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Abstract We present an r -adaptivity approach for boundary value problems with
randomly fluctuating material parameters solved through the Monte Carlo or
stochastic collocation methods. This approach tailors a specific mesh for each
sample of the problem. It only requires the computation of the solution of a single
deterministic problem with the same geometry and the average parameter, whose
numerical cost becomes marginal for large number of samples. Starting from the
mesh used to solve that deterministic problem, the nodes are moved depending on
the particular sample of mechanical parameter field. The reduction in the error
is small for each sample but sums up to reduce the overall bias on the statistics
estimated through the Monte Carlo scheme. Several numerical examples in 2D are
presented.

Keywords Stochastic mechanics · Monte Carlo method · Stochastic collocation
method · Error Estimation · r -adaptivity

1 Introduction

In a large number of scientific domains, random fields are routinely used to quan-
tify uncertainties and parameterize fluctuating properties. These domains include
micromechanics (32; 24; 43; 36; 20), geomechanics and seismic engineering (47;
21; 54; 45; 2), modeling of concrete and quasi-brittle materials (56; 33), geo-
physics (27; 30; 53; 50; 9), structural mechanics (17; 19), computational fluid
dynamics (18; 37), dynamics of chemical reactions (23), and many others. Various
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Galerkin methods, such as the stochastic finite element method (28; 7; 52; 37),
have been developed to approximate numerically the solutions of these problems.
These methods are rather straightforward extensions of their deterministic coun-
terparts, due to the tensor structure of the functional spaces considered, but the
resulting systems to be inverted are extremely large. In the continuity of error
estimation for deterministic problems (5; 6; 58; 1; 35; 55; 8), the numerical anal-
ysis for these stochastic problems has been widely discussed, either through a
priori (12; 4; 26; 10; 14; 51; 57; 15), a posteriori (22; 40; 13), or goal-oriented
estimates (42; 34; 41; 11; 25).

The Monte Carlo method (12; 49) provides an alternative to these spectral
approaches. It consists in generating samples of the random material parameter
field and approximating the statistics of a quantity of interest as a combination of
those obtained for each sample independently. Numerically, this method therefore
reduces to the approximation of a series of deterministic partial differential equa-
tions. Although there might be a very large number of these problems, the Monte
Carlo method remains a method of choice for at least two reasons: (i) the rate of
convergence of the solutions is independent of the dimensionality of the stochastic
space, and (ii) it allows to inherit whatever numerical tools were constructed over
the years for the particular physical problem at hand. The last remark extends to
collocation, sparse grid and other similar methods (37, Chapter 3), as they also
result in multiple queries of the similar numerical solver. Specific error estimators
have been designed for the Monte-Carlo method (12; 25; 15) and the collocation
method (4; 26; 14; 57). We concentrate in this paper on improving simulations
performed with the Monte Carlo, collocation, sparse grid or similar techniques.

In practice, the different instances of the Monte Carlo samples are typically
approximated through the Finite Element (FE) method or another similar varia-
tional method. In that case, the same mesh is normally used for all realizations of
the parameter field and that mesh is designed to provide a reasonable accuracy in
the case of the average material field. It therefore does not account for the actual
realization of the stochastic material field. The possibility of designing a new mesh
from scratch for each Monte Carlo realization is not reasonable. Indeed, meshing
potentially involves a lot of human interaction and is always computationally in-
tensive for industrial problems.

An alternative is the r -adaptivity technique (31; 3; 38; 16; 46; 48; 39; 29). It
relies on the deformation of an initial mesh, based on appropriate error indicators.
As the connectivity is not modified, most of the meshing issues are hidden in the
construction of that one initial mesh. However, it is limited to small modifications
of the initial mesh. Otherwise, some element shapes might make the mesh unfit
for FE approximations. Note that this is exactly the kind of problems we are
considering here, where the random parameter fields are fluctuations around a
known average field and at least part of the complexity of the solution (and hence
of the complexity of the mesh required for a good approximation) comes from the
geometry and the loading, rather than from the parameter field.

