669 research outputs found

    Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror

    Full text link
    We experimentally demonstrate a simple and robust optical fibers based method to achieve simultaneously efficient excitation and fluorescence collection from Nitrogen-Vacancy (NV) defects containing micro-crystalline diamond. We fabricate a suitable micro-concave (MC) mirror that focuses scattered excitation laser light into the diamond located at the focal point of the mirror. At the same instance, the mirror also couples the fluorescence light exiting out of the diamond crystal in the opposite direction of the optical fiber back into the optical fiber within its light acceptance cone. This part of fluorescence would have been otherwise lost from reaching the detector. Our proof-of-principle demonstration achieves a 25 times improvement in fluorescence collection compared to the case of not using any mirrors. The increase in light collection favors getting high signal-to-noise ratio (SNR) optically detected magnetic resonance (ODMR) signals hence offers a practical advantage in fiber-based NV quantum sensors. Additionally, we compacted the NV sensor system by replacing some bulky optical elements in the optical path with a 1x2 fiber optical coupler in our optical system. This reduces the complexity of the system and provides portability and robustness needed for applications like magnetic endoscopy and remote-magnetic sensing.Comment: 6 pages, 8 figure

    Electronic Music Studios in Britain - 2: University College, Cardiff

    Get PDF
      &nbsp

    The Revolution Will Be Videotaped: Making a Technology of Consciousness in the Long 1960s

    Get PDF
    In the late 1960s, video recorders became portable, leaving the television studio for the art gallery, the psychiatric hospital, and the streets. The technology of recording moving images on magnetic tape, previously of use only to broadcasters, became a tool for artistic expression, psychological experimentation, and political revolution. Video became portable not only materially but also culturally; it could be carried by an individual, but it could also be carried into institutions from the RAND Corporation to the Black Panther Party, from psychiatrists’ offices to art galleries, and from prisons to state-funded media access centers. Between 1967 and 1973, American videographers across many of these institutional contexts participated in a common discourse, sharing not only practical knowledge about the uses and maintenance of video equipment, but visions of its social significance, psychological effects, and utopian future. For many, video was a technology which would bring about a new kind of awareness, the communal consiousness that—influenced by the evolutionary philosophy of Henri Bergson—Pierre Teilhard de Chardin referred to as the noosphere and Marshall McLuhan as the global village. Experimental videographers across several fields were also influenced by the psychedelic research of the 1950s and early 1960s, by the development of cybernetics as a science of both social systems and interactions between humans and machines, by anthropology and humanistic psychology, and by revolutionary political movements in the United States and around the world

    Spartan Daily, February 6, 1986

    Get PDF
    Volume 86, Issue 9https://scholarworks.sjsu.edu/spartandaily/7398/thumbnail.jp

    NASA Tech Briefs Index, 1977, volume 2, numbers 1-4

    Get PDF
    Announcements of new technology derived from the research and development activities of NASA are presented. Abstracts, and indexes for subject, personal author, originating center, and Tech Brief number are presented for 1977

    Transceiver architectures and sub-mW fast frequency-hopping synthesizers for ultra-low power WSNs

    Get PDF
    Wireless sensor networks (WSN) have the potential to become the third wireless revolution after wireless voice networks in the 80s and wireless data networks in the late 90s. This revolution will finally connect together the physical world of the human and the virtual world of the electronic devices. Though in the recent years large progress in power consumption reduction has been made in the wireless arena in order to increase the battery life, this is still not enough to achieve a wide adoption of this technology. Indeed, while nowadays consumers are used to charge batteries in laptops, mobile phones and other high-tech products, this operation becomes infeasible when scaled up to large industrial, enterprise or home networks composed of thousands of wireless nodes. Wireless sensor networks come as a new way to connect electronic equipments reducing, in this way, the costs associated with the installation and maintenance of large wired networks. To accomplish this task, it is necessary to reduce the energy consumption of the wireless node to a point where energy harvesting becomes feasible and the node energy autonomy exceeds the life time of the wireless node itself. This thesis focuses on the radio design, which is the backbone of any wireless node. A common approach to radio design for WSNs is to start from a very simple radio (like an RFID) adding more functionalities up to the point in which the power budget is reached. In this way, the robustness of the wireless link is traded off for power reducing the range of applications that can draw benefit form a WSN. In this thesis, we propose a novel approach to the radio design for WSNs. We started from a proven architecture like Bluetooth, and progressively we removed all the functionalities that are not required for WSNs. The robustness of the wireless link is guaranteed by using a fast frequency hopping spread spectrum technique while the power budget is achieved by optimizing the radio architecture and the frequency hopping synthesizer Two different radio architectures and a novel fast frequency hopping synthesizer are proposed that cover the large space of applications for WSNs. The two architectures make use of the peculiarities of each scenario and, together with a novel fast frequency hopping synthesizer, proved that spread spectrum techniques can be used also in severely power constrained scenarios like WSNs. This solution opens a new window toward a radio design, which ultimately trades off flexibility, rather than robustness, for power consumption. In this way, we broadened the range of applications for WSNs to areas in which security and reliability of the communication link are mandatory

    Rapid Prototyping for Virtual Environments

    Get PDF
    Development of Virtual Environment (VE) applications is challenging where application developers are required to have expertise in the target VE technologies along with the problem domain expertise. New VE technologies impose a significant learning curve to even the most experienced VE developer. The proposed solution relies on synthesis to automate the migration of a VE application to a new unfamiliar VE platform/technology. To solve the problem, the Common Scene Definition Framework (CSDF) is developed, that serves as a superset/model representation of the target virtual world. Input modules are developed to populate the framework with the capabilities of the virtual world imported from VRML 2.0 and X3D formats. The synthesis capability is built into the framework to synthesize the virtual world into a subset of VRML 2.0, VRML 1.0, X3D, Java3D, JavaFX, JavaME, and OpenGL technologies, which may reside on different platforms. Interfaces are designed to keep the framework extensible to different and new VE formats/technologies. The framework demonstrated the ability to quickly synthesize a working prototype of the input virtual environment in different VE formats

    Lamron 2, 1972-10-12

    Get PDF
    Student newspaper includes campus, local and national news stories and photographs. For additional information about this collection see: http://digitalcommons.wou.edu/studentnewspapers
    corecore