
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Electrical & Computer Engineering Faculty
Publications Electrical & Computer Engineering

2021

DeepPOSE: Detecting GPS Spoofing Attack Via Deep Recurrent DeepPOSE: Detecting GPS Spoofing Attack Via Deep Recurrent

Neural Network Neural Network

Peng Jiang
Old Dominion University, pjiang@odu.edu

Hongyi Wu
Old Dominion University, h1wu@odu.edu

Chunsheng Xin
Old Dominion University, cxin@odu.edu

Follow this and additional works at: https://digitalcommons.odu.edu/ece_fac_pubs

 Part of the Electrical and Computer Engineering Commons, Information Security Commons, and the

Navigation, Guidance, Control, and Dynamics Commons

Original Publication Citation Original Publication Citation
Jiang, P., Wu, H., & Xin, C. (2021). DeepPOSE: Detecting GPS spoofing attack via deep recurrent neural
network. Digital Communications and Networks, 1-16. https://doi.org/10.1016/j.dcan.2021.09.006

This Article is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital
Commons. It has been accepted for inclusion in Electrical & Computer Engineering Faculty Publications by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_fac_pubs
https://digitalcommons.odu.edu/ece_fac_pubs
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_fac_pubs?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1409?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/j.dcan.2021.09.006
mailto:digitalcommons@odu.edu

DeepPOSE: Detecting GPS spoofing attack via deep recurrent
neural network

Peng Jiang, Hongyi Wu, Chunsheng Xin *

ECE Dept. and School of Cybersecurity, Old Dominion University, Norfolk, VA, 23529, USA

A R T I C L E I N F O

Keywords:
GPS spoofing attack
Position estimation
Recurrent neural network

A B S T R A C T

The Global Positioning System (GPS) has become a foundation for most location-based services and navigation
systems, such as autonomous vehicles, drones, ships, and wearable devices. However, it is a challenge to verify if
the reported geographic locations are valid due to various GPS spoofing tools. Pervasive tools, such as Fake GPS,
Lockito, and software-defined radio, enable ordinary users to hijack and report fake GPS coordinates and cheat
the monitoring server without being detected. Furthermore, it is also a challenge to get accurate sensor readings
on mobile devices because of the high noise level introduced by commercial motion sensors. To this end, we
propose DeepPOSE, a deep learning model, to address the noise introduced in sensor readings and detect GPS
spoofing attacks on mobile platforms. Our design uses a convolutional and recurrent neural network to reduce the
noise, to recover a vehicle's real-time trajectory from multiple sensor inputs. We further propose a novel scheme to
map the constructed trajectory from sensor readings onto the Google map, to smartly eliminate the accumulation
of errors on the trajectory estimation. The reconstructed trajectory from sensors is then used to detect the GPS
spoofing attack. Compared with the existing method, the proposed approach demonstrates a significantly higher
degree of accuracy for detecting GPS spoofing attacks.

1. Introduction

The use of GPS services has surged in recent years. The GPS tracking
device market is currently worth 1.57 billion USD and expects to reach
3.38 billion by 2025 [1]. The ability to acquire the real-time location of a
moving object is crucial to safety in many applications. For example, the
navigation system in an autonomous vehicle acquires GPS signals to
calculate the instant longitude, latitude, speed, and course to help a car to
reach its destination. However, the vigorous development of
GPS-enabled devices and the low-cost spoofing devices has stimulated
malicious users or attackers to initiate GPS attacks. Due to the open na-
ture of the civilian GPS signal structure and ubiquitousness of unen-
crypted GPS signals [2], it is easy for an attacker to launch a GPS spoofing
attack from a portable programmable off-the-shelf radio device such as
HackRF, or USRP in a distance where the radio transmitter can interfere
with the legitimate GPS signals [3–6]. Once the attacker takes over the
GPS signals in a certain area, the navigation system running on the target
vehicle will be fooled to follow a wrong route crafted by the attacker.
Researchers have demonstrated that it is possible to change the course of
a Tesla or simply force it to drive off-road by using a HackRF while the
vehicle is driving in an autopilot mode [7]. Similarly, attackers can also

control a drone or a vehicle to an unsafe area [8–11] or rob an unwitting
Pok�emon Go player while following the navigation to a nearby Pokestops
at isolated locations.

Fig. 1 demonstrates a life-threatening GPS spoofing attack against an
autonomous vehicle. The target vehicle (marked in black) is following a
planned route to approach the destination on the right. Before the vehicle
reaches the intersection, a spoofer sends the crafted GPS signals by using
a directional antenna. As the signal strength of spoofed signals is stronger
than the strength of the legitimate signal received from the satellites, the
vehicle will recalculate its current location based on the crafted signals
from the spoofer and is thus fooled to place itself to the spoofed position
(the left side of the road). Next, the navigation system will recalculate a
new route instantly to reach the original destination. On the new route,
the vehicle goes straight instead of turning right at an intersection. Thus,
the vehicle will deviate from the road.

In addition to navigation, GPS data has been widely used by many
other applications and services to improve services and user experiences.
For example, ride-hailing services such as Uber and Lyft use GPS to track
both drivers and passengers to calculate correct fares and ensure the
safety of both. The GPS spoofing attack raises a critical concern for such
services.

* Corresponding author.
E-mail addresses: pjiang@odu.edu (P. Jiang), h1wu@odu.edu (H. Wu), cxin@odu.edu (C. Xin).

Contents lists available at ScienceDirect

Digital Communications and Networks

journal homepage: www.keaipublishing.com/dcan

https://doi.org/10.1016/j.dcan.2021.09.006
Received 16 September 2020; Received in revised form 1 September 2021; Accepted 13 September 2021
Available online xxxx
2352-8648/© 2021 Chongqing University of Posts and Telecommunications. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Digital Communications and Networks xxx (xxxx) xxx

Please cite this article as: P. Jiang et al., DeepPOSE: Detecting GPS spoofing attack via deep recurrent neural network, Digital Communications and
Networks, https://doi.org/10.1016/j.dcan.2021.09.006

ARTICLE IN PRESS

mailto:pjiang@odu.edu
mailto:h1wu@odu.edu
mailto:cxin@odu.edu
www.sciencedirect.com/science/journal/23528648
http://www.keaipublishing.com/dcan
https://doi.org/10.1016/j.dcan.2021.09.006
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.dcan.2021.09.006

In this research, we propose DeepPOSE, a deep learning model that
utilizes motion sensors on mobile platforms to estimate vehicle positions
and further detect GPS spoofing attacks. Note that in addition to GPS
data, the motion sensor data is also often collected by services and ap-
plications. For example, Uber and Lyft use accelerometer and gyroscope
data from users to monitor irregular activities, such as an unexpected
long stop or a car crash. DeepPOSE is composed of two components, a
vehicle position estimator and a GPS spoofing detector. In order to estimate
the vehicle position from the noisy motion sensors readings, DeepPOSE
combines convolutional neural network and sequence-to-sequence neu-
ral networks, which is a variant of the recurrent neural network that
converts sequences from one domain into another [12,13]. In our design,
we take the multidimensional sensor measurements as the source
sequence, and the vehicle states, including the speed and direction, as the
target sequence.

To detect GPS spoofing, we propose a lightweight and efficient al-
gorithms that detect the GPS spoofing attack by recovering the real-time
trajectory from sensor data and comparing it with the trajectory recon-
structed by the GPS signals. It aligns the sensor data with a street map to
significantly reduce the error accumulation of trajectory estimation from
the sensor data. This results in a higher performance of spoofing
detection.

In summary, this paper makes the following contributions.

● We design an effective scheme for vehicle position estimation based
on noisy motion sensor data, using the convolutional neural network
and sequence-to-sequence neural networks.

● We devise a novel algorithm to reconstruct vehicle trajectory from
noisy motion sensor data with a map alignment scheme. This reduces
the error accumulation in trajectory estimation and achieves effective
GPS spoofing detection.

The rest of the paper is organized as follows. Section 2 discusses the
related work. Section 3 explains the threat models. Section 4 describes
the overall architecture of DeepPOSE. We present design details of the
two components of DeepPOSE, the vehicle position estimator and
spoofing detector, in Sections 5 and 6. The performance of DeepPOSE is
evaluated in Section 7. Finally, we conclude the paper in Section 8.

2. Related work

For GPS spoofing attacks, the attacker's motivation can be manifold.
An attacker may intend to acquire the valuable goods on board or hijack
the important person sitting in an autonomous vehicle, or cause chaos by
jamming the GPS signal in a particular area and resulting in massive GPS
failures. An evil Uber or Lyft driver can also report a plausible route to the
application server to escape the tracking of the current vehicle from the
monitoring center.

2.1. GPS spoofing attack

The open-source GPS signal generator gps-sdr-sim [14] makes it
possible to craft the GPS signals for a set of fake trajectory or navigation
routes against various targets by using a device that costs less than $300
[9]. Based on the requirements for a successful GPS spoofing attack, an
attacker can successfully spoof the navigation system [4,15,16], un-
manned aircraft [5,17], or ships [6], and control the target entities to
follow a different route and reach as far away as possible from the
intended locations. Most of the above spoofing attacks focus on deliv-
ering the target on the pre-determined route.

2.2. GPS spoofing detection

A considerable number of studies on countermeasures against GPS
spoofing attacks exist in the literature. The authors of [18] utilized the
Doppler shift of the GPS signals and the local clock to detect the existence
of GPS spoofing. Similar to the encryption mechanism applied to the
military GPS signal reception, cryptographic techniques were proposed
in Refs. [19,20] to defend against the GPS spoofing attack in the civilian
satellite system. However, adopting an encryption mechanism requires
significant changes to the current GPS architecture; hence it is not
practical to be implemented. Even if this is possible, it is also extremely
hard to upgrade all the GPS transponders. To address this issue, the au-
thors in Ref. [21] proposed a detection method called Crowd-GPS-Sec,
which deploys a global scale message monitoring system to localize the
source of the GPS spoofing attack against the moving airborne targets by
analyzing the Time Difference of Arrival (TDoA) of position advertisements
observed on different sensors. However, this detection mechanism relies
on the support of the huge number of sensors deployed across the world
and cannot be effectively deployed on commercial mobile platforms.