The objective of this paper is therefore to develop such an r -adaptivity strategy
for Monte Carlo (and similar) solutions of boundary value problems with random
parameters. Two ingredients have to be developed: (i) an error estimator depend-
ing on each realization of the parameters (this is described in Section 3.1) and
(ii) a method to move the nodes of the initial mesh for a given error map (this
is described in Section 3.3). For the method to remain numerically affordable,
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the error estimate (i) must be explicit because it has to be computed for each
realization. Likewise, the numerical cost of the adaptation method (ii) must be
limited. Besides the core Section 3, Section 2 presents the problem to be solved
and Section 4 introduces a series of 2D numerical examples. The first example
(Section 4.1) discusses the efficiency of the mesh adaptation, as well as the val-
ues of a scaling parameter that it involves. The following two examples show the
efficiency of the method.

2 Problem statement

In this section, we introduce the boundary value problem of interest, with a
stochastic heterogeneous material parameter, as well as the corresponding (de-
terministic) average problem, where the material field is replaced by its average.
We also introduce some notations related to the numerical approximations and
solutions of these two problems.

2.1 Boundary value problem with random heterogeneous parameter

We consider the Poisson equation, whose strong form reads: find u taking values
in an open domain Ω such that:

−∇ · (a∇u) = f in Ω (1a)

(a∇u) · n = gN on ΓN (1b)

u = uD on ΓD (1c)

The Dirichlet boundary ΓD and Neumann boundary ΓN form a partition of the
boundary of the domain ∂Ω.

The material parameter is assumed to be a random field in space. We therefore
introduce the complete probability space (Θ, T , P ), where Θ is a set of outcomes,
T is a σ-algebra of events in Θ and P : T → [0, 1] is a probability measure. With
that definition, the parameter field a(x, θ) is variable in space and also depends
on the random parameter θ ∈ Θ. All equalities in the strong formula should be
considered as true P -almost surely. We denote a(x, θ) = a0 + δa(x, θ), where the
average a0 is deterministic and the average of the fluctuation δa(x, θ) vanishes at
every x ∈ Ω. Note that the contents of this paper also apply when the average
parameter a0 is fluctuating in space, and we consider it here constant for simplicity
only.

2.2 Average boundary value problem

We now consider the average boundary value problem, which is similar to the pre-
vious one, except that the material parameter is a0. As this field is deterministic,
so is the boundary value problem and its solution. The strong form reads: find u0
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taking values in Ω such that:

−∇ · (a0∇u0) = f in Ω (2a)

(a0∇u0) · n = gN on ΓN (2b)

u0 = uD on ΓD (2c)

Finally, we decompose the solution u(x, θ) of (1) as the solution of the average
problem (2) and a perturbation: u(x, θ) = u0(x) + δu(x, θ).

2.3 Numerical approximation

The solution of the average problem (2) is approximated with a FE scheme using
a mesh with characteristic size H. The approximation of the solution is denoted
uH0 .

The solution of the stochastic problem (1) is approximated using the Monte
Carlo method (or a similar method, as explained in the introduction). A series
of N samples {a(x, θi)}1≤i≤N of the parameter field a(x, θ) are then chosen.
Typically the same mesh as before (with characteristic size H) is used to solve
the (deterministic) boundary value problems for each of the samples. A series of
N solutions {uH(x, θi)}1≤i≤N are then obtained as an approximation uH(x, θ) of
the solution u(x, θ).

Each of the N FE solutions comes with a certain numerical error. Classical
techniques exist to minimize this error by adapting the mesh, adding or merg-
ing elements where needed. This may however become costly when implemented
within a Monte Carlo loop. We therefore restrict ourselves to an r -adaptive scheme
only, which only moves the nodes of the mesh, without changing the connectiv-
ity. The goal is to eventually reduce at a marginal cost the error for each of the
approximate solutions {uH(x, θi)}1≤i≤N and therefore also for the approximate
solution uH(x, θ).

3 An r-adaptive strategy based on an error indicator for the
perturbed problem

As stated above, we aim at adapting the mesh in each of the N samples. The
r -adaptation leaves low flexibility in modifying the mesh because the connectivity
is unchanged and the distortion must be limited to avoid pathological meshes.
Moreover, the motion of the boundary nodes is constrained to keep the nodes on
the boundary.

