24 research outputs found

    Scaling up MIMO: Opportunities and Challenges with Very Large Arrays

    Full text link
    This paper surveys recent advances in the area of very large MIMO systems. With very large MIMO, we think of systems that use antenna arrays with an order of magnitude more elements than in systems being built today, say a hundred antennas or more. Very large MIMO entails an unprecedented number of antennas simultaneously serving a much smaller number of terminals. The disparity in number emerges as a desirable operating condition and a practical one as well. The number of terminals that can be simultaneously served is limited, not by the number of antennas, but rather by our inability to acquire channel-state information for an unlimited number of terminals. Larger numbers of terminals can always be accommodated by combining very large MIMO technology with conventional time- and frequency-division multiplexing via OFDM. Very large MIMO arrays is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation. The ultimate vision of very large MIMO systems is that the antenna array would consist of small active antenna units, plugged into an (optical) fieldbus.Comment: Accepted for publication in the IEEE Signal Processing Magazine, October 201

    Survey of Large-Scale MIMO Systems

    Full text link

    Joint precoding and antenna selection in massive mimo systems

    Get PDF
    This thesis presents an overview of massive multiple-input multiple-output (MIMO) systems and proposes new algorithms to jointly precode and select the antennas. Massive MIMO is a new technology, which is candidate for comprising the fifth-generation (5G) of mobile cellular systems. This technology employs a huge amount of antennas at the base station and can reach high data rates under favorable, or asymptotically favorable, propagation conditions, while using simple linear processing. However, massive MIMO systems have some drawbacks, such as the high cost related to the base stations. A way to deal with this issue is to employ antenna selection algorithms at the base stations. These algorithms reduce the number of active antennas, decreasing the deployment and maintenance costs related to the base stations. Moreover, this thesis also describes a class of nonlinear precoders that are rarely addressed in the literature; these techniques are able to generate precoded sparse signals in order to achieve joint precoding and antenna selection. This thesis proposes two precoders belonging to this class, where the number of selected antennas is controlled by a design parameter. Simulation results show that the proposed precoders reach a lower bit-error rate than the classical antenna selection algorithms. Furthermore, simulation results show that the proposed precoders present a linear relation between the aforementioned design parameter that controls the signals’ sparsity and the number of selected antennas. Such relation is invariant to the number of base station’s antennas and the number of terminals served by this base station.Esta dissertação apresenta uma visão geral sobre MIMO (do termo em inglês, multiple-input multiple-output) massivo e propõe novos algoritmos que permitem a pré-codificacão de sinais e a seleção de antenas de forma simultânea. MIMO massivo é uma nova tecnologia candidata para compor a quinta geração (5G) dos sistemas celulares. Essa tecnologia utiliza uma quantidade muito grande de antenas na estação-base e, sob condições de propagação favorável ou assintoticamente favorável, pode alcançar taxas de transmissão elevadas, ainda que utilizando um simples processamento linear. Entretanto, os sistemas MIMO massivo apresentam algumas desvantagens, como por exemplo, o alto custo de implementação das estações-bases. Uma maneira de lidar com esse problema é utilizar algoritmos de seleção de antenas na estação-base. Com esses algoritmos é possível reduzir o número de antenas ativas e consequentemente reduzir o custo nas estações-bases. Essa dissertação também apresenta uma classe pouco estudada de pré-codificadores não-lineares que buscam sinais pré-codificados esparsos para realizar a seleção de antenas conjuntamente com a pré-codificação. Além disso, este trabalho propõem dois novos pré-codificadores pertencentes a essa classe, para os quais o número de antenas selecionadas é controlado por um parâmetro de projeto. Resultados de simulações mostram que os pré-codificadores propostos conseguem uma BER (do termo em inglês, bit-error rate) menor que os algoritmos clássicos usados para selecionar antenas. Além disso, resultados de simulações mostram que os pré-codificadores propostos apresentam uma relação linear com o parâmetro de projeto que controla a quantidade de antenas selecionadas; tal relação independe do número de antenas na estação-base e do número de terminais servidos por essa estação

    A review on Precoding Techniques For mm-Wave Massive MIMO Wireless Systems

    Get PDF
    The growing demands for high data rate wireless connectivity shed lights on the fact that appropriate spectrum regions need to be investigated so that the expected future needs will be satisfied. With this in mind, the research community has shown considerable interest in millimeter-wave (mm-wave) communication. Generally, hybrid transceivers combining the analog phase shifter and the RF chains with digital signal processing (DSP) systems are used for MIMO communication in the fifth generation (5G) wireless networks. This paper presents a survey for different precoding or beamforming techniques that have been proposed in the literature. These beamforming techniques are mainly classified based on their hardware structure into analog and digital beamforming. To reduce the hardware complexity and power consumption, the hybrid precoding techniques that combine analog and digital beamforming can be implemented for mm-wave massive MIMO wireless systems. The performance of the most common hybrid precoding algorithms has been investigated in this paper