Fig. 1. A demonstration of the GPS spoofing attack against the autonomous vehicle.

P. Jiang et al. Digital Communications and Networks xxx (xxxx) xxx

2

ARTICLE IN PRESS

GNSS signals

off road

, ,: =-•(:~, ._
-~;:_;:_;:...;::a--r I At. At~ ,,~, - - _,~,·

spoofed position original destination

There was one study on GPS spoofing detection and mitigation for UAVs
[22]. This solution, nevertheless, requires the existence and assistance of
nearby unspoofed UAVs.

The inertial sensors navigation system shows its robustness and
resilience to defend against wireless signal spoofing and jamming at-
tacks. It is more flexible to be implemented on the mobile platform to
defend against the GPS spoofing attack [23–25]. However, the accumu-
lated error degrades the navigation capability of the mobile devices
significantly and makes the inertial sensor unable to reliably estimate the
vehicle position for a long time.

DeepPOSE utilizes deep learning techniques to reconstruct the vehicle
trajectory effectively on the basis of noisy motion sensors measurements.
In recent years, deep learning has been widely used in processing tasks
with noisy multi-dimensional input due to its superior capability in
modeling spatial and temporal relationships with a flexible combination
of structures. ConvLSTM [26] is the first model proposed to extend the
convolution structure inside the recurrent neural network to capture the
spatiotemporal correlations for precipitation based on the sequenced
input data. DeepSense [27] and DeepMove [28] are inspiring works that
apply deep learning to the mobile sensing applications for both regres-
sion and classification problems, such as vehicle position tracking and
human activity recognition. However, both approaches overlook the
long-term dependency in both input and output sequence, which is
critical for spatial-temporal modeling.

3. Threat model

As discussed in the introduction, we consider the following threat
model with the presence of a malicious user (Eve) who can either
manipulate the GPS signal on his own device or broadcast the crafted GPS
signal using the open-source software and an external antenna to fool a
nearby device [14].

Case 1. Eve is an evil driver of ride-hailing services such as Uber and
Lyft, capable of manipulating the nearby devices' GPS receptions before
reporting their real-time location to the ride-hailing monitoring center.
The objective of Eve is to take the passenger, Alice, to an unreported
route without raising the alarm.

As the ride-hailing applications have access to both Alice's and Eve's
mobile devices to track their real-time locations, Eve needs to hijack the
GPS signal received by Alice in order to bypass the detection from the
monitoring center. Otherwise, their real trace can be easily revealed in
Alice's GPS report. Meanwhile, the ride-hailing App on both Eve's and
Alice's devices can report their motion sensor readings along with GPS
data to monitor irregular activities, such as an unexpected long stop. As a
result, Alice's GPS single can be hijacked by Eve. However, because Eve
cannot compromise Alice's device to alter the motion sensor measure-
ments, the monitoring center can still use motion sensor measurements
from Alice's device to verify if Alice's GPS signal is spoofed or not.

Case 2. In this scenario, Eve is an evil attacker who is capable of
broadcasting spoofed GPS signals to the nearby autonomous vehicle,
Alice, using the open-source GPS software [14]. As Eve intends to
mislead Alice to follow a spoofed route instead of the original one, Eve
has to “teleport” Alice to a spoofed position, then emulates the movement
from the new position by sending crafted GPS signals. But Alice's motion
sensor measurements remain untouched in this attack because Eve
cannot compromise Alice's device to alter the motion sensor measure-
ments remotely.Under this circumstance, Alice can recover the real tra-
jectory using motion sensor measurements to determine if she follows a
wrong route or not.

In summary, the defender can use motion sensor measurements from
Alice's device to reconstruct the real trajectory for detecting the GPS
spoofing attacks in both cases.

4. DeepPOSE framework

This section introduces the proposed framework, DeepPOSE, for GPS
spoofing detection using motion sensor data. As shown in Fig. 2, Deep-
POSE has two components, a vehicle position estimator and a GPS
spoofing detector.

4.1. Vehicle position estimator

This component contains a deep neural network for estimating the
vehicle speed and direction in a sequence, which is used to infer the
vehicle position. This model takes a sequence of sensor measurements as
input and predicts a sequence of vehicle speed and direction accordingly.
When training the model, we use the GPS coordinates from the training
datasets to compute the real speed and direction, which are compared
with the predicted vehicle speed and direction using the sensor mea-
surements in the training datasets as the model input. Here we assume
that the training datasets are from a trustable source, and hence the GPS
coordinates are trusted. After the model is trained, GPS coordinates are
no longer needed. It only needs the motion sensor measurements as input
and predicts the vehicle speed and direction. Nevertheless, before
feeding the raw sensor measurements to the deep neural network, we
need to perform pre-processing, including the sensor reorientation and
denoising.

4.2. GPS spoofing detector

This component obtains the GPS logs reported by the user and uses
the sensor measurements and a street map to determine whether the
reported GPS logs are spoofed. In this paper, we use the OpenStreetMap
(OSM) [29], which contains all indexed edge and vertex information in
an area. The detector matches the reported GPS logs with the street map
to obtain the path from the source vertex to the destination vertex. It then
aligns the sensor measurements with each segment on the path and re-
constructs a trajectory using the position estimator with the aligned
sensor measurements. The spoofing detector compares the trajectory
constructed from the GPS logs and the trajectory constructed from the
sensor measurements and then determines whether there is a spoofing
attack.

4.3. Data pre-processing

4.3.1. Mobile sensor reorientation
For the mobile sensor platform, the device's position affects the

measurement significantly. There are two relevant coordinate systems
that exist simultaneously for a mobile device in a moving vehicle. The
first one is the desired “canonical” coordinate, as illustrated by the red
axes in Fig. 3, which is used to characterize the vehicle motion status. The
second one is the three-axis accelerometer configuration (black axes) in
some arbitrary orientation in terms of the placement of the mobile device
on the vehicle's dashboard.

Let a ¼ (ax, ay, az) be the vector of the three acceleration measure-
ments taken at a given point in the sampling interval, and d ¼ (ds, dv, df)
denotes vehicle's coordinate system. df is the moving direction of the
vehicle. In order to eliminate the difference between two coordinate
systems, and derive the useful vehicle speed estimation, we use a rotation
matrix R0 [30] to align the value measured from the mobile sensor to the
“canonical” coordinate after each measurement. The new rotating sensor
measurement can be expressed as d ¼ a ⋅ R0

4.3.2. Vehicle speed and direction extraction
In real-world applications, most mobile devices cannot access the

vehicle states such as the speed and direction (steeling wheel angle)
directly from the OBD-II port on a moving vehicle. Usually, the vehicle
speed and direction are derived from a series of GPS coordinates. The
current vehicle speed can be calculated by dividing the distance between

P. Jiang et al. Digital Communications and Networks xxx (xxxx) xxx

3

ARTICLE IN PRESS

the current position i and the previous position i� 1 (i> 1) by the elapsed
time. However, we need to know the position of the next location iþ 1 for
obtaining the current heading direction at position i. Both the distance
(D〈i;j〉) and bearing (B〈i;j〉) between position i and j can be calculated from
the following equation, given two adjacent GPS coordinates Ci and Cj, and
each of them contains a pair of latitude and longitude information.

where φi is the latitude at Ci, Δλ represents the longitude difference be-
tween Ci and Cj, and R is the earth's radius.

Once we can get the distance and bearing between two sets of GPS
coordinates, we can obtain the vehicle speed vi and relative direction

θ〈i,iþ1〉 at position i as follows.

vi ¼
D〈i�1;i〉

ti � ti�1

θ〈i;iþ1〉 ¼ B〈iþ1;iþ2〉 � B〈i;iþ1〉

(2)

4.3.3. Driving patterns analysis
Accelerating, decelerating, and turning are common driving actions

in real-world driving scenarios. These actions are performed by human
drivers and restricted by natural physical boundaries such as the vehicle's
powertrain and road speed limits. Therefore, they show a strong peri-
odicity. For example, a driver can take a relatively long time to speed up
to the road limit from a stationary position, but it only takes a few sec-
onds to stop completely in front of a stop sign. Analyzing such physical
boundaries is important for our study to understand the composition of
the noise in sensor data and physical laws that affect a moving vehicle, as
well as to provide constructive guidelines for customizing parameters in
our DeepPOSE framework.

Fig. 4 provides a detailed driving behavior analysis based on the trip
data from the BDD-100K [31] dataset, which is one of the largest driving
video datasets in the literature, with 100K driving videos and 10 tasks
aligned with the detailed GPS/IMU records to reveal the driving patterns
and vehicle trajectories. The datasets reflect the diversity of geography,
environment and weather, covering various driving conditions. Fig. 4(a)
is a speed diagram of one trip in the dataset. From the figure, we can tell
the selected trip has three accelerating and decelerating periods in one
trip segment. Fig. 4(b) plots the CDF of the average time spent in accel-
eration and deceleration of vehicles in all trips in the dataset. From this
figure, we observe that 90% of the acceleration and deceleration actions
are completed within 10 s, which matches the fact that the average 0–60
MPH time for a vehicle is about 7–8 s. However, many other maneuvers,

such as lane changes and overtaking, may require less time to complete
than acceleration. As shown in Fig. 4(c), most subtle speed changes only
take less than 5 s.

These features give us insights into changes in speed and direction in
real-world driving scenarios and how to collect the most crucial data for

Fig. 2. Architecture of DeepPOSE.