An adaptive strategy is readily identified by describing (i) the error assessment
strategy and (ii) the remeshing criterion. That is, (i) how to assess the error in
each zone of the domain in order to increase the numerical resolution where the
error is larger and (ii) how to modify (adapt) the mesh, based on the information
provided by the error assessment.

This has to be complemented with an algorithm that constructs the new
(adapted) mesh, satisfying the conditions enforced by the remeshing criterion.
That is, respecting the desired element sizes. In the particular case of r -adaptivity,
the algorithm to move the mesh consists in expanding some elements (where the
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error is expected to be smaller) and contracting the others (where the error is
expected to be larger). Thus, the resulting r -adapted mesh is going to concentrate
nodes and enrich the discretization in the zones where the solution is difficult to
resolve.

Note that the accuracy improvement associated with this adaptive strategy is
not expected to be very important for each sample. Therefore, the computational
cost of the proposed approach must be also marginal, in comparison with that of
a standard FE solver. This suggests using an a priori error indicator, based on the
variation of the input data δa for each sample.

3.1 Error indicator approximating the Laplacian

The standard a priori estimates for linear FE formulations state that the associ-
ated errors (measured in some norm) are bounded by some power of H, affected
by a constant proportional to the second derivatives of the solution. The second
derivatives are contained in the Hessian matrix and fairly well represented by its
trace, the Laplacian ∆u.

Following this rationale, geometrical interpolation error indicators are based
on the estimated values of the second derivatives of the solution. This is a classical
approach (see for instance (44)) in an a posteriori setup, that is estimating the
second derivatives of the solution u after having computed a previous approxima-
tion uH that has to be improved. The error indicator is in this case recovered as
a post-process of uH .

Here we aim at computing an approximation to ∆u using the information at
hand, that is u0, a0 and δa, without computing any approximation uH to the
solution of the perturbed problem, u = u0 + δu.

The proposed, a priori computable approximation of the Laplacian, ξ, reads

∆u ≈ ξ := − 1

a0

[
f

(
1− δa

a0

)
+∇δa·∇u0

]
(3)

The expression for ξ is derived considering that (1a) is equivalent to

−∇· ((a0 + δa)∇(u0 + δu)) = f

Thus, using (2a) (multiplying both sides by δa: δa∆u0 = − δaa0
f) and considering

that the product of two perturbed quantities (quadratic) is negligible in front of
linear perturbations, (3) is readily recovered by considering that

−a0∆u = −a0∇·∇(u0 + δu) = f +∇·(δa∇(u0 + δu)

= f +∇·(δa∇u0) +∇·(δa∇δu)︸ ︷︷ ︸
≈0

≈ f +∇δa·∇u0 + δa∇·∇u0︸ ︷︷ ︸
=− δa

a0
f

= f(1− δa

a0
) +∇δa·∇u0

Note that the expression for ξ in (3) is fully computable once the perturbation
δa associated with each sample is provided. This quantity has to be computed
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element wise, ξe for e = 1, . . . , nel, being nel the number of elements in the mesh.
The cost of computing ξe is low because the only two terms that vary along the
sampling process are δa and ∇δa, that have to be evaluated at some representative
point of each element.

3.2 Remeshing criterion

Recall that, in the current framework, adaptivity consists in building a tailored
mesh for sample i, i = 1, . . . , N , as a modification of the mesh designed for the
non perturbed average problem. Thus, the goal of the remeshing criterion is to
determine the desired element size he in the zone occupied in the average mesh
by element Ωe of size He, for e = 1, . . . , nel.

The curvature (Laplacian) of u in element Ωe is estimated by a mean value ξe,
which is computed using (3) and evaluating f , δa and ∇u0 at some representative
points of element Ωe.

The mesh is designed such that the element size in the zone of Ωe is inversely
proportional to the curvature, that is

he =
1

1
hmax

+ ξeα
(5)

where the parameter hmax is an upper limit for he and α is a normalization param-
eter. Typically, hmax is selected lower than twice the characteristic element size of
the initial mesh, H, in order to avoid distortions in the resulting mesh. Then, α
is characterized to obtain the desired number of elements in the resulting mesh.
In the case of r -adaptivity, the number of elements in the initial and the resulting
meshes are equal (to nel) and therefore α is such that

nel∑
e=1

h2e
2

=

nel∑
e=1

|Ωk| .

