7 research outputs found

    Fast r-adaptivity for multiple queries of heterogeneous stochastic material fields

    Get PDF
    We present an r-adaptivity approach for boundary value problems with randomly fluctuating material parameters solved through the Monte Carlo or stochastic collocation methods. This approach tailors a specific mesh for each sample of the problem. It only requires the computation of the solution of a single deterministic problem with the same geometry and the average parameter, whose numerical cost becomes marginal for large number of samples. Starting from the mesh used to solve that deterministic problem, the nodes are moved depending on the particular sample of mechanical parameter field. The reduction in the error is small for each sample but sums up to reduce the overall bias on the statistics estimated through the Monte Carlo scheme. Several numerical examples in 2D are presented.Peer ReviewedPostprint (author's final draft

    Adjoint based a posteriori error estimation in Drekar::CFD.

    Get PDF

    Fast r-adaptivity for multiple queries of heterogeneous stochastic material fields

    Get PDF
    We present an r-adaptivity approach for boundary value problems with randomly fluctuating material parameters solved through the Monte Carlo or stochastic collocation methods. This approach tailors a specific mesh for each sample of the problem. It only requires the computation of the solution of a single deterministic problem with the same geometry and the average parameter, whose numerical cost becomes marginal for large number of samples. Starting from the mesh used to solve that deterministic problem, the nodes are moved depending on the particular sample of mechanical parameter field. The reduction in the error is small for each sample but sums up to reduce the overall bias on the statistics estimated through the Monte Carlo scheme. Several numerical examples in 2D are presented

    A Posteriori Error Analysis of Stochastic Differential Equations Using Polynomial Chaos Expansions

    No full text

    Goal-oriented error control of stochastic system approximations using metric-based anisotropic adaptations

    Get PDF
    International audienceThe simulation of complex nonlinear engineering systems such as compressible fluid flows may be targeted to make more efficient and accurate the approximation of a specific (scalar) quantity of interest of the system. Putting aside modeling error and parametric uncertainty, this may be achieved by combining goal-oriented error estimates and adaptive anisotropic spatial mesh refinements. To this end, an elegant and efficient framework is the one of (Riemannian) metric-based adaptation where a goal-based a priori error estimation is used as indicator for adaptivity. This work proposes a novel extension of this approach to the case of aforementioned system approximations bearing a stochastic component. In this case, an optimisation problem leading to the best control of the distinct sources of errors is formulated in the continuous framework of the Riemannian metric space. Algorithmic developments are also presented in order to quantify and adaptively adjust the error components in the deterministic and stochastic approximation spaces. The capability of the proposed method is tested on various problems including a supersonic scramjet inlet subject to geometrical and operational parametric uncertainties. It is demonstrated to accurately capture discontinuous features of stochastic compressible flows impacting pressure-related quantities of interest, while balancing computational budget and refinements in both spaces
    corecore