Fig. 3. Coordinate systems. The red axes denote the “canonical” coordinate, and
the purple axes denote the accelerometer coordinate related to the position of
the phone.

a ¼ sin 2ðΔφÞ þ cos φi � cos φj � sin 2ðΔλ=2Þ
c ¼ 2 � arctan 2ð ffiffiffi

a
p

;
ffiffiffiffiffiffiffiffiffiffiffi
1� a

p
Þ

D<i;j> ¼ R � c
B<i;j> ¼ arctan 2sin Δλ � cos φiþ1; cos φi � sin φj�

sin φi � cos φj � cos Δλ

(1)

P. Jiang et al. Digital Communications and Networks xxx (xxxx) xxx

4

ARTICLE IN PRESS

ConvL STM based
Seq2Seq Network

- - - - '
:Parameter - - - - ,

Vehicle Posit ion Estimator

Pos it ion
Estimator

Monitoring
Center

~ Re orted Path-------,

Direction 1---.
Predicted Path

Speed

GPS Spoofing Detector

vehicle position estimation. For instance, vehicle speed estimation may
depend on the vehicle state in the past 10 s or longer, whereas the esti-
mation of the current directionmay require a shorter observation time. In
the next section, we will discuss how DeepPOSE utilizes these physical
boundaries for the sequence-to-sequence approach and reconstructs a
more accurate vehicle trajectory for GPS spoofing detection.

5. Vehicle position estimation

In this section, we introduce the detailed design of Vehicle Position
Estimator, a core component in the DeepPOSE framework using deep
learning technique to estimate the vehicle speed and direction by taking
a sequence of sensor measurements as input.

5.1. Model inputs and outputs

We assume there are K different sensors with measurements denoted
as treat as imageI ¼ fI1;…; IKg, k 2 {1, …, K}. Sensor k has the
sampling frequency fk. Let dk represent the number of axles for each
sensor, e.g., measurements along x, y, and z axes. The GPS coordinates C
are sampled at the frequency fc. We align the raw sensor measurements in
Fig. 5 to explain how to turn the raw sensor measurement into the format
we need for the deep learning model.

For ease of description, we define a time unit as the interval between
two adjacent GPS coordinates, i.e., 1/fc second. In our experiments, it is
equal to 1s because the GPS sampling rate is 1 Hz. Take sensor k as an
example. We use mk to represent the total number of sensor

Fig. 4. Statistical analysis of speed changes of all trips in BDD-100K dataset: a) one sample trip from the dataset, (b) CDF of the average time taken for accelerating and
decelerating, c) histogram of the average time taken for accelerating and decelerating.

Fig. 5. Alignment between the motion sensor measurements and GPS coordinates.

P. Jiang et al. Digital Communications and Networks xxx (xxxx) xxx

5

ARTICLE IN PRESS

Decelerating Period Accelerating Period

so

- 40 .s::.
E
~ 30 -"'C

Q,l

Q,l 20
C.

V'l

10

1.0

0 .8

u. 0 .6
C
u 0.4

- I--: ,-_,-_-..-
_I-_I

_, .,J

I •' ,-_,
I I ,,-

1_1
_I
I I
1-
1 ,,

1·
I
I ~,

0.2 :
I
I

10 15

---- Accelerating

20

Time (s)

(a)

0.7

0.6
>,
~ 0.5

~ 0.4

g 0.3
~

LI. 0 .2

O.O c,.-: --~-~------~ D-ec~e-le_r_at~in_g~
0.1

0.0 O
0 5

Timeline

10 15 20 25
Duration (s)

(b)

GPS Coordinates @fc Co
V

<Speed, Direction>

30

25 30 35

- Accelerating
~ Decelerating

5 10 15 20 25 30
Duration (s)

(c)

Cn- 2 Cn- 1 Cn
V V

< Vn- 1' 0 n - 1 > < V n , 0n >

Raw Measurement @{k
I k

.----------,---------.-----------.----}- dk

m,c

measurements from sensor k collected in each trip. Let n denote the
number of GPS coordinates. Let lk be the number of sensor data samples
of sensor k in one-time unit, i.e., lk ¼ fk/fc. If sensors are not sampled at
the same sampling rate, we need to downsample the high-frequency
sensor to ensure the same number of measurements per time unit.

Unlike other deep learning models that require each data input to be
paired with a target or label, the sequence-to-sequence model used in our
design requires a series of inputs to be paired with a series of target
speeds and directions in the time domain. When training the model, the
real vehicle speed and direction can be derived from adjacent GPS co-
ordinates in the training datasets by using (2), which are assumed
trustable. After all sensor measurements are aligned with the correct
targets, we split the raw measurements into small sequences with the
same number of the time unit, nτ. We use a 3-dimensional matrix, Xk, to
represent an input sequence generated by the sensor k. The depth of the
input is nτ, which is also the number of encoder/decoder in the sequence-
to-sequence model. The height of the input is dk, which depends on the
number of axles of sensor k. The width of the input is ω ⋅ lk, where ω is the
size of the sliding window to control the number of sensor measurements
aligned to one single target. When multiple sensors are considered, we
stack the inputs into a nτ �

P
kdk � ω ⋅ lk matrix treat as imageX , as

shown in Fig. 6. For example, suppose wemeasure the data from amobile
platformwith two three-axis sensors (

P
kdk¼ 6), the sequence length (nτ)

is set to 10, and the sampling rate for both sensors is set to 50 Hz. The GPS
sampling rate is 1 Hz. The real speed or direction can then be computed
every second. There is a target every second. A straightforward approach
is to use sensor measurements within 1 s to predict one speed or direction
data point. However, generally, the performance will increase if we use a
sliding window of sensor measurements, e.g., within the last omega sec-
onds, to predict the speed or direction of the current second. Suppose we
let omega ¼ 5, then the input to our model has the shape nτ �

P
kdk � ω ⋅

lk or 10 � 6 � (5 � 50).
As we discussed in Section 4.1.3, the change of vehicle speed and

direction is limited by different physical laws and boundaries. Therefore,
we use different parameters to train models for the estimation of vehicle
speed and direction separately. A unified symbol, treat as imageY,
denotes the output vector corresponding to each input vector. When the
model is used to estimate the vehicle speed, treat as imageY ¼ v,
where v ¼ {vt}, t 2 {1, …, nτ}. Similarity, treat as imageY ¼ θ when
the target is the vehicle direction. For the rest of this paper, all vectors are
denoted by bold treat as imageY, and an instant target value at time t
is denoted by Yt .

Since hardware specifications limit the choice of dk and lk, the most
significant factor that could affect the selection of the value of nτ is the
time duration of the common driving maneuvers. Based on the analysis of
all trips from the BDD-100K dataset, we have discovered the driving
maneuvers related to the speed and direction change, such as acceler-
ating and decelerating, are usually completed within 10 s. More than
90% of common maneuvers such as lane changes and overtaking require
less than 5 s. With the sampling rate as 1 Hz, nτ should range from 5 to 10
s. We will discuss how the selection of nτ affects the system performance
in Section 7.

5.2. Sequence-to-sequence modeling

Sequence-to-sequence learning (seq2seq) as a variant of RNN has
achieved great success in machine translation, speech recognition,
chatbots, text summarization and other series of data learning. Unlike a
single or stacked RNN, which operates on a sequence and feeds its own
outputs for subsequent cells, most seq2seq models are encoder-decoder
models composed of a set of two RNNs. The first RNN, encoder, trains
the input data and then passes the last state of its recurrent layer as an
initial state to the first recurrent layer of the decoder. Meanwhile, the
decoder obtains the state of the encoder's last recurrent layer and uses it
as an initial state to its first recurrent layer, the input of the decoder is the
target sequences such as speed or direction that we want to estimate.

From the following equation, we know that the goal of the encoder
LSTM is to estimate the conditional probability pðy1;…; ynτ jx1;…; xnτ Þ,
where ðx1;…; xnτ Þ is the input sequences of sensor measurements, and
ðy1;…; ynτ Þ is the vehicle target sequences. h is the accumulated hidden
representation of input sequences ðx1;…; xnτ Þ based on the last hidden
state produced by the LSTM encoder.

pðy1;…; ynτ jx1;…; xnτ Þ¼
Ynτ

t¼1
pðytjh; y1;…; yt�1Þ (3)

The overall scheme is outlined in Fig. 7. Based on the sequence-to-
sequence model, the encoder LSTMs process the input sequence X of nτ
elements and pass the internal state (hidden state) representation to the
next encoder until it reaches the last encoder. Then, the first decoder (on
the right-hand side) gets the hidden state generated by the last encoder
and adds one initial input Y0 to generate its target output Y1, and updates
the hidden states. The second decoder takes the new hidden state and Y1

as inputs to generate a new output Y2, and so forth. Eventually, the target
sequence Y is obtained, which is ðy1;…; ynτ Þ. As the decoding process
continues in a recursive manner, we just need to give the initial state to
the decoding trip. For example, if the vehicle is moving from a stationary
position, then Y0 should be set to zero. In other cases, it should be the
vehicle speed or direction before starting the new decoding process.

Algorithm 1 explains the detailed steps in the decoding process. The
length of the decoding sequence is controlled by nτ. We first encode the
sensor inputs in the encoding model and learn the hidden states h from
the input sequences as the key feature. Once we know the starting value
of the output sequence, thenwe start to decode each sequence recursively
until we reach the end of the sequence.

Algorithm 1. Sequence decoding algorithm

5.3. ConvLSTM network

The standard sequence-to-sequence network is composed of a set of
vanilla LSTM encoder and decoder units to interpret the sequential data.
The vanilla LSTM network suffers from vanishing and exploding gradient
problems. Hence it is easy to overfit. To address this issue, the ConvLSTMFig. 6. A general representation of model input.

P. Jiang et al. Digital Communications and Networks xxx (xxxx) xxx

6

I

ARTICLE IN PRESS

Algorithm 1 Sequence decoding algorithm

I: INPUT: Sensor input X, initial target Yo, encoder
model Enc(·), and decoder model Dec(·)

2: OUTPUT: Y
3: Get encoding state value h = Enc(X)
4: Set target sequence Y = [];
5: Set current target Ye = Yo;
6: for t = 1 ➔ n7 do
7: Y',h' = Dec(Ye,h);
8: Y.append(Y');
9: h' --+ h;

10: Y' -+Ye;
11: end for
12: return Prediction Target Y

unit was proposed in Ref. [26] to make it more robust by introducing the
convolution operations in exploring spatiotemporal features of the time
series data. The ConvLSTM is a good tool for vehicle speed and direction
estimation as the LSTM part can capture the temporal transition of a
moving vehicle, and the convolution layer can capture the local spatial
data. As the core function of LSTM, the memory cell ct plays a vital role to
accumulate the previous hidden states and apply the input xt�1 to the
next step of the sequence. However, in addition to the standard LSTM
that only uses features in one dimension, ConvLSTM is capable of taking
multi-dimensional data as inputs (multi-dimensional sensor data in our
case). The detailed state transition of convLSTM can be described by the
following formula.

it ¼ σðWxi*xt þWhi*ht�1 þ biÞ;
f t ¼ σ

�
Wxf *xf þWhf *ht�1 þ bf

�
;

ct ¼ f t � ct�1 þ it � tanhðWxc*xt þWhc*ht�1 þ bcÞ;
ot ¼ σðWxo*xt þWho*ht�1 þ boÞ;

ht ¼ ot � tanhðctÞ;

(4)

where σ is the logistic sigmoid function, it, ot, ct and ht are vectors to
represent values of the input gate, forget gate, output gate, cell activa-
tion, and cell output at time t, respectively.