This expression stands for triangular elements, assuming that the area of the

triangle is
h2
e

2 .
The required deformation (extension or contraction) of element Ωe is therefore

defined by the ratio

εe =
he
He

, for e = 1, . . . , nel (6)

3.3 Moving the mesh

The prescribed element size is made relative to the original mesh designed for the
average value of a, a0. Thus, the original mesh has to be deformed in order to
accommodate the desired element sizes he, for e = 1, . . . , nel. The deformation
factors εe for each element Ωe of the mesh given in (6) are computable once the
error indicator ξe is obtained using (3).

In the r -adaptive framework, mesh deformation consists in relocating the nodes
and modifying the element without altering the connectivity. As previously noted,
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this does not allow drastic changes in the configuration of the mesh. Neverthe-
less, as will be shown in the examples, the modest accuracy improvement in each
simulation along the Monte Carlo or Collocation sampling results in an over-
all improvement of the stochastic characterization. In this context, the proposed
technique to relocate the nodes has to be simple and computationally efficient.
The motion of the nodes is characterized by a vector of nodal displacements δx.
The marginal accuracy gain expected in the adaptive process suggests selecting a
low-cost algorithm to determine δx.

The technique adopted here consists in solving a linear elastic mechanical prob-
lem to obtain the displacement of the nodes δx. The loading is given by an isotropic
prescribed strain in each element, precisely εe, e = 1, . . . , nel. To further simplify
the formulation, the mechanical model is selected with Lamé coefficients µ = 1/2
and λ = 0 (corresponding to E = 1 and ν = 0). Thus, the pre-stress is, at each el-
ement εeI. The equation to be solved for the nodal displacements δx taking values
in Ω is then

∇ · ∇sδx = ∇ · (εI) = ∇ε (7)

to be complemented with the proper boundary conditions enforcing the geometri-
cal restrictions, that is guaranteeing that boundary nodes do not leave the bound-
ary.

Note that the computational effort to obtain δx at each of theN samples is very
low because it is computed with the initial mesh and therefore the stiffness matrix
associated with problem (7) is the same for all the samples. Thus, the matrix is
factorized once and the cost of obtaining δx is just the cost of computing the
force term associated with the right-hand-side, ∇ε, plus a matrix-vector product
corresponding to the forward and backward substitutions. Note also that the cost
of computing the force term is low because it sums up to obtaining nodal values
for ∇ε (from the elementary values εe) and premultiplying them by a mass matrix
(again, the same for all the samples).

3.4 Extension to second-order tensor-valued coefficients

Until now, we have only considered scalar coefficients a(x), a0 and δa(x). For many
applications of interest, this is not sufficient, and tensor-valued coefficients should
be considered. We discuss in this section this extension of the results presented
above to that case. Being a second order tensor, we now denote the coefficients with
bold face fonts: a(x), a0 and δa(x). We further assume that the tensors a and a0

are positive definite, which is appropriate for many applications, and decompose
the latter along its principal directions: a0 =

∑
i λivi ⊗ vi, being vi, i = 1, . . . , d,

the unit vectors describing the principal directions and d the dimension of space
considered. Equation (2a) now reads −a0 : (∇⊗∇)u0 = −∇ · (∇· (a0u0)) = f . In
this case, the role played by the Laplacian in the isotropic case (average of second
order derivatives in the principal directions) is played by the quantity

1

tra0
a0 : (∇⊗∇)u =

1∑d
i=1 λi

d∑
i=1

λi
∂2u

∂v2i

Note that for isotropic remeshing, the indicator is not expected to provide in-
formation on the critical directions because the adapted mesh is not going to
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be stretched along these directions. Therefore, this weighted average is providing
meaningful information to decide which are the zones where the elements have to
be isotropically expanded or contracted.

