in hardware this

operation can be done in a single clock cycle using a ROM and multiplexers.

The same encoding benchmark with the random 4KB input data set as in the previous

experiment was compiled with two parallel work-items and simulated with the archi-
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architecture cycles speedup factor KB/s at 100 MHz

AESTTA 1,119,415 1.0 366

AESTTA+MUL GAL 450,490 2.5 909

AESTTA+MUL GAL+SS 286,778 3.9 1,428

Table 6: Speedups from using custom operations.

tecture simulator to produce the cycle counts for the kernel execution. The speedups

from using the two custom operations in comparison to the software-only AESTTA

are shown in Table 6. The able includes also the computational encoding throughput

scaled to 100 MHz clock frequency in order to exemplify the practical benefits of

custom operations in this case.

The results show that adding custom operations using the extension mechanism works

and can provide remarkable speedups in comparison to the architecture without cus-

tom operations, as expected. Adding both custom operations to the machine produces

almost 4x speedup in comparison to the software-only version.

By inspecting the generated code it can be seen that the speedup is partially due to

reduced general-purpose register pressure which results in less spills and less antide-

pendencies that constrain the parallelism.

In this case, it would be possible to further accelerate the design with little effort, for

example, by adding a fourth cluster to the base machine, increasing the number of

general-purpose registers, or by adding more custom operations to the design. It can

be seen from the previous experiment that given enough resources, the cycle count

can be reduced considerably. However, the purpose of this experiment was not to

design the fastest possible AES implementation, but to provide a proof-of-concept

case for the proposed OpenCL-based processor customization methodology.

8.3.4 Single Core Customization Using Standard Components

In this experiment an architecture was customized by only using “standard compo-

nents” with basic function unit operations. In addition, as an existing OpenCL FFT

code was used, this experiment served also as an example of a fast processor cus-

tomization cycle reusing existing OpenCL code as an input.
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resource # notes

Integer arithmetic-logic unit 2 1 cycle latency

Register file 4 16 x 32 bit registers per file

Load/Store unit 1 2 cycle load latency

32-bit integer multiplier unit 2 2 cycle mul, add, sub

Table 7: Processor resources in the FFT experiment.

FFT size parallel WIs cycles Without OpenCL AA info

256 1 38078 ±0%

256 2 29390 +8%

1024 1 169595 ±0%

1024 2 126155 +8%

Table 8: Execution time results for the FFT core. The last column shows the difference in cycle count

when compiled without exploiting the additional OpenCL information in the alias analysis (AA).

For the FFT software implementation an existing OpenCL radix-2 FFT implementa-

tion was selected. The implementation by Eric Bainville is available freely in [132].

The original implementation used floating point arithmetics and was converted to

use fixed-point number representation. The complex arithmetics of the algorithm

is executed in software, i.e., 32-bit real and 32-bit imaginary parts were used. The

arithmetic units used in the architecture were real-valued, complex-valued special

multipliers were not considered.

The processor architecture was customized using the architecture enlargening method

as described in Section 4.2.2. After several iterations, a machine consisting of re-

sources as shown in Table 7 was produced. The interconnection network optimiza-

tion tool was used to produce several architectures with varying connectivity. From

this set three interesting pareto optimal architectures were chosen for FPGA synthe-

sis. The best synthesis result on Xilinx Virtex 5 LX110T yielded an implementation

with a maximum clock frequency of 130 MHz. The FPGA resource consumption

was 3261 registers (4% of total available) and 6129 LUTs (8%).

The benchmark was executed for 256-point and 1024-point FFTs. The effect of an

additional parallel work-item was also tested. The results from this experiment are

shown in Table 8 which shows the numbers for the best performing interconnection

network variation.
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The used OpenCL implementation calls the kernel program iteratively from the host

program loop multiple times for an FFT. Therefore, instead of benchmarking only

the kernel execution time as in the AES benchmark, the whole call hierarchy from

the host code to the kernel execution was included in the execution time to provide

fair results. As the host and the kernel programs were running in the “standalone

mode” (see Section 6.3.1), that is, on the same processor without a slow interconnect

in between, such measurement is feasible.