DeepPOSE employs three convolution layers for each encoder, with
64, 128, and 256 filters, receptively. Each convolution layer uses a kernel
with the size (1,5). After each convolution layer, a batch normalization
layer and a max-pooling layer are followed to reduce the internal co-
variate shift [32] and the spatial size of the feature.

5.4. Loss function

In the vehicle position estimation, two components are required:
vehicle speed and direction. Due to the change of vehicle speed and di-
rection follows different patterns, as mentioned in Section 4.1.3, we need
to train two models with different parameters to obtain the best perfor-
mance. So, for each individual model, the task is to infer the vehicle
speed, or direction, given a sequence of sensor inputs over time. This is a

standard regression problem because the speed and direction are floating
values. Thus, we select the mean square error as the cost function.

In the training process, we use D(⋅) to denote the decoder output of
our model and 〈treat as imageX ;treat as imageY〉 to denote the
training samples and labels. Then the loss function for training the model
is given as follows.

L ¼
Xnτ

t
ℓðDecðX tÞ;YtÞ þ

X

j

λjPj (5)

The second term in (5) is the regularization function, and λj controls
the importance of penalty or regularization terms.

6. GPS spoofing detection

The underlying idea of spoofing detections in our design is to compare
whether the path constructed by the reported GPS coordinates and the
path constructed by the position estimator follow the same driving
pattern. If the GPS signals are spoofed, the constructed path will be quite

Fig. 7. Architecture of the proposed ConvLSTM-based Sequence-to-Sequence Network. The hidden layer representation of accelerometer and gyroscope data is
encoded from left to right with LSTM cells. The final hidden state of the sequence is forwarded to the decoder as part of the input. The initial speed or direction needs
to be provided to start the decoding process.

Fig. 8. The displacement estimation of a vehicle in a 3-min real-world driving
based on the derived vehicle speed from the accelerometer readings.

P. Jiang et al. Digital Communications and Networks xxx (xxxx) xxx

7

Timeline

Ldk
k

ARTICLE IN PRESS

t1 tp t n,
---------- - -- - --------- - -- - ----------------- - ----------- - -------►

{ ~
~ u
\ {

f

LSTM Interna l

Encoder states

LSTM
Decoder

.,:,

< Vt,,,,. - 1 : 0t,,,,. -l >

~ ~

~ ~·· /

LSTM
Encoder

Internal LSTM
- siates • Encoder

-E
...,. - True displacement

1: 5000 - Raw sensor data
a, - Kalman Filtered

E 4000
a,
u
m 3000 a.
.!!! 2000
C
_!! 1000 -~
.c 0 ,! '-----,---,----r------,-----r-----,---,----r--~
_,. 0 25 50 75 100 125 150 175

Time(s}

different from the path constructed from the motion sensor data. How-
ever, it is a great challenge to reconstruct a reasonably accurate trajectory
path from the noisy motion sensor data. This is because the estimation
error from the noisy motion sensor data is relatively large, and such a
large estimation error quickly accumulates to be out of control, making
the reconstructed path useless — for example, Fig. 8 shows the accu-
mulated error of the distance estimation from the starting point while
driving in an urban area for 3 min. We can see even after only 3 min, the
displacement estimation error has accumulated more than 800 m for a
distance of only 4000 m, with the best noise-canceling method we have
tested.

To address this issue, we propose a smart map alignment scheme to fit
the reconstructed path from motion sensor data to the street map, which is
of great benefit to reducing the error accumulation since the errors are
often reset to zero on a new road segment. Next, we describe this scheme.

6.1. Map-aided alignment

Let G denote a street map, which is a directed graph in an area, where
vertices and edges represent intersections and road segments between
intersections, respectively. If a path P exists between two intersections/
vertices vi and vj, it means that we can reach vj by following a set of road
segments or edges from vi, i.e., P : e1 → e2 → … → en, where e1.start¼ vi,
and en.end ¼ vj.

Directly mapping the motion sensor data to a street map is a great
challenge due to the high noise of the former. To address this challenge,
we first map the reported GPS data on the street map to obtain the path
traveled by the driver, P : fe1 → …→ ekg. Then, we align the sensor
measurements X with the road segments or edges according to the
timestamp of the corresponding GPS coordinates C. Specifically, we first
find the GPS coordinates Ci on edge ei. Then, based on the timestamps of
GPS coordinates Ci, we find the corresponding sensor measurements X i.
Thus, we align the sensor measurements with the edges, assuming that
there is no GPS spoofing. In the case that there is GPS spoofing, we still
use this scheme to align sensor measurements. Our detection algorithm
can actually utilize this incorrect alignment to detect GPS spoofing.

Unfortunately, even the GPS map alignment is not trivial in our
problem because the real driving trajectory and the trajectory repre-
sented in the map can be different, which is caused by various factors,
including GPS measurement noises, wide road conditions, etc. For
example, Fig. 9 shows a real trajectory of the vehicle (red nodes) and the
matched nodes on the street map (green nodes) when the driver makes a
left turn at a wide intersection. We notice the turn takes about 7 s (GPS
sampling rate is 1 Hz), and the real driving trajectory drifts from the
projected path on the map, {e1, e2, e3, e4}. It is reasonable to drift from
edge e1 because the vehicle needs to change lanes before making a left
turn. But, it is not likely to follow e2 and e3 strictly to make a sharp turn in
real-world traffic. Therefore, we have to precisely align the starting and
ending points of sensor measurements in order to correctly reconstruct a
turn from the motion sensors when fitting the reconstructed path on the
real path.

Inspired by the work in Refs. [33,34], we use two normal

distributions to simulate the spatial and direction probabilities of vehi-
cles, which defines the possibility of mapping the GPS point Ci vertex vj
on the street map based on the spatial and angle differences, respectively.

Pðvj; CiÞ ¼
1

σs
ffiffiffiffiffi
2π

p e�dðvj ;CiÞ2
�
2σ2s (6)

Qðej; CiÞ ¼
1

σd
ffiffiffiffiffi
2π

p e�ΔBðej ;CiÞ2
�
2σ2d (7)

where dðvj; CiÞ is the distance between the report GPS coordinate Ci and
the GPS coordinate of vertex vj on the street map, and ΔBðej; CiÞ is the
bearing difference between edge ej and Ci, which is expressed as B〈vjþ1 ;vj〉 �
B〈iþ1;i〉, where vjþ1, vj are the vertices on ej, and B〈iþ1;i〉 is the bearing
between Ci and Ciþ1. The bearing calculation is in (1). σs and σd are the
standard deviation of the position measurement error and directional
measurement error obtained from the empirical experiments. Combining
(6) and (7), we obtain:

Pi
j ¼ Pðvj; CiÞ � Qðej; CiÞ (8)

which represents the probability of GPS coordinate Ci being mapped to
vertex vj. We apply the above model to align the GPS coordinates with
each vertex on the route.

6.2. Detection mechanism

We assume a user continuously reports its current GPS coordinates
treat as imageC to the application server, together with the motion
sensor measurements. In order to detect the GPS spoofing attack, the
application server utilizes all the GPS coordinates and sensor measure-
ments in an interval starting from a past time point to the current time.
This makes it possible to detect GPS spoofing attacks dynamically and
report the attack in time to avoid possible severe damage. Certainly, it
can also be used to detect if there is a GPS spoofing attack for a completed
trip to catch fraud.

6.2.1. Detection for threat model case 1
Let C and X denote the GPS coordinates and sensor data, respectively.

Algorithm 2 describes the GPS spoofing detector. The algorithm first uses
a map-matching algorithm in Ref. [33] to construct a path P based on the
GPS coordinates treat as imageC and the street map G. In this paper,
we use the OpenStreetMap [29]. After the GPS-based path P is con-
structed, then for each road segment or edge ei 2 P, we find the time-
stamps of the GPS coordinates corresponding to ei, and accordingly
identify the list of motion sensor data that is in the same time frame. Let
X i denote the motion sensor data corresponding to ei. This process is
explained from line 9 to line 14. To be more specific, we need to search
the exact starting and ending GPS points (Cstart and Cend) for each edge on
the path and then pack the sensor measurements between the timestamps
at these two GPS positions into X i. The core function we use to match a
GPS point and a vertex, MatchGPS in lines 9 and 13 is described in Al-
gorithm 3.

P. Jiang et al. Digital Communications and Networks xxx (xxxx) xxx

8

ARTICLE IN PRESS

Algorithm 2. Case 1 Spoofing Detection Algorithm

Algorithm 3. Match GPS Algorithm

Once we have obtained the GPS starting point, we need to search
along the road to the ending point. In line 10, we introduce a constant δ to
control the number of edges for consideration before concluding this
road segment. After analyzing the road structures in the city of Norfolk,
Virginia, we have found that the average and medium distances between
two vertices on the map are 122 and 91 m. According to this finding, if
two or more vertices are in close distance, it is likely to be an intersection
and requires more attention to the reconstruction. For example, edges e2
and e3 in Fig. 9 are in this case. In this paper, we set δ to 90 m, which
means multiple short edges will be concatenated as a longer road
segment. This allows us to capture enough data that matches the driving
pattern. If the edge distance is too small, it may separate a whole driving
pattern into pieces. It will increase the difficulty of interpreting the
patterns behind the wheel.

