499 research outputs found

    Security of GPS/INS based On-road Location Tracking Systems

    Full text link
    Location information is critical to a wide-variety of navigation and tracking applications. Today, GPS is the de-facto outdoor localization system but has been shown to be vulnerable to signal spoofing attacks. Inertial Navigation Systems (INS) are emerging as a popular complementary system, especially in road transportation systems as they enable improved navigation and tracking as well as offer resilience to wireless signals spoofing, and jamming attacks. In this paper, we evaluate the security guarantees of INS-aided GPS tracking and navigation for road transportation systems. We consider an adversary required to travel from a source location to a destination, and monitored by a INS-aided GPS system. The goal of the adversary is to travel to alternate locations without being detected. We developed and evaluated algorithms that achieve such goal, providing the adversary significant latitude. Our algorithms build a graph model for a given road network and enable us to derive potential destinations an attacker can reach without raising alarms even with the INS-aided GPS tracking and navigation system. The algorithms render the gyroscope and accelerometer sensors useless as they generate road trajectories indistinguishable from plausible paths (both in terms of turn angles and roads curvature). We also designed, built, and demonstrated that the magnetometer can be actively spoofed using a combination of carefully controlled coils. We implemented and evaluated the impact of the attack using both real-world and simulated driving traces in more than 10 cities located around the world. Our evaluations show that it is possible for an attacker to reach destinations that are as far as 30 km away from the true destination without being detected. We also show that it is possible for the adversary to reach almost 60-80% of possible points within the target region in some cities

    Use of supervised machine learning for GNSS signal spoofing detection with validation on real-world meaconing and spoofing data : part I

    Get PDF
    The vulnerability of the Global Navigation Satellite System (GNSS) open service signals to spoofing and meaconing poses a risk to the users of safety-of-life applications. This risk consists of using manipulated GNSS data for generating a position-velocity-timing solution without the user's system being aware, resulting in presented hazardous misleading information and signal integrity deterioration without an alarm being triggered. Among the number of proposed spoofing detection and mitigation techniques applied at different stages of the signal processing, we present a method for the cross-correlation monitoring of multiple and statistically significant GNSS observables and measurements that serve as an input for the supervised machine learning detection of potentially spoofed or meaconed GNSS signals. The results of two experiments are presented, in which laboratory-generated spoofing signals are used for training and verification within itself, while two different real-world spoofing and meaconing datasets were used for the validation of the supervised machine learning algorithms for the detection of the GNSS spoofing and meaconing

    DeepPOSE: Detecting GPS Spoofing Attack Via Deep Recurrent Neural Network

    Get PDF
    The Global Positioning System (GPS) has become a foundation for most location-based services and navigation systems, such as autonomous vehicles, drones, ships, and wearable devices. However, it is a challenge to verify if the reported geographic locations are valid due to various GPS spoofing tools. Pervasive tools, such as Fake GPS, Lockito, and software-defined radio, enable ordinary users to hijack and report fake GPS coordinates and cheat the monitoring server without being detected. Furthermore, it is also a challenge to get accurate sensor readings on mobile devices because of the high noise level introduced by commercial motion sensors. To this end, we propose DeepPOSE, a deep learning model, to address the noise introduced in sensor readings and detect GPS spoofing attacks on mobile platforms. Our design uses a convolutional and recurrent neural network to reduce the noise, to recover a vehicle\u27s real-time trajectory from multiple sensor inputs. We further propose a novel scheme to map the constructed trajectory from sensor readings onto the Google map, to smartly eliminate the accumulation of errors on the trajectory estimation. The reconstructed trajectory from sensors is then used to detect the GPS spoofing attack. Compared with the existing method, the proposed approach demonstrates a significantly higher degree of accuracy for detecting GPS spoofing attacks

    Localizing Spoofing Attacks on Vehicular GPS Using Vehicle-to-Vehicle Communications

    Get PDF
    GPS spoofing is a problem that is receiving increasing scrutiny due to an increasing number of reported attacks. Plenty of results have been reported on detecting the presence of GPS spoofing attacks. However, very few results currently exist for the localization of spoofing attackers, which is crucial to counteract GPS attacks. In this paper we propose leveraging vehicle-to-vehicle communications to detect and localize spoofing attacks on vehicular navigation GPS. The key idea is to correlate Doppler shift measurements which are reported by most commercial GPS receivers. The approach does not need additional dedicated devices and is easily deployable on modern vehicles equipped with vehicle-to-vehicle communication devices. It is capable of localizing both stationary spoofers and mobile spoofers which could be mounted on a vehicle. Both numerical simulations and experimental tests are conducted to confirm the effectiveness of the proposed approach

