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We develop adaptive finite element methods (AFEMs) for elliptic problems,

and prove their convergence, based on ideas introduced by Dörfler [7], and Morin,

Nochetto, and Siebert [15, 16]. We first study an AFEM for general second order lin-

ear elliptic PDEs, thereby extending the results of Morin et al [15, 16] that are valid

for the Laplace operator. The proof of convergence relies on quasi-orthogonality,

which accounts for the bilinear form not being a scalar product, together with novel

error and oscillation reduction estimates, which now do not decouple. We show

that AFEM is a contraction for the sum of energy error plus oscillation. Numerical

experiments, including oscillatory coefficients and both coercive and non-coercive

convection-diffusion PDEs, illustrate the theory and yield optimal meshes. The

role of oscillation control is now more crucial than in [15, 16] and is discussed and

documented in the experiments.

We next introduce an AFEM for the Laplace-Beltrami operator on C1 graphs

in Rd (d ≥ 2). We first derive a posteriori error estimates that account for both

the energy error in H1 and the geometric error in W 1
∞ due to approximation of the



surface by a polyhedral one. We devise a marking strategy to reduce the energy

and geometric errors as well as the geometric oscillation. We prove that AFEM

is a contraction on a suitably scaled sum of these three quantities as soon as the

geometric oscillation has been reduced beyond a threshold. The resulting AFEM

converges without knowing such threshold or any constants, and starting from any

coarse initial triangulation. Several numerical experiments illustrate the theory.

Finally, we introduce and analyze an AFEM for the Laplace-Beltrami operator

on parametric surfaces, thereby extending the results for graphs. Note that, due to

the nature of parametric surfaces, the geometric oscillation is now measured in terms

of the differences of tangential gradients rather than differences of normals as for

graphs. Numerical experiments with closed surfaces are provided to illustrate the

theory.
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Overview

Adaptive procedure for numerical solution of partial differential equations

(PDEs) started in the late 1970’s and are now standard tools in science and engi-

neering. Adaptivity is an effective tool for obtaining approximate solutions of good

quality at relatively low computational costs, especially in the presence if singular-

ities. Adaptive finite element methods (AFEMs) are indeed a meaningful approach

toward multi-scale phenomena that makes realistic computations feasible.

A key ingredient of adaptivity is a posteriori error estimation. A posteriori

error estimates are computable estimates for the error in suitable norms, typically in

energy norm, in terms of the approximate solution and data of the problem. They

in fact provide the basis for adaptive mesh refinement and quantitative error control

to reach the ultimate goal - equidistribute the local discretization error. This can

be rephrased in terms of optimizing the computational effort for a given accuracy,

which in turn corresponds to avoiding overrefinement. We refer to the books of

Ainsworth and Oden [1] and Verfürth [23] for an extensive review on a posteriori

error estimation.

For elliptic PDEs, AFEM boils down to iterations of the form

SOLVE → ESTIMATE → MARK → REFINE.

Given a current mesh and data, SOLVE finds the approximate solution; ESTIMATE

computes error estimates in suitable norms based on a posteriori error estima-

tors ; MARK marks elements for refinement, thus hoping to reach the ultimate goal;

REFINE refines the current mesh to obtain a finer, hopefully enhanced, mesh. Ide-
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ally, AFEMs produce an infinite sequence of approximate solutions, and the question

arises whether this sequence converges to the exact solution. A complete answer in

1d was given by Babuška and Vogelius [2]; this result and techniques do not extend

to several dimensions though. For multidimensional problems, Dörfler [7] introduced

a marking strategy and established a connection between consecutive discrete so-

lutions which turn out to be crucial for convergence. Dörfler did not construct,

however, a convergent AFEM in the sense described above. More recently, Morin

et al [15, 16] introduced the notion of data oscillation, incorporated an additional

marking to account for it, and proved convergence of the resulting AFEM. These

results, however, are only valid for second order elliptic operators with piecewise

constant coefficients and without lower order terms; the Laplace operator is a chief

example.

In this thesis we extend these results upon developing AFEM and proving

their convergence for general second order linear elliptic PDEs and for the Laplace-

Beltrami operator on surfaces. The study of AFEM for general second order linear

elliptic PDEs extends [15, 16] to variable coefficients and non-symmetric noncoercive

bilinear forms; this could be used as a basis for further work on AFEM for nonlinear

elliptic PDEs. The interest in solving the Laplace-Beltrami operator on surfaces

comes from problems in physics, biophysics, engineering problems, and image pro-

cessing, where elliptic PDEs are to be solved on surfaces instead of flat domains.

We deal first with the simpler case of graphs, and later with the general case of

parametric surfaces.
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Thesis Outline

We organize the presentation of this thesis into three parts. In Chapter 1,

we develop and prove convergence of AFEM for general second order linear ellip-

tic PDEs. We introduce the concept of quasi-orthogonality to account for non-

symmetric bilinear forms corresponding to convection-diffusion PDEs. Since oscilla-

tions now depend also on the approximate solution, due to the presence of variable

coefficients and lower order terms, they are coupled with the error. This is an es-

sential difficulty, typical of general operators, that was not addressed in [15, 16].

We study this issue in detail. We prove convergence upon showing that AFEM is a

contraction for a suitably scaled sum of energy error and oscillation. We conclude

this chapter with several numerical experiments to illustrate the theory and shed

light on the more prominent role of oscillation.

In Chapter 2, we develop AFEM for the Laplace-Beltrami operator on graphs.

We start with differential geometry properties of graphs that are useful for the a

posteriori error analysis. We derive a posteriori error estimates that account for

both the energy error in H1 and the geometric error in W 1
∞ due to approximation of

the graph by a polyhedral one. We devise a marking strategy to reduce the energy

and geometric errors as well as the geometric oscillation. We prove that AFEM

is a contraction on a suitably scaled sum of these three quantities as soon as the

geometric oscillation has been reduced beyond a threshold; this threshold measures

closeness between exact and discrete surfaces or, equivalently, geometric resolution

of the underlying finite element mesh. Our AFEM converges without knowing such
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threshold or any constants, and starting from any coarse initial triangulation. Sev-

eral numerical experiments illustrate the theory.

In Chapter 3, we extend the results of Chapter 2 to the Laplace-Beltrami op-

erator on parametric surfaces. The development and analysis are similar to those of

graphs. Starting from basic differential geometry, we discuss the local representation

of the surface within the finite element context and how conforming refinement of

macro-elements gives rise to a conforming discretization of the surface. This matter

is crucial for both the formulation of AFEM and its analysis. We next derive a

posteriori error estimates. We point out that both the geometric error and oscil-

lation for parametric surfaces are different from those used for graphs. We prove

convergence of the resulting AFEM and conclude with numerical experiments that

illustrate the theory.
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Chapter 1

AFEM for General Second Order Linear Elliptic PDEs

1.1 Introduction and Main Result

Let Ω be a polyhedral bounded domain in Rd, (d = 2, 3). We consider a

homogeneous Dirichlet boundary value problem for a general second order elliptic

partial differential equation (PDE):

Lu = −∇·(A∇u) + b · ∇u + c u = f in Ω, (1.1.1)

u = 0 on ∂Ω; (1.1.2)

the choice of boundary condition is made for ease of presentation, since similar

results are valid for other boundary conditions. We also assume

• A : Ω 7→ Rd×d is Lipschitz and symmetric positive definite with smallest eigenvalue

a− and largest eigenvalue a+, i.e.,

a−(x) |ξ|2 ≤ A(x)ξ · ξ ≤ a+(x) |ξ|2 , ∀ξ ∈ Rd, x ∈ Ω; (1.1.3)

• b ∈ [L∞(Ω)]d is divergence free (∇·b = 0 in Ω);

• c ∈ L∞(Ω) is nonnegative (c ≥ 0 in Ω);

• f ∈ L2(Ω).

The purpose of this chapter is to prove the following convergence results for

adaptive finite element methods (AFEM) for (1.1.1-1.1.2), and document their per-

formance computationally.

5



Theorem 1.1 (Convergence of AFEM). Let {uk}k∈N0
be a sequence of finite ele-

ment solutions corresponding to a sequence of nested finite element spaces {Vk}k∈N0

produced by the AFEM of §3.5, which involves loops of the form

SOLVE → ESTIMATE → MARK → REFINE.

There exist constants σ, γ > 0, and 0 < ξ < 1, depending solely on the shape

regularity of meshes, the data, the parameters used by AFEM, and a number 0 <

s ≤ 1 dictated by the interior angles of ∂Ω, such that if the initial meshsize h0

satisfies hs
0‖b‖L∞ < σ, then for any two consecutive iterations k and k + 1 we have

|||u− uk+1|||2 + γ osck+1(Ω)2 ≤ ξ2
(|||u− uk|||2 + γ osck(Ω)2) . (1.1.4)

Therefore, AFEM converges with a linear rate ξ, namely

|||u− uk|||2 + γ osck(Ω)2 ≤ C0 ξ2k,

where C0 := |||u− u0|||2 + γ osc0(Ω)2.

Hereafter, |||·||| denotes the energy norm induced by the operator L and osc(Ω),

the oscillation term, stands for information missed by the averaging process asso-

ciated to FEM. This convergence result extends those of Morin et al. [15, 16] in

several ways:

• We deal with a full second order linear elliptic PDE with variable coefficients A,b

and c, whereas in [15, 16] A is assumed to be piecewise constant and b and c to

vanish.

• The underlying bilinear form B is non-symmetric due to the first order term b·∇u.

Since B is no longer a scalar product as in [15, 16], the Pythagoras equality relating

u, uk and uk+1 fails; we prove a quasi-orthogonality property instead.
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• The oscillation terms depend on discrete solutions in addition to data. Therefore,

oscillation and error cannot be reduced separately as in [15, 16].

• The oscillation terms do not involve the oscillation of the jump residuals. This is

achieved by exploiting positivity and continuity of A.

• Since error and oscillation are now coupled, in order to prove convergence we need

to handle them together. This leads to a novel argument and result, the contraction

property (1.1.4), according to which both error and oscillation decrease together.

This chapter is organized as follows. In section 2 we introduce the bilinear

form, the energy norm, recall existence and uniqueness of solutions, and state the

quasi-orthogonality property. In section 3 we describe the procedures used in AFEM,

namely, SOLVE, ESTIMATE, MARK, and REFINE, state new error and oscillation

reduction estimates, present the adaptive algorithm AFEM and prove its conver-

gence. In section 4 we prove the quasi-orthogonality property of section 2 and the

error and oscillation reduction estimates of section 3. In section 5 we present three

numerical experiments to illustrate properties of AFEM. We conclude in section 6

with extensions to A piecewise Lipschitz, with discontinuities aligned with the ini-

tial mesh, as well as non-coercive bilinear form B due to ∇·b 6= 0 and a numerical

experiment.
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1.2 Discrete Solution and Quasi-Orthogonality

For an open set G ⊂ Rd we denote by H1(G) the usual Sobolev space of

functions in L2(G) whose first derivatives are also in L2(G), endowed with the norm

‖u‖H1(G) :=
(
‖u‖L2(G) + ‖∇u‖L2(G)

)1/2

;

we use the symbols ‖·‖H1 and ‖·‖L2 when G = Ω. Moreover, we denote by H1
0 (G)

the space of functions in H1(G) that vanish on the boundary in the trace sense.

A weak solution of (1.1.1) and (1.1.2) is a function u satisfying

u ∈ H1
0 (Ω) : B[u, v] = 〈f, v〉 ∀ v ∈ H1

0 (Ω), (1.2.1)

where 〈u, v〉 :=
∫
Ω

uv for any u, v ∈ L2(Ω), and the bilinear form is defined on

H1
0 (Ω)×H1

0 (Ω) as

B[u, v] := 〈A∇u,∇v〉+ 〈b · ∇u + c u, v〉 . (1.2.2)

By Cauchy-Schwarz inequality one can easily show the continuity of the bilin-

ear form

|B[u, v]| ≤ CB ‖u‖H1 ‖v‖H1 ,

where CB depends only on the data. Combining Poincaré inequality with the diver-

gence free condition ∇·b=0, one has coercivity in H1
0 (Ω)

B[v, v] ≥
∫

Ω

a− |∇v|2 + cv2 ≥ cB ‖v‖2
H1 ,

where cB depends only on the data. Existence and uniqueness of (1.2.1) thus follows

from Lax-Milgram theorem. [10].
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We define the energy norm on H1
0 (Ω) by |||v|||2 := B[v, v], which is equivalent

to H1
0 (Ω)-norm ‖·‖H1 . In fact we have

cB ‖v‖2
H1 ≤ |||v|||2 ≤ CB ‖v‖2

H1 ∀ v ∈ H1
0 (Ω). (1.2.3)

1.2.1 Discrete Solutions on Nested Meshes

Let {TH} be a shape regular family of nested conforming meshes over Ω: that

is there exists a constant γ∗ such that

HT

ρT

≤ γ∗ ∀ T ∈
⋃
H

TH , (1.2.4)

where, for each T ∈ TH , HT is the diameter of T , and ρT is the diameter of the

biggest ball contained in T ; the global meshsize is hH := maxT∈TH
HT .

Let {VH} be a corresponding family of nested finite element spaces consisting

of continuous piecewise polynomials over TH of fixed degree n ≥ 1, that vanish on

the boundary. Let uH be a discrete solution of (1.2.1) satisfying

uH ∈ VH : B[uH , vH ] = 〈f, vH〉 ∀ vH ∈ VH ; (1.2.5)

the effect of quadrature is not considered in this chapter. Existence and uniqueness

of this problem follows from Lax-Milgram theorem, since VH ⊂ H1
0 (Ω).

1.2.2 Quasi-Orthogonality

Consider two consecutive nested meshes TH ⊂ Th, i.e. Th is a refinement of

TH . For the corresponding spaces VH ⊂ Vh ⊂ H1
0 (Ω), let uh ∈ Vh and uH ∈ VH be

the discrete solutions. Since the bilinear form is non-symmetric, it is not a scalar

9



product and the orthogonality relation between u − uH and uh − uH , the so-called

Pythagoras equality, fails to hold. We have instead a perturbation result referred to

as quasi-orthogonality provided that the initial mesh is fine enough. This result is

stated below and the proof is given in section 4.

Lemma 1.2.1 (Quasi-orthogonality). Let f ∈ L2(Ω). There exist a constant

C∗ > 0, solely depending on the shape regularity constant γ∗, the data A,b, and c,

and a number 0 < s ≤ 1 dictated only by the interior angles of ∂Ω, such that if the

meshsize h0 of the initial mesh satisfies C∗hs
0 ‖b‖L∞ < 1, then

|||u− uh|||2 ≤ Λ0 |||u− uH |||2 − |||uh − uH |||2 , (1.2.6)

where Λ0 := (1− C∗hs
0 ‖b‖L∞)−1. The equality holds provided b = 0 in Ω.

1.3 Adaptive Algorithm

The Adaptive procedure consists of loops of the form

SOLVE → ESTIMATE → MARK → REFINE.

The procedure SOLVE solves (1.2.5) for the discrete solution uH . The procedure

ESTIMATE determines the element indicators ηH(T ) and oscillation oscH(T ) for all

elements T ∈ TH . Depending on their relative size, these quantities are later used

by the procedure MARK to mark elements T , and thereby create a subset T̂H of TH

of elements to be refined. Finally, procedure REFINE partitions those elements in

T̂H and a few more to maintain mesh conformity. These procedures are discussed

more in detail below.
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1.3.1 Procedure SOLVE : Linear Solver

We employ linear solvers, either direct or iterative methods, such as precon-

ditioned GMRES, CG, and BICG, to solve linear system (1.2.5). In other words,

given a mesh Tk, an initial guess uk−1 for the solution, and the data A,b, c, f , SOLVE

computes the discrete solution

uk := SOLVE(Tk, uk−1,A,b, c, f)

1.3.2 Procedure ESTIMATE : A Posteriori Error Estimate

Since we assume exact numerical integration, subtracting (1.2.5) from (1.2.1)

yields Galerkin orthogonality

B[u− uH , vH ] = 0 ∀ vH ∈ VH . (1.3.1)

In addition to TH , let SH denote the set of interior faces (edges or sides) of the mesh

(triangulation) TH . We consider the residual R(uH) ∈ H−1(Ω) defined by

R(uH) := f +∇·(A∇uH)− b · ∇uH − c uH ,

and its relation to the error L(u−uH) = R(uH). It is clear that to estimate |||u− uH |||

we can equivalently deal with ‖R(uH)‖H−1(Ω). To this end, we integrate by parts

elementwise the bilinear form B[u−uH , v] to obtain the error representation formula

B[u− uH , v] =
∑

T∈TH

∫

T

RT (uH)v +
∑

S∈SH

∫

S

JS(uH)v ∀ v ∈ H1
0 (Ω), (1.3.2)
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where the element residual RT (uH) and the jump residual JS(uH) are defined as

RT (uH) := f +∇·(A∇uH)− b · ∇uH − c uH in T ∈ TH , (1.3.3)

JS(uH) := −A∇uH
+ · ν+ −A∇uH

− · ν− := [[A∇uH ]]S · νS on S ∈ SH , (1.3.4)

where S is the common side of elements T+ and T− with unit outward normals

ν+ and ν−, respectively, and νS = ν−. Whenever convenient, we will use the

abbreviations RT = RT (uH) and JS = JS(uH).

Upper Bound

For T ∈ TH and S ∈ Sh an interior face, we define the local error indicator

ηH(T ) by

ηH(T )2 := H2
T ‖RT (uH)‖2

L2(T ) +
∑

S⊂∂T

HS ‖JS(uH)‖2
L2(S) . (1.3.5)

Given a subset ω ⊂ Ω, we define the error estimator ηH(ω) by

ηH(ω)2 :=
∑

T∈TH , T⊂ω

ηH(T )2.

Hence, ηH(Ω) is the error estimator of Ω with respect to the mesh TH . Using

(1.3.1),(1.3.2) and properties of Clément interpolation, as shown in [1, 5, 23], we

obtain the upper bound of the error in terms of the estimator,

|||u− uH |||2 ≤ C1ηH(Ω)2, (1.3.6)

where the constant C1 > 0 depends only on the shape regularity γ∗, coercivity

constant cB and continuity constant CB of the bilinear form.
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Lower Bound

Using the explicit construction of Verfürth [1, 23] via bubble functions and

positivity and continuity of A, we can get a local lower bound of the error in terms of

local indicators and oscillation. That is, there exist constants C2, C3 > 0, depending

only on the shape regularity γ∗, CB , and cB, such that

C2 ηH(T )2 − C3

∑
T⊂ωT

H2
T

∥∥RT−RT

∥∥2

L2(T )
≤ ‖u− uH‖2

H1(ωT ) , (1.3.7)

where the domain ωT consists of all elements sharing at least a side with T , and

RT is any polynomial approximation of RT on T . However, for the purpose of

proving Lemmas 1.3.1 and 1.3.2 below, we will assume that RT ∈ Pn−1(T ) is the

L2-projection of RT . We define the oscillation on the elements T ∈ TH by

oscH(T )2 := H2
T

∥∥RT −RT

∥∥2

L2(T )
, (1.3.8)

and for a subset ω ⊂ Ω, we define

oscH(ω)2 :=
∑

T∈TH , T⊂ω

oscH(T )2 .

Remark 1.3.1. We see from (1.3.7) that if the oscillation oscH(ωT ) is small compared

to the indicator ηH(T ), then a large ηH(T ) implies a large local error ‖u− uH‖H1(ωT ).

This explains why refining elements with large indicators usually tends to equi-

distribute the errors, which is an ultimate goal of adaptivity. This idea is employed

by the procedure MARK of §1.3.3.

Remark 1.3.2. The oscillation oscH(T ) does not involve oscillation of the jump resid-

ual JS(uH) as is customary [1, 23]. This result follows from the positivity and

continuity of A, and is explained in §1.4.2.
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Remark 1.3.3. The oscillation oscH(T ) depends on RT = RT (uH), which in turn

depends on the discrete solution uH . This is a fundamental difference with Morin

et al. [15, 16], where the oscillation is purely data oscillation. It is not clear now

that the oscillation will decrease when the mesh TH will be refined because uH will

also change. Controlling the decay of oscH(T ) is thus a major challenge addressed

in this work; see §1.3.3 and §1.3.4. It is not possible to show that oscillation will

always decrease as the mesh gets refined as in [15, 16].

For a given mesh TH and discrete solution uH , along with input data A,b, c

and f , the procedure ESTIMATE computes indicators ηH(T ) and oscillations oscH(T )

for all elements T ∈ TH according to (1.3.5) and (1.3.8):

{ηH(T ), oscH(T )}T∈TH
= ESTIMATE(TH , uH ,A,b, c, f)

1.3.3 Procedure MARK

Our goal is to devise a marking procedure, namely to identify a subset T̂H of

the mesh TH such that, after refining, both error and oscillation will be reduced.

We use two strategies for this: Marking Strategy E deals with the error estimator,

and Marking Strategy O does so with the oscillation.

Marking Strategy E : Error Reduction

This strategy was introduced by Dörfler [7] to enforce error reduction.
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Marking Strategy E. Given a parameter 0 < θ < 1, construct a subset T̂H of

TH such that

∑

T∈T̂H

ηH(T )2 ≥ θ2ηH(Ω)2, (1.3.9)

and mark all elements in T̂H for refinement.

We will see later that Marking Strategy E guarantees error reduction in the

absence of oscillation terms. Since the latter account for information missed by the

averaging process associated with the finite element method, we need a separate

procedure to guarantee oscillation reduction.

Marking Strategy O: Oscillation Reduction

This procedure was introduced by Morin et al. [15, 16] as a separate means

for reducing oscillation.

Marking Strategy O. Given a parameter 0 < θ̂ < 1 and the subset T̂H ⊂ TH

produced by Marking Strategy E, enlarge T̂H such that

∑

T∈T̂H

oscH(T )2 ≥ θ̂2oscH(Ω)2 , (1.3.10)

and mark all elements in T̂H for refinement.

Given a mesh TH and all information about the local error indicators ηH(T ),

and oscillation oscH(T ), together with user parameters θ and θ̂, MARK generates a

subset T̂H of TH

T̂H = MARK(θ, θ̂ ; TH , {ηH(T ), oscH(T )}T∈TH
)
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1.3.4 Procedure REFINE

The following Interior Node Property, due to Morin et al [15, 16], is known to

be necessary for error and oscillation reduction.

Interior Node Property. Refine each marked element T ∈ T̂H to obtain a new

mesh Th compatible with TH such that

T and the d + 1 adjacent elements T ′ ∈ TH of T , as well as their

common sides, contain a node of the finer mesh Th in their interior.

In addition to the Interior Node Property, we assume that the refinement is

done in such a way that the new mesh Th is conforming, which guarantees that both

TH and Th are nested. With this property, we have a reduction factor γ0 < 1 of

element size, i.e. if T ∈ Th is obtained by refining T ′ ∈ T̂H , then hT ≤ γ0HT ′ . For

example, when d = 2 with triangular elements, to have Interior Node Property we

can use the three newest bisections for each single refinement step, whence γ0 ≤ 1/2.

Given a mesh TH and a marked set T̂H , REFINE constructs the refinement Th

satisfying the Interior Node Property:

Th = REFINE(TH , T̂H)

Combining the marking strategies of §1.3.3 with the Interior Node Property,

we obtain the following two crucial results whose proofs are given in §1.4.

Lemma 1.3.1 (Error Reduction). There exist constants C4 and C5, depending only

on the shape regularity constant γ∗ and θ, such that

ηH(T )2 ≤ C4 ‖uh − uH‖2
H1(ωT ) + C5oscH(ωT )2 ∀ T ∈ T̂H . (1.3.11)
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We realize that the local energy error between consecutive discrete solutions is

bounded below by the local indicators for elements in the marked set T̂H , provided

the oscillation term is sufficiently small relative to the energy error.

Lemma 1.3.2 (Oscillation Reduction). There exist constants 0 < ρ1 < 1 and

0 < ρ2, depending only on γ∗ and θ̂, such that

osch(Ω)2 ≤ ρ1oscH(Ω)2 + ρ2 |||uh − uH |||2 . (1.3.12)

We have that oscillation reduces with a factor ρ1 < 1 provided the energy error

between consecutive discrete solutions is relatively small.

Remark 1.3.4 (Coupling of error and oscillation). Lemmas 1.3.1 and 1.3.2 seem to

lead to conflicting demands on the relative sizes of error and oscillation. These

two concepts are indeed coupled, which contrasts with [15, 16], where oscillation

depends only on data and reduces separately from the error. This suggests that we

must handle them together, this being the main contribution of this chapter. We

make this assertion explicit in Theorem 1.1 below.

1.3.5 Adaptive Algorithm AFEM

The adaptive algorithm consists of the loops of procedures SOLVE, ESTIMATE,

MARK, and REFINE, consecutively, given that the parameters θ and θ̂ are chosen

according to Marking Strategies E and O.
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AFEM.

Choose parameters 0 < θ, θ̂ < 1.