After we have obtained the ending position and packed the sensor
collections between these two points intoX i (line 15), we can reconstruct
the real trajectory by inferring the vehicle speed and direction transition
with the sequence decoder Dð�Þ. Moreover, we also reconstruct the tra-
jectory from the GPS coordinates from the starting point to the endpoint
on edge ei (or combine edges as discussed above). For each pair of tra-
jectories, we use the well-known Dynamic Time Wrapping (DTW)

algorithm [35] to measure the similarity between them. Let dtw(TA, TB)
represents the difference between two trajectories TA and TB. However,
as the length of road segments in a street map may vary in a broad range,
we normalize dtw(TA, TB) by dividing it by the length of both trajectories
as in (9). It is denoted as diff ðTA ;TBÞ. The normalized trajectory difference
is used as the evaluation criterion in line 19 to score the overall similarity
between TDðX iÞ and TCstart→Cend .

diff ðTA ;TBÞ ¼
dtwðTA; TBÞ � 2
lenðTAÞ þ lenðTBÞ

(9)

The result on each selected edge is stored in a queue M. After the
average trajectory difference from all edges is obtained, we compare it to
a threshold α to distinguish whether this user is under the GPS spoofing
or not. The selection of the threshold values α is based on the charac-
teristics of trips, e.g., the average trip length, and is empirically set based
on the characteristics of the trip in an area. We will have a further dis-
cussion in Section 7.3.2 regarding the selection of α.

6.2.2. Detection for threat model case 2
In Threat Model Case 2, Eve can start a spoofing attack when Alice is

in the middle of a road. As illustrated in Fig. 1, an external attacker Eve
misleads the autonomous vehicle to go off-road at an intersection. This is
rather challenging as the spoofing detector needs to identify the attack
very quickly. We propose Algorithm 4 for this type of threat, which can
achieve live detection even if the vehicle is currently driving in the
middle of a road.

Algorithm 4. Case 2 Spoofing Detection Algorithm

The basic idea behind Algorithm 4 is to determine whether the
vehicle travels along the planned path to the vertex on the map when the
vehicle is driving on the current edge towards the next edge en. To be
specific, Algorithm 4 uses the last vertex vl passed by the vehicle, the next
edge en in the planned path, and GPS coordinates C and sensor mea-
surements X as the input. First, we check whether the vehicle is spoofed
until the last vertex vl using the detection algorithm in the preceding
section (Algorithm 2). If spoofing is detected, there is no need to continue
as we cannot trust the current position at all. If there is no spoofing
detected so far, then we can extract the sensor measurements from the
timestamp of Cvj to the current time. Similar to Algorithm 2, we need to
use the sequence decoder to extract the instant speed and direction to
reconstruct the trajectory. This process will go on until the end of the
current edge, vj is reached. In order to analyze the similarity between the
current path and the planned path, the same evaluation metric (9) is
adopted. The diff ðTDðX i Þ ;Tvi→vj Þ

represents the difference between the current

path and the planned path. Another threshold β is used to determine
whether the current vehicle follows the planned route or not. Similar to
α, the selection of the threshold values β is also based on the character-
istics of trips, which will be discussed in Section 7.3.3.

P. Jiang et al. Digital Communications and Networks xxx (xxxx) xxx

9

ARTICLE IN PRESS

Algorithm 2 Case 1 Spoofing Detection Algorithm

1: Input: Map: g = (V, E), reported GPS coordi
nates: C, sensor measurements: X, sequence de
coder: V

2: 'P : {e1 ➔ ... ➔ ek) = ST-Matching({}, C) II return
all connected edges on the route

3: Initialize an empty queue M = []
4: s; = e;.start II starting vertex of edge i
5: v; = e;.end II ending vertex of edge i
6: i = 1
7: while i :', k do
8: j = i
9: Cs,art =MatchGPS(s;, C)

10: while distance(s;, Vj) < o and j :', k do
11: j = j + 1
12: end while
13: Cend =MatchGPS(vj,C)
14: fstart, fend +- timestamps of Cstart and Cend·
15: X; +- sensor data from ts,art to fend
16: Speed, Direction +- V(X;)
17: T :D(X;) +- trajectory from Speed and Direction
18: Tc"""--->C,ml +- trajectory from Cstart to Cend
19: Add diffcr,xx;),Tc,'",,➔c,.d) to queue M
20: i=i+l
21: end while
22: if 1\~t1 ~ a then
23: Spoofing Detected!
24: end if

Algorithm 3 Match GPS Algorithm

1: Input: Target vertex: Vj, GPS coordinates C
2: Number of GPS coordinates: n +- len(C)
3: Initialize the best match id: k +- 1
4: for i = 1 ➔ n do
5: calculate P~ from (8
6: if pi_ > pk then k +- i

J J
7: end if
8: endfor
9: Return ck

Algorithm 4 Case 2 Spoofing Detection Algorithm

1: Input: Vehicle last vertex: vz, GPS coordinates C,
sequence decoder: V

2: Use Algorithm 2 to detect spoofing until vz
3: if no spoofing detected until vz then
4: fstart +- timestamps of Cv,
5: X; +- sensor data from ts,art to the current time
6: Tv,--->vj +- trajectory from vz to the estimated

position computed by the travel time on the road
segment since vz

7: T :D(X;) +- trajectory from V(X;)

8: if diffcrDcx;J,T,;➔,) > f3 then
9: Spoofing Detected!

10: end if
11: end if

7. Performance evaluation

In this section, we evaluate the performance of our proposed frame-
work, DeepPOSE, in detecting real-world GPS spoofing attacks.

7.1. Data source

DeepPOSE is trained and evaluated on two different datasets
collected from real-world driving scenarios, BDD-100K, and another
custom dataset collected by the authors in the city of Norfolk, Virginia.

7.1.1. BDD-100K [31]
It is one of the largest driving video datasets with 100K driving videos

aligned with the detailed GPS and measurements from multiple motion
sensors to reveal the driving patterns and vehicle trajectories. The dataset
preserves the diversity of geography, environment and weather to cover
various driving conditions. We select 40k valid trips as our training data,
and each trip contains 40 s of driving data. Fig. 10(a) shows the distri-
bution of average travel distance in each trip from the selected 40K
training set.

7.1.2. Custom dataset
As trips in BDD-100K are fragmentized, we cannot fit the trip data in

BDD-100K directly to implement the experiments that require a longer
travel period. To this end, we further collect a customized dataset for the
purpose of validating the performance of our model for real world GPS
spoofing attacks. Data was collected from a Samsung Galaxy S7 mounted
on the car dashboard at the same position. The sampling rate of the
accelerometer and gyroscope is 50 Hz, and both measurements are
aligned with the vehicle's GPS signal, which is sampled at 1 Hz. Our
custom dataset contains trips driving in urban and rural areas for over 24
h, andmost of the data is collected in good weather to eliminate poor GPS
signal reception. During the collection, we mainly focus on the
commuting distance in the urban area (around 20min). We also include a
few long-distance road trips, as shown in Fig. 11. Compared with BDD-
100K, our custom dataset has a wider distribution in terms of driving
distance and time duration for long term driving analysis.

7.2. Vehicle position estimation

Having an accurate estimation of the current vehicle position is
crucial for the GPS spoofing detection algorithm. Thus, in this section, we
evaluate the performance of vehicle position estimation, where the speed
and direction are estimated based on the raw sensor measurements.

Fig. 9. An illustration of mapping the starting and ending GPS point of a left turn at an intersection. Red dots represent the GPS coordinates, and green nodes represent
the matched vertices on the map, which are connected by the blue edges. The black arrow shows the direction of all other edges.

P. Jiang et al. Digital Communications and Networks xxx (xxxx) xxx

10

ARTICLE IN PRESS

31
t

Turn
completes

p
Town Cencer

f'o,nt

starts

p

e

p

p

t

........

S ndl r
C nter
rn, rt

f> rf (II I l!:.J

Art

7.2.1. Speed and direction estimation accuracy
We evaluate the speed and direction estimation based on different

combinations of source input sensors measurements, denoising tech-
niques, and important hyperparameters. We have implemented the
DeepPOSE framework on both BDD-100K and our custom dataset. The
traditional sensor fusion technique is used as the baseline measurement.
Sensor fusion is a method of double-integrating on the acceleration
sensor readings to obtain the vehicle's displacement. The raw sensor
measurements are denoised by one of the most widely used filters, Kal-
man filter [36], in our experiments. Table 1 presents error rates in speed
and direction estimation compared with the baseline model (sensor
fusion).. In this table, we compare the sensor fusion method (SensorFu-
sion) with DeepPOSE in three variants: 1) “POSE-BDD-RAW”, the

DeepPOSE model trained with the raw sensor measurements in the
BDD-100K dataset, 2) “POSE-BDD-KM”, the DeepPOSE model trained
with the sensor measurements from BDD-100K dataset, after applying the
Kalman filter, and 3)“POSE-CUS-KM”, the DeepPOSE model trained with
the sensor measurements from our customized dataset after applying the
Kalman filter. The error rate is obtained by using the following formula:
εs ¼

Pnτ
t¼1jjSt � ~St=~St , where ~St is the actual vehicle speed or direction

obtained from the filtered GPS signals.
From Table 1, we observe that DeepPOSE reduces the estimation

error significantly compared with the sensor fusion approach in all sce-
narios. For example, the speed error is as low as 5% when we only use
accelerometer sensor measurements as input, whereas the error rate of
the sensor fusion approach is about 15%.

Fig. 10. a) Histogram of driving distance in BDD-100K; b) histogram of turn degree in BDD-100K.

Fig. 11. a) Histogram of driving duration in Custom Dataset; b) histogram of driving distance in Custom Dataset.

Table 1
Speed and direction estimation error when the size of the sliding window (ω) is set to 3.

