186 research outputs found

    Group Rekeying Schemes for Secure Group Communication in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are promising solutions for many applications. However, wireless sensor nodes suffer from many constraints such as low computation capability, small memory, limited energy resources, and so on. Grouping is an important technique to localize computation and reduce communication overhead in wireless sensor networks. In this paper, we use grouping to refer to the process of combining a set of sensor nodes with similar properties. We propose two centralized group rekeying (CGK) schemes for secure group communication in sensor networks. The lifetime of a group is divided into three phases, i.e., group formation, group maintenance, and group dissolution. We demonstrate how to set up the group and establish the group key in each phase. Our analysis shows that the proposed two schemes are computationally efficient and secure

    Congestion Avoidance Energy Efficient MAC Protocol for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Network (WSNs) are generally energy-constrained and resource-constrained. When multiple simultaneous events occur in densely deployed WSNs, nodes near the base station can become congested, decreasing the network performance. Additionally, multiple nodes may sense an event leading to spatially-correlated contention, further increasing congestion. In order to mitigate the effects of congestion near the base station, an energy-efficient Media Access Control (MAC) protocol that can handle multiple simultaneous events and spatially-correlated contention is needed. Energy efficiency is important and can be achieved using duty cycles but they could degrade the network performance in terms of latency. Existing protocols either provide support for congestion near the base station or for managing spatially-correlated contention. To provide energy-efficiency while maintaining the networks performance under higher traffic load, we propose an energy-efficient congestion-aware MAC protocol. This protocol provides support for congestion near the base station and spatially-correlated contention by employing a traffic shaping approach to manage the arrival times of packets to the layers close to the base station. We implemented our protocol using the ns-2 simulator for evaluating its performance. Results show that our protocol has an improvement in the number of packets received at the base station while consuming less energy

    Current challenges and future trends in the field of communication architectures for microgrids

    Full text link
    [EN] The concept of microgrid has emerged as a feasible answer to cope with the increasing number of distributed renewable energy sources which are being introduced into the electrical grid. The microgrid communication network should guarantee a complete and bidirectional connectivity among the microgrid resources, a high reliability and a feasible interoperability. This is in a contrast to the current electrical grid structure which is characterized by the lack of connectivity, being a centralized-unidirectional system. In this paper a review of the microgrids information and communication technologies (ICT) is shown. In addition, a guideline for the transition from the current communication systems to the future generation of microgrid communications is provided. This paper contains a systematic review of the most suitable communication network topologies, technologies and protocols for smart microgrids. It is concluded that a new generation of peer-to-peer communication systems is required towards a dynamic smart microgrid. Potential future research about communications of the next microgrid generation is also identified.This work is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and the European Regional Development Fund (ERDF) under Grant ENE2015-64087-C2-2. This work is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant BES-2013-064539.Marzal-Romeu, S.; Salas-Puente, RA.; González Medina, R.; Garcerá, G.; Figueres Amorós, E. (2018). Current challenges and future trends in the field of communication architectures for microgrids. Renewable and Sustainable Energy Reviews. 82(2):3610-3622. https://doi.org/10.1016/j.rser.2017.10.101S3610362282

    Topology Control in Large Scale WSNs : Routing and Base Station Placement

    Get PDF

    Group Rekeying Schemes for Secure Group Communication in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are promising solutions for many applications. However, wireless sensor nodes suffer from many constraints such as low computation capability, small memory, limited energy resources, and so on. Grouping is an important technique to localize computation and reduce communication overhead in wireless sensor networks. In this paper, we use grouping to refer to the process of combining a set of sensor nodes with similar properties. We propose two centralized group rekeying (CGK) schemes for secure group communication in sensor networks. The lifetime of a group is divided into three phases, i.e., group formation, group maintenance, and group dissolution. We demonstrate how to set up the group and establish the group key in each phase. Our analysis shows that the proposed two schemes are computationally efficient and secure

    The state of peer-to-peer network simulators

    Get PDF
    Networking research often relies on simulation in order to test and evaluate new ideas. An important requirement of this process is that results must be reproducible so that other researchers can replicate, validate and extend existing work. We look at the landscape of simulators for research in peer-to-peer (P2P) networks by conducting a survey of a combined total of over 280 papers from before and after 2007 (the year of the last survey in this area), and comment on the large quantity of research using bespoke, closed-source simulators. We propose a set of criteria that P2P simulators should meet, and poll the P2P research community for their agreement. We aim to drive the community towards performing their experiments on simulators that allow for others to validate their results
    corecore