1. Pick an initial mesh T0, initial guess u−1 = 0, and set k = 0.

2. uk = SOLVE(Tk, uk−1,A,b, c, f).

3. {ηk(T ), osck(T )}T∈Tk
= ESTIMATE(Tk, uk,A,b, c, f)).

4. T̂k = MARK(θ, θ̂ ; Tk, {ηk(T ), osck(T )}T∈Tk
).

5. Tk+1 = REFINE(Tk, T̂k).

6. Set k = k + 1 and go to step 2.

Theorem 1.1 (Convergence of AFEM). Let {uk}k∈N0
be a sequence of finite ele-

ment solutions corresponding to a sequence of nested finite element spaces
{
Vk

}
k∈N0

produced by AFEM. There exist constants σ, γ > 0, and 0 < ξ < 1, depending

solely on the mesh regularity constant γ∗, data, parameters θ and θ̂, and a number

0 < s ≤ 1 dictated by interior angles of ∂Ω, such that if the initial meshsize h0

satisfies hs
0‖b‖L∞ < σ, then for any two consecutive iterations k and k + 1, we have

|||u− uk+1|||2 + γ osck+1(Ω)2 ≤ ξ2
(|||u− uk|||2 + γ osck(Ω)2) . (1.3.13)

Therefore AFEM converges with a linear rate ξ, namely,

|||u− uk|||2 + γ osck(Ω)2 ≤ C0 ξ2k,

where C0 := |||u− u0|||2 + γ osc0(Ω)2.
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Proof. We just prove the contraction property (1.3.13), which obviously im-

plies the decay estimate. For convenience, we introduce the notation

ek := |||u− uk||| , εk := |||uk+1 − uk||| , osck := osck(Ω) .

The idea is to use the quasi-orthogonality (1.2.6) and replace the term |||uk+1 − uk|||2

using new results of error and oscillation reduction estimates (1.3.11) and (1.3.12).

We proceed in three steps as follows.

Step 1. We first get a lower bound for εk in terms of ek. To this end, we use Marking

Strategy E and the upper bound (1.3.6) to write

θ2e2
k ≤ C1θ

2ηk(Ω)2 ≤ C1

∑

T∈T̂k

ηk(T )2.

Adding (1.3.11) of Lemma 1.3.1 over all marked elements T ∈ T̂k, and observing

that each element can be counted at most D := d + 2 times due to overlap of the

sets ωT , together with ‖v‖2
H1 ≤ c−1

B |||v|||2 for all v ∈ H1
0 (Ω), we arrive at

θ2e2
k ≤

DC1C4

cB

ε2
k + DC1C5 osc2

k.

If Λ1 := θ2cB

DC1C4
, Λ2 := C5cB

C4
, then this implies the lower bound for ε2

k,

ε2
k ≥ Λ1e

2
k − Λ2osc2

k. (1.3.14)

Step 2. If h0 is sufficiently small so that the quasi-orthogonality (1.2.6) of Lemma

1.2.1 holds with Λ0 = (1− C∗hs
0 ‖b‖L∞)−1, then

e2
k+1 ≤ Λ0e

2
k − ε2

k.

Replacing the fraction βε2
k of ε2

k via (1.3.14) we obtain

e2
k+1 ≤ (Λ0 − βΛ1)e

2
k + βΛ2osc2

k − (1− β)ε2
k,
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where 0 < β < 1 is a constant to be chosen suitably. We now assert that it is

possible to chose h0 compatible with Lemma 1.2.1 and also that

0 < α := Λ0 − βΛ1 < 1.

A simple calculation shows that this is the case provided

C∗hs
0 ‖b‖L∞ <

βΛ1

(1 + βΛ1)
< 1,

i.e., hs
0 ‖b‖L∞ < σ with σ := βΛ1

C∗(1+βΛ1)
. Consequently

e2
k+1 ≤ αe2

k + βΛ2osc2
k − (1− β)ε2

k. (1.3.15)

Step 3. To remove the last term of (1.3.15) we resort to the oscillation reduction

estimate of Lemma 1.3.2

osc2
k+1 ≤ ρ1osc2

k + ρ2ε
2
k.

We multiply it by (1− β)/ρ2 and add it to (1.3.15) to deduce

e2
k+1 +

1− β

ρ2

osc2
k+1 ≤ α e2

k +

(
βΛ2 +

ρ1

ρ2

(1− β)

)
osc2

k.

If γ := 1−β
ρ2

, then we would like to choose β < 1 in such a way that

βΛ2 + ρ1γ = µγ

for some µ < 1. A simple calculation yields

β =

µ−ρ1

ρ2

Λ2 + µ−ρ1

ρ2

,

and shows that ρ1 < µ < 1 guarantees that 0 < β < 1. Therefore,

e2
k+1 + γ osc2

k+1 ≤ α e2
k + µγ osc2

k,

and the asserted estimate (1.3.13) follows upon taking ξ = max(α, µ) < 1.
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Remark 1.3.5 (Comparison with [15, 16]). In [15, 16] the oscillation is independent

of discrete solutions, i.e. ρ2 = 0, and is reduced by the factor ρ1 < 1 in (1.3.12).

Consequently, Step 3 above is avoided by setting β = 1, and the decay of ek and

osck is monitored separately. Since this is no longer possible, ek and osck are now

combined and decreased together.

Remark 1.3.6 (Splitting of εk). The idea of splitting εk is already used by Chen and

Jia [4] in examining one time step for the heat equation. This is because a mass

(zero order) term naturally occurs, which did not take place in [15, 16]. The elliptic

operator is just the Laplacian in [4].

Remark 1.3.7 (Effect of Convection). Assuming that hs
0 ‖b‖L∞ < σ implies that the

local Péclet number is sufficiently small for the Galerkin method not to exhibit

oscillations. This appears to be essential for u0 to contain relevant information

and guide correctly the adaptive process. This restriction is difficult to verify in

practice because it involves unknown constants. However, starting from coarser

meshes than needed in theory does not seem to be a problem in our examples (see

§1.5.3-Experiment 2 where we carefully express the constant σ in terms of data).

Remark 1.3.8 (Vanishing Convection). If b = 0, then Theorem 1.1 has no restriction

on the initial mesh. This thus extends the convergent result of Morin et al. [15, 16]

to variable diffusion coefficient and zero order terms.

Remark 1.3.9 (Optimal β). The choice of β can be optimized. In fact, we can easily

see that

α = Λ0 − βΛ1, µ = ρ1 +
β

1− β
ρ2Λ2
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yields a unique value 0 < β∗ < 1 for which α = µ and the contraction constant ξ of

Theorem 1.1 is minimal. This β∗ depends on geometric constant Λ0, Λ1, Λ2 as well

on θ, θ̂ and h0, but it is not computable.

1.4 Proofs of Lemmas

Let T̂H ⊂ TH be a set of marked elements obtained from procedure MARK.

Let Th be a refined mesh obtained from procedure REFINE, and let VH ⊂ Vh be

nested spaces corresponding to compatible meshes TH and Th, respectively. For

convenience, set

eh := u− uh, eH := u− uH , εH := uh − uH .

1.4.1 Proof of Lemma 1.2.1: Quasi-Orthogonality

In view of Galerkin orthogonality (1.3.1), i.e. B[eh, vh] = 0, vh ∈ Vh, we have

|||eH |||2 = |||eh|||2 + |||εH |||2 + B[εH , eh].

If b = 0, then B is symmetric and B[εH , eh] = B[eh, εH ] = 0. For b 6= 0, instead,

B[εH , eh] 6= 0, and we must account for this term. It is easy to see that ∇·b = 0

and integration by parts yield

B[εH , eh] = B[eh, εH ] + 〈b · ∇εH , eh〉 − 〈b · ∇eh, εH〉 = 2 〈b · ∇εH , eh〉 .

Hence

|||eh|||2 = |||eH |||2 − |||εH |||2 − 2 〈b · ∇εH , eh〉 .
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Using Cauchy-Schwarz inequality and replacing the H1(Ω)-norm by the energy norm

we have, for any δ > 0 to be chosen later,

−2 〈b · ∇εH , eh〉 ≤ δ ‖eh‖2
L2 +

‖b‖2
L∞

δcB

|||εH |||2 .

We then realize the need to relate L2(Ω) and energy norms to replace ‖eh‖L2 by

|||eh|||. This requires a standard duality argument whose proof is reported in [5].

Lemma 1.4.1 (Duality). Let f ∈ L2(Ω) and u ∈ H1+s(Ω) for some 0 < s ≤ 1 be

the solution of (1.2.1), where s depends on the interior angles of ∂Ω (s = 1 if Ω is

convex). Then, there exists a constant CD, depending only on the shape regularity

constant γ∗ and the data of (1.1.1) such that

‖eh‖L2 ≤ CDhs ‖eh‖H1 . (1.4.1)

Inserting this estimate in the preceding two bounds, and using h ≤ h0, the meshsize

of the initial mesh, in conjunction with (1.2.3) we deduce

(
1− δCD

2c−1
B h2s

0

) |||eh|||2 ≤ |||eH |||2 −
(
1− ‖b‖2

L∞(δcB)−1
) |||εH |||2 .

We now choose δ =
‖b‖L∞
CDhs

0
to equate both parenthesis, as well as h0 sufficiently small

for δCD
2h2s

0 c−1
B = C∗hs

0 ‖b‖L∞ < 1 with C∗ := CD/cB. We end up with

|||eh|||2 ≤ 1

1− C∗hs
0 ‖b‖L∞

|||eH |||2 − |||εH |||2 .

This implies (1.2.6) and concludes the proof.
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1.4.2 Proof of Lemma 1.3.1 : Error Reduction

Upon restricting the test function v in (1.3.2) to Vh ⊃ VH , we obtain the error

representation

B[εH , vh] =
∑

T∈TH

∫

T

RT vh +

∫

T

(RT −RT )vh +
∑

S∈SH

∫

S

JS vh ∀ vh ∈ Vh, (1.4.2)

where we use the abbreviations RT = RT (uH) and JS = JS(uH), and RT = Πn−1
T RT

denotes the L2-projection of RT onto the space of polynomials Pn−1(T ) over the

element T ∈ TH . Except for avoiding the oscillation terms of the jump residual JS,

the proof goes back to [7, 15, 16]. We proceed in three steps.

Step 1 (Interior Residual). Let T ∈ TH , and let xT be an interior node of T

generated by the procedure REFINE. Let ψT ∈ Vh be a bubble function which

satisfies ψT (xT ) = 1, vanishes on ∂T , and 0 ≤ ψT ≤ 1; hence supp (ψT ) ⊂ T . Since

RT ∈ Pn−1(T ) and ψT > 0 in a polyhedron of measure comparable with that of T ,

we have

C
∥∥RT

∥∥2

L2(T )
≤

∫

T

ψT RT
2

=

∫

T

RT (ψT RT ).

Since ψT RT is a piecewise polynomial of degree ≤ n over Th, it is thus an admissible

test function in (1.4.2) which vanishes outside T (and in particular on all S ∈ SH).

Therefore

C
∥∥RT

∥∥2

L2(T )
≤ B[εH , ψT RT ] +

∫

T

(RT −RT )ψT RT

≤ C
(
H−1

T ‖εH‖H1(T ) +
∥∥RT −RT

∥∥
L2(T )

) ∥∥RT

∥∥
L2(T )

,

because of an inverse inequality for ψT RT . This, together with the triangle inequal-
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ity, yields the desired estimate for H2
T ‖RT‖2

L2(T ) :

H2
T ‖RT‖2

L2(T ) ≤ C
(
‖εH‖2

H1(T ) + H2
T

∥∥RT −RT

∥∥2

L2(T )

)
. (1.4.3)

Step 2 (Jump Residual). Let S ∈ SH be an interior side of T1 ∈ T̂H , and let T2 ∈ TH

be the other element sharing S. Let xS be an interior node of S created by the

procedure REFINE. Let ψS ∈ Vh be a bubble function in ωS := T1 ∪ T2 such that

ψS(xS) = 1, ψS vanishes on ∂ωS, and 0 ≤ ψS ≤ 1; hence supp (ψS) ⊂ ωS.

Since uH is continuous, then [[∇uH ]]S is parallel to νS, i.e. [[∇uH ]]S = jS νS.

Moreover, the coefficient matrix A(x) being continuous implies

JS = A(x) [[∇uH ]]S · νS = jS A(x)νS · νS = a(x) jS,

where a(x) := A(x)νS · νS satisfies 0 < aS ≤ a(x) ≤ aS with aS, aS the smallest and

largest eigenvalues of A(x) on S. Consequently,

‖JS‖2
L2(S) ≤ a2

S

∫

S

j2
S ≤ Ca2

S

∫

S

j2
SψS ≤ C

a2
S

aS

∫

S

(jS ψS)JS, (1.4.4)

where the second inequality follows from jS being a polynomial and ψS > 0 in a

polygon of measure comparable with that of S.

We now extend jS to ωS by first mapping to the reference element, next

extending constantly along the normal to Ŝ, and finally mapping back to ωS.

The resulting extension Eh(jS) is a piecewise polynomial of degree ≤ n−1 in ωS

so that ψSEh(jS) ∈ Vh, and satisfies ‖ψSEh(jS)‖L2(ωS) ≤ CH
1/2
S ‖jS‖L2(S). Since

vh = ψSEh(jS) is an admissible test function in (1.4.2) which vanishes on all sides of
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SH but S, we arrive at

∫

S

JS(jSψS) = B[εH , vh]−
∫

T1

RT1 vh −
∫

T2

RT2 vh

≤ C

(
H
−1/2
S ‖εH‖H1

S(ωS) + H
1/2
S

2∑
i=1

‖RTi
‖L2(Ti)

)
‖jS‖L2(S) .

(1.4.5)

Therefore

HS ‖JS‖2
L2(S) ≤ C

(
‖εH‖2

H1(ωS) +
2∑

i=1

H2
Ti
‖RTi

‖2
L2(Ti)

)
. (1.4.6)

Step 3 (Final Estimate). To remove the interior residual from the right hand side

of (1.4.6) we observe that both T1 and T2 contain an interior node according to

procedure REFINE. Hence, (1.4.3) implies

HS ‖JS‖2
L2(S) ≤ C

(
‖εH‖2

H1(ωS) +
2∑

i=1

H2
Ti

∥∥RTi
−RTi

∥∥2

L2(Ti)

)
. (1.4.7)

The asserted estimate for ηH(T )2 is thus obtained by adding this bound to (1.4.3).

The constant C depends on the shape regularity constant γ∗ and the ratio a2
S/aS of

largest and smallest eigenvalues of A(x) for x ∈ S.

Remark 1.4.1 (Positivity). The use of A(x) being positive definite in (1.4.4) avoids

having oscillation terms on S. This comes at the expense of a constant depending

on a2
S/aS. If we were to proceed in the usual manner, as in [1, 18, 23], we would

end up with oscillation of the form

H
1/2
S ‖(A−A(xS)) [[∇uH ]]S · νS‖L2(S) = H

1/2
S ‖(a− a(xS))jS‖L2(S)

≤ CH
3/2
S ‖A‖W 1∞(S) ‖jS‖L2(S)

≤ CHS

∥∥∥H
1/2
S JS

∥∥∥
L2(S)

,
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where C > 0 also depends on the ratio aS/aS dictated by the variation of a(x) on

S. This oscillation can be absorbed into the term H
1/2
S ‖JS‖L2(S) provided that the

meshsize HS is sufficiently small; see [18]. We do not need this assumption in our

present discussion.

Remark 1.4.2 (Continuity of A). The continuity of A is instrumental in avoiding

jump oscillations, which in turn makes computations simpler. However, jump os-

cillations cannot be avoided when A exhibits discontinuities across inter-element

boundaries of the initial mesh. We get instead of (1.4.7)

CHS ‖JS‖2
L2(S) ≤ ‖εH‖2

H1(ωS)+
2∑

i=1

H2
Ti

∥∥RTi
−RTi

∥∥2

L2(Ti)
+HS

∥∥JS−JS

∥∥2

L2(S)
, (1.4.8)

where JS is the best L2-projection of JS onto Pn−1(S). To obtain estimate (1.4.8)

we proceed as follows. Starting from a polynomial JS, we get an estimate similar to

that of (1.4.4)

C
∥∥JS

∥∥2

L2(S)
≤

∫

S

ψSJS
2

=

∫

S

JS(ψSJS) +

∫

S

(JS − JS)(ψSJS). (1.4.9)

In contrast to (1.4.4), we see that the oscillation term (JS − JS) cannot be avoided

when A has a discontinuity across S. We estimate the first term on the right hand

side of (1.4.9) exactly as we have argued with (1.4.5) and thereby arrive at

∫

S

JS(JSψS) ≤ C

(
H
−1/2
S ‖εH‖H1

S(ωS) + H
1/2
S

2∑
i=1

‖RTi
‖L2(Ti)

)
∥∥JS

∥∥
L2(S)

.

This and a further estimate of the second term on the right hand side of (1.4.9),

yield

HS

∥∥JS

∥∥2

L2(S)
≤ C

(
‖εH‖2

H1(ωS) +
2∑

i=1

H2
Ti
‖RTi

‖2
L2(Ti)

+ HS

∥∥JS − JS

∥∥2

L2(S)

)
,
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whence the assertion (1.4.8) follows using triangle inequality for ‖JS‖L2(S). Combin-

ing with (1.4.3), we deduce an estimate for ηH(T ) similar to (1.3.11), namely,

ηH(T )2 ≤ C
(
‖εH‖2

H1(ωT ) + oscH(ωT )2
)

,

with the new oscillation term involving jumps on interior sides

oscH(T )2 := H2
T

∥∥RT −RT

∥∥2

L2(T )
+

∑

S⊂∂T

HS

∥∥JS − JS

∥∥2

L2(S)
. (1.4.10)

In §1.6.1 we discuss the case of a discontinuous A. We show an oscillation

reduction property of oscH(T ), defined by (1.4.10), similar to Lemma 1.3.2.

1.4.3 Proof of Lemma 1.3.2 : Oscillation Reduction

The proof hinges on the Marking Strategy O and the Interior Node Property.

We point out that if T ∈ Th is contained in T ′ ∈ T̂H , then REFINE gives a reduction

factor γ0 < 1 of element size:

hT ≤ γ0HT ′ . (1.4.11)

The proof proceeds in three steps as follows.

Step 1 (Relation between Oscillations). We would like to relate osch(T
′) and oscH(T ′)

for any T ′ ∈ TH . To this end, we note that for all T ∈ Th contained in T ′, we can

write

RT (uh) = RT (uH)− LT (εH) in T,

where εH = uh − uH as before and

LT (εH) := −∇·(A∇εH) + b · ∇εH + c εH in T.
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By Young’s inequality, we have for all δ > 0

osch(T )2 = h2
T

∥∥∥RT (uh)−RT (uh)
∥∥∥

2

L2(T )

≤ (1+δ)h2
T

∥∥∥RT (uH)−RT (uH)
∥∥∥

2

L2(T )
+(1+δ−1)h2

T

∥∥∥LT (εH)−LT (εH)
∥∥∥

2

L2(T )
,

where RT (uh), RT (uH), and LT (εH) are L2-projections of RT (uh), RT (uH), and

LT (εH) onto polynomials of degree ≤ n− 1 on T . We next observe that

∥∥∥LT (εH)− LT (εH)
∥∥∥
L2(T )

≤ ‖LT (εH)‖L2(T )

and that, according to (1.4.11),

hT ≤ γT ′HT ′

provided γT ′ = γ0 if T ′ ∈ T̂H and γT ′ = 1 otherwise. Therefore, if Th(T
′) denotes all

T ∈ Th contained in T ′,

osch(T
′)2

=
∑

T∈Th(T ′)

osch(T )2

≤ (1 + δ)γ2
T ′oscH(T ′)2

+ (1 + δ−1)
∑

T∈Th(T ′)

h2
T ‖LT (εH)‖2

L2(T ),

(1.4.12)

since RT (uH) = RT ′(uH) and RT (uH) is the L2-projection of RT ′(uH) in T .

Step 2 (Estimate of LT (εH)). In order to estimate ‖LT (εH)‖L2(T ) in terms of

‖εH‖H1(T ), we first split it as follows

‖LT (εH)‖L2(T ) ≤ ‖∇·(A∇εH)‖L2(T ) + ‖b · ∇εH‖L2(T ) + ‖c εH‖L2(T ) .

We denote these terms NA, NB, and NC , respectively. Since

NA ≤ ‖(∇·A) · ∇εH‖L2(T ) + ‖A : H(εH)‖L2(T )
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where H(εH) is the Hessian of εH in T , invoking the Lipschitz continuity of A

together with an inverse estimate in T , we infer that

NA ≤ CA

(
‖∇εH‖L2(T ) + h−1

T ‖∇εH‖L2(T )

)
,

where CA depends on A and the shape regularity constant γ∗. Besides, we readily

have

NB ≤ CB ‖∇εH‖L2(T ) , NC ≤ CC ‖εH‖L2(T ) ,

where CB, CC depend on b, c. Combining these estimates, we arrive at

h2
T ‖LT (εH)‖2

L2(T ) ≤ C∗ ‖εH‖2
H1(T ) . (1.4.13)

Step 3 (Choice of δ). We insert (1.4.13) into (1.4.12) and add over T ′ ∈ TH . Recall-

ing the definition of γT ′ and utilizing (1.3.10), we deduce

∑

T ′∈TH

γ2
T ′oscH(T ′)2

= γ2
0

∑

T ′∈T̂H

oscH(T ′)2
+

∑

T ′∈TH\T̂H

oscH(T ′)2

= oscH(Ω)2 − (1− γ2
0)

∑

T ′∈T̂H

oscH(T ′)2

≤ (1− (1− γ2
0)θ̂

2))oscH(Ω)2 ,

where θ̂ is the user’s parameter in (1.3.10). Moreover, since C∗ ‖εH‖2
H1 ≤ Co |||εH |||2

with Co = C∗c−1
B in light of (1.2.3), we end up with

osch(Ω)2 ≤ (1 + δ)(1− (1− γ2
0)θ̂

2)oscH(Ω)2 + (1 + δ−1)Co |||εH |||2 .

To complete the proof, we finally choose δ sufficiently small so that

ρ1 = (1 + δ)(1− (1− γ2
0)θ̂

2) < 1, ρ2 = (1 + δ−1)Co.
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1.5 Numerical Experiments

We test performance of the adaptive algorithm AFEM with several examples.

We are thus able to study how meshes adapt to various effects from lack of regularity

of solutions and convexity of domains to data smoothness, boundary layers, changing

boundary conditions, etc. For simplicity, we strict to the case of piecewise linear

finite element on polygonal domains in R2. The implementation is done using the

ALBERT toolbox of Schmidt and Siebert [20, 21].

1.5.1 Implementation

We employ the four main procedures as given by Morin et al. [15, 16]: SOLVE,

ESTIMATE, MARK, and REFINE. We slightly modified the built-in adaptive solver

for elliptic problems of ALBERT toolbox [20] to make it work for the general PDE

(1.1.1) and mixed boundary conditions, as follows:

• SOLVE: We used built-in solvers provided by ALBERT, such as GMRES and CG.

• ESTIMATE: We modified ALBERT for computing the estimator so that it works

for (1.1.1), and added procedures for computing oscillations which are not provided.

• MARK: We employed Marking Strategies E and O to find a marked set T̂H .

• REFINE: We employed the three newest bisections for each refinement step to

enforce the Interior Node Property.

Remark 1.5.1 (Quadrature). Computations of integrals involving non-constant func-

tions f,A,b, c, g, and the exact solution u, use a quadrature rule of order 5. Our

experiments indicate that increasing the quadrature order does not change the re-
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sults. We refer to [5, 20, 21] for details on quadrature.

For convenience of presentation, we introduce the following notation:

• DOFk := number of elements in Tk;

• EOCe := log(ek−1/ek)

log(DOFk/DOFk−1)
, experimental order of convergence, ek := |||u− uk|||;

• EOCη := log(ηk−1/ηk)

log(DOFk/DOFk−1)
, experimental order of convergence of ηk := ηk(Ω);

• RFE := ek

ek−1
and RFO := osck

osck−1
, reduction factors of the error and the oscillation;

• Eff := ηk/ek, effectivity index, i.e. the ratio between the estimator and the error;

• ME and MO are the number of marked elements due to Marking Strategy E and

the additional marked elements due to Marking Strategy O, respectively.

The experimental order of convergence EOCe measures how the error ek de-

creases as DOFk increases. In fact we have ek ≈ C DOFk
−EOCe .