Selected Features Accel Only Gyro Only Accel þ Gyro

nτ 5 10 20 5 10 20 5 10 20

T v θ v θ v θ v θ v θ v θ v θ v θ v θ

SensorFusion 11% / 15% / 17% / / / / / / / / / / / / /
POSE-BDD-RAW 9% 9% 7% 11% 10% 13% 15% 9% 15% 12% 19% 13% 9% 10% 6% 11% 9% 13%
POSE-BDD-KM 6% 4% 5% 6% 8% 8% 10% 9% 12% 11% 15% 10% 4% 4% 3% 6% 5% 8%
POSE-CUS-KM 8% 6% 7% 7% 9% 12% 13% 13% 14% 15% 15% 12% 9% 8% 7% 10% 12% 13%

P. Jiang et al. Digital Communications and Networks xxx (xxxx) xxx

11

40.0%

35.0%

>30.0%
u
~ 25.0%

;,20.0%
cu
i! 15.0%

10.0%

5.0%

0.0%

60%

50%

>
~ 40%
cu
:::s
C"30%

f
LI. 20%

10%

0%

ARTICLE IN PRESS

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Trip Distance (KM)

(a)

0 25 50 75 100 125 150 175
Trip Distance (KM)

(a)

60%

50%

>
~ 40%
cu
:::s
cr3o%

f
LI. 20%

10%

0%1__~ - ... -

50%

>,40%
u
C

~ 30%
er
f u. 20%

10%

0%

-40 -20 0 20 40
Turn Degree (degree)

(b)

0 20 40 60 80 100 120 140
Trip Duration (Minutes)

(b)

We next evaluate the performance of DeepPOSE by feeding different
types of sensor data. We find the accelerometer itself has a good esti-
mation of the vehicle speed and direction. Adding gyroscope data can
improve the overall performance because it measures the rotation speed
of an object. But the gyroscope measurement alone is not enough to es-
timate the vehicle speed. Moreover, it is not surprising to find that
applying the Kalman filter can improve performance by eliminating
additional noise introduced by the vehicle, such as the engine vibration
and road feedbacks. The performance of our custom dataset has
decreased due to a relatively small amount of the driving data compared
with the BDD-100K dataset. But it still reaches an acceptable error rate.

7.2.2. Accuracy of position estimation
Once we have the vehicle speed and direction information, we can

reconstruct the position for a moving vehicle. Now we examine the
overall performance of the vehicle position estimation.

7.2.2.1. Displacement error of each trip. Table 2 shows the displace-
ment error measured by the difference between the ground truth
displacement of each trip and the values integrated from the vehicle
speed obtained via DeepPOSE and Sensor Fusion. We notice nτ ¼ 10 has
the best performance for vehicle speed reconstruction in Table 1.Hence
we fix nτ to 10 in the rest of the experiments. Results in Table 2 reveal that
DeepPOSE can achieve an average error of 26.8 m with a standard de-
viation of 5.2 m in the selected 10k validation trips from the BDD-100K
dataset. Sensor Fusion results in a mean error of 902 m. This result beats
the benchmark model [27], which can achieve a mean error of 40.43 m
with a standard deviation of 5.24 m. The mean displacement error of our
custom dataset is slightly higher than that of BDD-100K, which is about
36 m.

Once we combine the displacement and direction values, we can
reconstruct the real vehicle trajectory as illustrated in Fig. 12.

7.2.3. Impact of sequence control variables
In the estimation of vehicle speed and direction by using the

sequence-to-sequence model, two control variables affect the perfor-
mance significantly, i.e., the length of the sequence, and the length of
sliding windows. These two factors reflect two different degrees of
cyclicality. The following discussion explains whether our sequence-to-
sequence-based model is capable of capturing the periodic patterns in
driving behaviors from the empirical results revealed in Section 4.1.3.

7.2.3.1. Estimation error versus length of sequence. Table 1 reflects
how the choice of the length of the sequence, nτ, affects the estimation
accuracy. The shorter sequence length is helpful for direction estimation.

Table 2
Average displacement error per trip with standard deviation.

Mean Absolute Error (meter)

BDD-100K Custom Dataset(Urban Area)

DeepPOSE-KM 26.8 � 5.2 36 � 6.1
DeepPOSE-RAW 32.2 � 6.7 40 � 7.6
DeepPOSE-KM-noConv 48.4 � 10.2 52 � 13.9
DeepPOSE-RAW-noConv 53.6 � 12.5 58 � 15.7
SensorFusion 902 � 63 1014 � 70

Fig. 12. A reconstruction sample from BDD-100K dataset. This trip segment lasts 35s and starts from the bottom of this figure. Red dots reveal the vehicle's trajectory
computed from the GPS coordinates of the trip, while the white dots represent the estimated trajectory from the motion sensor of the trip.

P. Jiang et al. Digital Communications and Networks xxx (xxxx) xxx

12

.. .. 1 '

hull

... 0

41

•
"

1 ll

4S

I
.14

ARTICLE IN PRESS

• •
l

•
1l
I

•

••

I
1l
I
I
1l
l
I
'I

..
'

.,,,&'

#'" -Du.5h"W'Wlck C
A.YCl"iUC

Abard .. en

6

.
• I ' . . .
' ' ' . ' .

C
,:;

3

70

4

1

J1

This finding matches our discussion in Section 4.1.3 regarding the
different cyclical levels of driving patterns, i.e., the state transitions time
for speed change actions such as accelerating and decelerating. If nτ for
the speed estimation is too small, DeepPOSE may not learn the complete
state transition of a vehicle in the training process, and vice versa. Too
many repeated features may eventually degrade the performance.
However, different from the speed change, subtle maneuvers such as lane
turning, passing, and changing use less time. Thus, as reflected in the
results, the optimal nτ for the direction estimation is smaller than the
value for the speed estimation.

7.2.3.2. Displacement error versus sliding window (ω). We consider
how the reconstruction accuracy is affected by the sliding window ω, a
control variable that determines how many useful sensor measurements
should be considered in one input data, which shows another type of
periodic pattern that reflects the subtle change of vehicle in each time
sequence. Based on the distribution of the drivers’ average time for each
individual action (Fig. 4(c)), we choose 3s, 5s, and 7s, which account for
60%, 85%, and 90% of the evaluation distribution. When the width of the
sliding window increase more sensors measurements will be used to
compose one single input X . Table 3 shows the mean error of each trip in
the BDD-100K dataset when we increase the length of the sliding win-
dows, with nτ set to 10 s. We observe that when we increase the width of
the window width from 1 s to 5 s, the performance increases. This is
because the more sensor measurements we consider in one input, the
more detailed operational measurements will be included. However, the
performance stops increasing when the width of the sliding window is
over 7 s because this model is overwhelmedwith toomuch repeated data,
including noises. On the other hand, increasing the width of the sliding
windows also increases the model training time. Considering the training
efficiency and performance, a sliding window of 3 s is the best choice in
our scenario.

7.3. GPS spoofing detection

7.3.1. Effect of map alignment on trajectory estimation
As illustrated in Fig. 12, the proposed vehicle position estimator can

reconstruct the vehicle trajectory from the motion sensor measurements.
Next, we examine the estimation error range of the trajectory computed
from motion sensor data, with and without the map alignment. We select
10,000 trips from the BDD-100K dataset, as well as all the trips from our
custom dataset, which have longer trip duration. For each trip, we first
get the ground truth trajectory Tg from the GPS coordinates, and the
trajectory Tr computed based on the sensor measurements, with and
without using the map alignment. We use (9) to get the normalized
trajectory differences between Tg and Tr in each set. Fig. 13(a) shows the
difference between the trips selected from BDD-100K, and Fig. 13(b)
shows the same results from our custom dataset when there is no
spoofing attack. It is clear that the trajectory estimation error from the
motion sensor data increases when the trip duration is longer due to the
error accumulation in trajectory estimation. However, after we have
applied the map alignment on the motion sensor data of the trips and

Table 3
Displacement error for different sliding window size ω in BDD-100K dataset.

Windows Size Input Shape Kernel Size Mean Absolute Error (m)

1 10 � 6 � 50 [1,5] 29.7
[1,15] 27.6

3 10 � 6 � 150 [1,5] 26.4
[1,15] 24.9

5 10 � 6 � 250 [1,5] 25.5
[1,15] 24.9

7 10 � 6 � 350 [1,5] 26.1
[1,15] 25.8

Fig. 13. The average difference between the reconstructed trajectory and the
ground truth trajectory on (a) BDD-100K and (b) custom dataset, with and
without the assistant of the map.

Fig. 14. The CDF of the difference between the “Spoofed” trajectory and the
“Real” trajectory in the spoofing set.

P. Jiang et al. Digital Communications and Networks xxx (xxxx) xxx

13

ARTICLE IN PRESS

;:::

~ Without Map Alignment

0.035 ... ~ With Map Alignment

1--°' 0.020 +----+-------------- ----
E'
'o

0.010

0.005

10 20
Trip Duration

(a)

-'-
- Without Map Alignment

0.05 "r..- With Map Alignment

0.01

10 20 40
Trip Duration

(b)

-'- -'-
a

.,,.._..

60

40

100

1.0 -- Spoofing Set 1 ~-::.. ■- ·-,---!=- ·-
0.8

Spoofing Set 2 -· ,.~ • .I-·-'
I .I ,.,-;..-

0,6
~/~ -·

LI.
C
u

0.4

/ .J
"' I ,~· ,. ,·

0.2

I •
I (

A,·
,_.
rl .,,..

0.0 I
0.00 0.05 0.10 0.15 0.20 0.25

then computed the trajectory similarity, the error accumulation of the
trajectory reduces significantly, especially for long-duration trips.

7.3.2. Detection for threat model case 1
To simulate the GPS attack, we randomly select 5000 trips of various

length from the BDD-100K dataset and keep the GPS coordinates and the
sensor measurements of each trip as the input to the spoofing detection
algorithm. That is, those trips are unspoofed trips. The objective of using
the unspoofed set is to obtain the false alarm rate. We then select another
10000 trips and create two spoofing sets as follows. Each time, we pick
two trips from the trip pool with the same length, and this action repeats
5000 times. Those 5000 pairs constitute the spoofed set in the experi-
ment. For each pair of trips, we use TREAL to denote the true trip, and the
other trip as the spoofed route, which is denoted as TSPOOF. We keep the
sensor measurements of the true route TREAL and the GPS coordinates of
the spoofed route TSPOOF, and use them as the input to the spoofing
detection algorithm. The second spoofing set is created in a similar
manner. The only difference between these two sets is the driving
pattern. The trip pairs in the first spoofing set have smaller turning an-
gles, while the second spoofing set pairs contain wider or larger turning
angles. Fig. 14 plots the CDF of the trajectory difference between the
spoofing and the real routes, TREAL and TSPOOF, in both sets. We notice
that trips in set 1 have a smaller trajectory difference. For the GPS
spoofing detection, we set the parameter nτ of the vehicle position esti-
mator to 10 or 5 for speed and direction estimation.

