9 research outputs found

    A New Parametrization for Independent Set Reconfiguration and Applications to RNA Kinetics

    Get PDF
    International audienceIn this paper, we study the Independent Set (IS) reconfiguration problem in graphs. An IS reconfiguration is a scenario transforming an IS L into another IS R, inserting/removing vertices one step at a time while keeping the cardinalities of intermediate sets greater than a specified threshold. We focus on the bipartite variant where only start and end vertices are allowed in intermediate ISs. Our motivation is an application to the RNA energy barrier problem from bioinformatics, for which a natural parameter would be the difference between the initial IS size and the threshold. We first show the para-NP hardness of the problem with respect to this parameter. We then investigate a new parameter, the cardinality range, denoted by ρ which captures the maximum deviation of the reconfiguration scenario from optimal sets (formally, ρ is the maximum difference between the cardinalities of an intermediate IS and an optimal IS). We give two different routes to show that this problem is in XP for ρ: The first is a direct O(n 2)-space, O(n 2ρ+2.5)-time algorithm based on a separation lemma; The second builds on a parameterized equivalence with the directed pathwidth problem, leading to a O(n ρ+1)-space, O(n ρ+2)-time algorithm for the reconfiguration problem through an adaptation of a prior result by Tamaki [20]. This equivalence is an interesting result in its own right, connecting a reconfiguration problem (which is essentially a connectivity problem within a reconfiguration network) with a structural parameter for an auxiliary graph. We demonstrate the practicality of these algorithms, and the relevance of our introduced parameter, by considering the application of our algorithms on random small-degree instances for our problem. Moreover, we reformulate the computation of the energy barrier between two RNA secondary structures, a classic hard problem in computational biology, as an instance of bipartite reconfiguration. Our results on IS reconfiguration thus yield an XP algorithm in O(n ρ+2) for the energy barrier problem, improving upon a partial O(n 2ρ+2.5) algorithm for the problem

    On the pathwidth of almost semicomplete digraphs

    Full text link
    We call a digraph {\em hh-semicomplete} if each vertex of the digraph has at most hh non-neighbors, where a non-neighbor of a vertex vv is a vertex uvu \neq v such that there is no edge between uu and vv in either direction. This notion generalizes that of semicomplete digraphs which are 00-semicomplete and tournaments which are semicomplete and have no anti-parallel pairs of edges. Our results in this paper are as follows. (1) We give an algorithm which, given an hh-semicomplete digraph GG on nn vertices and a positive integer kk, in (h+2k+1)2knO(1)(h + 2k + 1)^{2k} n^{O(1)} time either constructs a path-decomposition of GG of width at most kk or concludes correctly that the pathwidth of GG is larger than kk. (2) We show that there is a function f(k,h)f(k, h) such that every hh-semicomplete digraph of pathwidth at least f(k,h)f(k, h) has a semicomplete subgraph of pathwidth at least kk. One consequence of these results is that the problem of deciding if a fixed digraph HH is topologically contained in a given hh-semicomplete digraph GG admits a polynomial-time algorithm for fixed hh.Comment: 33pages, a shorter version to appear in ESA 201

    Using decomposition-parameters for QBF: Mind the prefix!

    Get PDF
    Similar to the satisfiability (SAT) problem, which can be seen to be the archetypical problem for NP, the quantified Boolean formula problem (QBF) is the archetypical problem for PSPACE. Recently, Atserias and Oliva (2014) showed that, unlike for SAT, many of the well-known decompositional parameters (such as treewidth and pathwidth) do not allow efficient algorithms for QBF. The main reason for this seems to be the lack of awareness of these parameters towards the dependencies between variables of a QBF formula. In this paper we extend the ordinary pathwidth to the QBF-setting by introducing prefix pathwidth, which takes into account the dependencies between variables in a QBF, and show that it leads to an efficient algorithm for QBF. We hope that our approach will help to initiate the study of novel tailor-made decompositional parameters for QBF and thereby help to lift the success of these decompositional parameters from SAT to QBF

    Zuverlässigkeit in gerichteten Netzwerken

    Get PDF
    Diese Arbeit beschäftigt sich mit verschiedenen Zuverlässigkeitsproblemen in gerichteten Netzwerken. Dabei wird speziell die s,t-Zuverlässigkeit und die s,T-Zuverlässigkeit betrachtet. Dazu werden verschiedene Berechnungs- und Reduktionsmöglichkeiten vorgestellt und anhand von Testrechnungen miteinander verglichen. Außerdem werden für spezielle Graphenklassen explizite und rekursive Formeln angegeben
    corecore