1.5.2 Experiment 1 : Oscillatory Coefficients and Nonconvex Domain

We consider the PDE (1.1.1) with Dirichlet boundary condition u = g on the

nonconvex L-shape domain Ω := (−1, 1)2 \ [0, 1]× [−1, 0]. We also take the exact

solution

u(r) = r
2
3 sin(

2

3
θ),

where r2 := x2 +y2 and θ := tan−1(y/x) ∈ [0, 2π). We deal with variable coefficients

A(x, y) = a(x, y)I, b(x, y) = 0, and c(x, y) defined by

a(x, y) =
1

4 + P (sin(2πx
ε

) + sin(2πy
ε

))
, (1.5.1)

c(x, y) = Ac(cos2(lx) + cos2(lx)) , (1.5.2)
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where P, ε, Ac, and l are parameters. The functions f in (1.1.1) and g are defined

accordingly. The results are shown in Tables 1.5.1 and 1.5.2 and Figure 1.5.1. The

observations and conclusions of this experiment are as follows:

k DOFk |||u− uk||| EOCe RFE RFO Eff ME MO

- 24 2.181e-01 – – – 4.504 3 0
1 65 1.481e-01 0.388 0.679 0.446 2.994 10 0
2 229 1.056e-01 0.268 0.713 0.558 2.475 11 0
3 423 8.812e-02 0.295 0.834 0.652 2.222 13 0
4 651 5.083e-02 1.276 0.577 0.314 2.053 37 0
5 1156 3.305e-02 0.750 0.650 0.444 2.028 89 0
6 2299 2.206e-02 0.588 0.668 0.408 1.980 253 0
7 5148 1.445e-02 0.525 0.655 0.658 1.965 771 0
8 12678 7.991e-03 0.657 0.553 0.175 1.957 1833 0
9 29979 4.911e-03 0.566 0.615 0.426 2.032 - -

Table 1.5.1: Experiment 1 (Oscillatory coefficients and nonconvex domain): The
parameters of AFEM are θ = θ̂ = 0.5, and those controlling the oscillatory coeffi-
cients are P = 1.8, ε = 0.4, Ac = 4.0, l = 1.0, as described in (1.5.1) and (1.5.2). The
experimental order of convergence EOCe is close to the optimal rate of 0.5, which
indicates quasi-optimal meshes. The oscillation reduction factor RFO is smaller than
the error reduction factor RFE, which confirms that oscillation decreases faster than
error. The effectivity index Eff is approximately 2.0. There are no additional marked
elements from oscillation for this θ = 0.5 i.e. MO = 0. However, this is not the case
if θ < 0.3, see §5.3.

• AFEM gives an optimal rate of convergence of order ≈ 0.5, while standard uniform

refinement achieves the suboptimal rate of 0.3 as expected from theory.

• Both AFEM and FEM with uniform refinement perform with effectivity index Eff

≈ 2.0, which give the estimate of constant C1 ≈ 0.5 for upper bound (1.3.6); no

weights have been used in (1.3.5). For AFEM, the reduction factors of error and

oscillation are approximately 0.7 and 0.5 as DOF increases (Table 1.5.1). The oscil-

lation thus decreases faster than the error and becomes insignificant asymptotically

for k large. In addition, AFEM outperforms FEM in terms of CPU time vs. energy

error.
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DOFk |||u− uk||| EOCe RFE RFO Eff
384 1.005e-01 0.400 0.574 0.300 2.398

1536 4.809e-02 0.532 0.478 0.195 2.127
6144 2.597e-02 0.444 0.540 0.182 1.984

24576 1.551e-02 0.372 0.597 0.242 1.845
98304 9.585e-03 0.347 0.618 0.264 1.745

Table 1.5.2: Experiment 1 (Oscillatory coefficients and nonconvex domain): Standard
uniform refinement is performed using the same values for parameters P, ε, Ac, and l as
that of AFEM given in Table 1.5.1 above. EOCe is now suboptimal and close to the
expected value 1/3. The effectivity index Eff is around 2, which is about the same as
AFEM. We need about 105 DOFs to get the error around 10−2, whereas for AFEM we
need only 104 DOFs.

Figure 1.5.1: Experiment 1 (Oscillatory coefficients and nonconvex domain): Parameters
of AFEM are θ = θ̂ = 0.5, and those of oscillatory coefficients are P = 1.8, ε = 0.4, Ac =
1.0, l = 1.0. The sequence of graded meshes after 4 and 7 iterations shows that mesh
refinement is dictated by geometric (corner) singularities as well as periodic variations of
the diffusion coefficient but not much from the zero order term. Also on the right, 3-D
plot of diffusion coefficient a(x, y) of (1.5.1) interpolated onto the mesh of iteration 7. This
shows the combined effect of rapidly varying a(x, y) and exact solution u = r

2
3 sin(2

3θ):
meshes are refined more where a(x, y) has large gradient.

• Figure 1.5.1 depicts the effect of a corner singularity and rapid variation of diffusion

coefficient a(x, y) in mesh grading; c does not play much of a role.

• The number of additional marked elements MO due to Marking strategy O depends

on parameters θ and θ̂. For this example, MO = 0 because the parameter θ is

sufficiently big, hence the condition for Marking strategy O is automatically satisfied.

Similar experiments for θ < 0.3 and θ̂ = 0.5 yield MO 6= 0 and MO becomes even

dominant for θ = 0.1; see Experiment 2 for more details.
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Effects of Oscillatory Coefficient A

In this section we study the behavior of the solution due to the effects of

oscillatory coefficient A. We conduct the same experiment as above but without

knowing the exact solution. We assume that the forcing term f = 1.0 and the

Dirichlet boundary condition g = 0. We consider a very oscillating coefficient A

controlled by parameters P = 1.99 and ε = 0.2 as defined in (1.5.1). We perform

AFEM with parameters θ = θ̂ = 0.6. The results are shown in Figures 1.5.2 with

observations and conclusions below.

Figure 1.5.2: Experiment 1: (Effect of Oscillatory Coefficients): The mesh and solu-
tion after 10 iterations. The solution behaves according to the coefficient A, namely the
solution has bumps mimicking the variation of A. As in the previous Experiment, the
mesh refinement is based on the variation of A, being more pronounced where A changes
more rapidly. It also shows that the effect of oscillatory A dominates the effect of corner
singularity.

• The approximate solutions are affected by the oscillatory coefficient A, namely,

the solutions have bumps according to the way A varies; see Figure 1.5.2.

• The mesh refinement follows the variation of A, namely, more grading when A

changes more rapidly, except around the point (−0.5, 0.5) where the solution seems
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to be smooth; see Figure 1.5.2.

• Due to the very highly oscillating character of A, which exhibits a maximum of 50

and minimum of ≈ 0.125, in a lattice with spacing ε = 0.2, the effect of A dominates

the effect of corner singularity.

1.5.3 Experiment 2 : Convection Dominated-Diffusion

We consider the convection dominated-diffusion elliptic model problem (1.1.1)

with Dirichlet boundary condition u = g on convex domain Ω := (0, 1)2, with

isotropic diffusion coefficient A = εI, ε = 10−3, convection velocity b = (y, 1
2
− x)

and c = f = 0; note that ∇·b = 0. The Dirichlet boundary condition g(x, y) on ∂Ω,

a pulse, is the continuous piecewise linear function given by

g(x, y) =





1 {.2 + τ ≤ x ≤ .5− τ ; y = 0} ,

0 ∂Ω \ {.2 ≤ x ≤ .5; y = 0} ,

linear {(.2 ≤ x ≤ .2 + τ) or (.5− τ ≤ x ≤ .5); y = 0} ,

(1.5.3)

where τ is a parameter. This problem models the transport of a pulse from ∂Ω

inside Ω and back to ∂Ω. Results are reported in Table 1.5.3 and Figures 1.5.3,

1.5.4 for parameters θ = 0.3, θ̂ = 0.6, τ = 0.005, starting from a coarser mesh than

what we would need in theory. To see whether oscillation plays any role in AFEM,

Table 1.5.4 shows results of AFEM without using Marking Strategy O. Observations

and conclusions follow:

• Tables 1.5.3 and 1.5.4 document the role of oscillation in AFEM. Without marking

due to oscillation MO = 0, estimator η(Ω) still reduces at optimal rate but oscillation
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DOFk ηk(Ω) EOCη RFO ME MO

64 1.74e-1 - - 2 5
147 9.48e-2 0.73 0.27 8 7
360 2.35e-2 1.55 0.33 4 9
500 1.68e-2 1.02 0.50 5 15
762 1.12e-2 0.95 0.43 10 23

1170 8.58e-3 0.62 0.52 15 70
2173 6.10e-3 0.55 0.48 22 137
3862 4.75e-3 0.43 0.48 30 298
7149 3.45e-3 0.51 0.50 80 600

13981 2.60e-3 0.42 0.51 - -

Table 1.5.3: Experiment 2: AFEM with parameters θ = 0.3, θ̂ = 0.6, and τ = 0.005.
The optimal decay ≈ 0.5 of estimator η(Ω) is computational evidence of optimal
meshes. The reduction factor of oscillation RFO := osck/osck−1 gives an estimate
of constant ρ1 ≈ 0.5 in Lemma 1.3.2. In contrast to Experiment 1, the additional
marking MO due to oscillation dominates ME from Marking Strategy E. This controls
RFO, the decay of oscillations, which decrease together with the error according to
Theorem 1.1.

DOFk ηk(Ω) EOCη RFO

64 1.74e-1 - -
95 1.02e-1 1.34 0.59

244 3.81e-2 1.31 0.86
414 1.75e-2 4.09 0.62
654 9.42e-3 1.18 0.70
834 9.05e-3 0.16 0.59

1577 5.43e-3 0.89 0.93
2970 3.56e-3 0.51 0.92
4250 2.84e-3 0.62 0.82
6502 2.15e-3 0.65 0.59

10209 1.66e-3 0.57 0.62

Table 1.5.4: Experiment 2: AFEM performance without Marking Strategy O, using
the same parameters as for Table 1.5.3. The reduction factor of oscillation RFO is
not as stable as our AFEM shown in Table 1.5.3. The estimator still reduces at the
optimal rate but requires a few more iterations to reach the same level as that of
our AFEM.

reduction RFO is not stable. The factor RFO approximates ρ1 of Lemma 1.3.2 and

thus controls the oscillation decay between consecutive iterations. In fact Table 1.5.4
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indicates that lack of control of RFO leads to more iterations for the same estimator.

• Tables 1.5.3 and 1.5.4 also illustrate the need of Marking Strategy O to control

the reduction rate of oscillations and confirm the convergence theory of AFEM. Our

experiments show that the ratio ME/MO depends inversely on the ratio θ/θ̂. If θ = θ̂,

then ME dominates MO.

• Comparison of computational cost is measured using CPU time used by each

procedure. In average, about 80% of total CPU time is used by SOLVE; the other

procedures ESTIMATE, MARK and REFINE use about 5-10%.

• In theory, the initial meshsize h0 must satisfy

C∗Bh0 <
βΛ1

1 + βΛ1

= β0,

where B = ‖b‖L∞ , β0 = O(1), and C∗ is the constant from Lemma 1.4.1. In this

particular case, we can express C∗ in terms of ε and B quite explicitly. We first

observe that H2-regularity theory gives [10]





Lϕ = ζ in Ω

ϕ = 0 on ∂Ω

=⇒ ‖ϕ‖H2(Ω) ≤ CRB1/2ε−3/2 ‖ζ‖L2(Ω)

with CR > 0 independent of data. We also note that CD of Lemma 1.4.1 satisfies

CICR

(
B

ε

) 3
2

h0 ≤ 1

2
=⇒ CD = 2CICR

(
B

ε

) 1
2

,

where CI is an interpolation constant solely dependent on shape regularity. This

results from the usual duality argument and the fact that ∇·b = 0, namely

|〈eh, ζ〉| = |B[eh, ϕ]| ≤ CIh0 (ε ‖∇eh‖L2 + B ‖eh‖L2) ‖ϕ‖H2 .
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We finally recall that C∗ = CD/ε (see section 1.4.1), to arrive at

h0 <
β0

2CICR

( ε

B

)3/2

,

which is consistent with the previous restriction on h0. We stress that this implies

h0 ≈ 10−4 in theory, whereas h0 ≈ 10−1 works in examples; see Figures 1.5.3-1.5.4.

Figure 1.5.3: Experiment 2 (Convection-Dominated Diffusion with ε = 10−3,b =
(y, 1

2
− x)): Adaptively refined meshes after 5, 7, and 8 iterations corresponding to

Table 1.5.3 starting from a uniform mesh coarser than required in theory. After
a few iterations, AFEM detects the region of rapid variation (circular transport of
a pulse) and boundary layer in the outflow, whereas the rest of the mesh remains
unchanged. Refinement in smooth region is caused by early oscillations.

y

1.0

1.0

x

0.5

0.5
0.5

1.0

y

1.0

1.0

x

0.5

0.5
0.5

1.0

y

1.0

1.0

x

0.5

0.5
0.5

1.0

Figure 1.5.4: Experiment 2 (Convection-Dominated Diffusion with ε = 10−3,b =
(y, 1

2
−x)): plots of solutions after 5, 7, and 8 iterations. No oscillations (of Galerkin

solutions) are detected after a few iterations even though AFEM is not stabilized.

• The local Péclet number Pe = h0B
ε

is about 102 at the beginning. Since Pe > 1,

and the Galerkin method is not stabilized, oscillations are observed in the first few

iterations but cured later by AFEM via local refinement; see Figure 1.5.4, which

displays solutions without oscillations for iterations 7 and 8. Figure 1.5.3 depicts
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several graded meshes and confirms that mesh refinement is localized around the

pulse location and outflow boundary layer. Minor refinement in the smooth region

is caused by early oscillations.

1.5.4 Experiment 3 : Drift-Diffusion Model

We consider a model problem that comes from a mathematical model in semi-

conductors and chemotaxis.

−∇·(∇u + χu∇ψ) = 0 in Ω := (0, 1)2,

u = g on Γ ⊂ ∂Ω,

∂νu = 0 on ∂Ω \ Γ,

where χ is a constant. The radial function ψ is defined in Ω by

ψ(x, y) :=





1 {
√

x2 + y2 ≤ r1},

α {
√

x2 + y2 ≥ r1 + α},

linear {r1 <
√

x2 + y2 < r1 + α},

where α is a small parameter and r1 < 1 is a constant. The Dirichlet boundary

condition on Γ is assumed to be

g(x, y) =





1 {x = 0; 0 ≤ y ≤ 0.5}⋃{y = 0; 0 ≤ x ≤ 0.5},

0 {x = 1; 0.5 ≤ y ≤ 1}⋃{y = 1; 0.5 ≤ x ≤ 1}.
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We resort to the following transformation (exponential fitting) to symmetrize the

problem

ρ := exp(χψ)u =⇒ −∇·(exp(−χψ)∇ρ) = 0,

which gives a simpler form of model problem with variable scalar coefficient a =

exp(−χψ). We apply AFEM to solve for ρ and obtain solution u via u = exp(−χψ)ρ.

The experiment is performed using parameters χ = 10.0, r1 = 0.75, and α = 0.04

for the model problem, and parameters θ = 0.6, θ̂ = 0.75 for AFEM. Results are

reported in Tables 1.5.5, 1.5.6 and Figure 1.5.5. Conclusions and observations follow:

DOFk ηk(Ω) EOCη RFO

1154 6.645 1.880 0.267
1546 3.824 1.888 0.252
2448 2.144 1.259 0.206
4032 1.455 0.776 0.285
6790 1.086 0.560 0.340

12188 0.737 0.663 0.253
23386 0.518 0.540 0.287
45728 0.363 0.529 0.261

Table 1.5.5: Experiment 3 (Drift-
Diffusion Model): Performance of AFEM
with parameter θ = 0.6, θ̂ = 0.75, and
model parameters χ = 10, r1 = 0.75 and
α = 0.04. The optimal decay ≈ 0.5 of es-
timator η(Ω) is computational evidence
of quasi-optimal meshes. AFEM outper-
forms uniform refinement (compare with
Table 1.5.6).

DOFk ηk(Ω) EOCη RFO

1024 179.831 3.186 0.009
2048 30.769 2.547 0.026
4096 11.031 1.479 0.096
8192 3.983 1.469 0.106

16384 2.173 0.874 0.188
32768 1.296 0.745 0.216
65536 0.874 0.567 0.250

Table 1.5.6: Experiment 3 (Drift-
Diffusion Model): Performance of FEM
with uniform refinement and the same
parameters χ, r1 and α as for AFEM
given in Table 1.5.5. To have estima-
tor around 0.9, uniform refinement needs
about 65,000 DOFs, whereas AFEM
needs only around 10,000 DOFs.

• From Tables 1.5.5, 1.5.6 we see again that AFEM outperforms FEM with stan-

dard uniform refinement. Since the decay of estimator η(Ω) is optimal, we have

computational evidence of optimal meshes.

• Figure 1.5.5 displays discrete solution u8 and graded meshes after 8 and 10 itera-
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Figure 1.5.5: Experiment 3 (Drift-Diffusion Model): Discrete solution u8 and refined
meshes after 8 and 10 iterations. Mesh grading is quite pronounced in the internal
layer where ∇ψ does not vanish, and at the midpoints of the boundary sides, where
boundary conditions change. The solution u(x, y) has a thin transition layer where
∇ψ 6= 0, and meshes are highly refined there.

tions; note the drastic variation of u8 across the annulus r1 < r < r1 + α. Meshes

adapt well to lack of smoothness, namely refinement concentrates in the transition

layer, where ∇ψ does not vanish, and at the midpoints of boundary sides, where

boundary conditions change.

1.6 Extensions

We extend the model problem (1.1.1) by considering now A with discontinu-

ities aligned with the initial mesh and a non-divergence-free b. Note that if ∇·b 6= 0,

then the bilinear form B may be non-coercive if c− 1
2
∇·b � 0.

1.6.1 Discontinuous A

We first observe that Lemma 1.4.1, and thus Lemma 1.2.1, still holds because

the regularity H1+s required in the duality argument is valid, see [11] for example.

The continuity of A is used instead for obtaining error and oscillation reduction
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estimates, Lemma 1.3.1 and Lemma 1.3.2, in that the element oscillation oscH(T )

does not involve oscillation of jump residual on ∂T . Remark 1.4.2 shows that when

A has discontinuities across element faces, we still obtain error reduction estimate

(1.3.11) of Lemma 1.3.1, but this time the oscillation is defined by (1.4.10) and

involves oscillation of jump residual. To prove convergence it suffices to show the

oscillation reduction estimate (1.3.12), for the new concept of element oscillation,

namely oscH(T )2 = oscR,H(T )2 +
∑

S⊂∂ToscJ,H(S)2 with

oscR,H(T )2 := H2
T

∥∥∥RT (uH)−RT (uH)
∥∥∥

2

L2(T )
∀ T ∈ TH ,

oscJ,H(S)2 := HS

∥∥∥JS(uH)− JS(uH)
∥∥∥

2

L2(S)
∀ S ∈ SH .

We proceed in three steps as follows.

Step 1 (Oscillation of Interior Residual). Invoking the same arguments as in the

proof of Lemma 1.3.2 in section 1.4.3, we obtain an oscillation reduction estimate

for interior residual

oscR,h(T
′)2 ≤ (1 + δ)γ2

T ′oscR,H(T ′)2 + C∗(1 + δ−1) ‖εH‖2
H1(T ′) ∀ T ′ ∈ TH ,

where oscR,h(T
′) is defined to be osch(T

′) in (1.4.12).

Step 2 (Oscillation of Jump Residual). To obtain estimate for oscJ,h(S) we write

JS(uh) = γS [[A∇uH ]]S · νS + [[A∇εH ]]S · νs = γSJS(uH) + JS(εH),

where γS = 1 if S ⊂ S ′ ∈ SH and γS = 0 otherwise, since A∇uH is continuous on

S in the second case. Using Young’s inequality, we have for all δ > 0

oscJ,h(S)2 ≤ (1 + δ)γShS

∥∥∥JS(uH)− JS(uH)
∥∥∥

2

L2(S)

+ (1 + δ−1)hS

∥∥∥JS(εH)− JS(εH)
∥∥∥

2

L2(S)
,
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where JS(uH) and JS(εH) are L2-projections of JS(uH) and JS(εH) onto Pn−1(S).

For the second term we observe that

∥∥∥JS(εH)− JS(εH)
∥∥∥
L2(S)

≤ ‖JS(εH)‖L2(S) = ‖[[A∇εH ]]S · νS‖L2(S)

≤ ∥∥A+∇ε+
H · νS

∥∥
L2(S)

+
∥∥A−∇ε−H · νS

∥∥
L2(S)

≤ ‖A‖L∞(ωS)

(∥∥∇ε+
H

∥∥
L2(S)

+
∥∥∇ε−H

∥∥
L2(S)

)

≤ CAh
−1/2
S ‖εH‖H1(ωS) ,

where CA depends on A and shape regularity constant γ∗. For simplicity, let Sh(T
′)

denote all S ∈ Sh contained in T ′ ∈ TH ; hence

oscJ,h(T
′)2

=
∑

S∈Sh(T ′)

oscJ,h(S)2

≤(1 + δ)
∑

S∈Sh(T ′)

γShS

∥∥∥JS(uH)−JS(uH)
∥∥∥

2

L2(S)
+ (1 + δ−1)CA ‖εH‖2

H1(ωT ′ )
.

In light of reduction factor of element size hS ≤ γT ′HS′ , and definitions of γS and

γT ′ , we obtain

∑

S∈Sh(T ′)

γShS

∥∥∥JS(uH)−JS(uH)
∥∥∥

2

L2(S)
≤ γT ′

∑

S′∈SH(T ′)

HS′

∥∥∥JS′(uH)− JS′(uH)
∥∥∥

2

L2(S′)

= γT ′oscJ,H(T ′)2
,

because for S ⊂ S ′ ⊂ ∂T ′, we have JS(uH) = JS′(uH) and JS(uH) is L2-projection

of JS(uH) on S. Therefore

oscJ,h(T
′)2 ≤ (1 + δ)γT ′oscJ,H(T ′)2

+ (1 + δ−1)CA ‖εH‖2
H1(ωT ′ )

∀ T ′ ∈ TH .

Step 3 (Choice of δ). Combining results from Steps 1 and 2 above using γT ′ ≤ 1,

C∗∗ = max {C∗, CA} and definition of osch(T ), we arrive at

osch(T
′)2 ≤ (1 + δ)γT ′oscH(T ′)2 + C∗∗(1 + δ−1) ‖εH‖2

H1(ωT ′ )
.
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Proceeding as in Step 3 of the proof of Lemma 1.3.2, this time with Marking Strategy

O performed according to the new definition of oscH(T ), we arrive at

osch(Ω)2 ≤ (1 + δ)(1− (1− γ0)θ̂
2)oscH(Ω)2 + Co(1 + δ−1) |||εH |||2 ,

with Co = C∗∗c−1
B . The assertion thus follows by choosing δ sufficiently small so

that

ρ1 := (1 + δ)(1− (1− γ0)θ̂
2) < 1, ρ2 := Co(1 + δ−1).

1.6.2 Non-coercive B

In this section we prove convergence of AFEM for the case c− 1
2
∇·b � 0, c ≥ 0;

the case c < 0 can be treated as well. According to what we have so far, the

assumption of ∇·b = 0 is used for proving quasi-orthogonality and for having

equivalence between energy norm |||v|||2 := B[v, v] and H1-norm as in (1.2.3), where

B is coercive. Since now B may be non-coercive, we cannot define energy norm in

this manner. We instead define energy norm by |||v|||2 :=
∫

Ω
A∇v · ∇v + c v2, and

we have equivalence of norms

cE ‖v‖2
H1(Ω) ≤ |||v|||2 ≤ CE ‖v‖2

H1(Ω) , (1.6.1)

where constants cE and CE depend only on data A, c and Ω. The lack of coercivity

is now replaced by G̊arding’s inequality

|||v|||2 − γG ‖v‖2
L2(Ω) ≤ B[v, v] ∀ v ∈ H1

0 (Ω), (1.6.2)

where γG = ‖∇·b‖∞ /2. To see this we integrate by parts the middle term of B[v, v],

∫

Ω

b · ∇v v =
1

2

∫

Ω

b · ∇(v2) = −
∫

Ω

∇·b
2

v2 ∀ v ∈ H1
0 (Ω).
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The same calculation leads to the sharp upper bound for B[v, v]:

B[v, v] ≤ |||v|||2 + γG ‖v‖2
L2(Ω) ∀ v ∈ H1

0 (Ω). (1.6.3)

Existence and uniqueness of weak solutions follows from the maximum prin-

ciple for c ≥ 0 [10]. Schatz showed in [19] that the discrete problem (1.2.5) has a

unique solution if the meshsize h is sufficiently small, i.e. h ≤ h∗ for some constant

h∗ depending on shape regularity and data but not computable; the results in [19]

are valid also for graded meshes. Assuming h0 ≤ h∗, to prove convergence of AFEM

it thus suffices to prove quasi-orthogonality. We follow the steps of Lemma 1.2.1.

Using the same notation as in §4 for eh, eH and εH , expanding B[eH , eH ], and

noticing that eH = eh + εH and B[eh, εH ] = 0, we arrive at

B[eh, eh] = B[eH , eH ]− B[εH , εH ]− B[εH , eh], (1.6.4)

where this time integration by parts yields

B[εH , eh] = B[eh, εH ] + 〈b · ∇εH , eh〉 − 〈b · ∇eh, εH〉

= 2 〈b · ∇εH , eh〉+ 〈∇·b eh, εH〉 .