The results are considered promising given that the total manual time spent on the

architecture customization was less than a work day and no custom operations were

used. In addition, it was confirmed that the additional memory access independence

information from OpenCL improves the parallelization of multiple “iterations”. In

this case of a resource constrained schedule the benefit was 8% with two parallel

work-items.

8.4 Task Level Scalability

The design space of the multicore customizable processors is vast. At one end, there

is a dual-core architecture with maximal per-core resources to satisfy the high level of

instruction level parallelism (ILP) present in the programs. At the other end, there is

an army of light-weight cores for a program with only thread level parallelism (TLP)

or which benefits only from special instruction acceleration. Between these extremes

there are countless variations where the reduced amount of single core resources

gives room in the chip to higher number of cores, and vice versa, depending on the

program and the restrictions placed by the implementation platform.

Additional region in the design space enabled by the proposed toolset is the single

core processor design space for single threaded programs with ILP and/or which ben-

efit from special instructions. The single core customization features were evaluated

in the previous sections.

In order to ensure the interesting points in the design space can be reached, a bench-

mark with the capability to scale the parallelism at both the instruction and thread

levels was created. The program implements the dot product of vectors using the

LDDM model and the Dthreads API using 800 threads. The code is fully presented

in the Fig. 16 in Section 5.5.1.
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The single-core customization flow was used to design three different base architec-

tures as follows:

swfp A simple core with only an integer ALU. Thus, performs the floating point (FP)

operations in software. Other resources include a 16 x 32-bit general-purpose

register file and 5 transport buses.

swfp2 Same as swfp except with double the number of integer datapath resources.

hwfp Same as swfp2 but with an floating point unit (FPU) to speed up the FP com-

putation. This exemplifies the operation set customization capability.

The core count of each of the single core architectures was increased from one core

to 16 cores and the minimum processor cycles were obtained using the architectural

simulator that simulates the LDDM hierarchy but assumes ideal latencies without

access conflicts.

The results are illustrated in Fig. 31. The results show that the core count increase

helps the software floating point architectures the most, as expected, because of their

lower single thread performance. The additional ILP capabilities of swfp2 is slightly

visible with somewhat reduced cycle counts in each core multiplicities.

Due to the control complexity of the software FP emulation code, the compile-time

exploitable ILP is rather limited in the input program. Adding the FPU for hwfp

improved the performance drastically both because of the hardware acceleration itself

and also due to increased static ILP from avoiding the need for the hard-to-parallelize

FP emulation code. The maximum speedup from additional cores for hwfp started to

decrease slightly sooner than with the software FP cores as faster thread execution

resulted in running out of threads to execute quicker and also made the threading

overheads more visible.

Naturally, the realistic speedups from multiple cores are highly dependent on the TLP

available in the input application and its synchronization and communication needs.

The used “embarrassingly parallel” dot product application was used merely to prove

the scalability of the Dthread runtime library. The potential performance increased

by adding more cores in all the cases, which shows that the threading runtime li-

brary implementation does not pose significant additional overheads that prevent the

application speedups.
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Fig. 31: The effect to the minimum processor cycles from increasing the core count. The potential

speedup in comparison to the single core is written on each design point in the diagram.

8.5 Barrier Synchronization Overheads

The effect of using the barrier synchronization primitive implementation alternatives

presented in Section 7.2 to the final performance of the application depends on var-

ious factors. Clearly, the synchronization operation per program operation ratio of

the program is the primary factor. What is not so obvious is that the shared memory

pressure of the program is another important factor. In case the program performs

frequent accesses to the shared memory, it is hindered more by the avoidable traf-

fic caused by the potential shared memory polling overheads of the synchronization

primitives.

This Section presents an experiment that stress tests the proposed alternative barrier

implementations in order to show their scalability differences.
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Fig. 32: The organization of the benchmarked multicore ASIP using the lock unit through a SYNC

function unit.

8.5.1 The Benchmark Processor

For the evaluation of the proposed lock unit a 48-core MCASIP was designed using

the proposed design flow. It is expected that the results are reproducible with any

shared memory multicore architecture without dynamic caches.