    Joint Unitary Triangularization for MIMO Networks

    Full text link
    This work considers communication networks where individual links can be described as MIMO channels. Unlike orthogonal modulation methods (such as the singular-value decomposition), we allow interference between sub-channels, which can be removed by the receivers via successive cancellation. The degrees of freedom earned by this relaxation are used for obtaining a basis which is simultaneously good for more than one link. Specifically, we derive necessary and sufficient conditions for shaping the ratio vector of sub-channel gains of two broadcast-channel receivers. We then apply this to two scenarios: First, in digital multicasting we present a practical capacity-achieving scheme which only uses scalar codes and linear processing. Then, we consider the joint source-channel problem of transmitting a Gaussian source over a two-user MIMO channel, where we show the existence of non-trivial cases, where the optimal distortion pair (which for high signal-to-noise ratios equals the optimal point-to-point distortions of the individual users) may be achieved by employing a hybrid digital-analog scheme over the induced equivalent channel. These scenarios demonstrate the advantage of choosing a modulation basis based upon multiple links in the network, thus we coin the approach "network modulation".Comment: Submitted to IEEE Tran. Signal Processing. Revised versio

    Design of Block Transceivers with Decision Feedback Detection

    Full text link
    This paper presents a method for jointly designing the transmitter-receiver pair in a block-by-block communication system that employs (intra-block) decision feedback detection. We provide closed-form expressions for transmitter-receiver pairs that simultaneously minimize the arithmetic mean squared error (MSE) at the decision point (assuming perfect feedback), the geometric MSE, and the bit error rate of a uniformly bit-loaded system at moderate-to-high signal-to-noise ratios. Separate expressions apply for the ``zero-forcing'' and ``minimum MSE'' (MMSE) decision feedback structures. In the MMSE case, the proposed design also maximizes the Gaussian mutual information and suggests that one can approach the capacity of the block transmission system using (independent instances of) the same (Gaussian) code for each element of the block. Our simulation studies indicate that the proposed transceivers perform significantly better than standard transceivers, and that they retain their performance advantages in the presence of error propagation.Comment: 14 pages, 8 figures, to appear in the IEEE Transactions on Signal Processin

    Low-Complexity Near-Optimal Detection Algorithms for MIMO Systems

    Get PDF
    As the number of subscribers in wireless networks and their demanding data rate are exponentially increasing, multiple-input multiple-output (MIMO) systems have been scaled up in the 5G where tens to hundreds of antennas are deployed at base stations (BSs). However, by scaling up the MIMO systems, designing detectors with low computational complexity and close to the optimal error performance becomes challenging. In this dissertation, we study the problem of efficient detector designs for MIMO systems. In Chapter 2, we propose efficient detection algorithms for small and moderate MIMO systems by using lattice reduction and subspace (or conditional) detection techniques. The proposed algorithms exhibit full receive diversity and approach the bit error rate (BER) of the optimal maximum likelihood (ML) solution. For quasi-static channels, the complexity of the proposed schemes is cubic in the system dimension and is only linear in the size of the QAM modulation used. However, the computational complexity of lattice reduction algorithms imposes a large burden on the proposed detectors for large MIMO systems or fast fading channels. In Chapter 3, we propose detectors for large MIMO systems based on the combination of minimum mean square error decision feedback equalization (MMSE-DFE) and subspace detection tailored to an appropriate channel ordering. Although the achieved diversity order of the proposed detectors does not necessarily equal the full receive diversity for some MIMO systems, the coding gain allows for close to ML error performance at practical values of signal-to-noise ratio (SNR) at the cost of a small computational complexity increase over the classical MMSE- DFE detection. The receive diversity deficiency is addressed by proposing another algorithm in which a partial lattice reduction (PLR) technique is deployed to improve the diversity order. Massive multiuser MIMO (MU-MIMO) is another technology where the BS is equipped with hundreds of antennas and serves tens of single-antenna user terminals (UTs). For the uplink of massive MIMO systems, linear detectors, such as zero-forcing (ZF) and minimum mean square error (MMSE), approach the error performances of sophisticated nonlinear detectors. However, the exact solutions of ZF and MMSE involve matrix-matrix multiplication and matrix inversion operations which are expensive for massive MIMO systems. In Chapter 4, we propose efficient truncated polynomial expansion (TPE)-based detectors that achieve the error performance of the exact solutions with a computational complexity proportional to the system dimensions. The millimeter wave (mmWave) massive MIMO is another key technology for 5G cellular networks. By using hybrid beamforming techniques in which a few numbers of radio frequency (RF) chains are deployed at the BSs and the UTs, the fully-digital precoder (combiner) is approximated as a product of analog and digital precoders (combiners). In Chapter 5, we consider a signal detection scheme using the equivalent channel consisting of the precoder, mmWave channel, and combiner. The available structure in the equivalent channel enables us to achieve the BER of the optimal ML solution with a significant reduction in the computational complexity
    corecore