Consequently, using Cauchy-Schwarz inequality and (1.6.1), we have for all δ > 0

|B[εH , eh]| ≤ (2 ‖b‖∞‖∇εH‖L2 + ‖∇·b‖∞‖εH‖L2) ‖eh‖L2 ≤ C2
b δ |||εH |||2 + δ−1 ‖eh‖2

L2 ,

where constant Cb = max {2 ‖b‖∞ , ‖∇·b‖∞} c−1
E /2.

Using (1.6.2) and (1.6.3) to estimate terms B[eh, eh],B[eH , eH ],B[εH , εH ] in

(1.6.4), and combining with the previous estimate, we infer that

|||eh|||2 − (γG + δ−1) ‖eh‖2
L2 ≤ |||eH |||2 + γG ‖eH‖2

L2 − (1− C2
b δ) |||εH |||2 + γG ‖εH‖2

L2 .
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Since ‖εH‖2
L2 ≤ 2 ‖eh‖2

L2 + 2 ‖eH‖2
L2 , estimates for ‖eh‖L2 and ‖eH‖L2 of the form

(1.4.1), obtained via duality, with C6 := CD√
cE

imply

Λh |||eh|||2 ≤ ΛH |||eH |||2 − Λε |||εH |||2 , (1.6.5)

where Λh = 1− C2
6h

2s
0 (3γG + δ−1), ΛH = 1 + 3γGC2

6h
2s
0 , and Λε = 1− C2

b δ.

Consequently, to get Λh = Λε, we choose δ depending on h0 so that

δ(h0) =
CGh2s

0 +
√

C2
Gh4s

0 + 4C2
b C

2
6h

2s
0

2C2
b

> 0,

where CG = 3γGC2
6 . We further choose h0 sufficiently small so that C2

b δ(h0) < 1,

whence Λh = Λε > 0. This can be achieved for hs
0 ≤ min

{
C6CbC

−1
G , (3C6Cb)

−1
}

because

C2
b δ(h0) =

CG

2
h2s

0 + CbC6h
s
0

√
1 + h2s

0 C2
G(4C2

b C
2
6)−1

≤ 2CbC6h
s
0

(
1 + hs

0CG(4CbC6)
−1

)
< 3CbC6h

s
0 ≤ 1.

We conclude that if the meshsize h0 of the initial mesh satisfies

hs
0 ≤ min

{
C6CbC

−1
G , (3C6Cb)

−1, (h∗)s
}

, (1.6.6)

then quasi-orthogonality holds, i.e. for Λ0 := ΛH/Λh,

|||eh|||2 ≤ Λ0 |||eH |||2 − |||εH |||2 , (1.6.7)

and Λ0 can be made arbitrarily close to 1 by decreasing h0. Convergence of AFEM

finally follows as in Theorem 1.1.

1.6.3 Experiment 4 : Non-coercive B

We repeat Experiment 2 in §1.5.3 with b = (x − 1, y + 1), and thus B is

non-coercive because c− 1
2
∇·b = −1. For a better view of solutions we change the
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boundary condition g(x, y) to be 1 on x-axis from (.4+ τ) to (.8− τ), with τ defined

as in (1.5.3). Results of AFEM with θ = θ̂ = 0.5, τ = 0.005 are reported in Figure

1.6.1. Observations and conclusions follow.
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Figure 1.6.1: Experiment 4 (Non-coercive B with ε = 10−3,b = (x − 1, y + 1)):
3-D plots of solutions after 4 and 6 iterations and graded mesh after 6 iterations.
Oscillations of Galerkin solutions are observed near internal and boundary layers in
a first few iterations but AFEM eliminates them after 6 iterations.

• Figure 1.6.1 shows oscillations of Galerkin solution near internal and boundary

layers after 4 iterations. AFEM detects this effect and corrects it after 6 iterations

by selective local refinement which does not spread in regions of smoothness.

•The resulting graded meshes are optimal and capture internal layers (diffuse bound-

ary of pulse g being transported) and outflow boundary layer, even though the initial

uniform mesh is far coarser than required by theory; see (1.6.6) which is a restric-

tion similar to that discussed in §1.5.3-Experiment 2. Moreover, the performance

of AFEM as to the estimator decay and oscillation control is analogous to §1.5.3-

Experiment 2.
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Chapter 2

AFEM for the Laplace-Beltrami Operator on Graphs:

A Posteriori Error Analysis and Convergence

2.1 Introduction

We consider a surface Γ ⊂ Rd described as the graph of a function z(x) defined

on a bounded polygonal region Ω ⊂ Rd−1, d ≥ 2, namely,

Γ :=
{
(x, z(x)) ∈ Rd | x ∈ Ω ⊂ Rd−1

}
,

where z : Ω → R is a C1 function. We develop the theory under the assumption

of C1, as opposed to C2, regularity. In general we may allow z to be C0,1 with

discontinuities of ∇z aligned with polygonal lines on Ω. For example in R3, we can

allow Γ to be a polyhedral surface, a graph of a piecewise polynomial function. We

will not dwell on this matter though.

We consider the Dirichlet boundary value problem for the Laplace-Beltrami

operator ∆Γ on Γ

−∆Γu = f on Γ,

u = 0 on ∂Γ,

(2.1.1)

where f ∈ L2(Γ). Note that a non-zero Dirichlet boundary condition can be treated

similarly to [17]. We next introduce the weak formulation, the FEM, and give an

outline of the chapter along with our main result.
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2.1.1 Variational Formulation

Given a function v : Γ → R we define its lift ṽ : Ω×R→ R to be the obvious

extension

ṽ(x, xd) := v(x, z(x)). (2.1.2)

We denote by ∇ṽ ∈ Rd the gradient of ṽ, and point our that it is a row vector. If

Q is the elementary surface area and ν is the unit normal vector to Γ, namely,

Q :=
√

1 + |∇z|2, ν :=
1

Q
(−∇z, 1). (2.1.3)

We indicate with ∇Γv ∈ Rd the tangential gradient of v on Γ (or that part of ∇ṽ

tangent to Γ),

∇Γv = ∇ṽ − (∇ṽ · ν)ν = ∇ṽ(I− ν ⊗ ν). (2.1.4)

Likewise, the tangential divergence of a vector field q : Ω× R→ Rd is given by

divΓq = divq− νDq νT , (2.1.5)

where Dq stands for the differential matrix of q; hence, we have

∆Γv = divΓ∇Γv = ∆ṽ − (∇ṽ · ν)(∇ · ν)− νD2ṽνT , (2.1.6)

where D2ṽ ∈ Rd×d is the Hessian of ṽ. To formulate (2.1.1) weakly, we now introduce

Sobolev spaces on the surface Γ.

H1(Γ) :=
{
f ∈ L2(Γ) | ∇Γf ∈ L2(Γ)

}
,

H1
0 (Γ) :=

{
f ∈ H1(Γ) | f has zero trace on ∂Γ

}
.

A weak solution of (2.1.1) is a function u : Γ → R satisfying

u ∈ H1
0 (Γ) :

∫

Γ

∇Γu · ∇Γϕ =

∫

Γ

fϕ ∀ ϕ ∈ H1
0 (Γ). (2.1.7)
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2.1.2 The Finite Element Method on Graphs

To approximate (2.1.7) via the FEM we proceed as follows. We first partition

Ω into shape regular simplices, thereby giving rise to a graded triangulation (or

mesh) Th(Ω) of local meshsize h. We next let Vh(Ω) be a finite element space over

Th(Ω) consisting of C0 piecewise polynomial functions of degree n ≥ 1. Each node of

Th(Ω) is lifted to a point on Γ and all nodes on Γ are connected through a function

zh ∈ Vh(Ω), the interpolant of z in Vh(Ω); the image Γh := {(x, zh(x)) : x ∈ Ω}

is thus a ‘polyhedral’ approximation to Γ. This induces a pair (Th(Γh),Vh(Γh)) as

follows. We have a one-to-one correspondence between elements T̂ ∈ Th(Ω) and

elements T ∈ Th(Γh) via T =
{

(x, zh(x)) : x ∈ T̂
}

. The space Vh(Γh) is simply

the lift of Vh(Ω) via (2.1.2) where z is replaced by zh. We point out that we insist

on the same polynomial degree n ≥ 1 for both surface and solution approximation.

For later usage, we also denote by Th(Γ) a partition of Γ into curved elements

T̃ :=
{

(x, z(x)) : x ∈ T̂
}

, and by V̊h(Γh) := Vh(Γh) ∩H1
0 (Γh).

We are now ready to introduce the FEM for the Laplace-Beltrami operator

on graphs. If Fh ∈ L2(Γh) is a suitable approximation of f , then the finite element

function uh : Γh → R solves

uh ∈ V̊h :

∫

Γh

∇Γh
uh · ∇Γh

ϕh =

∫

Γh

Fhϕh ∀ ϕh ∈ V̊h. (2.1.8)

This yields a symmetric positive definite (SPD) linear system which can be solved

with standard linear algebra tools. We note that (2.1.8) can be thought of as a

linear elliptic PDE with variable coefficients in Ω; see Remark 2.2.1. However, in

light of implementation issues and generalizations to parametric surfaces, it is better
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to think of (2.1.8) as defined on Γh.

2.1.3 Main Result and Outline

The main purpose of this chapter is to present a new AFEM for (2.1.1), discuss

its design, prove its convergence, and document its performance computationally.

For convenience, if T ∈ Tk(Γk), we define its corresponding elements T̂ ∈ Tk(Ω) and

T̃ ∈ Tk(Γ) by

T̂ := {x ∈ Ω : (x, zk(x)) ∈ T} , T̃ := {(x, z(x)) ∈ Γ : (x, zk(x)) ∈ T} , (2.1.9)

and we also use V̊k and Tk instead of V̊k(Γk) and Tk(Γk), respectively. We now

briefly state our main result and provide an outline of the chapter.

Let (V̊k, Tk)
∞
k=1 be a sequence created via adaptive loops of the form

SOLVE → ESTIMATE → MARK → REFINE (2.1.10)

as described below. To argue about the approximation of Γ by Γk in W 1
∞, we

introduce the geometric oscillation λk := maxT∈Tk
λk(T ) where

λk(T ) := ‖ν − νk‖L∞(T̂ ) ∀ T ∈ Tk, (2.1.11)

and the unit normals ν and νk to Γ and Γk are defined according to (2.1.3). We

next introduce the geometric error ζk := (
∑

T∈Tk
ζ2
k(T ))1/2 where

ζk(T ) := λk(T ) ‖∇Γuk‖L2(T̃ ) ∀ T ∈ Tk, (2.1.12)

the presence of the second factor is interesting and shows the interaction between

the PDE and the surface. We note that, in contrast with λk, the accumulation in
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ζk is in `2(Tk). In defining the energy error

ek := ‖∇Γ(u− uk)‖L2(Γ) , (2.1.13)

we have decided to measure it on Γ and so use ∇Γ; in doing this, we are im-

plicitly employing the lift (2.1.2). We finally let the data oscillation be osck :=

(
∑

T∈Tk
osck(T )2)1/2 where

osc2
k(T ) = h2

T

∥∥Fk − F k

∥∥2

L2(T )
∀ T ∈ Tk, (2.1.14)

where F k is the L2-projection of Fk onto Pn−1(T ). We are now ready to state the

main result of this chapter, the convergence of the adaptive loop (2.1.10).

In §2.3 and 2.4 we design an AFEM with the following contraction property. Let

(Γ0, T0) be an arbitrary initial surface-triangulation pair of Γ. Then there exist an

integer k0 > 0 and constants γg, γo > 0, and ξ < 1, solely depending on (Γ0, T0),

shape regularity and the user’s parameters of AFEM, such that for any k ≥ k0

AFEM satisfies

Ek+1 ≤ ξ Ek, (2.1.15)

where E2
k := e2

k + γgζ
2
k + γoosc2

k represents the combined error incurred by AFEM,

namely the energy and geometric errors, ek, ζk, as well as information missing in

the averaging process osck.

The existence of k0 is related to sufficient resolution of Γ by Γk, a condition which

is attained by AFEM automatically but not imposed directly on the initial pair

(Γ0, T0). More precisely, what is needed is that λk be below a threshold dictated by

the regularity of Γ.
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The chapter is organized as follows. We start in §2.2 with a review of differ-

ential geometry on graphs. We discuss the procedure ESTIMATE in §2.3 and the

procedures SOLVE, MARK and REFINE in §2.4. We prove the contraction property,

and so convergence, of AFEM in §2.4. We conclude in §2.5 with several numerical

experiments that shed light on the theory and document the performance of AFEM

on graphs.

To avoid confusions with constants, we write a . b to denote a ≤ C0b, and

a ∼ b to denote C1b ≤ a ≤ C2b for some constants C0, C1, C2.

2.2 Differential Geometry on Graphs

According to the lifting (2.1.2), a function v : Γ → R induces a function

v̂ : Ω → R upon setting v̂(x) = v(x, z(x)) = ṽ(x, xd). Therefore, ∇ṽ = (∇xv̂, 0) and

(2.1.4) becomes

∇Γv = ∇ṽ D̃ = ∇xv̂ D, (2.2.1)

where D̃ ∈ Rd×d and D ∈ Rd−1×d are the matrices

D̃ := Id×d − ν ⊗ ν, D = [Id−1×d−1 0] +
1

Q2
∇z ⊗ (−∇z, 1); (2.2.2)

we see that D results from D̃ upon eliminating its last row. When no confusion is

possible, we will refer to the three functions v, ṽ, v̂ just as v. In view of (2.2.1) we

can express (2.1.7) as an elliptic PDE with variable coefficients in Ω:

∫

Γ

∇Γu · ∇Γϕ =

∫

Ω

∇xu
(
QDDT

) · ∇xϕ. (2.2.3)
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Moreover, a simple calculation shows that DDT is SPD and has the form

DDT = Id−1×d−1 − 1

Q2
(∇z ⊗∇z). (2.2.4)

Remark 2.2.1 (PDE with Variable Coefficients). If A := QDDT and F := Qf , then

(2.1.7) becomes

−div(A∇T u) = F in Ω, u = 0 on ∂Ω,

where ∇T u denotes the transpose of ∇u. The convergence of AFEM for this type of

PDEs is studied in Chapter 1 and [13]; see also [15, 16]. However, we prefer to view

the surface Γ as a geometric object to be discretized, and the PDE to be formulated

directly on Γ and Γh. This is consistent with the a priori analysis of Dziuk [9], and

extends naturally to parametric surfaces [14].

Remark 2.2.2 (Quadrature). We could regard the approximation of Γ by Γh as

quadrature in that the coefficient matrix A of Remark 2.2.1 is replaced by Ah :=

QhDhD
T
h . This is not, however, interpolatory quadrature because A is not evaluated

at preassigned points: the value of Ah within an element depends on all the values

of z(x) at its nodes. To get intuition about the structure of the error committed in

replacing A by Ah, let Uh ∈ H1
0 (Ω) be the solution of the PDE in Ω

−div(Ah∇T Uh) = F.

The error e = u− Uh ∈ H1
0 (Ω) thus satisfies

∫

Ω

∇eA · ∇ϕ =

∫

Ω

∇Uh(Ah −A) · ∇ϕ ∀ ϕ ∈ H1
0 (Ω),

whence
∫

Ω

∇eA · ∇e ≤
∫

Ω

∇Uh

(
(Ah −A)A−1(Ah −A)

)
· ∇Uh.
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We will see below how to bound Ah−A in terms of the unit normals ν and νh.

To write a sort of inverse formula to (2.2.1), we let ti(x) = (ei,
∂z(x)
∂xi

)T ∈ Rd

be the tangent (column) vectors to Γ and ei be the canonical basis of Rd−1 for

1 ≤ i ≤ d− 1. If G ∈ Rd×d−1 is given by

G(x) = [t1(x), t2(x), ..., td−1(x)],

then the chain rule yields the relations

∇xv̂(x) = ∇ṽ(x, z(x))G(x) = ∇Γv(x, z(x))G(x) ∀ x ∈ Ω. (2.2.5)

It is easy to verify by simple matrix multiplication that D and G are pseudo-inverses,

namely,

DG = Id−1×d−1, GD = Id×d − ν ⊗ ν; (2.2.6)

note that (GD)2 = GDDTGT = GD. Similar results also apply elementwise to zh

in place of z, namely Dh,Gh, and Qh are defined for each T ∈ Th(Ω) via zh.

With these relations at hand, we can now show how to transform integrals on

Γ to Ω and back to Γh. If T ∈ Th we recall the definitions of T̂ and T̃ in (2.1.9) and

note that abusing notation
∫

T̃
vw =

∫
T̂

Qvw =
∫

T
Q
Qh

vw as well as

∫

T̃

∇Γv · ∇Γw =

∫

T̂

Q∇xvDDT · ∇xw =

∫

T

Q

Qh

∇Γh
v(GhDDTGT

h ) · ∇Γh
w. (2.2.7)

Conversely

∫

T

∇Γh
v · ∇Γh

w =

∫

T̂

Qh∇xvDhD
T
h · ∇xw =

∫

T̃

Qh

Q
∇Γv(GDhD

T
hGT ) · ∇Γw. (2.2.8)

This allows us to compare integrals over Γ and Γh. In fact, the following is valid for
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all v, w ∈ H1(Ω)

∫

Γh

∇Γh
v ·∇Γh

w−
∫

Γ

∇Γv ·∇Γw =

∫

Γ

∇Γv
1

Q
G(QhDhD

T
h −QDDT )GT

︸ ︷︷ ︸
:=Ah

·∇Γw. (2.2.9)

This is a consequence of (2.2.8) and (2.2.6), because ∇Γv · ν = 0 whence ∇ΓvGD =

∇Γv. To estimate this difference, we thus have to bound the matrix Ah.

Lemma 2.2.1 (Basic Estimates). The following geometric estimates are valid

|Q−Qh| ≤ QQh|ν − νh|,
∣∣∣∣
∇z ⊗∇z

Q
− ∇zh ⊗∇zh

Qh

∣∣∣∣ ≤ 3QQh|ν − νh|.

Proof. If follows from (2.1.3) that
∣∣∣ 1
Q
− 1

Qh

∣∣∣ ≤ |ν − νh|, hence

|Q−Qh| ≤ QQh |ν − νh| .

To get the last estimate, we write

∇z ⊗∇z

Q
− ∇zh ⊗∇zh

Qh

= (Q−Qh)

(∇z

Q
⊗ ∇z

Q

)

+ Qh

[∇z

Q
⊗

(∇z

Q
− ∇zh

Qh

)
+

(∇z

Q
− ∇zh

Qh

)
⊗ ∇zh

Qh

]
.

Again, (2.1.3) implies
∣∣∣∇z

Q
− ∇zh

Qh

∣∣∣ ≤ |ν − νh| and
∣∣∣∇z

Q

∣∣∣ ,
∣∣∣∇zh

Qh

∣∣∣ ≤ 1, which prove the

assertion.

Lemma 2.2.2 (Estimate of Ah). We have ‖Ah‖L∞(T̂ ) . ‖ν − νh‖L∞(T̂ ) for all

T̂ ∈ Th(Ω).

Proof. In view of (2.2.4), we can write

QhDhD
T
h −QDDT = (Qh −Q)I−

( 1

Qh

∇zh ⊗∇zh − 1

Q
∇z ⊗∇z

)
.

Since ‖G‖L∞(T ) . Q, and both Q and Qh are bounded because Γ ∈ C1, the assertion

thus follows from Lemma 2.2.1.
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Lemma 2.2.3 (Equivalence of Norms). Let Γh be a polyhedral surface approximat-

ing Γ as decribed above. For all lifted functions v : Ω×R→ R, we have equivalence

of norms

‖v‖L2(Γ) ∼ ‖v‖L2(Γh) , (2.2.10)

‖v‖H1
0 (Γ) ∼ ‖v‖H1

0 (Γh) . (2.2.11)

Proof: We will prove this only for a single element T ∈ Th and the results will

follow by summing over all T ∈ Th. The assertion (2.2.10) holds trivially from the

change of integrals
∫

T̃

|v|2 =

∫

T

Q

Qh

|v|2.

Note that 0 < c ≤ Q
Qh

≤ C for some constants c and C depending only on Γ. To

prove (2.2.11), we use (2.2.7),

∫

T̃

|∇Γv|2 =

∫

T

Q

Qh

∇Γh
v(GhDDTGT

h )(∇Γh
v)T .

Since DDT is SPD, ‖Gh‖ is bounded away from zero, and ∇Γh
vGh is non-zero unless

∇Γh
v = 0, therefore

‖∇Γh
v‖L2(T ) ∼ ‖∇Γv‖L2(T̃ ) ,

where constants depend only on the Γ. Note that the matching of vanishing bound-

aries follow from the lift (2.1.2).
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2.3 Procedure ESTIMATE: A Posteriori Error Estimation

2.3.1 Error Representation

Employing weak formulations (2.1.7) and (2.1.8), we obtain an error represen-

tation

∫

Γ

∇Γ(u− uh) · ∇Γϕ = I1 + I2 + I3, ∀ ϕ ∈ H1
0 (Γ), ∀ ϕh ∈ V̊h, (2.3.1)

where

I1 :=
∑
T∈Th

∫

T

RT (uh)(ϕ− ϕh)−
∑
S∈So

h

∫

S

JS(uh)(ϕ− ϕh),

I2 :=

∫

Γh

∇Γh
uh · ∇Γh

ϕ−
∫

Γ

∇Γuh · ∇Γϕ,

I3 :=

∫

Γ

fϕ−
∫

Γh

Fhϕ.

• I1 is a standard residual term obtained by integrating by parts on each

T ∈ Th where element residual RT and jump residual JS are defined by

RT (uh) := (∆Γh
uh + Fh)|T , (2.3.2)

JS(uh) := (∇Γh
uh)

+
S · n+

S + (∇Γh
uh)

−
S · n−S . (2.3.3)

Here n+
S and n−S are outward unit normals to S, with respect to T+ and T−, on the

supporting planes containing T+ and T− respectively; T+ and T− are elements in

Th that share the side S ∈ So
h where So

h denotes the set of interior faces of T ∈ Th,

see Figure 2.3.1. Similarly, (∇Γh
uh)

+
S and (∇Γh

uh)
−
S are tangential gradients of uh

considered on T+ and T− restricted to S, respectively. If Vh is a space of piecewise

linear functions, then RT = Fh|T and JS is constant on S, since ∇Γh
uh is constant

on T .
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T+

T-

S

n+
n-

Figure 2.3.1: S is the common side shared by the elements T+ and T−, and n+ and
n− are the normals to the side S on the supporting planes containing T+ and T−,
respectively.

• I2 is a geometric consistency term that accounts for the difference between

Γ and Γh. According to (2.2.9), I2 =
∫
Γ
∇ΓuhAh · ∇Γϕ.

• I3 is a consistency term that accounts for the difference of forcing functions

f and Fh of the PDE on surfaces Γ and Γh, respectively. We choose Fh to balance

this difference, thereby making I3 = 0 upon defining

Fh(x, zh(x)) :=
Q(x)

Qh(x)
f(x, z(x)). (2.3.4)

Hence, we arrive at the error representation

∫

Γ

∇Γ(u− uh) · ∇Γϕ =
∑
T∈Th

∫

T

RT (uh)(ϕ− ϕh)−
∑
S∈So

h

∫

S

JS(uh)(ϕ− ϕh)

+

∫

Γ

∇ΓuhAh · ∇Γϕ ∀ ϕ ∈ H1
0 (Γ), ∀ ϕh ∈ V̊h.

(2.3.5)

2.3.2 Upper Bound

The upper bound for the energy error eh := ‖∇Γ(u− uh)‖L2(Γ) is obtained from

(2.3.5) and Clement’s interpolation for functions defined on a polyhedral surface.
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Lemma 2.3.1 (Clemént Interpolation). There exists a linear interpolation oper-

ator Ih : H1
0 (Γh) → V̊h such that for T ∈ Th and S ∈ So

h we have

‖v − Ihv‖L2(T ) ≤ ChT ‖∇Γh
v‖L2(ω̄h(T )) ∀v ∈ H1

0 (Γh), (2.3.6)

‖v − Ihv‖L2(S) ≤ Ch
1/2
S ‖∇Γh

v‖L2(ω̄h(T )) ∀v ∈ H1
0 (Γh), (2.3.7)

where C depends only on shape regularity constant, hT and hS are diameters of T

and S respectively, and ω̄h(T ) :=
⋃ {T ′ ∈ Th | T ′ ∩ T 6= ∅}.

The proof of this lemma can be found in [5, 6]. Note that the shape regu-

larity condition still holds for a polyhedral surface which is a piecewise polynomial

interpolant of a C1 graph.

Taking ϕ = u− uh ∈ H1
0 (Γ) ∼ H1

0 (Γh), ϕh = Ihϕ ∈ V̊h into (2.3.5), and using

Lemmas 2.2.3 and 2.3.1, we obtain

‖∇Γ(u− uh)‖2
L2(Γ) ≤ C1

∑
T∈Th

η2
h(T ) + C2

∑
T∈Th

‖∇ΓuhAh‖2
L2(T̃ ) , (2.3.8)

where the constants C1 and C2 depend only on shape regularity constant and Γ.

