124 research outputs found

    A Patient-Specific Infrared Imaging Technique for Adjunctive Breast Cancer Screening: A Clinical and Simulation - Based Approach

    Get PDF
    Breast cancer is currently the most prevalent form of cancer in women with over 266,000 new diagnoses every year. The various methods used for breast cancer screening range in accuracy and cost, however there is no easily reproducible, reliable, low-cost screening method currently available for detecting cancer in breasts, especially with dense tissue. Steady-state Infrared Imaging (IRI) is unaffected by tissue density and has the potential to detect tumors in the breast by measuring and capturing the thermal profile on the breast surface induced by increased blood perfusion and metabolic activity in a rapidly growing malignant tumor. The current work presents a better understanding of IRI as an accurate breast cancer detection modality. A detailed study utilizing IRI-MRI approach with clinical design and validation of an elaborate IRI-Mammo study are presented by considering patient population, clinical study design, image interpretation, and recommended future path. Clinical IRI images are obtained in this study and an ANSYS-based modeling process developed earlier at RIT is used to localize and detect tumor in seven patients without subjective human interpretation. Further, the unique thermal characteristics of tumors that make their signatures distinct from benign conditions are identified. This work is part of an ongoing multidisciplinary collaboration between a team of thermal engineers and numerical modelers at the Rochester Institute of Technology and a team of clinicians at the Rochester General Hospital. The following components were developed to ensure valid experimentation while considering ethical considerations: IRB documentation, patient protocols, an image acquisition system (camera setup and screening table), and the necessary tools needed for image analysis without human interpretation. IRI images in the prone position were obtained and were used in accurately detecting the presence of a cancerous tumor in seven subjects. The size and location of tumor was also confirmed within 7 mm as compared to biopsy-proven pathology information. The study indicates that the IRI-Mammo approach has potential to be a highly effective adjunctive screening tool that can improve the breast cancer detection rates especially for subjects with dense breast tissue. This method is low cost, no-touch, radiation-free and highly portable, making it an attractive candidate as a breast cancer detection modality. Further, the developed method provided insight into infrared features corresponding to other biological images, pathology reports and patient history

    A prospective evaluation of breast thermography enhanced by a novel machine learning technique for screening breast abnormalities in a general population of women presenting to a secondary care hospital

    Get PDF
    Artificial intelligence-enhanced breast thermography is being evaluated as an ancillary modality in the evaluation of breast disease. The objective of this study was to evaluate the clinical performance of Thermalytix, a CE-marked, AI-based thermal imaging test, with respect to conventional mammography. Methods: A prospective, comparative study performed between 15 December 2018 and 06 January 2020 evaluated the performance of Thermalytix in 459 women with both dense and nondense breast tissue. Both symptomatic and asymptomatic women, aged 30–80 years, presenting to the hospital underwent Thermalytix followed by 2-D mammography and appropriate confirmatory investigations to confirm malignancy. The radiologist interpreting the mammograms and the technician using the Thermalytix tool were blinded to the others' findings. The statistical analysis was performed by a third party. Results: A total of 687 women were recruited, of whom 459 fulfilled the inclusion criteria. Twenty-one malignancies were detected (21/459, 4.6%). The overall sensitivity of Thermalytix was 95.24% (95% CI, 76.18–99.88), and the specificity was 88.58% (95% CI, 85.23–91.41). In women with dense breasts (n = 168, 36.6%), the sensitivity was 100% (95% CI, 69.15–100), and the specificity was 81.65% (95% CI, 74.72–87.35). Among these 168 women, 37 women (22%) were reported as BI-RADS 0 on mammography; in this subset, the sensitivity of Thermalytix was 100% (95% CI, 69.15–100), and the specificity was 77.22% (95% CI, 69.88–83.50). Conclusion: Thermalytix showed acceptable sensitivity and specificity with respect to mammography in the overall patient population. Thermalytix outperformed mammography in women with dense breasts and those reported as BI-RADS 0

    A Patient-Specific Approach for Breast Cancer Detection and Tumor Localization Using Infrared Imaging