Thus, the indicator ξ approximating this quantity (replacing Equation (3))
reads

ξ := − d

tra0

[
f

(
1− 1

d

d∑
i=1

1

λi
vi · δa · vi

)
+ (∇ · δa) · ∇u0

]
. (8)

Equation (8) is derived by considering that

−∇ · a0∇u = f + δa : (∇⊗∇)u0 + (∇ · δa) · ∇u0,

and is equivalent to Equation (3) when a0 = a0I (λi = 1, i = 1, . . . , d) and
δa = δaI, where I is the identity tensor.

4 Examples

In this section, we present three examples that illustrate the behavior of our error
indicator and of the r -adaptivity process. We first present two simple deterministic
examples on which we analyse precisely the behavior of the adaptivity scheme pro-
posed for single realizations of material property maps. The last example considers
stochastic properties and illustrates the improvement introduced by the method
for the evaluation of statistical quantities of interest.

4.1 1D fluctuation of properties

We first consider a square domain Ω = [0, 1] × [0, 1] and a material property
map in the form a(x) = a0 + cos(2πNx), where a0 = 2 and N is a positive
integer. The corresponding maps of property are plotted in Figure 1. Homogeneous
Dirichlet boundary conditions are considered on the left and right sides (x = 0 and
x = 1) and homogeneous Neumann boundary conditions are considered elsewhere.
A volume load is considered, with the form f(x) = x2−1/3. Thanks to the form of
the boundary conditions, force and material property, the solution of Problem (1)
is quasi-1D and independent of the variable y. We compute for this problem a
reference solution on a refined mesh with 360,000 elements, and denote it uref(x).

The objective of this example is to consider two reasonable indicators of the
error and combine them with two different strategies for moving the mesh. The two
indicators are respectively: (i) based on the curvature of the exact solution u′′ref =
∂2uref/∂x

2 and (ii) the indicator developed in this paper. The choice of u′′ref =
∂2uref/∂x

2 as an indicator is based on the fact that, for linear finite elements, only
one element is required to well approximate a linear solution. The two strategies
are: (i) moving the x-coordinates of the nodes so that the distance along x between
two consecutive nodes is equal to the value computed in Eq. (5) and (ii) move the
nodes in the mesh according to the strategy presented in Section 3.3. These two
adaptivity strategies are essentially 1D and 2D, respectively, and will be denoted
as such.

We therefore consider in the following computations three different strategies:
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Fig. 1 Map of parameter a(x) = a0 + cos(2πNx) for the three cases considered: (left) N = 1,
(center) N = 2 and (right) N = 3. White corresponds to a(x) = 3 and black corresponds to
a(x) = 1.

1. use the indicator based on u′′ref and the 1D adaptivity process;
2. use the indicator based on u′′ref and the 2D adaptivity process;
3. use the indicator proposed in this paper and the 2D adaptivity process;

Note that the reference solution uref(x) is not available in real applications so
only the last one of the three proposed technique can then be applied. The in-
troduction of the first two strategies is performed only for comparison purposes.
For illustration, we plot in Figure 2 maps of element areas obtained with N = 2,
2,500 elements, hmax = 1.2, and the three adaptive strategies. It is clear that the
three strategies yield similar deformed mesh, although the mesh obtained with the
1D adaptivity process is more sharply defined than the other two. For those, the
features are more smeared and transitions between small and large elements are
smoother.

Fig. 2 Map of element areas obtained with N = 2, 2,500 elements, hmax = 1.2, and the three
adaptive strategies: (left) the reference solution u′′ref and the 1D adaptive strategy, (center) the
reference solution u′′ref and the 2D adaptive strategy, and (right) the proposed error indicator

and the 2D adaptive strategy. White corresponds to S = 1.5 × 10−4 and black corresponds to
S = 2.5 × 10−4

We now turn to the question of choosing the value of hmax. We consider three
different cases: (i) N = 1, where Ω is discretized with 400 elements, (ii) N = 2,
where Ω is discretized with 2,500 elements, and (iii) N = 3, where the domain is
discretized with 10,000 elements. For each of these three meshes, we compute the
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errors in energy norm (with respect to the reference solution uref) obtained using
the three different strategies described above for different values of the chosen
maximum element size hmax. The results are plotted in Figure 3. In these figures,
the errors are normalized with respect to the error obtained for a homogeneous
mesh (that is to say, without moving the nodes). The maximum element sizes
plotted in abscissa are equal to maxh =