Here we define the energy error indicator ηh(T ) by

η2
h(T ) := h2

T ‖RT (uh)‖2
L2(T ) +

∑
S∈So

h
S⊂∂T

hS ‖JS(uh)‖2
L2(S) , (2.3.9)

and the energy error estimator ηh := (
∑

T∈Th
η2

h(T ))1/2.

As a result of Lemma 2.2.2 and the definition of geometric error (2.1.12), we

obtain the upper bound for the energy error.
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Lemma 2.3.2 (Upper Bound). There exist constants C1 and C2 depending only

on shape regularity constant and the surface Γ such that

‖∇Γ(u− uh)‖2
L2(Γ) ≤ C1η

2
h + C2ζ

2
h. (2.3.10)

Remark 2.3.1. If Γ is itself a polyhedral surface, then Γh = Γ. In this case we have

ζh = 0, and the estimate (2.3.10) does not involve a geometric error. The geometric

error is necessary since it tells us how well the surface Γ is approximated by piecewise

polynomial surface Γh. In fact, it is coupled with the energy error according to the

term ∇Γuh.

2.3.3 Lower Bound

We obtain a local lower bound for the energy error by using the idea of bubble

functions introduced by Verfürth [23] and later refined by Dörfler [7] in that con-

tinuous piecewise linear bubble functions are used. By proceeding as in [1, 7, 23]

for estimating the local lower bound, we obtain the lemma below. Here we denote

by ωh(T ), T ∈ Th, a subregion of Γh consisting of all elements in Th that share a

common side S ∈ So
h with T , and by T̃ ⊂ Γ a curved element as in (2.1.9).

Lemma 2.3.3 (Local Lower Bound). There exist constants C3, C4, and C5, de-

pending on the shape regularity constant and Γ, such that for T ∈ Th,

η2
h(T ) ≤ C3

∑

T ′∈Th
T ′⊂ωh(T )

‖∇Γ(u− uh)‖2
L2(T̃ ′) + C4osc2

h(ωh(T )) + C5ζ
2
h(ωh(T )). (2.3.11)

For T ∈ Th, let So
h(T ) := {S ∈ So

h | S ⊂ ∂T}. We define the oscillation by

osc2
h(T ) := h2

T

∥∥RT (uh)−RT

∥∥2

L2(T )
+ hT

∑

S∈So
h(T )

∥∥JS(uh)− J S

∥∥2

L2(S)
,
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where RT and J S are L2-projections of RT (uh) and JS(uh) onto Pm(T ) and Pm(S),

respectively, m ≥ 0 is a fixed integer; Pm(T ) and Pm(S) denote spaces of polynomial

functions of degree ≤ m on T and S, respectively. For ωh(T ) ⊂ Γh we define

osc2
h(ωh(T )) :=

∑
T ′⊂ωh(T ) osc2

h(T
′), and denote osch := osch(Γh); the same notation

also applies to ζ2
h(ωh(T )).

Remark 2.3.2. If we take m = n − 1 as in Lemma 2.4.4 stated in the next section,

where n is the degree of Vh, then by (2.3.2) and (2.3.3), JS(uh) ∈ Pn−1(S), and

(∆Γh
uh)|T ∈ Pn−2(T ) imply that

osc2
h(T ) = h2

T

∥∥Fh − F h

∥∥2

L2(T )
, (2.3.12)

where F h is L2-projection of Fh onto Pn−1(T ).

According to the above two estimates (2.3.10) and (2.3.11), our adaptive algo-

rithm will rely on four indicators ηh(T ), ζh(T ), λh(T ) and osch(T ). These indicators

are important for designing a converging AFEM; see [7, 13, 15, 16]. We compute

these values for all T ∈ Th according to the definitions, and we call this procedure

ESTIMATE, namely

{ηh(T ), ζh(T ), λh(T ), osch(T )}T∈Th
:= ESTIMATE(Γ, Γh, Th, Fh, uh).

2.4 AFEM

As outlined before in section 2.1.3, AFEM consists of loops of procedures

SOLVE, ESTIMATE, MARK, and REFINE, consecutively. The procedure ESTIMATE

has just been introduced in section 2.3. We now describe the other three procedures

in detail.
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2.4.1 Procedure SOLVE

In this procedure we solve the SPD linear system obtained from (2.1.8). Here

we employ any standard linear solver, such as conjugate gradient CG with diagonal,

hierarchical basis, or BPX preconditioning. In other words, given a pair of approx-

imating surface-mesh (Γk, Tk), a forcing function Fk, and an initial guess for the

solution uk−1, SOLVE computes the discrete solution

uk := SOLVE(Γk, Tk, Fk, uk−1).

2.4.2 Procedure MARK

Given a pair of approximating surface-mesh (Γk, Tk), ideally this procedure

will find a subset T̂k ⊂ Tk of marked elements according to the largest indicators

of procedure ESTIMATE. Therefore, when we refine all elements in T̂k, we will get

reductions for the errors and oscillations that will lead to convergence. The notion

of energy error reduction was introduced by Dörfler [7], and further improved by

Morin et al [15, 16] via the notion of data oscillation and its reduction. Here we

introduce a similar concept to reduce the geometric error. The following marking

strategy is just a combination of these ideas.
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Marking Strategy: Given parameters 0 < θe, θg, θo < 1, construct a subset

T̂k of Tk such that the following inequalities hold:

(M1) :
∑

T∈T̂k

η2
k(T ) ≥ θ2

eη
2
k, (2.4.1)

(M2) :
∑

T∈T̂k

ζ2
k(T ) ≥ θ2

gζ
2
k , (2.4.2)

(M3) :
∑

T∈T̂k

osc2
k(T ) ≥ θ2

oosc2
k. (2.4.3)

The strategy (M1) is for the energy error reduction, (M2) is for geometric error re-

duction, and (M3) is for oscillation reduction. We refer to this procedure as

T̂k := MARK({ηk(T ), ζk(T ), osck(T )}T∈Tk
).

2.4.3 Procedure REFINE

This procedure refines all elements in the marked set T̂k of Tk to obtain a

new (finer) pair of approximating surface-mesh (Γk+1, Tk+1). The refinement step is

performed according to two criteria. The first one was introduced by Morin et al

[15, 16] to guaranteed energy error reduction:

Interior Node Property: Refine each marked element T ∈ T̂k to obtain a new

mesh Tk+1 compatible with Tk such that

T and the adjacent elements T ′ ∈ Tk of T , as well as their common

sides, contain a node of the finer mesh Tk+1 in their interior.

The second criterium is new and deals with the geometric oscillation:
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Geometric Oscillation Property: Given a reduction factor θλ < 1, refine all

T ∈ T̂k such that for all T ′ ∈ Tk+1(T ) we have

λk+1(T
′) ≤ θλλk(T ),

where Tk+1(T ) := {T ′ ∈ Tk+1 | T ′ is obtained by refining T}.

The procedure REFINE may also require additional steps to control the oscillations.

We describe the Refining Strategy in several steps as follows:

Refining Strategy: Given a sequence {ak} ↘ 0, a marked set T̂k, geometric

oscillations {λk(T )}T∈Tk
, and a fixed reduction rate of element size 0 < γr < 1;

1. Refine all T ∈ T̂k according to Interior Node Property;

2. Refine more if needed for Geometric Oscillation Property;

3. Refine more if needed so that for any T ∈ Tk

λk+1(T
′) ≤ min {ak, λk(T )} ∀ T ′ ∈ Tk+1(T );

4. Refine more if needed so that for any T ′ ∈ Tk+1(T ), T ∈ Tk,

|T ′
k|

|T ′| ≤ γT

( |T |
|T ′|

) 2
d−1

where γT :=





γr if T ∈ T̂k

1 if T /∈ T̂k

, (2.4.4)

and T ′
k := {(x, zk(x)) ∈ Γk | (x, z(x)) ∈ T ′} ⊂ T , a lift of T ′ back to Γk.

We refine an element on a polyhedral surface Γk via a projection (or lift) from

Γk to Γ along the (vertical) xd-axis. If (x, zk(x)) ∈ Γk is a new node obtained by

refining T ∈ Tk, then it is lifted to (x, z(x)) ∈ Γ to become a new node of Γk+1; see

Figures 2.4.1 and 2.4.2. The new ‘polyhedral’ approximating surface is formed by
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T
x

P(x)

Figure 2.4.1: The element T ∈ Tk is
bisected thereby giving rise to the new
node x. This node is lifted (projected)
to P (x) ∈ Γ along the vertical axis.

T

T1
T2

P(x)

Figure 2.4.2: Two new elements T1
and T2 in Tk+1 are formed joining the
new node P (x) ∈ Γ with the old nodes
in Γk.

interpolating new nodes and old nodes via zk+1 = Ik+1z ∈ Vk+1. We refer to this

procedure as

(Tk+1, Γk+1) := REFINE(T̂k, ak, γr, {λk(T )}T∈Tk
).

Note that, asymptotically, the new surface Γk+1 is a better piecewise poly-

nomial approximation of Γ than Γk in the sense that λk+1(T
′) ≤ λk(T ) for all

T ′ ∈ Tk+1(T ). However, in the pre-asymptotic regime it can happen that this in-

equality is reversed.

Remark 2.4.1. Since for T ∈ Tk, the corresponding T̃ ⊂ Γ is a smooth C1 surface,

hence steps 2 and 3 of Refining Strategy can be achieved by finite number of

times. If Γ is C2, then λk(T ) reduces proportionally to hT , the diameter of T .

Remark 2.4.2. In step 3 of Refining Strategy, the sequence ak ↘ 0 is needed

to guarantee that λk ↘ 0, i.e., Γk gets closer and closer to Γ. However, in our

results below, Lemma 2.4.3 and Theorem 2.1, we require only that λk decreases

monotonically and is smaller than an unknown positive threshold. The condition

ak ↘ 0 might be stronger than needed. In fact, in numerical experiments, if Γ is

C2, then λk reduces monotonically without invoking step 3.
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Remark 2.4.3. Step 4 of Refining Strategy is needed in order to have a reduction

of oscillation, see Lemma 2.4.6, especially when we deal with general dimension

d 6= 3. For d = 3, this step is trivial since T ′
k ⊂ T , and if T ∈ T̂k then |T ′

k| ≤ γT |T |

where γT < 1 depending only on the refinement method, and we can choose γr :=

max {γT} < 1.

Remark 2.4.4. Step 4 of Refining Strategy can be achieved for d 6= 3 upon refining

T ∈ Tk a finite (and fixed) number times. This is the case because
|T ′k|
|T ′| is bounded

by a constant depending only on Qk

Q
, whereas |T |

|T ′| increases by refinement.

2.4.4 Lemmas

The procedures MARK and REFINE lead to the following crucial results for

proving the convergence of AFEM. For convenience we use the following notation.

For any ω ⊂ Γ,

ek(ω) := ‖∇Γ(u− uk)‖L2(ω) , εk+1(ω) := ‖∇Γ(uk+1 − uk)‖L2(ω) ,

and use ek, respectively εk+1, when ω = Γ. We introduce also the bilinear forms

B(u, v) :=

∫

Γ

∇Γu · ∇Γv and Bh(u, v) :=

∫

Γh

∇Γh
u · ∇Γh

v. (2.4.5)

Geometric Error Reduction

A trivial consequence Step 3 of Refining Strategy is the following result.

Lemma 2.4.1 (Geometric oscillation reduction). For any sequence {ak} converg-

ing monotonically to 0 as k →∞ we have

λk → 0 as k →∞ monotonically.
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According to the definition (2.1.12), we have a local relation between geometric

errors ζk+1, ζk, and εk+1 as follows. For any δ > 0,

ζ2
k+1(T

′) ≤ λ2
k+1(T

′)
(
(1 + δ) ‖∇Γuk‖2

L2(T̃ ′) + (1 + δ−1)ε2
k+1(T̃

′)
)

, (2.4.6)

where T ′ ∈ Tk+1 and T̃ ′ ⊂ Γ is its corresponding curved element. Employing

Marking Strategy (M2), Geometric Oscillation Property, and Lemma 2.4.1,

we obtain the reduction of geometric error. We state the result now but postpone

its proof until §2.4.6.

Lemma 2.4.2 (Geometric error reduction). There exist constants 0 < ρ1 < 1

and ρ2 > 0 such that for any k ≥ 0

ζ2
k+1 ≤ ρ1ζ

2
k + ρ2λ

2
kε

2
k+1. (2.4.7)

Quasi-Orthogonality

Since finite element space-mesh (Vk(Γk), Tk(Γk))’s are no longer nested, the

usual orthogonality property fails. It is replaced by a quasi-orthogonality property.

As expected, the geometric error ζk also plays a role in this result. We state here a

lemma but postpone its proof until §2.4.6.

Lemma 2.4.3 (Quasi-orthogonality). There exist constants C6, C7 > 0 and a

number k∗ ≥ 0 such that Λ0 := (1
2
− ρ2C6λ

2
k∗) ∈ [1

4
, 1

2
), and for any k ≥ k∗

e2
k+1 ≤ e2

k − Λ0ε
2
k+1 + C7ζ

2
k . (2.4.8)

Remark 2.4.5 (Threshold for λk). For quasi-orthogonality we need that λk ≤ λ∗ be

sufficiently small (k is greater than some k∗) or, equivalently, that Γk be sufficiently
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close to Γ; see the proof in §2.4.6. This is a natural a priori condition [9]. Since we

do not have a procedure to quantify a posteriori when such a condition is achieved,

we let sequence {ak} take care of this matter: it guarantees the eventual validity of

λk ≤ λ∗ regardless of the resolution of the initial mesh-surface approximation.

Energy Error Reduction

It is well documented that the reduction of energy error hinges on four con-

cepts: the upper bound, a modified local lower bound, Marking Strategy (M1),

and Interior Node Property; see [13, 15, 16]. We discuss here the modified local

lower bound which relies on a modified error equation, obtained from the error rep-

resentation form (2.3.1) upon replacing Γ by Γk+1, u by uk+1, ϕ by ϕk+1 ∈ V̊k+1,

and setting ϕk = 0, namely

∑

T∈Tk

∫

T
RT (uk)ϕk+1 −

∑

S∈So
k

∫

S
JS(uk)ϕk+1 = Bk+1(uk+1, ϕk+1)− Bk(uk, ϕk+1), (2.4.9)

where the bilinear form Bk is defined via (2.4.5).

To obtain the estimate, we follow the standard arguments used on flat domains

[1, 23] with the help of piecewise linear bubble functions; see [7, 13, 15, 16]. Note

that for graphs, the lift (2.1.2) of a C0 piecewise linear bubble function on Ω is still

a C0 piecewise linear bubble function on Γk; hence, the standard arguments are still

valid on surfaces Γk. However, due to discrepancy between surfaces Γk and Γk+1,

the geometric error ζk also appears in this estimate. To see this let ϕk+1 := ψTRT ,

where RT is a L2-projection of RT (uk) onto Pn−1(T ) and ψT is a C0 piecewise linear

bubble function on T , namely supp ϕk+1 ⊆ T . Adding ± ∫
Γ
∇Γ(uk+1 − uk) · ∇Γϕk+1,
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(2.4.9) becomes

∫

T

RT (uk)ϕk+1 =

∫

Γ

∇Γ(uk+1 − uk) · ∇Γϕk+1

+

∫

Γ

∇Γuk+1Ak+1 · ∇Γϕk+1 +

∫

Γ

∇ΓukAk · ∇Γϕk+1,

which later gives an estimate involving the local geometric error terms ζk and ζk+1.

Moreover, we can estimate locally ζk+1 in terms of ζk and εk+1 according to (2.4.6),

namely

∑

T ′∈Tk+1(T )

ζ2
k+1(T

′) . ζ2
k(T ) + ε2

k+1(T̃ ).

Following the usual arguments, we arrive at the estimate for the interior residual

h2
T ‖RT (uk)‖2

L2(T ) . ε2
k+1(T̃ ) + ζ2

k(T ) + h2
T

∥∥RT (uk)−RT

∥∥2

L2(T )
.

The estimate for the jump residual is similarly obtained by following the standard

arguments. Combining these two estimates, we thus obtain the lemma.

Lemma 2.4.4 (Modified local lower bound). For any T ∈ T̂k, we have

η2
k(T ) ≤ C3

∑

T ′∈Tk
T ′⊂ωk(T )

ε2
k+1(T̃

′) + C4ζ
2
k(ωk(T )) + C5osc2

k(ωk(T )). (2.4.10)

Applying the upper bound (2.3.10) and Marking Strategy (M1), we have

e2
k ≤ C1η

2
k + C2ζ

2
k ≤

C1

θ2
e

∑

T∈T̂k

η2
k(T ) + C2ζ

2
k .

As a consequence of Lemma 2.4.4, using (2.4.10) to replace η2
k(T ), we have the

following corollary.

Corollary 2.4.5. There exist constants Λ1, Λ2, Λ3 > 0 depending only on θe, C1,

C2, C3, C4 and C5, such that

e2
k ≤ Λ1ε

2
k+1 + Λ2ζ

2
k + Λ3osc2

k. (2.4.11)
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Oscillation Reduction

According to Remark 2.3.2 and Lemma 2.4.4 above, the element oscillation

has the form

osc2
k(T ) = h2

T

∥∥Fk − F k

∥∥2

L2(T )
.

Since it is convenient to work with area (measure) of the element T when surfaces

are different, we re-define the oscillation to be

osc2
k(T ) = |T | 2

d−1

∥∥Fk − F k

∥∥2

L2(T )
,

since h2
T ∼ |T | 2

d−1 , where d ≥ 2 denotes the dimension. The following lemma is a

result of Marking Strategy (M3) and step 4 of Refining Strategy; the proof is

given in §2.4.6.

Lemma 2.4.6 (Oscillation reduction). There exists a constant 0 < α̂ < 1 de-

pending on the surface Γ and a parameter θo from Marking Strategy (M3) such

that

osc2
k+1 ≤ α̂osc2

k. (2.4.12)

2.4.5 Algorithm and Convergence

Given parameters θe, θg, θo, θλ, γr, and the sequence {ak}, the adaptive algo-

rithm consists of consecutive loops of procedures SOLVE, ESTIMATE, MARK, and

REFINE as follows.
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AFEM

Choose parameters 0 < θe, θg, θo, θλ, γr < 1, a sequence {ak} ↘ 0, and let u−1 = 0;

1. Pick an initial approximating surface-triangulation pair (Γ0, T0) and set k = 0;

2. uk = SOLVE(Γk, Tk, Fk, uk−1);

3. {ηk(T ), ζk(T ), λk(T ), osck(T )}T∈Tk
= ESTIMATE(Γ, Γk, Tk, Fk, uk);

4. T̂k = MARK({ηk(T ), ζk(T ), osck(T )}T∈Tk
);

5. (Tk+1, Γk+1) = REFINE(T̂k, ak, γr, {λk(T )}T∈Tk
);

6. Set k = k + 1 and go to Step 2.

Theorem 2.1 (Convergence of AFEM). Let (Γ0, T0) be an arbitrary initial ap-

proximating surface-triangulation pair of Γ. Then there exist a number k0 ≥ 0, and

positive constants γg, γo, and ξ < 1, such that for any k ≥ k0, AFEM satisfies

Ek+1 ≤ ξ Ek, (2.4.13)

where E2
k := e2

k + γgζ
2
k + γoosc2

k.

Proof: According to Lemma 2.4.3, there is k∗ such that (2.4.8) holds, namely

e2
k+1 ≤ e2

k − Λ0ε
2
k+1 + C7ζ

2
k ∀k ≥ k∗, (2.4.14)

where 1
4
≤ Λ0 < 1

2
. Since εk+1 and ζk are coupled according to Lemma 2.4.2 and

(2.4.11), we split the term Λ0ε
2
k+1 into two parts

Λ0ε
2
k+1 = βΛ0ε

2
k+1 + (1− β)Λ0ε

2
k+1,
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where the constant β ∈ (0, 1) will be chosen later.

Step 1. Using (2.4.11), we can eliminate βΛ0ε
2
k+1 by the estimate

βΛ0

Λ1

e2
k ≤ βΛ0ε

2
k+1 +

Λ0Λ2

Λ1

βζ2
k +

Λ0Λ3

Λ1

βosc2
k,

and (2.4.14) becomes

e2
k+1 ≤ αe2

k − (1− β)Λ0ε
2
k+1 + (C7 + Λ4β)ζ2

k + Λ5βosc2
k, (2.4.15)

where α := 1− βΛ0

Λ1
< 1, Λ4 := Λ0Λ2

Λ1
> 0, and Λ5 := Λ0Λ3

Λ1
> 0.

Step 2. To get rid of (1− β)Λ0ε
2
k+1, we use Lemma 2.4.2 inequality (2.4.7), namely

(1− β)Λ0

ρ2λ2
k0

ζ2
k+1 ≤

ρ1(1− β)Λ0

ρ2λ2
k0

ζ2
k + (1− β)Λ0ε

2
k+1 ∀k ≥ k0,

where k0 ≥ k∗ will be chosen later. Therefore, (2.4.15) becomes

e2
k+1 + γgζ

2
k+1 ≤ αe2

k + µ0γgζ
2
k + Λ5βosc2

k, (2.4.16)

where γg := (1−β)Λ0

ρ2λ2
k0

and µ0 satisfies

µ0γg = C7 + Λ4β + ρ1γg. (2.4.17)

Step 3. From (2.4.17), writing γg in terms of β and solving for β, we have

β =
β0 − C7

β0 + Λ4

where β0 :=
Λ0(µ0 − ρ1)

ρ2λ2
k0

.

Since ρ1 < 1, we first choose ρ1 < µ0 < 1 which gives β0 > 0. Since λk ↘ 0, we can

then choose k0 ≥ k∗ so that β0 > C7, which implies that 0 < β < 1. Therefore, γg

defined in (2.4.16) is a positive constant.

Step 4. Using (2.4.12) of Lemma 2.4.6, we can write (2.4.16) as

e2
k+1 + γgζ

2
k+1 + γoosc2

k+1 ≤ αe2
k + µ0γgζ

2
k + µ1γoosc2

k,
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where γo is a constant to be determined and µ1 satisfies

µ1γo = γoα̂ + Λ5β.

Since α̂ < 1, we can choose α̂ < µ1 < 1, which implies that γo = Λ5β
µ1−α̂

> 0. The

assertion follows by setting ξ =
√

max {α, µ0, µ1} < 1.

2.4.6 Proofs of Lemmas

Proof of Lemma 2.4.2: Geometric error reduction

Proof: If T ′ ∈ Tk+1, then by definition of ζk+1(T
′) we have for δ > 0,

ζ2
k+1(T

′) := λ2
k+1(T

′) ‖∇Γuk+1‖2
L2(T̃ ′) (2.4.18)

≤ λ2
k+1(T

′)
(
(1 + δ) ‖∇Γuk‖2

L2(T̃ ′) + (1 + δ−1)ε2
k+1(T̃

′)
)

.

Case 1. If T ′ ∈ Tk+1(T ) for some T ∈ T̂k, then λk+1(T
′) ≤ θλλk(T ). Summing over

all T ′ ∈ Tk+1(T ) and using λk(T ) ≤ λk, we have

∑

T ′∈Tk+1(T )

ζ2
k+1(T

′) ≤ (1 + δ)θ2
λζ

2
k(T ) + (1 + δ−1)λ2

kε
2
k+1(T̃ ).

Case 2. If T ′ ∈ Tk+1(T ) for T /∈ T̂k, then by using λk+1(T
′) ≤ λk(T ) we have

ζ2
k+1(T

′) ≤ λ2
k(T )

(
(1 + δ) ‖∇Γuk‖2

L2(T̃ ′) + (1 + δ−1)ε2
k+1(T̃

′)
)

,

and after summing over T ′ ∈ Tk+1(T )

∑

T ′∈Tk+1(T )

ζ2
k+1(T

′) ≤ (1 + δ)ζ2
k(T ) + (1 + δ−1)λ2

kε
2
k+1(T̃ ).
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Combining these two cases, we can write

ζ2
k+1 =

∑

T∈T̂k


 ∑

T ′∈Tk+1(T )

ζ2
k+1(T

′)


 +

∑

T∈Tk\T̂k


 ∑

T ′∈Tk+1(T )

ζ2
k+1(T

′)




≤ (1 + δ)


ζ2

k − (1− θ2
λ)

∑

T∈T̂k

ζ2
k(T )


 + (1 + δ−1)λ2

kε
2
k+1,

and by Marking Strategy (M2)

ζ2
k+1 ≤ (1 + δ)

(
1− (1− θ2

λ)θ
2
g

)
ζ2
k + (1 + δ−1)λ2

kε
2
k+1.

The assertion follows by choosing δ such that ρ1 := (1 + δ)

(
1 − (1 − θ2

λ)θ
2
g

)
< 1,

and taking ρ2 := (1 + δ−1) > 0.

Proof of Lemma 2.4.3: Quasi-orthogonality

Proof: By symmetry of the bilinear form B defined in (2.4.5), we have

e2
k+1 = e2

k − ε2
k+1 − 2B(u− uk+1, uk+1 − uk).

