131 research outputs found

    High-Order AFEM for the Laplace-Beltrami Operator: Convergence Rates

    Get PDF
    We present a new AFEM for the Laplace-Beltrami operator with arbitrary polynomial degree on parametric surfaces, which are globally W∞1W^1_\infty and piecewise in a suitable Besov class embedded in C1,αC^{1,\alpha} with α∈(0,1]\alpha \in (0,1]. The idea is to have the surface sufficiently well resolved in W∞1W^1_\infty relative to the current resolution of the PDE in H1H^1. This gives rise to a conditional contraction property of the PDE module. We present a suitable approximation class and discuss its relation to Besov regularity of the surface, solution, and forcing. We prove optimal convergence rates for AFEM which are dictated by the worst decay rate of the surface error in W∞1W^1_\infty and PDE error in H1H^1.Comment: 51 pages, the published version contains an additional glossar

    A Posteriori Error Estimates for Surface Finite Element Methods

    Get PDF
    Problems involving the solution of partial differential equations over surfaces appear in many engineering and scientific applications. Some of those applications include crystal growth, fluid mechanics and computer graphics. Many times analytic solutions to such problems are not available. Numerical algorithms, such as Finite Element Methods, are used in practice to find approximate solutions in those cases. In this work we present L2 and pointwise a posteriori error estimates for Adaptive Surface Finite Elements solving the Laplace-Beltrami equation −△Γ u = f . The two sources of errors for Surface Finite Elements are a Galerkin error, and a geometric error that comes from replacing the original surface by a computational mesh. A posteriori error estimates on flat domains only have a Galerkin component. We use residual type error estimators to measure the Galerkin error. The geometric component of our error estimate becomes zero if we consider flat domains, but otherwise has the same order as the residual one. This is different from the available energy norm based error estimates on surfaces, where the importance of the geometric components diminishes asymptotically as the mesh is refined. We use our results to implement an Adaptive Surface Finite Element Method. An important tool for proving a posteriori error bounds for non smooth functions is the Scott-Zhang interpolant. A refined version of a standard Scott-Zhang interpolation bound is also proved during our analysis. This local version only requires the interpolated function to be in a Sobolev space defined over an element T instead of an element patch containing T. In the last section we extend our elliptic results to get estimates for the surface heat equation ut − △Γ u = f using the elliptic reconstruction technique

    Trace Finite Element Methods for PDEs on Surfaces

    Full text link
    In this paper we consider a class of unfitted finite element methods for discretization of partial differential equations on surfaces. In this class of methods known as the Trace Finite Element Method (TraceFEM), restrictions or traces of background surface-independent finite element functions are used to approximate the solution of a PDE on a surface. We treat equations on steady and time-dependent (evolving) surfaces. Higher order TraceFEM is explained in detail. We review the error analysis and algebraic properties of the method. The paper navigates through the known variants of the TraceFEM and the literature on the subject

    Convergence of Adaptive Finite Element Methods

    Get PDF
    We develop adaptive finite element methods (AFEMs) for elliptic problems, and prove their convergence, based on ideas introduced by D\"{o}rfler \cite{Dw96}, and Morin, Nochetto, and Siebert \cite{MNS00, MNS02}. We first study an AFEM for general second order linear elliptic PDEs, thereby extending the results of Morin et al \cite{MNS00,MNS02} that are valid for the Laplace operator. The proof of convergence relies on quasi-orthogonality, which accounts for the bilinear form not being a scalar product, together with novel error and oscillation reduction estimates, which now do not decouple. We show that AFEM is a contraction for the sum of energy error plus oscillation. Numerical experiments, including oscillatory coefficients and {both coercive and non-coercive} convection-diffusion PDEs, illustrate the theory and yield optimal meshes. The role of oscillation control is now more crucial than in \cite{MNS00,MNS02} and is discussed and documented in the experiments. We next introduce an AFEM for the Laplace-Beltrami operator on C1C^1 graphs in Rd (d≥2)R^d ~(d\ge2). We first derive a posteriori error estimates that account for both the energy error in H1H^1 and the geometric error in W∞1W^1_\infty due to approximation of the surface by a polyhedral one. We devise a marking strategy to reduce the energy and geometric errors as well as the geometric oscillation. We prove that AFEM is a contraction on a suitably scaled sum of these three quantities as soon as the geometric oscillation has been reduced beyond a threshold. The resulting AFEM converges without knowing such threshold or any constants, and starting from any coarse initial triangulation. Several numerical experiments illustrate the theory. Finally, we introduce and analyze an AFEM for the Laplace-Beltrami operator on parametric surfaces, thereby extending the results for graphs. Note that, due to the nature of parametric surfaces, the geometric oscillation is now measured in terms of the differences of tangential gradients rather than differences of normals as for graphs. Numerical experiments with closed surfaces are provided to illustrate the theory

    A posteriori error control for stationary coupled bulk-surface equations

    Get PDF
    We consider a system of two coupled elliptic equations, one defined on a bulk domain and the other one on the boundary surface. Problems of this kind are relevant for applications in engineering, chemistry and in biology like e.g. biological signal transduction. For the a posteriori error control of the coupled system, a residual error estimator is derived which takes into account the approximation errors due to the finite element discretisation in space as well as the polyhedral approximation of the surface. An adaptive refinement algorithm controls the overall error. Numerical experiments illustrate the performance of the a posteriori error estimator and the adaptive algorithm with several benchmark examples

    Finite Element Approximation of Eigenvalues and Eigenfunctions of the Laplace-Beltrami Operator

    Get PDF
    The surface finite element method is an important tool for discretizing and solving elliptic partial differential equations on surfaces. Recently the surface finite element method has been used for computing approximate eigenvalues and eigenfunctions of the Laplace-Beltrami operator, but no theoretical analysis exists to offer computational guidance. In this dissertation we develop approximations of the eigenvalues and eigenfunctions of the Laplace-Beltrami operator using the surface finite element method. We develop a priori estimates for the eigenvalues and eigenfunctions of the Laplace-Beltrami operator. We then use these a priori estimates to develop and analyze an optimal adaptive method for approximating eigenfunctions of the Laplace-Beltrami operator
    • …
    corecore