    Get PDF
    Breast cancer (BC) is the most common cancer among women in the United States; approximately one out of every 24 women die of related causes. BC screening is a critical factor for improving patient prognosis and survival rate. Infrared (IR) thermography is an accurate, inexpensive and operator independent modality that is not affected by tissue density as it captures surface temperature variations induced by the presence of tumors. A novel patient-specific approach for IR imaging and simulation is proposed. In this work, multi-view IR images of isolated breasts are obtained in the prone position (face down), which allows access to the entire breast surface because the breasts hang freely. The challenge of accurately determining size and location of tumors within the breasts is addressed through numerical simulations of a patient-specific digital breast model. The digital breast models for individual patients are created from clinical images of the breast, such as IR imaging, digital photographs or magnetic resonance images. The numerical simulations of the digital breast model are conducted using ANSYS Fluent, where computed temperature images are generated in the same corresponding views as clinical IRI images. The computed and clinical IRI images are aligned and compared to measure their match. The determination of tumor size and location was conducted through the Levenberg-Marquardt algorithm, which iteratively minimized the mean squared error. The methodology was tested on the breasts of seven patients with biopsy-proven breast cancer with tumor diameters ranging from 8 mm to 27 mm. The method successfully predicted the equivalent tumor diameter within 2 mm and the location was predicted within 6.3 mm in all cases. The time required for the estimation is 48 minutes using a 10-core, 3.41 GHz workstation. The method presented is accurate, fast and has potential to be used as an adjunct modality to mammography in BC screening, especially for dense breasts

    FLIR vs SEEK thermal cameras in biomedicine: comparative diagnosis through infrared thermography

    Get PDF
    Background: In biomedicine, infrared thermography is the most promising technique among other conventional methods for revealing the differences in skin temperature, resulting from the irregular temperature dispersion, which is the significant signaling of diseases and disorders in human body. Given the process of detecting emitted thermal radiation of human body temperature by infrared imaging, we, in this study, present the current utility of thermal camera models namely FLIR and SEEK in biomedical applications as an extension of our previous article. Results: The most significant result is the differences between image qualities of the thermograms captured by thermal camera models. In other words, the image quality of the thermal images in FLIR One is higher than SEEK Compact PRO. However, the thermal images of FLIR One are noisier than SEEK Compact PRO since the thermal resolution of FLIR One is 160 × 120 while it is 320 × 240 in SEEK Compact PRO. Conclusion: Detecting and revealing the inhomogeneous temperature distribution on the injured toe of the subject, we, in this paper, analyzed the imaging results of two different smartphone-based thermal camera models by making comparison among various thermograms. Utilizing the feasibility of the proposed method for faster and comparative diagnosis in biomedical problems is the main contribution of this study.The work and the contribution were supported by the SPEV project “Smart Solutions in Ubiquitous Computing Environments”, University of Hradec Kralove, Faculty of Informatics and Management, Czech Republic (under ID: UHK-FIM-SPEV-2019). Supported by the grant TIN2016-75850-R from the Spanish Ministry of Economy and Competitiveness with FEDER funds

    Thermography based inflammation monitoring of udder state in dairy cows: sensitivity and diagnostic priorities comparing with routine California mastitis test

    Get PDF
    Objectives of this study is to evaluate possibilities for early detection of udder’s diseases of Lithuanian Black and White cows and compare thermography and routine California mastitis test (CMT) results. Cows were examined in the negative and at positive ambient temperature. Infrared thermography (IRT) applied skin surface thermograms of teats in the area of Furstenberg’s rosette analyzed as posing evidence based signs of subclinical mastitis coincide with the CMT. It is shown, that subclinical inflammatory processes of cow’s mammary gland can be simply and successfully identified at an early stage of pathology development applying the thermal imaging method. IRT results measuring the skin surface temperature of teat sphincters of healthy dairy cows and cows with subclinical mastitis were completely similar to the CMT findings. Effectiveness of IRT does not depend from ambient conditions: inflammation can be easily detected both in positive and negative ambient temperatures. We confirm IRT being as alternative, noninvasive, high sensitive, rapid and portable method for subclinical various origins inflammatory processes of cow’s udder, which can be certified for practical subclinical mastitis screening and subsequent detection