Since for graphs ϕk+1 := uk+1 − uk ∈ V̊k+1, we thus have

B(u− uk+1, uk+1 − uk) = B(u, ϕk+1)− B(uk+1, ϕk+1) =

∫

Γ

fϕk+1 − B(uk+1, ϕk+1).

By definition of Fk+1 in (2.3.4) and the weak form (2.1.8),

∫

Γ

fϕk+1 =

∫

Γk+1

Fk+1ϕk+1 = Bk+1(uk+1, ϕk+1).

Therefore, by (2.2.9)

B(u− uk+1, uk+1 − uk) = Bk+1(uk+1, ϕk+1)− B(uk+1, ϕk+1) =
∫

Γ
∇Γuk+1Ak+1 · ∇Γϕk+1.
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By Schwarz’s inequality and the estimate ‖∇Γuk+1Ak+1‖L2(Γ) . ζk+1, we can bound

−2B(u− uk+1, ϕk+1) ≤ C6ζ
2
k+1 +

1

2
ε2

k+1,

where C6 > 0 depends only on Γ. Hence, by Lemma 2.4.2, we obtain

e2
k+1 ≤ e2

k −
(

1

2
− C6ρ2λ

2
k

)
ε2

k+1 + C7ζ
2
k ,

where C7 := C6ρ1. Since λk → 0 as k →∞ by Lemma 2.4.1, there exists a number

k∗ ≥ 0 such that Λ0 := 1
2
− C6ρ2λ

2
k∗ ∈ [1

4
, 1

2
). The assertion thus follows for k ≥ k∗

by monotonicity of {λk}.

Proof of Lemma 2.4.6: Oscillation reduction

Proof: Let T ′ ∈ Tk+1(T ) for some T ∈ Tk, we have

osc2
k+1(T

′) = |T ′| 2
d−1

∥∥∥Fk+1 − F
T ′

k+1

∥∥∥
2

L2(T ′)
,

where F
T ′

k+1 is the L2-projection of Fk+1 onto Pn−1(T
′). Recall that

T ′
k := {(x, zk(x)) ∈ Γk | (x, z(x)) ∈ T ′} ⊂ T,

a lift of T ′ back to Γk. By changing the surface of integration

∫

T ′
v =

∫

T ′k

v
Qk+1

Qk

=
|T ′|
|T ′

k|
∫

T ′k

v.

Since on T ′, Fk+1 = Fk
Qk

Qk+1
=

|T ′k|
|T ′|Fk, replacing F

T ′

k+1 by
|T ′k|
|T ′|F

T

k , where F
T

k is the

L2-projection of Fk onto Pn−1(T ), we have

osc2
k+1(T

′) ≤ |T ′| 2
d−1
|T ′

k|2
|T ′|2

∥∥∥Fk − F
T

k

∥∥∥
2

L2(T ′)
= |T ′| 2

d−1
|T ′

k|
|T ′|

∥∥∥Fk − F
T

k

∥∥∥
2

L2(T ′k)
.
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By Step 4 of Refining Strategy, we thus have

|T ′| 2
d−1
|T ′

k|
|T ′| ≤ γT |T |

2
d−1 ,

where γT is defined in (2.4.4). By summing over all T ′ ∈ Tk+1(T ), we arrive at

∑

T ′∈Tk+1(T )

osc2
k+1(T

′) ≤ γT osc2
k(T ).

Proceeding as in Lemma 2.4.2 and using Marking Strategy (M3), we end up with

osc2
k+1 ≤

(
1− (1− γr)θ

2
o

)
osc2

k =: α̂osc2
k.

2

2.5 Numerical Experiments

To illustrate our main result, we present some numerical experiments based

on the AFEM described above. They are implemented within the FEM toolbox

ALBERT developed by Schmidt and Siebert [20, 21].

For convenience of presentation, we use the following notation:

• ek and ζk denote the energy and geometric errors, respectively, after k iterations.

• |Tk| denotes the number of elements in triangulation Tk.

• EOCe(k) and EOCg(k) denote the experimental orders of convergence after k iter-

ations, namely

EOCe(k) :=
log(ek−1/ek)

log(|Tk| / |Tk−1|) and EOCg(k) :=
log(ζk−1/ζk)

log(|Tk| / |Tk−1|) .

2.5.1 Experiment 1: Corner Singularity

In this experiment we consider a surface Γ ⊂ R3 as a graph of the function

z(x, y) = x2 + y2 defined on the L-shape region Ω := [−1, 1]2 \ (0, 1) × (−1, 1). To
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test our algorithm, we assume that the exact solution is known and defined by

u(x, y, z) = u(r, θ) = r2/3 sin(
2

3
θ),

where r :=
√

x2 + y2, θ := tan−1(y/x). The forcing term f = −∆Γu is given by

(2.1.6).

We solve the Laplace-Beltrami operator on Γ together with Dirichlet bound-

ary condition that is compatible with the solution. We implemented AFEM with

parameters θe = θg = 0.6, θo = 0.5, and θλ = 0.8, and with {ak} = {1/k}. Our

results and comments are as follows.

k |Tk| ek EOCe(k) ζk EOCg(k)
0 96 1.85e-01 – 2.01e-01 –
1 244 1.10e-01 0.558 1.29e-01 0.477
2 846 6.33e-02 0.443 7.17e-02 0.470
3 2288 3.82e-02 0.508 4.47e-02 0.476
4 6034 2.40e-02 0.480 2.85e-02 0.463
5 11982 1.61e-02 0.580 2.00e-02 0.514
6 32952 9.57e-03 0.515 1.44e-02 0.328
7 57416 7.00e-03 0.563 1.00e-02 0.653

Table 2.5.1: AFEM with parameters θe = θg = 0.6, θo = 0.5, and θλ = 0.8. Both
the energy and geometric errors decay at the optimal rate at 0.5 despite the corner
singularity; compare with FEM in Table 2.5.2 below.

|Tk| ek EOCe(k) ζk EOCg(k)
96 1.85e-01 – 2.01e-01 –

384 1.17e-01 0.329 1.01e-01 0.497
1536 7.42e-02 0.329 5.04e-02 0.499
6144 4.69e-02 0.331 2.52e-02 0.500

24576 2.96e-02 0.332 1.26e-02 0.500
98304 1.87e-02 0.332 6.30e-03 0.500

Table 2.5.2: FEM: The energy error decays slower than AFEM at the expected rate
0.33 due to corner singularity. The geometric error still decays at the optimal rate
0.5 due to the smoothness of the surface.

79



10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

Number of Elements

E
rr

o
r

Loglog Plot of Errors Vs. Number of Elements

AFEM: Energy Error
AFEM: Geometric Error
FEM: Energy Error
FEM: Geometric Error

slope = 0.5 

Figure 2.5.1: Experiment 1: Loglog plot of energy and geometric error vs. number
of elements for both AFEM and FEM. AFEM is implemented with parameters
θe = θg = 0.6, θo = 0.5, and θλ = 0.8. We see that energy and geometric errors from
AFEM decay at the optimal rate of about 0.5 while the energy error from FEM does
not, due to the corner singularity.

• Tables 2.5.1 and 2.5.2 show the decay of energy and geometric errors vs. number

of elements, together with their experimental orders, for both AFEM and a standard

FEM, respectively. AFEM performs at the optimal rate of 0.5 for both errors, while

FEM performs only at the expected rate 0.3 for the energy error because of a corner

singularity. This experiment confirms that AFEM performs optimally for corner

singularities and smooth surfaces. See also Figure 2.5.1 for the log-log plot of errors

vs. number.

• Figure 2.5.2 shows a sequence of meshes, polyhedral surfaces Γk, for k = 1, 3,

and 5. The refinements are mostly dictated by the corner singularity at the origin

but also by the surface. The zoom in near the origin shows that the refinement

concentrate more near the origin.
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Figure 2.5.2: Experiment 1: A sequence of meshes after 1, 3, and 5 iterations
(top-left, top-right, bottom left), respectively, and a zoom at the origin after 5
iterations (bottom-right). The meshes show that refinements are adapted according
to the corner singularity, namely at the origin, as well as to the surface. The corner
singularity the refinement, as can be seen from the bottom-right figure.
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2.5.2 Experiment 2: C1,α Surface Singularity.

In contrast to Experiment 1, we now conduct an experiment on a C1,α but not

C2 Surface. We let the surface Γ be the graph of

z(x, y) =





(0.75− x2 − y2)1.4 if x2 + y2 < 0.75,

0 otherwise,

where (x, y) ∈ Ω := [0, 1]2. It is easy to see that z ∈ C1,0.4(Ω) \ C1,1(Ω) due to the

singularity of the second derivatives of z on the curve x2 + y2 = 0.75. We assume

the exact solution to be the linear function

u(x, y) = x + y − 0.75,

and the Dirichlet boundary condition and forcing term given by (2.1.6), namely

since u is linear

f := −∆Γu = (∇u · ν)(∇ · ν),

if z is C2(Ω). However, in this example z is C1,0.4 and f behaves singularly like

(x2 + y2− 0.75)−0.6; the singularity does not align with the initial mesh T0(Ω). Note

that f ∈ L1(Γ)\L2(Γ) in neighborhood of this curve, hence ‖f‖L2(Γ) is meaningless.

However, there is 1 < q < 2 such that f ∈ Lq(Γ) and we can estimate (if p is Sobolev

conjugate exponent of q)

∫

T

f(ϕ− Iϕ) ≤ C ‖f‖Lq(T ) ‖ϕ− Iϕ‖Lp(T ) ∀ T ∈ Tk, ∀ϕ ∈ H1
0 (Γ),

since H1(Γ) ⊂ Lp(Γ) for p < ∞. In short, we can replace ‖f‖L2 by ‖f‖Lq in a

neighborhood of the singularity and follow the same analysis. Set α = 0.6,

γ :=
{
(x, y) : x2 + y2 = 0.75

}
,
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and

dT = dist(T, γ).

We assume first that dT ≥ hT . Then

‖f‖Lq(T ) . d−αh
2/q
T and ‖ϕ− Iϕ‖Lp(T ) . h

2/p
T ‖ϕ‖H1(ω̄h(T )) .

Therefore,

∫

T

f(ϕ− Iϕ) . d−α
T h

2/q+2/p
T ‖ϕ‖H1(ω̄h(T ))

= h2
T d−α

T︸ ︷︷ ︸
≈‖hT f‖L2(T )

‖ϕ‖H1(ω̄h(T ))

This implies
∫

T

f(ϕ− Iϕ) . ‖hT f‖L2(T ) ‖ϕ‖H1(ω̄h(T )) ,

and nothing change. Therefore, we can compute ‖f‖Lq(T ) by using ‖f‖L2(T ) instead,

if T is closed to the singularity curve but not crossing it because they are about the

same size. We assume next that dT < hT . Then

‖f‖Lq(T ) ≈ h
2/q−α
T .

Hence,
∫

T

f(ϕ− Iϕ) . h2−α ‖ϕ‖H1(ω̄h(T )) .

In practice we truncate the function f(x) as follows:

fc(x) = min {f(x), 1.e + 15} .

In the first case dT ≥ hT we never evaluate f in the truncation region because this

would require hT to be very small, namely, we need about 30 iterations. In the
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Figure 2.5.3: Experiment 2: Log-log plot of energy and geometric errors vs. the
number of elements obtained from AFEM. The decay of these errors are near optimal
rate at 0.5, comparing using slopes of plots.

second case, dT < hT the quadrature error could be large there are few elements

with such a behavior. The implementation works quite well as expected and the

errors reduce with nearly optimal rate; see Figure 2.5.3.

In this experiment we study how our AFEM handles this kind of problem. We

run the algorithm with parameters θe = 0.6, θg = θo = 0.5, and θλ = 0.8, and a

sequence {ak} defined as in Experiment 1. Figure 2.5.3 is a log-log plot of errors vs.

the number of elements which displays optimal error decay. The sequence of refined

meshes are depicted in Figure 2.5.4. Our observations and comments are as follows.

• According to Figure 2.5.3, the energy and geometric errors decay with a nearly

optimal rate of 0.5 after few iterations, despite the fact that f has a singularity

along the curve x2 + y2 = 0.75. The effect of singularity is compensated by massive
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Figure 2.5.4: Experiment 2: A sequence of meshes after 2, 3, 4, and 5 iterations,
respectively. The meshes show that refinements are adapted to the line singularity
as well as to the surface. The refinements are denser near the line singularity and
coarser on the flat part of the surface.
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refinement near the singularity. This confirms that our AFEM works fine even if

the surface is not C1,1, as predicted by theory.

• According to Figure 2.5.4, the refinement produced by AFEM depends on variation

of the normal, thereby being quite coarse in the flat part of Γ.
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Chapter 3

Design and Convergence of AFEM for the Laplace-Beltrami

Operator on Parametric Surfaces

3.1 Introduction

Let Γ be a d − 1 dimensional C1 surface in Rd, d ≥ 2, either with or with-

out boundaries; Γ is a closed surface if it has no boundaries. To represent the

Laplace-Beltrami operator on Γ, one needs to describe Γ mathematically using, for

example, parametric representations on charts, level sets, distance functions, graphs

of functions, etc. Moreover, one usually obtains approximate solutions (finite ele-

ment solutions) by solving the problem on approximate polyhedral surfaces rather

than the surface Γ itself; see [9] for example that exploits the variational structure of

the Laplace-Beltrami operator and gives an a priori error analysis. Our present ob-

jective is dual to that in [12] in that we introduce an adaptive finite element method

(AFEM), derive a posteriori error estimates and use them to prove convergence of

adaptive loops.

3.1.1 Geometry of and PDE on Γ.

We assume the surface Γ to be decomposed into several disjoint parts, each

represented parametrically. We link this decomposition to a (d − 1) dimensional
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polyhedral surface Γ0 ⊂ Rd, a piecewise linear interpolant of Γ. We also assume

the existence of a continuous piecewise differentiable bijection P0 : Γ0 → Γ, that

is P0 is differentiable in each face of Γ0. In this way, the pair (Γ0,P0) provides a

global description of Γ that will be used to create a sequence {Γk}∞k=1 of polyhedral

approximations of Γ. Since Γ0 is a polyhedral surface, we can write

Γ0 =
N⋃

i=1

Γi
0,

where N is the number of faces of Γ0 and Γi
0’s are distinct faces; we refer to this

element Γi
0 as a macro-element. This induces the partition {Γi}N

i=1 of Γ upon setting

Γi := P0(Γ
i
0).

Since Γ0 is a linear interpolation of Γ, it follows that P0(v) = v for all vertices v of

Γi
0, 1 ≤ i ≤ N . Since Γi

0 ⊂ Rd is a d−1 dimensional flat surface, there is a reference

element Ω ⊂ Rd−1 and an affine map F i
0 : Rd−1 → Rd such that Γi

0 = F i
0(Ω). For

example, if Γi
0 is a triangle in R3, then we can take Ω to be the master triangle in R2

and F i
0 the affine map that connects the three vertices of Ω with those of Γi

0. Hence,

we can view Γi as a parametric surface on Ω via a parametrization X i := P0 ◦ F i
0.

Since P0 is differentiable on Γi
0, then X i is differentiable on Ω, and thus Γi = X i(Ω)

is regular.

The structure of map P0 depends on the application. If Γi is described on Γi
0

via the distance function dist(x), then

Γi 3 x̃ = x− dist(x)∇dist(x) = P0(x) ∀ x ∈ Γi
0,

provided dist(x) is sufficiently small so that the distance is uniquely defined. If,
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instead, Γi is the zero level set φ(x) = 0 of a function φ, then

Γi
0 3 x = x̃ +

∇φ(x̃)

∇φ(x̃)
|x− x̃| = P−1

0 (x̃) ∀ x̃ ∈ Γi

is the inverse map of P0. In both cases, dist and φ must be twice differentiable for

P0 to be differentiable.

We note that a function v : Γi → R defines uniquely two functions v̂ : Ω → R

and v̄ : Γi
0 → R via the maps X i and P0, namely

v(X i(x̂)) = v̂(x̂) ∀ x̂ ∈ Ω and v(P0(x̄)) = v̄(x̄) ∀ x̄ ∈ Γi
0. (3.1.1)

Conversely, given a function v̂ : Ω → R (respectively, v̄ : Γi
0 → R) defines uniquely

the two functions v : Γi → R and v̄ : Γi
0 → R (respectively, v : Γi → R and

v̂ : Ω → R.)

We consider, for simplicity, the Laplace-Beltrami operator ∆Γ on a closed

surface Γ

−∆Γu = f on Γ, (3.1.2)

where f ∈ L2(Γ) and
∫
Γ
f = 0; the latter is a compatability condition for (3.1.2) to

have a solution. However, surfaces with boundary and Dirichlet boundary conditions

can be handled as well as shown in section 3.5.2; see also chapter 2 and [12] for

graphs.

We denote by ν = (ν1, . . . , νd) ∈ Rd the outer normal vector to Γ. For v ∈

C1(Γ) we define the tangential gradient of v on Γ by

∇Γv = ∇v − (∇v · ν)ν ∈ Rd,
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where ∇v is the usual gradient of Rd. This definition makes sense provided v is

extended to a C1 function in a neighborhood of Γ, which is possible because Γ is

C1. However, ∇Γv does not depend on the extension but only on the value of v on

Γ. Likewise, for a vector field v ∈ C1(Γ), we define its tangential divergence by

∇Γ · v = ∇ · v − νDvνT ,

where Dv stands for the differential matrix for v. Therefore, if Γ is C2, the Laplace-

Beltrami operator reads as follows

∆Γv = ∇Γ · ∇Γv = ∆v − (∇v · ν)(∇ · ν)− νD2vνT , (3.1.3)

provided v ∈ C2(Γ) and D2v is the Hessian matrix of v (suitably extended as a C2

function to a neighborhood of Γ).

To formulate (3.1.2) weakly, we introduce the Sobolev space on the surface Γ:

H1(Γ) :=
{
v ∈ L2(Γ) | v has weak tangential derivatives in L2(Γ)

}
.

A weak solution of (3.1.2) is a function u : Γ → R satisfying

u ∈ H1
0 (Γ) :

∫

Γ

∇Γu · ∇Γϕ =

∫

Γ

fϕ ∀ ϕ ∈ H1
0 (Γ). (3.1.4)

3.1.2 The Finite Element Method (FEM) on Parametric Surfaces

We recall that the initial polyhedral surface Γ0, with nodes lying on Γ, is

composed of macro-elements Γi
0, each associated to a reference element Ω. We also

have the differentiable bijections

F i
0 : Ω → Γi

0, X i : Ω → Γi.
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We recall that all vertices of the initial linear interpolation Γ0 of Γ lie on Γ.

Note that the surface Γ0 defines macro-elements Γi
0. We separate the surface Γ into

several pieces according to these macro-elements Γi
0, associate them to a reference

element Ωi and define the maps X i and F i
0 accordingly.

To approximate (3.1.4) via the FEM, we first partition Γ0 into conforming

shape regular simplices; we call this set Th(Γ0). Note that each macro-element Γi
0

induces shape regular simplices on the reference element Ω ⊂ Rd−1, thereby giving

rise to a graded triangulation (or mesh) Th(Ω) of Ω. This triangulation induces

a shape regular triangulation Th(Γ
i
h) of Γi

h via the regular parametrization X i as

follows. Nodes of Th(Ω) are lifted to Γi via X i, and connected by a C0 piecewise

linear function, thereby giving rise to a polyhedral surface Γi
h – a piecewise linear

approximation of Γi. This also induces a unique piecewise affine map F i
h : Ω → Γi

h

such that T = F i
h(T̂ ) where vertices of T are the lifts of vertices of T̂ ∈ Th(Ω).

The piecewise linear approximation Γh of Γ is just the union of all parts Γi
h and,

likewise, Th(Γh) denotes the triangulation of Γh obtained by combining all elements

of Th(Γ
i
h). The conformity of Th(Γh) follows from that of Th(Γ0). We next form a

finite element space Vh(Γh) of piecewise polynomials of degree n over Th(Γh). Since

the analysis on surfaces can be done mostly on each individual macro-element Γi
0,

we omit the superscript i, namely, Γ stands for either the whole surface Γ or Γi; the

same notation applies also to X , Γh, and Fh.

We formulate an approximation to the Laplace-Beltrami operator on the sur-

face Γh as follows. If Fh ∈ L2(Γh), with
∫
Γh

Fh = 0, is a suitable approximation of
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f , then the finite element solution uh : Γh → R solves

uh ∈ Vh(Γh) :

∫

Γh

∇Γh
uh · ∇Γh

ϕh =

∫

Γh

Fhϕh ∀ ϕh ∈ Vh(Γh). (3.1.5)

This yields a symmetric positive definite (SPD) linear system which can be solved

by standard linear solvers such as the (preconditioned) conjugate gradient (CG).

3.1.3 Main Result and Outline

The main purpose of this chapter is to present an AFEM for (3.1.2) for para-

metric surfaces, thereby extending the idea developed in chapter 2 for graphs. We

now briefly state our main result and provide an outline for the chapter.

Let (Vk(Γk), Tk(Γk))
∞
k=1 be a sequence created via adaptive loops of the form

SOLVE → ESTIMATE → MARK → REFINE (3.1.6)

as described below. For convenience, if T ∈ Tk(Γk), we denote its corresponding

elements T̂ ⊂ Ω and T̃ ⊂ Γ as follows:

T̂ := {x̂ ∈ Ω | Fk(x̂) ∈ T} , T̃ :=
{
x̃ ∈ Γ | x̃ = X ◦ F−1

k (x), x ∈ T
}

, (3.1.7)

where F−1
k : Γk → Ω is the inverse map of Fk. To argue about the approximation

of Γ by Γk in W 1
∞ for parametric surfaces, we introduce the geometric oscillation

λk := maxT∈Tk(Γk) λk(T ) where

λk(T ) := ‖∇x̂X −∇x̂Fk‖L∞(T̂ ) . (3.1.8)

We next introduce the geometric error ζk := (
∑

T∈Tk(Γk) ζ2
k(T ))1/2 where

ζk(T ) := λk(T ) ‖∇Γuk‖L2(T̃ ) ; (3.1.9)
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the presence of the second factor is interesting and shows the interaction between

the PDE and the surface. We note that, in contrast with λk, the accumulation in

ζk is in `2(Tk(Γk)). In defining the energy error

ek := ‖∇Γ(u− uk)‖L2(Γ) , (3.1.10)

and geometric error (3.1.9) we have decided to measure it on Γ and so use ∇Γ; in

doing this, we are implicitly employing the lift; for v : Γk → R, its lifts ṽ : Γ → R

and v̂ : Ω → R are defined via

ṽ(X ◦ F−1
k (x)) = v(x) = v̂(F−1

k (x)) ∀ x ∈ Γk. (3.1.11)

Note that (3.1.11) is just the extension of (3.1.1) from Γ0 to any Γk; P0 = X ◦F−1
0 .

We finally let the data oscillation be osck := (
∑

T∈Tk(Γk) osck(T )2)1/2 where

osc2
k(T ) = h2

T

∥∥Fk − F k

∥∥2

L2(T )
, (3.1.12)

where F k is the L2-projection of Fk onto Pn−1(T ). We are now ready to state the

main result of this chapter, the convergence of the adaptive loop (3.1.6).

In sections 3.3 and 3.4 we design an AFEM with the following contraction property.

Let (Γ0, T0) be an arbitrary initial surface-triangulation pair of Γ for which there is a

continuous piecewise differentiable bijection P0 : Γ0 → Γ, as explained in subsection

3.1.1. Then there exist an integer k0 > 0 and constants γg, γo > 0, and ξ < 1, solely

depending on (Γ0, T0), shape regularity and the user’s parameters of AFEM, such

that for any k ≥ k0 AFEM satisfies

Ek+1 ≤ ξ Ek, (3.1.13)
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where E2
k := e2

k + γgζ
2
k + γoosc2

k represents the combined error incurred by AFEM,

namely the energy and geometric errors, ek, ζk, as well as information missing in

the averaging process osck.

The existence of k0 is related to sufficient resolution of Γ by Γk, a condition which

is attained by AFEM automatically but not imposed directly on the initial pair

(Γ0, T0). More precisely, what is needed is that λk be below a threshold dictated by

the regularity of Γ.

The chapter is organized as follows. The start in §3.2 with a review of differ-

ential geometry on parametric surfaces. We explain why the geometric oscillation

defined in (3.1.8) is different from that for graphs; see chapter 2, [12]. We discuss

the procedure ESTIMATE in §3.3 and the procedures SOLVE, MARK and REFINE

in §3.4. We also prove the contraction property, and so convergence in §3.4. We

conclude in §3.5 with several numerical experiments on surfaces with or without

boundaries that shed light on the theory and document the performance of AFEM.

To simplify the notation, we use the following abbreviations. We write a . b

to denote a ≤ Cb for some constant C. We use Vh and Th in stead of Vh(Γh) and

Th(Γh), respectively. Finally, we denote by v the two lifts ṽ or v̂ of v : Γk → R.