All the cores in the designed MCASIP use the proposed datapath integrated lock unit

for synchronization operations accessed using a SYNC FU as depicted in Fig. 32. The

cores have a relatively simple architecture with an integer ALU, an integer multiplier

and a register file with 16 32-bit registers. The memory configuration of the MCASIP

was as described in Section 5.3. That is, each core had its own fast private data

memory large enough for local stack and data in addition to an arbitrated shared

memory. The shared memory access was implemented with a simple access queue

which causes a dynamic load latency from 4 to 96 cycles, depending on how many

cores are competing for memory access at the time instant.
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f o r ( i n t round = 0 ; round < ROUNDS; ++ round ) {

i f ( c o r e i d == 0) {

f o r ( i n t d e l a y = 0 ;

d e l a y < smAccesses ;

++ de lay , ++ s h a r e d v a l u e ) {}

}

b a r r i e r (&b ) ;

}

Fig. 33: The microbenchmark that “stress tests” the shared memory overheads of the barrier alternatives.

The design was synthesized to an Altera Stratix II FPGA with a clock rate of 50 MHz.

The additional area overhead of the synchronization hardware was very low: a lock

unit with four lock registers consumed about 1% (925 ALM) of the total logic uti-

lization of the multicore (72 kALM).

8.5.2 Benchmark Program

The scalability of the proposed barrier alternatives was measured by implementing a

synthetic microbenchmark that performs a tight barrier synchronized loop and exe-

cuting it in the MCASIP in the FPGA. The benchmark loop is shown in Fig. 33.

The benchmark represents a “stress test” where the computation to synchronization

ratio is extremely low and where the progress is heavily limited by simultaneous

shared memory accesses from different cores. Artificial shared memory traffic was

generated by adding an update to a counter residing in shared memory to the first

core. This forces the other cores to wait that time in the barrier spin wait loop. While

being a synthetic example, the case represents the worst case of thread imbalance

where one shared memory heavy thread takes more time to complete than the others

and the completed threads cause it to slow down due to the shared memory traffic

from barrier spin waiting.

In this benchmark, the number of threads equals the number of cores, thus the context

switch overheads were ruled out. If there were more threads per core, the barrier call

would induce a thread context switch to allow the waiting threads to reach the barrier.

This would reduce the total “unsuccesful” spin waiting for the time of each context

switch, possibly reducing shared memory noise. However, the context switch time

and its effect to the performance depends at least on a) the size of the thread context
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Fig. 34: The speedups obtained by using the fast barrier in comparison to the basic barrier version. The

run times were measured as wall clock time with the FPGA implementation of the 48-core MCASIP,

thus included all the dynamic latencies from memory access conflicts. The speedup was measured as a

function of the number of memory accesses made by the executing thread to emphasize the effects of

the barrier polling to the shared memory access conflicts.

to store/restore b) the location of the context data (shared memory or a local storage)

c) the thread scheduler overhead d) if a pre-emptive scheduler is used, the length of

the thread time slice, etc. Therefore, it was decided to simplify this benchmark to

emphasize the effect of the synchronization overheads alone.

The results illustrated in Fig. 34 show that the speedup from using the fast barrier

that eliminates shared memory polling is drastic. The speedup increases up to about

3000 shared memory accesses after which it stabilizes to around 64%. For less than

320 accesses the basic barrier is faster as the additional barrier software complexity

of the fast barrier dominates the shared memory access reduction benefits.



96 8. Experiments



9. CONCLUSIONS

In this Thesis a design methodology and the supporting design flow for Multicore

Application-Specific Instruction Set Processors was proposed. The methodology

enables rapid design cycles for efficient parallel processor-based application imple-

mentations starting from parallel programs. The customized processors can exploit

instruction-level parallelism by means of an exposed datapath MIMD single core

template, and task level parallelism with a shared memory multicore template that

includes local scratchpad memories for memory access optimization.

For supporting single core customization in the methodology the Transport Triggered

Architecture is used as the processor template. Although most of the TTA’s advan-

tages, such as the simplified control logic and the MIMD programming model, can

be realized also with the traditional operation programmed VLIW architectures, TTA

improves the instruction level parallelism scalability with its programmer-visible in-

terconnection network. The transport programming model enables additional soft-

ware optimizations, most importantly the software bypassing which reduces the reg-

ister and register file pressure, and increases data locality by enabling programmer

controlled data transfers between function units.