√
2 maxS, where S is the area of an

element, and normalized with respect to the size of an element of the homogeneous
mesh. Note that the normalized maximum element size is not hmax, but the one
that is obtained as output of the adaptivity process.
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Fig. 3 Comparison of the evolution of the normalized error with respect to the normalized
maximum element size using: (i) the reference solution u′′ref and the 1D adaptive strategy
(dashed lines and circles), (ii) the reference solution u′′ref and the 2D adaptive strategy (dotted
lines and triangles), and (iii) the proposed error indicator and the 2D adaptive strategy (solid
lines and crosses). The three figures correspond to the three cases: (left) N = 1, (center) N = 2
and (right) N = 3.

The following comments can be made on the results plotted in Figure 3:

– All three refinement strategies seem to perform better than the homogeneous
case (the relative error is lower than 1) for small values of the maximum element
size;

– For large values of the maximum element size, the approximations obtained
with the adapted mesh are worst than those obtained with the homogeneous
mesh;

– There is no clear pattern as to which method of the three performs better,
depending on the fluctuations of the properties with respect to those of the
force.

As the first two strategies are based on the knowledge of the exact solution, we
could expect that they should yield better approximations than the third. However,
the degradation of the expected behavior is due to the adaptivity process. When
the mesh moves, the evaluation of the local indicators should be updated lest this
movement be too extreme.

The conclusion of this first example is that, on such a simple configuration
at least, our proposed strategy (combining the error indicator and the adaptivity
process) seems to work well for a large range of desired maximum element size and
situations.
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4.2 2D fluctuation of properties

We consider here the same square domain Ω = [0, 1] × [0, 1] as before, and a
material property map in the form a(x) = a0 + cos(6πx) cos(6πy), where a0 = 2
(see Figure 4). As before, homogeneous Dirichlet boundary conditions are consid-
ered on the left and right sides (x = 0 and x = 1) and homogeneous Neumann
boundary conditions are considered elsewhere. The same volume load is considered
f(x) = x2−1/3. This time, because of the form of the fluctuations of the material
properties field, the solution if fully 2D. As before, we compute a reference solution
on a refined mesh with 360,000 elements, and denote it uref(x). We also compute
a reference solution considering the exact same problem, but a homogeneous field
of material parameter at the value a0. This solution is denoted uref0 .

Fig. 4 Map of parameter a(x) = a0 + cos(6πx) cos(6πy). White corresponds to a(x) = 3 and
black corresponds to a(x) = 1.

The objective of this example is to observe the behavior of the proposed adap-
tivity process, and check its convergence rate with respect to the number of degrees
of freedom (DOFs). We will compute this convergence rate for four different types
of meshes: (i) a homogeneous mesh (for which theoretical convergence rates are
known), (ii) a mesh deformed with respect to the curvature u′′ref0 of the reference
solution for a homogeneous material parameter, (iii) a mesh deformed with respect
to the curvature u′′ref of the reference solution, and (iv) a mesh deformed with the
proposed adaptivity process. Note that the mesh (ii) is expected to propose re-
finement based only on the information of the loading or boundary conditions,
because it does not bear any information on the field a(x). As the solution is fully
2D, all these meshes have been obtained using the 2D adaptivity process described
in Section 3.3. For illustration, we plot in Figure 5 maps of element areas obtained
with 2,500 elements, hmax = 1.5, and the three adaptive strategies (ii), (iii) and
(iv). It is clear that the last two yield similar deformed mesh. The first one shows a
1D deformation because boundary conditions and loading are essentially 1D. Note
that both the meshes (iii) and (iv) are extremely complex and could not have been
simply guessed.