3.2 Basic Differential Geometry

Let T ∈ Tk, we define the corresponding regions T̃ ⊂ Γ and T̂ ⊂ Ω by

T̃ :=
{X ◦ F−1

k (x) | x ∈ T
}

and T̂ :=
{F−1

k (x) | x ∈ T
}

. (3.2.1)

94



This implies that T = Fk(T̂ ) is a linear interpolation of T̃ = X (T̂ ), i.e., Fk|T̂ is the

linear map approximating X over T̂ . We thus have an estimate for any 1 ≤ i ≤ d−1,

‖Xi −Fk,i‖L∞(T̂ ) ≤ max
x,y∈T̂

|Xi(x)−Xi(y)| . (3.2.2)

For example, if X is a smooth parametrization, say a C1,α(T̂ ), then

max
x,y∈T̂

|Xi(x)−Xi(y)| . hT̂
α,

where hT̂ is the diameter of T̂ . This implies that the difference of X and Fk in W 1
∞

is bounded depending on the smoothness of the surface.

To compare surface integrals, we identify the elements of surface area Q(x̂)

and Qk(x̂) according to the maps X and Fk, respectively; for example, if d = 3 and

(u, v) are coordinates for Ω, we use

Q := |Xu(x̂)×Xv| and Qk := |Fk,u(x̂)×Fk,v| . (3.2.3)

Another way to define them is by using the determinant of the first fundamental

forms of the maps as will be described later. By changing of surface integrals and

according to the lift (3.1.11),

∫

T

v =

∫

T̂

vQk and

∫

T̃

v =

∫

T̂

vQ.

Therefore, we obtain that

∫

T

v =

∫

T̃

v
Qk

Q
. (3.2.4)

To get a connection between∇Ω and∇Γ, we let a matrix G := [X1, . . . ,Xd−1] ∈

Rd×d−1, where Xi ∈ Rd, a column vector, is the derivative of X with respect to the
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ith coordinate of Ω; hence, Xi’s are tangent vectors to Γ. Therefore, the chain rule

yields the relation

∂x̂i
v = ∂x̂i

v(X (x̂)) = ∇vXi = ∇ΓvXi for 1 ≤ i ≤ d− 1,

since νXi = 0. Therefore,

∇Ωv(x̂) = ∇Γv(x̃)G(x̂). (3.2.5)

Similar result also holds for Γk by replacing X by Fk, that is

∇Ωv(x̂) = ∇Γk
v(x)Gk(x̂).

To get the reverse relation, we let a matrix G̃ ∈ Rd×d be an extension of G by

adding the normal ν the the last column, namely

G̃ :=
[
G, νT

]
=

[X1, ...,Xd−1, ν
T
]
.

Since we assume that X is a regular parametrization, tangent vectors X1, . . . ,Xd−1

are linearly independent; hence, G̃ is invertible. If D̃ = G̃−1, then we can write

∇Γv = ∇ΓvG̃D̃ = [∇Ωv, 0] D̃ = ∇Ωv D, (3.2.6)

where D ∈ Rd−1×d is the restriction of D̃ by cutting off the last row. Similarly, by

replacing Xi by Fk,i and ν by νk, the normal to Γk, and employing Dk instead of D,

we also have

∇Γk
v = ∇Ωv Dk. (3.2.7)

Hence, we have relations

∇Γv = ∇Γk
v GkD and ∇Γk

v = ∇Γv GDk.
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By interchange of surface integrals, we have

〈∇Γk
v,∇Γk

w〉Γk
=

〈
∇Γv(GDkD

T
k GT )

Qk

Q
,∇Γw

〉

Γ

(3.2.8)

where 〈a, b〉Γ :=
∫

Γ
abT and 〈a, b〉Γk

:=
∫
Γk

abT for row vectors a, b ∈ Rd.

Lemma 3.2.1. Let G and D defined as above. Then we have

GDDTGT = Id×d − ν ⊗ ν. (3.2.9)

Proof: Since we know from the extension that

Id×d = G̃−1G̃ =




D

ν




[
G νT

]
=




DG DνT

νG ν · ν


 ,

and

Id×d = G̃G̃−1 =

[
G νT

]



D

ν


 = GD + ν ⊗ ν.

Therefore, DG = Id−1×d−1 and GD = Id×d − ν ⊗ ν. Hence, GD is symmetric and

we have

GDDTGT = GDGD = GD = Id×d − ν ⊗ ν.

Since X is a regular parametrization of Γ, the first fundamental form reads

g =
(
gij

)
1≤i,j≤d−1

:=
(
X T

i Xj

)
1≤i,j≤d−1

= GTG;

this is a symmetric and positive definite matrix. Moreover, since GD is symmetric

and DG = I, we have

DDTGTG = DGDG = I.
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Therefore, DDT = g−1 which is also symmetric and positive definite.

The results above hold also for the map Fk : Ω → Γk when computation is

restricted to a single element. Namely, we have for x̂ ∈ T̂ ,

gk(x̂) =
(
gk,ij

)
1≤i,j≤d−1

:=
(
FT

k,iFk,j

)
1≤i,j≤d−1

= GT
k (x̂)Gk(x̂),

which is constant on T̂ . We now define the elementary surface area Q =
√

detg,

and Qk =
√

detgk where detg stands for the determinant of the matrix g.

With these relations at hand, we can now transform integrals from Γ to Ω and

back to Γk,

∫

T̃

∇Γv · ∇Γw =

∫

T̂

Q∇ΩvDDT · ∇Ωw =

∫

T

Q

Qk

∇Γk
v(GkDDTGT

k ) · ∇Γk
w. (3.2.10)

Conversely,

∫

T

∇Γk
v · ∇Γk

w =

∫

T̂

Qk∇ΩvDkD
T
k · ∇Ωw =

∫

T̃

Qk

Q
∇Γv(GDkD

T
k GT ) · ∇Γw.

(3.2.11)

This allow us to compare integrals over Γ and Γk, namely

∫

Γk

∇Γk
v · ∇Γk

w −
∫

Γ

∇Γv · ∇Γw =

∫

Γ

∇Γv

(
1

Q
G(QkDkD

T
k −QDDT )GT

)

︸ ︷︷ ︸
=: Ak

·∇Γw.

(3.2.12)

This is a consequence of (3.2.11) and Lemma 3.2.1, because ∇Γv ·ν = 0. To estimate

the difference we thus have to bound Ak.

Lemma 3.2.2. For T̂ ∈ Tk(Ω), the following estimates are valid.

‖Q−Qk‖L∞(T̂ ) . ‖∇ΩX −∇ΩFk‖L∞(T̂ ) , ‖g − gk‖L∞(t̂) . ‖∇ΩX −∇ΩFk‖L∞(T̂ ) .
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Proof: Since Fk|T̂ is the linear interpolation of a regular parametrization X , we

realize that Q and Qk are bounded and so is

Q−Qk =
detg − detgk

Q + Qk

.

Invoking the definitions of g and gk, we can bound

|detg − detgk| . ‖∇ΩX −∇ΩFk‖ ,

where ‖·‖ is a matrix norm and the constant depends only on the dimension d and

smoothness of X . Since Qk and gk are well defined for all interior points of T̂ , the

first estimate thus follows.

Likewise, by definitions of g and gk, we obtain

|g − gk| . ‖∇ΩX −∇ΩFk‖ ,

and thus the second estimate follows.

Lemma 3.2.3 (Estimate of Ak). According to above definition of Ak, we have

‖Ak‖L∞(T̂ ) . ‖∇ΩX −∇ΩFk‖L∞(T̂ ) ∀ T̂ ∈ Tk(Ω).

Proof: By definition of Ak given in (3.2.12), and DDT = g−1, we have

‖Ak‖L∞(T̂ ) .
∥∥Qkg

−1
k −Qg−1

∥∥
L∞(T̂ )

.

We note that Gk, being an approximation of G, can be bounded by a constant

depending only on the regularity of X . The assertion follows from Lemma 3.2.2 and

the fact that

Qkg
−1
k −Qg−1 = (Qk −Q)g−1

k + Qg−1
k (g − gk)g

−1,

and g−1 can be bounded by a constant depending only on X .
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Lemma 3.2.4 (Equivalence of norms). According to above definitions, we have

equivalence of norms for functions defined on the surfaces Γ and Γk, namely

‖v‖L2(Γ) ∼ ‖v‖L2(Γk) , (3.2.13)

‖v‖H1
0 (Γ) ∼ ‖v‖H1(Γk) . (3.2.14)

Proof: We prove the above assertions on a single element T ∈ Tk which then implies

the result after summing over all the elements.

The first assertion (3.2.13) follows directly from (3.2.4) since
∥∥∥ Q

Qk

∥∥∥
L∞(T̂ )

is

bounded away from 0 for all T̂ ∈ Tk(Ω).

To prove (3.2.14) we use the fact that

‖v‖2
H1(T̃ ) =

∫

T̃

∇Γv · ∇Γv =

∫

T

Q

Qk

∇Γk
vGkDDTGT

k · ∇Γk
v.

Since DDT is positive definite and (∇Γk
v)Gk is non zero unless ∇Γk

v = 0, we thus

have

c ‖v‖H1(T ) ≤ ‖v‖H1(T̃ ) ≤ C ‖v‖H1(T ) ,

where c, and C depend on ‖Gk‖. Since we can view Gk as an approximation of

G, the second assertion follows by choosing these constants depending only on the

surface.

Remark 3.2.1. It follows from Lemma 3.2.4 above that if v ∈ H1(Γ), then its lift

v : Γk → R is in H1(Γk), and vice versa.
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3.3 A Posteriori Error Analysis: Procedure ESTIMATE

3.3.1 Error Representation

For convenience in writing, we define bilinear forms as follows

BΓ(v, w) :=

∫

Γ

∇Γv · ∇Γw and BΓk
(v, w) :=

∫

Γk

∇Γk
v · ∇Γk

w.

According to the weak forms (3.1.4), (3.1.5), the Remark 3.2.1, and integration by

parts on each element T ∈ Tk, we obtain the error representation

BΓ(u− uk, ϕ) = I1 + I2 + I3 ∀ ϕ ∈ H1(Γ), ∀ ϕk ∈ Vk,

where

I1 :=
∑
T∈Tk

∫

T

RT (uk)(ϕ− ϕk)−
∑
S∈So

k

∫

S

JS(uk)(ϕ− ϕk),

I2 := BΓk
(uk, ϕ)− BΓ(uk, ϕ),

I3 :=

∫

Γ

fϕ−
∫

Γk

Fkϕ.

Note that

• I1 is a standard residual term obtained by integrating by parts on each

T ∈ Tk where element residual RT and jump residual JS are defined by

RT (uk) := (∆Γk
uk + Fk)|T , (3.3.1)

JS(uk) := (∇Γk
uk)

+
S · n+

S + (∇Γk
uk)

−
S · n−S , (3.3.2)

where n+
S and n−S are outward unit normals to S with respect to T+ and T−, on the

supporting planes containing T+ and T− respectively; T+ and T− are elements in
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T+

T-

S

n+
n-

Figure 3.3.1: S is the common side shared by the elements T+ and T−, and n+ and
n− are the normals to the side S on the supporting planes containing T+ and T−,
respectively.

Tk that share the side S ∈ So
k where So

k denotes the set of interior faces of T ∈ Tk,

see Figure 3.3.1. Similarly, (∇Γk
uk)

+
S and (∇Γk

uk)
−
S are tangential gradients of uk

considered on T+ and T− restricted to S, respectively. If Vk is a space of piecewise

linear functions, then RT = Fk|T and JS is constant on S, since ∇Γk
uk is constant

on T .

• I2 is a geometry consistency term that accounts for the different between Γ

and Γk. According to (3.2.12), I2 =
∫
Γ
∇ΓukAk · ∇Γϕ.

• I3 is a forcing consistency term that accounts for the difference of forcing

functions f and Fk of the PDE on surfaces Γ and Γk, respectively. We choose

Fk ∈ L2(Γk) so that
∫

Γk
Fk = 0, thereby making I3 = 0, upon defining

Fk(x) :=
Q(x̂)

Qk(x̂)
f(x̃) ∀ x̂ ∈ Ω, x = Fk(x̂), x̃ = X (x̂). (3.3.3)
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Hence, we arrive at

∫

Γ

∇Γ(u− uk) · ∇Γϕ =
∑
T∈Tk

∫

T

RT (uk)(ϕ− ϕk)−
∑
S∈So

k

∫

S

JS(uk)(ϕ− ϕk)

+

∫

Γ

∇ΓukAk · ∇Γϕ ∀ ϕ ∈ H1(Γ), ∀ ϕk ∈ Vk. (3.3.4)

3.3.2 Upper Bound

The upper bound for the energy error ek := ‖∇Γ(u− uk)‖L2(Γ) is obtained from

(3.3.4) and Clement’s interpolation of functions defined on a polyhedral surface.

Lemma 3.3.1 (Clemént Interpolation). There exists a linear interpolation op-

erator

Ik : H1(Γk) → Vk such that for T ∈ Tk and S ∈ So
k we have

‖v − Ikv‖L2(T ) ≤ ChT ‖∇Γk
v‖L2(ω̄k(T )) ∀v ∈ H1(Γk), (3.3.5)

‖v − Ikv‖L2(S) ≤ Ch
1/2
S ‖∇Γk

v‖L2(ω̄k(T )) ∀v ∈ H1(Γk), (3.3.6)

where C depends only on shape regularity constant, hT and hS are diameters of T

and S respectively, and ω̄k(T ) :=
⋃ {T ′ ∈ Tk | T ′ ∩ T 6= ∅}.

Note that the mesh Tk of polyhedral surface Γk is conforming and shape regular

according to our construction in §3.1.2. Thus, the proof of this Lemma can be found

in [5, 6].

On taking ϕ = u − uk ∈ H1(Γ) ∼ H1(Γk), ϕk = Ikϕ ∈ Vk and plugging into

(3.3.4), Lemmas 3.2.4 and 3.3.1 yield

‖∇Γ(u− uk)‖2
L2(Γ) ≤ C1

∑
T∈Tk

η2
k(T ) + C2

∑
T∈Tk

‖∇ΓukAk‖2
L2(T̃ ) , (3.3.7)
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where constants C1 and C2 depend only on shape regularity constant and Γ. Here

we define the energy error indicator ηk(T ) by

η2
k(T ) := h2

T ‖RT (uk)‖2
L2(T ) +

∑
S∈So

h
S⊂∂T

hS ‖JS(uk)‖2
L2(S) ,

and the energy error estimator ηk := (
∑

T∈Tk
η2

k(T ))1/2. As a result of Lemma 3.2.3

and the definition of geometric error (3.1.9), we arrive at the upper bound for the

energy error.

Lemma 3.3.2 (Upper Bound). There exist constants C1 and C2 depending only

on shape regularity constant and the surface Γ such that

‖∇Γ(u− uk)‖2
L2(Γ) ≤ C1η

2
k + C2ζ

2
k . (3.3.8)

3.3.3 Lower Bound

We obtain a local lower bound for the energy error by following the idea of

bubble functions introduced by Verfürth [23]. By proceeding as in [1, 7, 23] for

estimating the local lower bound, we obtain the following result.

Lemma 3.3.3 (Local Lower Bound). There exist constants C3, C4, and C5, de-

pending on the shape regularity constant and on Γ, such that for T ∈ Tk

η2
k(T ) ≤ C3 ‖∇Γ(u− uk)‖2

L2(ω̃k(T ))
+ C4osc2

k(ωk(T )) + C5ζ
2
k(ωk(T )), (3.3.9)

where ωk(T ) :=
⋃ {T ′ ∈ Tk | T ′ shares a common side with T} and ω̃k(T ) ⊂ Γ is a

projection of ωk(T ) to Γ via the map X ◦ F−1
k .

104



For T ∈ Tk, let So
k(T ) := {S ∈ So

k | S ⊂ ∂T}, the oscillation is defined by

osc2
k(T ) := h2

T

∥∥RT (uk)−RT

∥∥2

L2(T )
+ hT

∑

S∈So
k(T )

∥∥JS(uk)− J S

∥∥2

L2(S)
,

where RT and J S are L2-projections of RT (uk) and JS(uk) onto Pm(T ) and Pm(S),

respectively, m is a fixed integer; Pm(T ) and Pm(S) denote spaces of polynomial

functions of degree ≤ m on T and on S, respectively. For ωk(T ) ⊂ Γk, we define

osc2
k(ωk(T )) :=

∑
T ′⊂ωk(T ) osc2

k(
′T ), and denote osck := osck(Γk); the same definition

also applies to ζ2
k(ωk(T )).

Remark 3.3.1. If we take m = n − 1 where n is the degree of Vk, then by (3.3.1)

and (3.3.2), JS(uk) ∈ Pn−1(S), and (∆Γk
uk)|T ∈ Pn−2(T ), which imply that

osc2
k(T ) = h2

T

∥∥Fk − F k

∥∥2

L2(T )
, (3.3.10)

where F k is L2-projection of Fk onto Pn−1(T ).

According to upper and lower bounds estimates (3.3.8) and (3.3.9), our adap-

tive algorithm will rely on four local errors indicators ηk(T ), ζk(T ), λk(T ) and osck(T ).

These indicators are important for designing a converging AFEM algorithm; for ex-

ample, see [7, 13, 15, 16]. We compute these values for all T ∈ Tk and we call this

procedure ESTIMATE, namely

{ηk(T ), ζk(T ), λk(T ), osck(T )}T∈Tk
:= ESTIMATE(Γ, Γk, Tk, Fk, uk).

3.4 AFEM

As introduced earlier in the introduction, AFEM consists of loops of procedures

SOLVE, ESTIMATE, MARK, and REFINE, consecutively. The procedure ESTIMATE
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is described in detail in the previous section 3.3, we now describe in detail the other

procedures. The discussion on these procedures are similar to those for the case of

graphs; see chapter 2, [12].

3.4.1 Procedure SOLVE

This procedure computes approximate solution of a SPD linear system as de-

scribed in section 3.1.2. This is achieved by employing any standard linear solver

such as CG, preconditioned CGs by diagonal, hierarchical basis, or BPX precondi-

tioning. In other words, given a pair of approximate surface-mesh (Γk, Tk) and an

initial guess for the solution uk−1, SOLVE computes the discrete solution

uk := SOLVE(Γk, Tk, uk−1).

3.4.2 Procedure MARK

Following the idea discussed for the graphs discussed in chapter 2, the proce-

dure MARK is designed to choose a subset T̂k ⊂ Tk of marked elements according

to the relative size of their indicators found by procedure ESTIMATE. Upon setting

refining all elements in T̂k, we hope to reduce errors and oscillations, and thereby

obtain a convergence adaptive algorithm. We describe the marking strategy as

follows.

106



Marking Strategy: Given parameters 0 < θe, θg, θo < 1, construct a subset

T̂k of Tk such that the followings hold:

(M1) :
∑

T∈T̂k

η2
k(T ) ≥ θ2

eη
2
k, (3.4.1)

(M2) :
∑

T∈T̂k

ζ2
k(T ) ≥ θ2

gζ
2
k , (3.4.2)

(M3) :
∑

T∈T̂k

osc2
k(T ) ≥ θ2

oosc2
k. (3.4.3)

We will refer to this procedure as

T̂k := MARK({ηk(T ), ζk(T ), osck(T )}T∈Tk
).

The strategy (M1) is for the energy error reduction, (M2) is for geometric error

reduction, and (M3) is for oscillation reduction.

3.4.3 Procedure REFINE

This procedure refines all elements in the marked set T̂k of Tk to obtain a new

(finer) pair of approximate surface-mesh (Γk, Tk). The refinement step is performed

according to two criteria. The first one was introduced by Morin et al [15, 16] to

guaranteed energy error reduction.

Interior Node Property: Refine each marked element T ∈ T̂k to obtain a new

mesh Tk+1 compatible with Tk such that

T and the adjacent elements T ′ ∈ Tk of T , as well as their common

sides, contain a node of the finer mesh Tk+1 in their interior.
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The second criterium was introduced in chapter 2 for graphs to guarantee the re-

duction of geometric error.

Geometric Oscillation Property: Given a reduction factor θλ < 1, refine all

T ∈ T̂k such that for all T ′ ∈ Tk+1(T ) we have

λk+1(T
′) ≤ θλλk(T ),

where Tk+1(T ) := {T ′ ∈ Tk+1 | T ′ is obtained by refining T}.

The procedure REFINE may also require additional steps to control the oscillations.

We describe the Refining Strategy in several steps as follows.

Refining Strategy: Given a sequence {ak} ↘ 0, a marked set T̂k, geometric oscil-

lations {λk(T )}T∈Tk
, and a fixed reduction rate of element size 0 < γr < 1;

1. Refine all T ∈ T̂k according to Interior Node Property;

2. Refine more if needed for Geometric Oscillation Property;

3. Refine more if needed so that for any T ∈ Tk

all T ′ ∈ Tk+1(T ) : λk+1(T
′) ≤ min {ak, λk(T )} ;

4. Refine more if needed so that for any T ′ ∈ Tk+1(T ), T ∈ Tk,

|T ′
k|

|T ′| ≤ γT

( |T |
|T ′|

) 2
d−1

where γT :=





γr if T ∈ T̂k

1 if T /∈ T̂k

, (3.4.4)

and T ′
k ⊂ T is the projection of T ′ back to T .
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Remark 3.4.1. Since for T ∈ Tk is a linear interpolation of T̃ , the estimate (3.2.2)

implies that Steps 2 and 3 of Refining Strategy can be achieved in finite number

of steps if T̃ is C1,α surface, 0 < α ≤ 1.

Remark 3.4.2. In Step 3 of Refining Strategy, the sequence ak ↘ 0 is needed

to guarantee that λk ↘ 0, i.e., Γk gets closer and closer to Γ. However, in our

results below, Lemma 3.4.3 and Theorem 3.1, we require only that λk decreases

monotonically and is smaller than some unknown positive threshold. The condition

ak ↘ 0 might be stronger than needed. In fact, if Γ is sufficiently smooth, say C1,α,

then λk will reduce monotonically by itself according to (3.2.2), and this refinement

step is not required.

Remark 3.4.3. Step 4 of Refining Strategy is needed in order to have a reduction

of oscillation, see Lemma 3.4.6, especially when we deal with general dimension

d 6= 3. For d = 3, this step is trivial since T ′
k ⊂ T , and if T ∈ T̂k then |T ′

k| ≤ γT |T |

where γT < 1 depending only on the refinement techniques.

Remark 3.4.4. For the case d 6= 3, Step 4 of Refining Strategy can be achieved

by refining the element T ∈ Tk a finite number of times. This is the case because

|T ′k|
|T ′| is bounded by a constant depending only on Qk

Q
. However, |T |

|T ′| will increase if

we refine more, i.e. when |T ′| gets smaller.

Based on ideas developed by Dörfler [7], and Morin, Nochetto, and Siebert

[15, 16], the construction of continuous piecewise linear bubble functions used for

obtaining modified local lower bound is a crucial ingredient for proving convergence

of AFEM. To apply the same idea we require that the lift of a continuous piece-
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wise polynomial function of degree m defined on Γk is also a continuous piecewise

polynomial function of degree m on Γk+1.

The design of refinement technique used here is different from the one given

for graphs because the projection P0 : Γ0 → Γ can be chosen arbitrarily and might

not be linear. We design the refinement in such a way that the lift of functions

satisfy the condition above. This can be achieved by refining Γk to get Γk+1 based

on macro element/reference element strategy described as follows.

Let T ∈ Tk be an element on Γk. To refine T , we first pull back to an element

T0 ∈ Tk(Γ0) that corresponds to T , i.e., T = Fk(F−1
0 (T0)). We next refine T0

according to the refinement procedure described above to yield a conforming shape-

regular mesh on Γ0. Note that this step may involve more than one macro-element

on Γ0 because the Interior Node Property and completion to conformity require

additional refinements on the neighborhood of T0. We next project all new nodes

on Γ0 to Γ by first mapping nodes to the master element Ω and then mapping to Γ

via X . We finally form new elements in Tk+1 by enforcing the same connectivity as

in Ω; see Figures 3.4.1- 3.4.3. The mesh Tk+1 is thus conforming and shape-regular

since X is regular. The new elements T ∈ Tk+1 also induce a new piecewise affine

map Fk+1 : Ω → Γk+1. We refer to this procedure as

(Tk+1, Γk+1,Fk+1) := REFINE(T̂k, ak, {λk(T )}T∈Tk
,Fk).

Remark 3.4.5. Let T ∈ Tk, denoted by Γk+1(T ) a region of Γk+1 consisting of all

elements in Tk+1 obtained by refining T . With the refinement technique described

above, if vk : Γk → R is a polynomial function of degree m on T , then its lift to
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T

T
^

Figure 3.4.1: The ele-
ment T ∈ Tk is corre-
sponding to a reference
element T̂ ⊂ Ω via T =
Fk(T̂ ). The surface Γ is
presented by dotted line.

T

T
^

x1 x2

X(x1)
X(x2)

Figure 3.4.2: Refine T̂ to
obtain new nodes, for ex-
ample, x1 and x2. The
new nodes are projected
to Γ via the map X .