We apply the proposed spoofing detector to two spoofing sets
(marked in grey and orange) and the unspoofed set (marked in blue) in
Fig. 15. Besides the detection accuracy, the false alarm rate is also an
important factor affecting the system performance. The false alarm rate is
the percentage of unspoofed trips being misclassified as spoofed trips by
the detection algorithm. Certainly, a good threshold should achieve a
high detection accuracy while suppressing false alarms.

In Fig. 13, we can find the average reconstruction error for the trip of
different lengths in the unspoofed sets. That is, the reconstruction error in
the figure is between the trajectory of sensor measurements and the
trajectory of the unspoofed GPS coordinates of the same trip. The
reconstructed errors can be expressed as a normal distribution, Ebdd �
Nð0:026; 0:002Þ, as shown in Fig. 13. Hence, in order to suppress the
false alarm caused by the reconstruction error, the threshold α should be
set to 0.03. To see this, in the experiments, we change the threshold
value, α, from 0.02 to 0.04. From the results in Fig. 15, setting α to 0.03
achieves a good balance where we can have an acceptable detection rate
(88%) as well as a low false alarm rate (4%). Compared to with perfor-
mance of the two spoofing sets, set 2 has better detection rate because the
larger turning angles of the trips give more useful information for the

detection algorithm resulting in a higher trajectory difference.
In the real world scenario, the application server usually does not

need to wait until the trip completes to validate the trip authenticity.
Furthermore, the server may not even need the entire data from the
origination point of the trip to detect spoofing. In other words, the
application server can carry out dynamic spoofing detection based on the
current GPS and motion sensor data within an interval from a recent time
point to the current time, as discussed in Section 6.2. To evaluate
spoofing detection in such scenarios, we divide 24-h driving data in the
customized set into intervals of the following lengths: 40s, 60s, 120s,
180s, and 300s. Thus we have obtained about 2100, 1400, 700, and 200
trip segments, respectively, in each subset for the corresponding interval
duration above (40s–300s). The reconstructed errors of the unspoofed set
can be expressed as a normal distribution, Ecus � Nð0:037; 0:004Þ, as
shown in Fig. 13. Hence, to suppress the false alarm, the threshold α
should be set to 0.045.

To test GPS spoofing, we use 80% of trip segments in each subset to
create a spoofing trip set in a manner similar to the previous section. The
remaining 20% of trip segments serve as an unspoofed trip set to obtain
the false alarm.Fig. 16 shows the results for different values of α for all
trip segments created previously. The black plot represents the detection
accuracy, and the orange bar plot shows the false alarm rate when the
threshold increases. The detection rate and false alarm vary with

Fig. 15. Detection rates and false alarm rates for BDD-100K dataset.

Fig. 16. Detection and false alarm rate for the custom dataset.

Fig. 17. Performance for trips with different durations in the custom dataset, α
¼ 0.045.

P. Jiang et al. Digital Communications and Networks xxx (xxxx) xxx

14

80

.....
f
,fl 60

~
C
0

:,j:i 40
u

t
Q

20

ARTICLE IN PRESS

:--+----:~-+-------+-----l

l-+---1~-+---!~
~ l ~ I

CSJ DR Spoofing Set l = DR Spoofing Set 2
- False Alarm

l-+----1 --I--~~,

0.02 0.03 0.04
a

100
c::J Detection Rate

95
- False Alarm

i 90
~
GI 85 m
a:
C 80
0

+a u 75
GI
GI 70 C

65

60
0.04 0.045 0.05 0.055 0.06 0.065

a

100 ,-------------------~

95

-',f. 90

i iii 85

a:
C 80
0

+a
U 75
GI
GI 70 C

c:s:J Detection Rate

- False Alarm

40 60 120 180

Trip Duration (second)
300

20.0

17.S i
~

15.0 _fl
m

12.5 £11::

E
10.0 ~

ci:
7.5 GI

.!!!
5.0 m

II.

2.5

0.0

20.0

-17.5 ',f.

15.0 i
m

12.5 £11::

E
10.0 ~

ci:
7.5 GI

.!!!
5.o m

II.

2.5

0.0

different α. Overall, α ¼ 0.045 or 0.05 results in a good balance between
the detection rate and false alarm.

The BDD-100K dataset only includes short trip segments. Next, we
evaluate the performance of the spoofing detector for the trip segments
with longer durations in the custom dataset. The results are shown in
Fig. 17. We observe that the detection rate increases with the increase of
the travel distance.This is not surprising because a longer trip contains
more information, which makes it possible to better detect the spoofing
attack.

7.3.3. Detection for threat model case 2
To simulate the live spoofing attack as illustrated in Fig. 1, the

attacker may initial the attack from the corner of an intersection or in the
middle of a street. We decompose the subset of the custom dataset into
edge level road segments, which are the traveling records between two
connected edges on the road map. It is used to represent a special
connection, i.e., the intersection. Fig. 18 shows the trip distribution of the
dataset that includes 10,000 trips. We use 80% of them to create the
spoofing set, and the remaining 20% remains as the unspoofed set.
Finally, we create the spoofing set with 5,000 spoofing trips by randomly
pairing one trip's GPS with the motion sensor measurements of other
trips.

We apply Algorithm 4 to the datasets. The reconstruction errors of the

unspoofed dataset can be expressed as a normal distribution Einst �
Nð0:014;0:004Þ. Hence, we set the parameter β to 0.02. The trip progress
indicates the percentage of distance the vehicle has traveled on the last
road segment of the pre-planned path in a trip. The GPS spoofing is
assumed to start at the beginning of this last road segment. From Fig. 19,
we observe that when the vehicle reaches 30% of a road segment, the
detection accuracy is about 80% while the false alarm rate is less than
8%. The detection rate is further improved when the vehicle runs further
on the road. Overall, our algorithm can quickly detect a spoofing attack
within a short time after the launch of the GPS spoofing attack.

8. Conclusion

In this paper, we introduce a novel DeepPOSE framework for
detecting GPS spoofing attacks. DeepPOSE includes two components: a
vehicle position estimator and a spoofing detector. The vehicle position
estimator integrates convolutional and sequence-to-sequence recurrent
neural networks to capture the vehicle driving speed and direction from
the motion sensor data. The vehicle speed and direction are then used to
calculate the trajectory of the vehicle. The spoofing detector compares
the trajectory with the one reconstructed from the GPS coordinates re-
ported by the user to detect if there is a GPS spoofing attack. We have
used two datasets to evaluate DeepPOSE. The experiment results indicate
that DeepPOSE can effectively detect spoofing attacks in both cases of the
threat model.URL https://github.com/osqzss/gps-sdr-sim.

Conflict of interest and authorship conformation form

The authors whose names are listed immediately below report the
following details of affiliation or involvement in an organization or entity
with a financial or non-financial interest in the subject matter or mate-
rials discussed in this manuscript. Please specify the nature of the conflict
on a separate sheet of paper if the space below is inadequate.

Acknowledgement

This work was supported in part by NSF under Grants CNS-1950704,
CNS-1828593, and OAC-1829771, ONR under Grant N00014-20-1-2065,
NSA under Grant H98230-21-1-0278, and the Commonwealth Cyber
Initiative.

References

[1] Global GPS tracking devices market data survey report 2013-2025, URL
https://brandessenceresearch.biz/Heavy-Industry/Global-GPS-Tracking-Device
s-Market/Summary, , Mar 2019.

[2] B. Hofmann-Wellenhof, H. Lichtenegger, J. Collins, Global Positioning System:
Theory and Practice, Springer Science & Business Media, 2012.

[3] K. Wang, S. Chen, A. Pan, Time and Position Spoofing with Open Source Projects,
2015.

[4] M.L. Psiaki, T.E. Humphreys, B. Stauffer, Attackers can spoof navigation signals
without our knowledge. Here's how to fight back GPS lies, IEEE Spectrum 53 (8)
(2016) 26–53.

[5] A.J. Kerns, D.P. Shepard, J.A. Bhatti, T.E. Humphreys, Unmanned aircraft capture
and control via GPS spoofing, J. Field Robot. 31 (4) (2014) 617–636.

[6] J. Bhatti, T.E. Humphreys, Hostile control of ships via false GPS signals:
demonstration and detection, NAVIGATION, J. Inst. Navig. 64 (1) (2017) 51–66.

[7] Tesla model 3 spoofed off the highway - regulus navigation system hack causes car
to turn on its own, URL https://www.regulus.com/blog/tesla-model-3-spoofed-o
ff-the-highway-regulus-researches-hack-navigation-system-causing-car-to-steer-o
ff-road/, , Feb 2020.

[8] M. L. Psiaki, T. E. Humphreys, Protecting GPS from spoofers is critical to the future
of navigation, IEEE spectrum 10.

[9] Hacking a phone's GPS may have just got easier, URL https://www.forbes.com/
sites/parmyolson/2015/08/07/gps-spoofing-hackers-defcon/, , Aug 2015.

[10] T. Humphreys, Statement on the Vulnerability of Civil Unmanned Aerial Vehicles
and Other Systems to Civil GPS Spoofing, University of Texas at Austin, 2012,
pp. 1–16.

[11] K.C. Zeng, Y. Shu, S. Liu, Y. Dou, Y. Yang, A practical GPS location spoofing attack
in road navigation scenario, in: Proceedings of International Workshop on Mobile
Computing Systems and Applications, 2017, pp. 85–90.

Fig. 18. The histogram of the average trip distance in the dataset for threat
model case 2.

Fig. 19. The detection rate along with the progress of the trip when β ¼ 0.02.