9.1 Main Results

The benefits of the additional scheduling freedom enabled by the MIMD program-

ming model of the TTA/VLIW was compared to the common more restricted SIMD

model in case of SPMD workloads. The conclusion of the comparison is that the

MIMD model allows better utilization of the hardware resources in case of SPMD

thread counts that do not match the width of the machine, but with the cost of ex-

tended instruction word width. In addition, in contrast to a strict SIMT with scalar

lanes, MIMD enables scheduling multiple operations from the same thread in par-
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allel. Predicated execution, especially when resource overcommitting is supported

can be used to increase the resource utilization further, improving the performance of

SPMD programs with diverging threads.

The proposed design methodology is generic enough to support a wide range of par-

allel languages. The OpenCL programming standard was used as an example input

to the design flow. The compiler techniques needed in order to efficiently map the

OpenCL kernels to parallel resources of the designed architecture were presented.

The key problem in that work is with kernels that contain barriers which lead to

challenges when parallelizing multiple work-items statically. Another challenge is

to communicate the work-item parallelism to the instruction scheduler which was

solved with a register partitioner that aims to assign each parallel work-item registers

from separate register files.

For accelerating the synchronization primitives which are often highly utilized in

parallel applications a datapath integrated lock unit hardware was proposed. The

results with a 48-core MCASIP show the benefits of its flexibility. With a shared

memory heavy micro-benchmark the proposed barrier alternative that uses two lock

registers reduces shared memory contention up to 64% in comparison to a simpler

version that consumes only one lock register and generates more shared memory

traffic.

Overall, the preliminary simulation and FPGA implementation results show high po-

tential for the proposed design methodology. The FPGA implementability of the

designed processors was estimated in [11] with the conclusion that the design of soft

multiprocessors is feasible using the design flow, with the limiting factor usually be-

ing the size of the local memory. MCASIPs with more than hundred of cores can be

fit to the current high-end FPGA chips.

The Author considers the lack of support for fast exploration of different (parallel)

memory systems the current main limitation in the proposed design methodology.

In the methodology, manual work is required to get the final performance numbers

that include also memory access conflict overheads. However, the once manually

designed memory implementations for FPGA prototyping or the SystemC memory

simulation models can be reused in later designs.
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9.2 Future Work

The proposed design flow presents a fully working solution for parallel program

driven customized multicore processor co-design. However, the Author does not

claim the current proposal perfects all the techniques involved, but that it provides a

functioning platform for further research.

An assumption in the proposed design methodology is that the designer driven co-

design of the processors leads to results that are more reusable in the future designs, in

contrast to the possibly very application-specialized results a fully-automated design

space exploration would produce. However, especially for the high-level synthesis

for producing FPGA-based implementations, most of the process of designing a new

multicore processor with customized instructions could and should be automated.

For this use case, a design database based automated design space exploration that

also includes automated generation of instruction-set extensions has been planned as

future work.

It is a generally acknowledged fact that the memory bottleneck limits the perfor-

mance of processor-based designs [133]. This is emphasized with multicore designs

that use a shared memory to share data and communicate with each other. The effi-

cient conflict-free use of multibank parallel memories is important in unleashing the

performance potential of parallel programs. [134] Work is ongoing in our group to

develop methodologies for the design space exploration of parallel memory systems.

Multithreading relates to the memory system as it can be used to hide long memory

operation latencies executed by a thread with computational operations from other

threads. The additional challenge present in the proposed work is the use of the TTA,

an exposed datapath architecture, as the single core template. Due to the abundance

of programmer-visible details, the processor context that needs to be saved in a full

thread context switch is costly to implement. In our previous work [106], compiler-

assisted context saving techniques to find a compromise between co-operative context

switches and hardware implemented pre-emptive threading have been researched.

This work is to be continued with the focus on implementing coarse-grained thread-

ing focused on hiding long memory access latencies.
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