X(x1)
X(x2)

T1

T2 T3

x1 x2T1
^

T2
^

T3
^

Figure 3.4.3: The new el-
ements T1, T2, and T3
are formed by connect-
ing the new nodes with
the old ones according to
new elements on Ω.

Γk+1 is a piecewise polynomial function of degree m on Γk+1(T ). This is the case

because lifting polynomial functions via affine maps preserves their degree.

3.4.4 Lemmas

For convenience we will use the following notation. For any ω ⊂ Γ,

ek(ω) := ‖∇Γ(u− uk)‖L2(ω) , εk+1(ω) := ‖∇Γ(uk+1 − uk)‖L2(ω) ,

and use ek, respectively εk+1 when ω = Γ. The following results are consequences

of procedures MARK and REFINE described above.

Geometric Error Reduction

As a direct outcome of the Refining Strategy Step 3, we have the reduction

of geometric error.

Lemma 3.4.1 (Geometric oscillation reduction). For a sequence {ak} converg-
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ing monotonically to 0 as k →∞ as used by procedure REFINE. Then we have

λk → 0 as k →∞ monotonically.

Employing Marking Strategy (M2), Refining Strategy, and Lemma 3.4.1

above, we obtain the geometric error reduction. The proof is the same as for graphs

and we omit here; see Chapter 2, [12].

Lemma 3.4.2 (Geometric error reduction). There exist constants 0 < ρ1 < 1

and ρ2 > 0 such that for any k ≥ 0

ζ2
k+1 ≤ ρ1ζ

2
k + ρ2λ

2
kε

2
k+1. (3.4.5)

Quasi-Orthogonality

The quasi-orthogonality replaces the usual orthogonality because the approx-

imating surfaces Γk and Γk+1 are different, whence the pairs of associated finite

element space-mesh (Vk, Tk) and (Vk+1, Tk+1) are no longer nested. We state here

the Lemma and stress that its proof is the same as for graphs; see Chapter 2.

Lemma 3.4.3 (Quasi-orthogonality). The exist constants C6, C7 > 0 and a num-

ber k∗ ≥ 0 such that Λ0 := (1
2
− ρ2C6λ

2
k∗) ∈ [1

4
, 1

2
), and for any k ≥ k∗

e2
k+1 ≤ e2

k − Λ0ε
2
k+1 + C7ζ

2
k . (3.4.6)

Remark 3.4.6 (Threshold for λk). For quasi-orthogonality to hold we require that

λk is sufficiently small (k is bigger than some k∗) or, equivalently, that Γk be suffi-

ciently closed to Γ. This is a natural a priori condition [9]. Since we do not have a
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procedure to quantify a posteriori when such a condition is achieved, let sequence

{ak}k take care of this matter: it guarantees the eventual validity of the threshold

for λk regardless of the resolution of the initial mesh-surface approximation.

Energy Error Reduction

It is well documented that the reduction of energy error relies on the upper

bound, modified local lower bound, Marking Strategy (M1), and Interior Node

Property, see [13, 15, 16]. We discuss here the modified local lower bound which is

conceptually similar to the case of graphs; see chapter 2, [12]. The main difference

is that for parametric surfaces lifting of functions from Γk to Γk+1 may not preserve

polynomial functions, which is trivially the case for graphs, unless we design the

refinement technique as describe in the previous section. The proof of the modified

local lower bound is thus the same as for graphs and we omit here; see chapter 2.

Lemma 3.4.4 (Modified Local lower bound). For any T ∈ T̂k, we have

η2
k(T ) ≤ C3ε

2
k+1(ω̃k(T̃ )) + C4ζ

2
k(ωk(T )) + C5osc2

k(ωk(T )). (3.4.7)

Applying the upper bound (3.3.8) and Marking Strategy (M1), we have

e2
k ≤ C1η

2
k + C2ζ

2
k ≤

C1

θ2
e

∑

T∈T̂h

η2
k(T ) + C2ζ

2
k .

Estimating η2
k(T ) using (3.4.7), we have a corollary.

Corollary 3.4.5. There are constants Λ1, Λ2, Λ3 > 0 depending on θe, C1, C2, C3, C4

and C5, such that

e2
k ≤ Λ1ε

2
k+1 + Λ2ζ

2
k + Λ3osc2

k. (3.4.8)

113



Oscillation Reduction

According to Remark 3.3.1, the oscillation have the form

osc2
k(T ) = h2

T

∥∥Fk − F k

∥∥2

L2(T )
,

where F k is the L2-projection of Fk on Pn−1(T ). Since it is convenient to work

with area (measure) of the element T when we have to deal with surfaces that are

different, we thus define the oscillation

osc2
k(T ) = |T | 2

d−1

∥∥Fk − F k

∥∥2

L2(T )
,

since h2
T ∼ |T | 2

d−1 , where d ≥ 2 denotes the dimension. With this definition and

following the Refining Strategy Step 4, we obtain the reduction of the oscillation.

We state here the Lemma but its proof is exactly the same as for graphs and we

omit it; see Chapter 2, [12].

Lemma 3.4.6 (Oscillation reduction). There exists a constant 0 < α̂ < 1 de-

pending on Γ and a parameter θo from Marking Strategy (M3) such that

osc2
k+1 ≤ α̂osc2

k. (3.4.9)

3.4.5 Algorithm and Convergence

Given parameters θe, θg, θo, θλ, γr, a sequence {ak}k, the adaptive algorithm

consists of consecutive loops of procedures SOLVE, ESTIMATE, MARK, and REFINE:
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AFEM

Choose parameters 0 < θe, θg, θo, θλ < 1, a sequence {ak} ↘ 0, and let u−1 = 0.

1. Pick a suitable initial linear interpolation Γ0 and a suitable projection P0 to

describe Γ. Let T0 be a mesh for Γ0, pick a macro reference element Ω for

each element in T0, and obtain parametrizations X and F0 for Γ and Γ0.

Set k = 0.

2. uk = SOLVE(Γk, Tk, uk−1);

3. {ηk(T ), ζk(T ), λk(T ), osck(T )}T∈Tk
= ESTIMATE(Γ, Γk, Tk, Fk, uk);

4. T̂k = MARK({ηk(T ), ζk(T ), osck(T )}T∈Tk
);

5. (Tk+1, Γk+1,Fk+1) = REFINE(T̂k, ak, {λk(T )}T∈Tk
,Fk);

6. Set k = k + 1 and go to Step 2.

Theorem 3.1 (Convergence of AFEM). Let (Γ0, T0) be an initial approximating

surface-mesh pair of Γ. There exist a number k0 ≥ 0, and positive constants γg, γo,

and ξ < 1, such that for any k ≥ k0, AFEM satisfies

Ek+1 ≤ ξ Ek, (3.4.10)

where E2
k := e2

k + γgζ
2
k + γoosc2

k.

Proof: According to Lemma 3.4.3, there is k∗ such that (3.4.6) holds, namely

e2
k+1 ≤ e2

k − Λ0ε
2
k+1 + C7ζ

2
k ∀k ≥ k∗, (3.4.11)
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where 1
4
≤ Λ0 < 1

2
. Since εk+1 and ζk are coupled according to Lemma 3.4.2 and

(3.4.8), we split the term Λ0ε
2
k+1 into two parts

Λ0ε
2
k+1 = βΛ0ε

2
k+1 + (1− β)Λ0ε

2
k+1,

where the constant β ∈ (0, 1) will be chosen later.

Step 1. Using (3.4.8), we can eliminate βΛ0ε
2
k+1 by the estimate

βΛ0

Λ1

e2
k ≤ βΛ0ε

2
k+1 +

Λ0Λ2

Λ1

βζ2
k +

Λ0Λ3

Λ1

βosc2
k,

and (3.4.11) becomes

e2
k+1 ≤ αe2

k − (1− β)Λ0ε
2
k+1 + (C7 + Λ4β)ζ2

k + Λ5βosc2
k, (3.4.12)

where α := 1− βΛ0

Λ1
< 1, Λ4 := Λ0Λ2

Λ1
> 0, and Λ5 := Λ0Λ3

Λ1
> 0.

Step 2. To get rid of (1− β)Λ0ε
2
k+1, we use (3.4.5) in Lemma 3.4.2, namely

(1− β)Λ0

ρ2λ2
k0

ζ2
k+1 ≤

ρ1(1− β)Λ0

ρ2λ2
k0

ζ2
k + (1− β)Λ0ε

2
k+1 ∀k ≥ k0,

where k0 ≥ k∗ will be chosen later. Therefore, (3.4.12) becomes

e2
k+1 + γgζ

2
k+1 ≤ αe2

k + µ0γgζ
2
k + Λ5βosc2

k, (3.4.13)

where γg := (1−β)Λ0

ρ2λ2
k0

and µ0 satisfies

µ0γg = C7 + Λ4β + ρ1γg. (3.4.14)

Step 3. From (3.4.14), writing γg in terms of β and solving for β, we have

β =
β0 − C7

β0 + Λ4

where β0 :=
Λ0(µ0 − ρ1)

ρ2λ2
k0

.
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Since ρ1 < 1, we first choose ρ1 < µ0 < 1 which gives β0 > 0. Since λk ↘ 0, we can

then choose k0 ≥ k∗ so that β0 > C7, which implies that 0 < β < 1. Therefore, γg

defined in (3.4.13) is a positive constant.

Step 4. Using (3.4.9) of Lemma 3.4.6, we can write (3.4.13) as

e2
k+1 + γgζ

2
k+1 + γoosc2

k+1 ≤ αe2
k + µ0γgζ

2
k + µ1γoosc2

k,

where γo is a constant to be determined and µ1 satisfies

µ1γo = γoα̂ + Λ5β.

Since α̂ < 1, we can choose α̂ < µ1 < 1, which implies that γo = Λ5β
µ1−α̂

> 0. The

assertion follows by setting ξ =
√

max {α, µ0, µ1} < 1.

3.5 Numerical Experiments

We now illustrate our theory developed in this chapter by showing some nu-

merical experiments. These experiments are implemented based on the AFEM de-

scribed above. The implementation is performed within the FEM toolbox ALBERT

developed by Schmidt and Siebert [20, 21].

For convenience of presentation, we use the following notation:

• ek and ζk denote the energy and geometric errors, respectively, after k iterations.

• |Tk| denotes the number of elements in triangulation Tk.

• EOCe(k) and EOCg(k) denote the experimental orders of convergence after k iter-

ations, namely

EOCe(k) :=
log(ek−1/ek)

log(|Tk| / |Tk−1|) and EOCg(k) :=
log(ζk−1/ζk)

log(|Tk| / |Tk−1|) .
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3.5.1 Experiment 1: Smooth Closed Surface

In this experiment we test our algorithm by considering a smooth surface Γ

as a zero level set of a smooth function:

Γ :=
{
(x, y, z) ∈ R3 | (x− z2)2 + y2 + z2 − 1 = 0

}

as proposed in [9]. We solve the Laplace-Beltrami operator on Γ using our AFEM

assuming the exact solution is known;

u(x, y, z) = xy ∀ (x, y, z) ∈ Γ.

We then prescribe the forcing term to satisfy f = −∆Γu and
∫

Γ
f = 0, where ∆Γu

is computed according to (3.1.3).

The AFEM starts by first choosing a suitable pair of (Γ0,P0) as described in

section 3.1.1. Here, the projection P0 lifts a point (x, y, z) ∈ Γ0 to Γ along the

normal of the function

φ(x, y, z) := (x− z2)2 + y2 + z2 − 1

at (x, y, z); the projection P0 is thus not orthogonal to Γ We implement AFEM

with parameters θe = 0.6, θg = θo = 0.5, and θλ = 0.8. We present our results

as follows. Table 3.5.1 shows the reduction of the energy error and the rate of

convergence. Figure 3.5.2 presents the meshes and their refinements. We now

describe and comment the results in detail.

• Table 3.5.1 shows that our AFEM performs as expected for smooth surfaces,

AFEM gives the decay of the energy error at the optimal rate of about 0.5 as one
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k |Tk| ek EOCe(k)
0 320 7.03e-01 —
1 584 5.42e-01 0.431
2 1124 4.00e-01 0.466
3 2080 3.07e-01 0.431
4 3776 2.50e-01 0.341
5 7016 1.77e-01 0.555
6 11096 1.28e-01 0.717
7 21664 1.00e-01 0.365
8 38632 7.62e-02 0.472

Table 3.5.1: Experiment 1: The decay of the energy error. AFEM gives the decay
for the energy error at the optimal rate of about 0.5.
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Figure 3.5.1: Experiment 1: Log-log plot of errors Vs. number of elements. The
energy error and the sum of geometric and energy errors decay nearly optimal at
the rate about 0.5.

would expect by uniform refinement FEM. Moreover, Figure 3.5.1 shows that the

sum of geometric and energy errors also decays nearly optimal at the rate about 0.5.

• Figure 3.5.2 displays several meshes which are more refined on region of rapid

variation but are quasi-uniform. This is the correct refinement for a smooth problem.

See the next Experiment when a singularity is considered.
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Figure 3.5.2: Experiment 1: A sequence of triangulations-surfaces produced by
AFEM. Starting from left to right and top to bottom, Γ0 (the initial surface), Γ2,
Γ4, Γ5, Γ6, and Γ7, respectively. Despite the face that the surface is smooth, the
refinement seems to be denser where the surface has larger curvature. However, the
refinement seems to be quasi-uniform overall.

3.5.2 Experiment 2: Corner Singularity

In this experiment we consider a surface with boundary to illustrate that our

AFEM is still valid in this case. In fact our theory developed above can be extended
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to any parametric surface with smooth boundary and Dirichlet boundary condition.

We consider the surface as part of a unit sphere described by

Γ :=
{
(x, y, z) ∈ R3 | x2 + y2 + z2 = 1; (x, y) ∈ [−1, 1]2 \ (0, 1)× (−1, 0)

}
;

it is obtained by cutting off the parts on the unit sphere in the octans 4 and 8. We

assume that the exact solution is known and given by

u(x, y, z) = u(r, φ) = r2/3 sin(2φ/3),

where r :=
√

x2 + y2 and φ = tan−1(y/x), and (x, y, z) ∈ Γ. We prescribed the

boundary condition g = u and the forcing term f = −∆Γu according to (3.1.3).

We first start by choosing a suitable pair of (Γ0,P0), an initial piecewise linear

interpolant of Γ and a projection. We take the projection P0 that lifts a point from

Γ0 to Γ along the normal

ν(x, y, z) :=
1√

x2 + y2 + z2
(x, y, z).

We implemented AFEM with parameters θe = θg = 0.5, θo = 0.4, and θλ = 0.8.

The results are presented in Table 3.5.2 for the decay of the errors vs. the number

of elements, and in Figure 3.5.3 for the sequence of meshes obtained from AFEM.

The results of the same experiment performed by standard FEM also given in Table

3.5.3. We describe and comment our results as follows.

• With the presence of corner singularities, Table 3.5.2 and Figure 3.5.3 show that

AFEM reduces both the energy and geometric errors at the optimal rate of about

0.5. This is not the case for a standard FEM with uniform refinement, see Table

3.5.3.
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k |Tk| ek EOCe(k) ζk EOCg(k)
0 24 8.32e-01 — 1.03e+00 —
1 124 4.59e-01 0.362 7.72e-01 0.174
2 504 2.48e-01 0.439 3.71e-01 0.522
3 1424 1.59e-01 0.429 2.55e-01 0.363
4 3480 1.07e-01 0.441 1.75e-01 0.416
5 7896 7.51e-02 0.434 1.28e-01 0.382
6 18264 4.76e-02 0.543 8.71e-02 0.462
7 38944 3.30e-02 0.482 5.94e-02 0.504
8 73856 2.46e-02 0.457 4.49e-02 0.437
9 156324 1.66e-02 0.529 3.19e-02 0.455

10 328320 1.18e-02 0.462 2.03e-02 0.612

Table 3.5.2: Experiment 2: AFEM. The decays of the energy and geometric er-
rors are nearly optimal of order 0.5 despite the fact that the solution has corner
singularities; compared with Table 3.5.3 where standard FEM is used.

k |Tk| ek EOCe(k) ζk EOCg(k)
0 24 8.32e-01 — 1.03e+00 —
1 96 5.16e-01 0.345 7.93e-01 0.187
2 384 2.89e-01 0.417 4.10e-01 0.476
3 1536 1.71e-01 0.380 2.09e-01 0.485
4 6144 1.02e-01 0.371 1.05e-01 0.496
5 24576 6.21e-02 0.359 5.27e-02 0.499
6 98304 3.82e-02 0.351 2.64e-02 0.500
7 393216 2.37e-02 0.344 1.32e-02 0.500

Table 3.5.3: Experiment 2: Standard FEM. The standard FEM with uniform re-
finement does not give the decays of the energy error at the optimal rate due to the
corner singularities. However, the geometric error still decays at the optimal rate
since the surface is smooth.
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Figure 3.5.3: Experiment 2: Log-log plot of errors Vs. number of elements. The
decay rates of both energy and geometric errors are nearly optimal of order about 0.5
for AFEM, whereas FEM only exhibits the expected rate of 0.33 for the energy error
due to the corner singularities; FEM performs optimally in term of the geometric
error since the surface is C2.

• Figure 3.5.4 displays graded meshes produced by AFEM to compensate the effect

of the corner singularities at points (0, 0, 1) and (0, 0,−1). The massive refinements

near the singularities reduce that effect and lead to nearly optimal rate of conver-

gence of the energy error. The refinements on the other parts are almost uniform

due to geometric oscillation, however they are still coarser than those near the sin-

gularities.

3.5.3 Experiment 3: C1,α Surface Singularity.

In this section we conduct an experiment on the C1,α Surface Γ. We let Γ be

the closed surface of revolution of the curve γ := γ1 ∪ γ2 ∪ γ3 ∪ γ4 around the z-axis
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Figure 3.5.4: Experiment 2: A sequence of triangulations-surfaces produced by
AFEM. Starting from left to right and top to bottom, Γ0 (the initial surface), Γ2,
Γ3, Γ4, Γ5, and Γ6, respectively. The refinement is adapted according to the corner
singularities; it is denser near the corners at the points (0, 0, 1) and (0, 0,−1). This
leads to optimal rates of convergence of the energy error whereas uniform refinement
yield a suboptimal rate. Refinement is mostly uniform on the other part to resolve
geometric oscillation.
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where

γ1 :=
{
(r, z) | z = (.25− r2)1.4, r ∈ [0, 0.5)

}
,

γ2 := {(r, z) | z = 0, r ∈ [0.5, 1]} ,

γ3 :=
{

(r, z) | r = 1 +
√

.25− (z + 0.5)2, z ∈ (−1, 1)
}

,

γ4 := {(r, z) | z = −1, r ∈ [0, 1]} ,

and r =
√

x2 + y2 on Γ; see Figure 3.5.5. Therefore, the curve γ is C1,0.4 which

implies that Γ is a C1,0.4 but not C1,1 surface. Note that Γ has two flat parts; the

bottom where z = −1, r ≤ 1, and on the top where z = 0, 0.5 ≤ r ≤ 1. We let
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Figure 3.5.5: Experiment 3: Γ is the revolution surface of the curve γ := γ1 ∪ γ2 ∪
γ3 ∪ γ4.

the exact solution u : Γ → R of (3.1.2) be a linear function

u(x, y, z) = x + 2y.

We define the forcing term f = −∆Γu and, since u is linear, (3.1.3) implies

f = (∇u · ν)(∇ · ν).

125



We start AFEM by choosing a suitable pair (Γ0,P0) to describe Γ as introduced

in §3.1.1. We define the projection P0 : Γ0 → Γ as follows. For (x, y, z) ∈ Γ0, if

r :=
√

x2 + y2, P0 maps

(x, y, z) 7→ (x, y, z(x, y)) if r < 0.5, z > −0.5;

(x, y, z) 7→ (x, y, 0) if 0.5 < r ≤ 1, z > −0.5;

(x, y, z) 7→ (x, y,−1) if r ≤ 1, z < −0.5;

(x, y, z) 7→
(

x

r
+ (x− x

r
)
0.5

d0

,
y

r
+ (y − y

r
)
0.5

d0

, (z + 0.5)
0.5

d0

− 0.5

)
if r > 1.0,

where d0 :=
√

(r − 1)2 + (z + 0.5)2. Note that P0 is continuous on Γ0 but ∇P0 may

have jumps on the curves r = 0.5 or r = 1 that may not align with boundaries of

macro-elements. In this experiment, we show that AFEM performs quite well in

this situation given that the jumps of ∇P0 goes to zero as Γk goes to Γ.

Remark 3.5.1. In theory we require that P0 is differentiable on macro-elements T

so that λk(T ) defined in (3.1.8) goes to zero as Γk goes to Γ, which is needed for

the theory to hold. Here we design Γ0 such that the curves r = 0.5 or r = 1 do

not align with boundaries of macro-elements, hence P0 may not be differentiable

on some macro-elements. However, the convergence of AFEM still holds since the

jumps of ∇P0 goes to zero, hence λk also goes to zero, as Γk goes to Γ. We verify

this claim by computing ∇P0 directly as follows. On the curve r = 0.5,

∇P0|r=0.5− −∇P0|r=0.5+ =




0 0 0

0 0 0

∂z/∂x ∂z/∂x 0




= 0,
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k |Tk| ek EOCe(k) ζk EOCg(k)
0 224 1.62e+00 — 2.90e+00 —
1 600 8.89e-01 0.606 1.73e+00 0.525
2 1324 6.34e-01 0.428 1.29e+00 0.367
3 2016 5.53e-01 0.326 1.04e+00 0.509
4 3692 3.95e-01 0.555 7.64e-01 0.515
5 6548 2.55e-01 0.763 5.29e-01 0.641
6 12600 1.90e-01 0.448 4.13e-01 0.380
7 23836 1.36e-01 0.525 2.97e-01 0.518
8 39048 1.01e-01 0.611 2.25e-01 0.557
9 68876 7.91e-02 0.427 1.74e-01 0.454

10 124616 5.95e-02 0.480 1.31e-01 0.478

Table 3.5.4: Experiment 3: AFEM performs nearly optimal where both energy and
geometric errors decay at the rate about 0.5 despite the fact that Γ is a C1,0.4 surface.

since ∂z/∂x|r=0.5− = ∂z/∂y|r=0.5− = 0. Similarly, on the curve r = 1,

∇P0|r=1+ −∇P0|r=1− =




x2(0.5
d0
− 1) xy(0.5

d0
− 1) 0

xy(0.5
d0
− 1) y2(0.5

d0
− 1) 0

0 0 0




,

since d0|r=1+ = |z + 0.5|. Since d0 → 0.5 as Γk → Γ, this implies the claim.

Remark 3.5.2. As in Experiment 2 of Chapter 2, the forcing term f behaves like

(0.5− r)−0.6 if r < 0.5, and in fact, f ∈ L1(Γ) \L2(Γ). As explain before for graphs,

calculation of ‖f‖L2 is implemented via a truncation

fc(x) = min {f(x), 1.e + 15} ;

see Chapter 2, Experiment 2.

We implement AFEM with parameters θe = θg = θo = 0.5. The results are

shown in Table 3.5.4 and Figures 3.5.6-3.5.9. We describe and comment our results

as follows.
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Figure 3.5.6: Experiment 3: Log-log plot of errors Vs. number of elements shows
the comparison between AFEM and standard FEM.

• AFEM performs nearly optimal which gives the reduction of both energy and

geometric errors at the rate about 0.5; see Table 3.5.4, despite the fact that Γ is

just a C1,0.4 surface. Figure 3.5.6 also shows that the AFEM performed better than

standard uniform refinement FEM.

• According to Remark 3.5.1, AFEM performs quite well and λk decrease monoton-

ically after first few iterations as expected.

• According to Figure 3.5.7 AFEM refines adaptively according to the smoothness

of the surface given that the solution is smooth, u is linear in this case. There are

no refinements where the surface is flat, i.e., the bottom of the surface in Figure

3.5.8, and the top part where 0.5 < r < 1. The refinement is more dense near the

singularity curve, r = 0.5, where the right-hand side f exhibits an unbounded but

integrable discontinuity; see the zooms 3.5.9. The refinement on other smooth parts

that are not flat, are done mostly uniform due to the geometric oscillation.
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Figure 3.5.7: Experiment 3: The sequence of meshes Γ3, Γ5, and Γ7 produced by
AFEM starting from the macro-mesh Γ0.
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Figure 3.5.8: Experiment 3: The AFEM adapts according to the surface
given that the solution is smooth, u is linear in this case; there are no
refinements on the bottom part and on the top part where the surface is
flat, the other parts are refined according to the shape of the surface.

Figure 3.5.9: Experiment 3: The zooms of meshes for Γ8 and Γ9 near the
curve r = 0.5 where the surface is singular in that the second derivatives
exhibit and unbounded but integrable discontinuity. AFEM adapts and
refines massively near this curve to resolve the effect of this singularity, and
gives nearly optimal results; see also Table 3.5.4.
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