We now consider the convergence rate of the error computed using these four
meshing strategies with respect to the number of DOFs. These errors are plotted
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Fig. 5 Map of element areas obtained with 2,500 elements, hmax = 1.5, and the three adaptive
strategies, using: (left) the solution u′′ref0 for average property field a0, (center) the reference

solution u′′ref and (right) the proposed error indicator. White corresponds to S = 3.5 × 10−4

and black corresponds to S = 0.5 × 10−4.

in Figure 6. It can be clearly observed on the left figure that all the techniques
yield the same order of convergence. In the right figure, where the techniques (ii),
(iii) and (iv) are normalized with respect to (i), a clear and almost constant ratio
can be observed between the different strategies. Whatever the number of degrees
of freedom, the proposed technique therefore seems to reduce the error by 25%
with respect to the homogeneous mesh, which is an additional 10% with respect
to what would be obtained with a refinement based on constant parameter field.
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Fig. 6 (Left): Evolution of the error in energy norm with respect to the number of DOFs using:
(i) the uniform mesh (dashed lines and triangles), and the adaptive meshes obtained using
(ii) the solution u′′ref0 for the average property field a0 (dashed-dotted lines and diamonds),

(iii) the reference solution u′′ref (dotted lines and circles) and (iv) the proposed error indicator
(solid lines and crosses). (Right): Plots (ii), (iii) and (iv) normalized by (i).

The conclusion of this example is that the proposed technique seems to perform
exactly as well as an estimator based on the reference solution, and provide a large
reduction of the error with the same number of DOFs with respect to a uniform
mesh.
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4.3 Stochastic fluctuations of the properties

In this last example, we consider the same square domain Ω = [0, 1]× [0, 1] as be-
fore, and the material property field is now a random field. Its first-order marginal
distribution is log-normal, with average a0 = 2 and variance σ2 = 1 and its
power-spectrum distribution is triangular with a correlation length `c = 1/3. Two
realizations of the random field are plotted in Figure 7). As before, homogeneous
Dirichlet boundary conditions are considered on the left and right sides (x = 0 and
x = 1) and homogeneous Neumann boundary conditions are considered elsewhere
(all conditions enforced almost surely). The same (deterministic) volume load is
considered f(x) = x2 − 1/3. We compute a reference solution on a refined mesh
with 360,000 elements and using Nmc = 10, 000 Monte Carlo trials, and denote it
uref(x). We also compute a reference solution considering the exact same problem,
but a homogeneous field of material parameter at the value a0. This solution is
denoted uref0 . Note that uref(x) is stochastic while uref0 is deterministic.

Fig. 7 Maps of two different realizations of the parameter a(x). White corresponds to a(x) = 6
and black corresponds to a(x) = 0 (note that a(x) > 0 everywhere).

Before looking at stochastic approximations of uref(x) and related quantities of
interest (QoIs), we first compute the solutions for two different realizations of the
property field using the same strategies as before: (i) a uniform mesh, (ii) a mesh
deformed with respect to the curvature u′′ref0 , (iii) a mesh deformed with respect to
the curvature u′′ref , and (iv) a mesh deformed with the proposed adaptivity process.
Considering 2,500 elements and hmax = 1.5, we plot in Figure 8 the meshes obtained
with the last three strategies (the upper row corresponds to the realization at the
left of Figure 7 and the lower to the other one). As expected, there is no difference
between the two meshes obtained for strategy (ii). Indeed, u′′ref0 is the same for
the two realizations and only contains information on the loading and boundary
conditions. Interestingly, the meshes obtained with strategies (iii) and (iv) are very
similar for each realization and vary widely between two realizations. Note again,
as in the previous application, that there does not seem to be any way of guessing
intuitively these apparently optimal meshes.

We now turn to stochastic evaluation of the solutions obtained with the dif-
ferent strategies. We start by observing the distributions of errors in the energy
norm as well as in a particular QoI, which is the flux averaged over part of the
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Fig. 8 Map of element areas obtained with 2,500 elements, hmax = 1.5, two different real-
izations of the parameter field a(x) (the upper row corresponds to the left of Figure 7 and
the lower row corresponds to the right of Figure 7) and the three adaptive strategies, using:
(left) the solution u′′ref0 for the average property field a0, (center) the reference solution u′′ref
and (right) the proposed error indicator. White corresponds to S = 3.5 × 10−4 and black
corresponds to S = 0.5 × 10−4.

boundary:

Q =

∫ 1

y=0.8

(a(x)∇u · n)|x=1dy, (9)

where n is the outgoing normal to the boundary. The distribution of errors in the
energy norm are plotted at the left of Figure 9, while the distributions of errors in
the QoI are plotted at its right. We also report in Table 1 the average and variance
of the different errors. Both in the figure and in the table, the errors are normalized
with respect to the average obtained with the homogeneous mesh. The objective
is to insist on the potential improvements obtained using the strategy proposed in
this paper with respect to the classical strategy which consists in using a uniform
mesh. For both errors, it is noticeable that the proposed strategy indeed improves
the estimation of the global solution, as well as that of the QoI. It also improves
on the other possibility that would consist in using the mesh modified with respect
to the average property field. Finally the proposed strategy does almost as well as
the strategy using the (non-computable) u′′ref .

It is particularly interesting to note that the errors in the QoI possess bias,
that is to say the average of the error does not vanish. As the error in the QoI
is signed, one might have intuitively expected that its average would vanish. The
results presented above show that, using a given mesh and a large number of Monte
Carlo trials, the approximation of the average of the solution will converge to an
erroneous value. We further study this effect by considering the convergence of
the error made on the estimations of the mean and variance of the QoI using the
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Table 1 Average and variance of the normalized energy norm error and normalized QoI error
using: (i) the uniform mesh, (ii) the solution u′′ref0 for the average property field a0, (iii) the

reference solution u′′ref and (iv) the proposed error indicator. The errors are normalized with

respect to the average obtained with (i) and 104 trials.

Mesh uniform using u′′ref0 using u′′ref proposed

Average of error in EN 1.00 0.78 0.64 0.68
Variance of error in EN 0.20 0.09 0.05 0.06
Average of error in QoI 1.00 0.61 0.47 0.51
Variance of error in QoI 0.75 0.30 0.11 0.17
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Fig. 9 Histograms of normalized energy norm error (left) and normalized QoI error (right)
using: (i) the uniform mesh (dashed lines), (ii) the solution u′′ref0 for the average property field

a0 (dashed-dotted lines), (iii) the reference solution u′′ref (dotted lines) and (iv) the proposed
error indicator (solid lines). The errors are normalized with respect to the average of (i) for
104 trials.

different strategies and increasing numbers of Monte Carlo trials. The convergence
study for the QoI mean is performed in the following way: (1) for a given number
of Monte Carlo trials Nmc, we pick a large set of Nmc independent realizations
of the properties; (2) for each element in the set, we estimate the mean of the
QoI, and (3) by averaging over the different elements in the set, we estimate a
mean and variance for the mean QoI with Nmc Monte Carlo trials. This sequence
is repeated for different values of Nmc and the results are plotted at the left of
Figure 10. Finally the same study is performed for the variance of the QoI and
plotted at the right of Figure 10. It is clear on this figure that, although it does
not vanish, the biases in the estimators of the mean and variance of the QoI are
largely reduced when using the strategy described in this paper.

5 Conclusion

The proposed r -adaptivity strategy aims at finding the best fitted FE mesh for
different realizations of the perturbed material properties field. It is based on an
a-priori computable error indicator accounting for the effect of the perturbation of
the material properties in the second derivatives of the solution. Then, this error
indicator is introduced in an ad-hoc remeshing criterion to derive the stretching
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Fig. 10 Convergence of the error in the estimators of the mean (left) and variance (right) for
the QoI using: (i) the uniform mesh (dashed lines), (ii) the solution u′′ref0 for the average prop-

erty field a0 (dashed-dotted lines), (iii) the reference solution u′′ref (dotted lines) and (iv) the
proposed error indicator (solid lines). The grey shades indicate 90% confidence intervals. The
errors are normalized with respect to (i) for 104 trials.

factor to be enforced to each element of the mesh in order to optimally relocate
the nodes. This expansion or contraction factor produces the movement of the
nodes. The methodology adopted here to move the mesh is based on solving a
linear elastic model with enforced elementary pre-strains.

When used in the context of a Monte Carlo or collocation sampling process
for solving a stochastic problem, this strategy has a marginal computational cost
at each sample and improves the accuracy of the resulting statistics. On all tested
cases, the biases of the statistical estimations were reduced, as a consequence of
the small and consistent improvements obtained for each sample.
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