P. Jiang et al. Digital Communications and Networks xxx (xxxx) xxx

15

ARTICLE IN PRESS

0.35

0.30

>, 0.25

u
C
~ 0.20

er
cu .t 0.15

0.10

0.05

0.00
0 200 400 600 800

Trip Distance (Meter)

10% 30% 50% 70% 90% 100%

Trip Progress (%)

https://github.com/osqzss/gps-sdr-sim
https://brandessenceresearch.biz/Heavy-Industry/Global-GPS-Tracking-Devices-Market/Summary
https://brandessenceresearch.biz/Heavy-Industry/Global-GPS-Tracking-Devices-Market/Summary
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref2
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref2
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref2
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref3
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref3
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref4
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref4
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref4
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref4
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref5
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref5
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref5
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref6
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref6
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref6
https://www.regulus.com/blog/tesla-model-3-spoofed-off-the-highway-regulus-researches-hack-navigation-system-causing-car-to-steer-off-road/
https://www.regulus.com/blog/tesla-model-3-spoofed-off-the-highway-regulus-researches-hack-navigation-system-causing-car-to-steer-off-road/
https://www.regulus.com/blog/tesla-model-3-spoofed-off-the-highway-regulus-researches-hack-navigation-system-causing-car-to-steer-off-road/
https://www.forbes.com/sites/parmyolson/2015/08/07/gps-spoofing-hackers-defcon/
https://www.forbes.com/sites/parmyolson/2015/08/07/gps-spoofing-hackers-defcon/
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref10
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref10
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref10
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref10
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref11
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref11
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref11
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref11

[12] I. Sutskever, O. Vinyals, Q.V. Le, Sequence to sequence learning with neural
networks, in: Proceedings of Advances in Neural Information Processing Systems,
NeurIPS), 2014, pp. 3104–3112.

[13] J. Gehring, M. Auli, D. Grangier, D. Yarats, Y.N. Dauphin, Convolutional sequence
to sequence learning, in: Proceedings of International Conference on Machine
Learning, vol. 70, ICML, 2017, pp. 1243–1252.

[14] Opensource Software-Defined GPS Signal Simulator.
[15] M.€O. Demir, G.K. Kurt, A.E. Pusane, On the limitations of GPS time-spoofing

attacks, in: Proceedings of IEEE International Conference on Telecommunications
and Signal Processing, TSP), 2020, pp. 313–316.

[16] S. Narain, A. Ranganathan, G. Noubir, Security of GPS/INS based on-road location
tracking systems, in: Proceedings of IEEE Symposium on Security and Privacy, SP),
2019, pp. 587–601.

[17] D.P. Shepard, J.A. Bhatti, T.E. Humphreys, A.A. Fansler, Evaluation of smart grid
and civilian uav vulnerability to gps spoofing attacks, in: Proceedings of
Radionavigation Laboratory Conference, 2012.

[18] P. Papadimitratos, A. Jovanovic, GNSS-based positioning: attacks and
countermeasures, in: Proceedings of IEEE Military Communications Conference,
MILCOM), 2008, pp. 1–7.

[19] K. Wesson, M. Rothlisberger, T. Humphreys, Practical cryptographic civil GPS signal
authentication, NAVIGATION, J. Inst. Navig. 59 (3) (2012) 177–193.

[20] M.G. Kuhn, An asymmetric security mechanism for navigation signals, in:
Proceedings of International Workshop on Information Hiding, Springer, 2004,
pp. 239–252.

[21] K. Jansen, M. Sch€afer, D. Moser, V. Lenders, C. P€opper, J. Schmitt, Crowd-GPS-sec:
leveraging crowdsourcing to detect and localize GPS spoofing attacks, in:
Proceedings of IEEE Symposium on Security and Privacy, SP), 2018,
pp. 1018–1031.

[22] A. Eldosouky, A. Ferdowsi, W. Saad, Drones in distress: a game-theoretic
countermeasure for protecting uavs against GPS spoofing, IEEE Internet of Things
Journal 7 (4) (2019) 2840–2854.

[23] J.-H. Lee, K.-C. Kwon, D.-S. An, D.-S. Shim, GPS spoofing detection using
accelerometers and performance analysis with probability of detection, Int. J.
Contr. Autom. Syst. 13 (4) (2015) 951–959.

[24] S. Khanafseh, N. Roshan, S. Langel, F.-C. Chan, M. Joerger, B. Pervan, GPS spoofing
detection using RAIM with INS coupling, in: Proceedings of IEEE Location and
Navigation Symposium-PLANS, 2014, pp. 1232–1239.

[25] R.E. Ebner, R.A. Brown, Integrated GPS/inertial navigation apparatus providing
improved heading estimates, uS Patent 5 (Aug. 12 1997) 657, 025.

[26] S. Xingjian, Z. Chen, H. Wang, D. Yeung, W. Wong, W. Woo, Convolutional LSTM
network: a machine learning approach for precipitation nowcasting, in: Proceedings
of Advances in Neural Information Processing Systems, NeurIPS), 2015,
pp. 802–810.

[27] S. Yao, S. Hu, Y. Zhao, A. Zhang, T. Abdelzaher, Deepsense: a unified deep learning
framework for time-series mobile sensing data processing, in: Proceedings of World
Wide Web Conference, 2017, pp. 351–360.

[28] J. Feng, Y. Li, C. Zhang, F. Sun, F. Meng, A. Guo, D. Jin, Deepmove: predicting
human mobility with attentional recurrent networks, in: Proceedings of the World
Wide Web Conference, 2018, pp. 1459–1468.

[29] OpenStreetMap contributors, Planet dump, retrieved from, https://planet.osm.org,
2017, https://www.openstreetmap.org.

[30] Y. Wang, J. Yang, H. Liu, Y. Chen, M. Gruteser, R.P. Martin, Sensing vehicle
dynamics for determining driver phone use, in: Proceedings of International
Conference on Mobile Systems, Applications, and Services, 2013, pp. 41–54.

[31] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, T. Darrell,
Bdd100k: a diverse driving dataset for heterogeneous multitask learning, in:
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
CVPR, 2020.

[32] S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by
reducing internal covariate shift, in: Proceedings of International Conference on
Machine Learning, ICML, 2015, pp. 448–456.

[33] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, Y. Huang, Map-matching for low-
sampling-rate GPS trajectories, in: Proceedings of ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, 2009, pp. 352–361.

[34] C. Chen, Y. Ding, X. Xie, S. Zhang, Z. Wang, L. Feng, Trajcompressor: an online map-
matching-based trajectory compression framework leveraging vehicle heading
direction and change, IEEE Trans. Intell. Transport. Syst. 21 (5) (2019) 2012–2028.

[35] D.J. Berndt, J. Clifford, Using dynamic time warping to find patterns in time series,
in: Proceedings of KDD Workshop, 1994.

[36] H. Musoff, P. Zarchan, Fundamentals of Kalman Filtering: a Practical Approach,
American Institute of Aeronautics and Astronautics, 2009.

P. Jiang et al. Digital Communications and Networks xxx (xxxx) xxx

16

ARTICLE IN PRESS

http://refhub.elsevier.com/S2352-8648(21)00066-3/sref12
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref12
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref12
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref12
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref13
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref13
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref13
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref13
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref15
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref15
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref15
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref15
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref15
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref16
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref16
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref16
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref16
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref17
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref17
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref17
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref18
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref18
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref18
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref18
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref19
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref19
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref19
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref20
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref20
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref20
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref20
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref21
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref21
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref21
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref21
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref21
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref21
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref21
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref22
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref22
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref22
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref22
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref23
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref23
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref23
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref23
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref24
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref24
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref24
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref24
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref25
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref25
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref26
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref26
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref26
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref26
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref26
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref27
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref27
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref27
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref27
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref28
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref28
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref28
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref28
https://planet.osm.org
https://www.openstreetmap.org
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref30
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref30
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref30
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref30
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref31
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref31
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref31
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref31
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref32
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref32
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref32
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref32
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref33
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref33
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref33
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref33
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref34
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref34
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref34
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref34
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref35
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref35
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref36
http://refhub.elsevier.com/S2352-8648(21)00066-3/sref36

	DeepPOSE: Detecting GPS Spoofing Attack Via Deep Recurrent Neural Network
	Original Publication Citation

	DeepPOSE: Detecting GPS spoofing attack via deep recurrent neural network
	1. Introduction
	2. Related work
	2.1. GPS spoofing attack
	2.2. GPS spoofing detection

	3. Threat model
	4. DeepPOSE framework
	4.1. Vehicle position estimator
	4.2. GPS spoofing detector
	4.3. Data pre-processing
	4.3.1. Mobile sensor reorientation
	4.3.2. Vehicle speed and direction extraction
	4.3.3. Driving patterns analysis

	5. Vehicle position estimation
	5.1. Model inputs and outputs
	5.2. Sequence-to-sequence modeling
	5.3. ConvLSTM network
	5.4. Loss function

	6. GPS spoofing detection
	6.1. Map-aided alignment
	6.2. Detection mechanism
	6.2.1. Detection for threat model case 1
	6.2.2. Detection for threat model case 2

	7. Performance evaluation
	7.1. Data source
	7.1.1. BDD-100K [31]
	7.1.2. Custom dataset

	7.2. Vehicle position estimation
	7.2.1. Speed and direction estimation accuracy
	7.2.2. Accuracy of position estimation
	7.2.2.1. Displacement error of each trip

	7.2.3. Impact of sequence control variables
	7.2.3.1. Estimation error versus length of sequence
	7.2.3.2. Displacement error versus sliding window (ω)

	7.3. GPS spoofing detection
	7.3.1. Effect of map alignment on trajectory estimation
	7.3.2. Detection for threat model case 1
	7.3.3. Detection for threat model case 2

	8. Conclusion
	Conflict of interest and authorship conformation form
	Acknowledgement
	References