    A model for the detection of breast cancer using machine learning and thermal images in a mobile environment

    Get PDF
    Breast cancer is the most common cancer amongst women and one of the deadliest. Various modalities exist which image the breasts, all with a focus on early detection; thermography is one such method. It is a non-invasive test, which is safe and can be used for a wide variety of breast densities. It functions by analysing thermal patterns captured via an infrared camera of the surface of the breast. Advances in infrared and mobile technology enable this modality to be mobile based; allowing a high degree of portability at a lower cost. Furthermore, as technology has improved, machine learning has played a larger role in medical practices by offering unbiased, consistent, and timely second opinions. Machine learning algorithms are able to classify medical images automatically if offered in the correct format. This study aims to provide a model, which integrates breast cancer detection, thermal imaging, machine learning, and mobile technology. The conceptual model is theorised from three literature studies regarding: identifiable aspects of breast cancer through thermal imaging, the mobile ecosystem, and classification using machine learning algorithms. The model is implemented and evaluated using an experiment designed to classify automatically thermal breast images of the same quality that mobile attachable thermal cameras are able to capture. The experiment contrasts various combinations of segmentation methods, extracted features, and classification algorithms. Promising results were shown in the experiment with a high degree of accuracy obtained. The successful results obtained from the experimentation process validates the feasibility of the model

    A model for the detection of breast cancer using machine learning and thermal images in a mobile environment

    Get PDF
    Breast cancer is the most common cancer amongst women and one of the deadliest. Various modalities exist which image the breasts, all with a focus on early detection; thermography is one such method. It is a non-invasive test, which is safe and can be used for a wide variety of breast densities. It functions by analysing thermal patterns captured via an infrared camera of the surface of the breast. Advances in infrared and mobile technology enable this modality to be mobile based; allowing a high degree of portability at a lower cost. Furthermore, as technology has improved, machine learning has played a larger role in medical practices by offering unbiased, consistent, and timely second opinions. Machine learning algorithms are able to classify medical images automatically if offered in the correct format. This study aims to provide a model, which integrates breast cancer detection, thermal imaging, machine learning, and mobile technology. The conceptual model is theorised from three literature studies regarding: identifiable aspects of breast cancer through thermal imaging, the mobile ecosystem, and classification using machine learning algorithms. The model is implemented and evaluated using an experiment designed to classify automatically thermal breast images of the same quality that mobile attachable thermal cameras are able to capture. The experiment contrasts various combinations of segmentation methods, extracted features, and classification algorithms. Promising results were shown in the experiment with a high degree of accuracy obtained. The successful results obtained from the experimentation process validates the feasibility of the model

    A study of the use of combined thermal and microwave modelling of body regions for microwave thermography

    Get PDF
    Microwave thermography has been used for the objective assessment of inflammation in the knee joints and wrist and finger joints of patients suffering with rheumatoid arthritis by comparison with similar information obtained from a control group of subjects. Combined microwave and thermal modelling has been used to estimate the effective blood supply to the anterior intra-articular region of the patella, and the perfusion of the quadriceps muscle in both groups. 2-D numerical modelling was compared with results obtained using 1-D modelling. Microwave thermography has also been used for the detection of breast cancer. However, problems such as high false positive detection rates have occurred due to natural cyclical breast temperature changes. The thermal behaviour of the normal breast throughout the menstrual cycle has been investigated and it is shown that microwave thermography is capable of detecting temperature variations in the female breast corresponding to the ovulatory and luteal phase of the menstrual cycle. Combined microwave and thermal modelling estimated the effective perfusion of the normal breast to be in the range 0.2 - ˜ 2 kg m-3s-1. This is consistent with previous work. Microwave thermography is a quick, simple technique which clinicians can easily use. It is non-invasive, passive and causes the patient no distress. By using combined microwave and thermal modelling it is possible to estimate tissue blood perfusions and water contents and compare them with expected values. The technique has many potential applications and will hopefully find a secure niche in clinical medicine
    corecore