    PNT cyber resilience : a Lab2Live observer based approach, Report 1 : GNSS resilience and identified vulnerabilities. Technical Report 1

    Get PDF
    The use of global navigation satellite systems (GNSS) such as GPS and Galileo are vital sources of positioning, navigation and timing (PNT) information for vehicles. This information is of critical importance for connected autonomous vehicles (CAVs) due to their dependence on this information for localisation, route planning and situational awareness. A downside to solely relying on GNSS for PNT is that the signal strength arriving from navigation satellites in space is weak and currently there is no authentication included in the civilian GNSS adopted in the automotive industry. This means that cyber-attacks against the GNSS signal via jamming or spoofing are attractive to adversaries due to the potentially high impact they can achieve. This report reviews the vulnerabilities of GNSS services for CAVs (a summary is shown in Figure 1), as well as detection and mitigating techniques, summarises the opinions on PNT cyber testing sourced from a select group of experts, and finishes with a description of the associated lab-based and real-world feasibility study and proposed research methodology

    Signal processing techniques for GNSS anti-spoofing algorithms

    Get PDF
    The Global Navigation Satellite Systems (GNSS) usage is growing at a very high rate, and more applications are relying on GNSS for correct functioning. With the introduction of new GNSSs, like the European Galileo and the Chinese Beidou, in addition to the existing ones, the United States Global Positioning System (GPS) and the Russian GLONASS, the applications, accuracy of the position and usage of the signals are increasing by the day. Given that GNSS signals are received with very low power, they are prone to interference events that may reduce the usage or decrease the accuracy. From these interference, the spoofing attack is the one that has drawn major concerns in the GNSS community. A spoofing attack consist on the transmission of GNSS-like signals, with the goal of taking control of the receiver and make it compute an erroneous position and time solution. In the thesis, we focus on the design and validation of different signal processing techniques, that aim at detection and mitigation of the spoofing attack effects. These are standalone techniques, working at the receiver’s level and providing discrimination of spoofing events without the need of external hardware or communication links. Four different techniques are explored, each of them with its unique sets of advantages and disadvantages, and a unique approach to spoofing detection. For these techniques, a spoofing detection algorithm is designed and implemented, and its capabilities are validated by means of a set of datasets containing spoofing signals. The thesis focuses on two different aspects of the techniques, divided as per detection and mitigation capabilities. Both detection techniques are complementary, their joint use is explored and experimental results are shown that demonstrate the advantages. In addition, each mitigation technique is analyzed separately as they require specialized receiver architecture in order to achieve spoofing detection and mitigation. These techniques are able to decrease the effects of the spoofing attacks, to the point of removing the spoofing signal from the receiver and compute navigation solutions that are not controlled by the spoofer and lead in more accurate end results. The main contributions of this thesis are: the description of a multidimensional ratio metric test for distinction between spoofing and multipath effects; the introduction of a cross-check between automatic gain control measurements and the carrier to noise density ratio, for distinction between spoofing attacks and other interference events; the description of a novel signal processing method for detection and mitigation of spoofing effects, based on the use of linear regression algorithms; and the description of a spoofing detection algorithm based on a feedback tracking architecture

    Impact of Spoofing of Navigation Systems on Maritime Situational Awareness

    Get PDF
    The development of contemporary navigation and positioning systems have significantly improved reliability and speeds in maritime navigation. At the same time, the vulnerabilities of these systems to cyber threats represent a remarkable issue to the safety of navigation. Therefore, the maritime community has raised the question of cybersecurity of navigation systems in recent years. This paper aims to analyse the vulnerabilities of the Global Navigation Satellite System (GNSS), Electronic Chart Display Information System (ECDIS) and Automatic Identification System (AIS). The concepts of these systems were developed at a time when cybersecurity issues have not been among the top priorities. Open broadcasts, the absence of or limited existence of data encryption and authentication can be considered as their primary security weaknesses. Therefore, these systems are vulnerable to cyber-attacks. The GPS as the data source of a ship’s position can relatively easily be jammed and/or spoofed, increasing the vulnerabilities of ECDIS and AIS. A systematic literature review was conducted for this article, supplemented by a SWOT analysis of the AIS service and particular case studies of recent cyber-attacks on these systems. The analysis of selected case studies confirmed that these systems could easily be spoofed and become a subject of data manipulation with significant consequences for the safety of navigation. The paper provides conclusions and recommendations highlighting the necessity for the users to be aware of the vulnerabilities of modern navigation systems
    corecore