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Abstract

Similar to the satisfiability (SAT) problem, which can be seen to be the archetypi-

cal problem for NP, the quantified Boolean formula problem (QBF) is the archetypical

problem for PSPACE. Recently, Atserias and Oliva (2014) showed that, unlike for SAT,

many of the well-known decompositional parameters (such as treewidth and pathwidth)

do not allow efficient algorithms for QBF. The main reason for this seems to be the lack

of awareness of these parameters towards the dependencies between variables of a QBF

formula. In this paper we extend the ordinary pathwidth to the QBF-setting by intro-

ducing prefix pathwidth, which takes into account the dependencies between variables

in a QBF, and show that it leads to an efficient algorithm for QBF. We hope that our

approach will help to initiate the study of novel tailor-made decompositional parame-

ters for QBF and thereby help to lift the success of these decompositional parameters

from SAT to QBF.

1. Introduction

Many important computational tasks such as verification, planning, and several

questions in knowledge representation and automated reasoning can be naturally en-

coded as the problem of evaluating quantified Boolean formulas [15, 24, 28, 31], a

generalization of the propositional satisfiability problem (SAT). In recent years quanti-

fied Boolean formulas have become a very active research area. The problem of eval-

uating quantified Boolean formulas, called QBF, is the archetypical PSPACE-complete

problem and is therefore believed to be computationally harder than the NP-complete

propositional satisfiability problem [21, 27, 37].

In spite of the close connection between QBF and SAT, many of the tools and tech-

niques that work for SAT are not known to help for QBF, and this is especially true

for so-called decomposition-based techniques [2]. Such techniques use various kinds

of decompositions to capture the structure of the input, leading to efficient algorithms

for computing solutions with run-time guarantees. Decomposition-based techniques
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are tied to a numerical parameter k, which represents the fitness of the decomposition.

The goal is then to obtain algorithms whose running time is polynomial in the input

size n and exponential only in k, i.e., with a running time of f(k) · nO(1) where f is

some computable function; such algorithms are called FPT algorithms, and problems

that admit an FPT algorithm w.r.t. some parameter belong to the class FPT. Promi-

nent examples of decompositions used in such techniques include decompositions for

the structural parameters treewidth [30], pathwidth [29], clique-width [10] and rank-

width [25]; all of these are known to support FPT algorithms for SAT [38, 19], but the

same is not true for QBF. Indeed QBF remains PSPACE-complete even on instances

with constant pathwidth [3]. As a consequence, many classes of QBFs that have a

natural and seemingly “simple” structure remained beyond the reach of current algo-

rithmic techniques; this is also witnessed by previous work of Pan and Vardi [26] that

established strong lower bounds for the problem.

In this work we introduce and develop prefix pathwidth, which is a novel

decomposition-based parameter that allows an FPT algorithm for QBF. Prefix path-

width is an extension of pathwidth, which takes into account not only the structure of

clauses in the formula, but also the structure contained in the quantification of vari-

ables. To achieve the latter, we make use of the dependency schemes introduced by

Samer and Szeider ([32, 34]), see also the work of Biere and Lonsing ([6]). Depen-

dency schemes capture how the assignment of individual variables in a QBF depends

on other variables, and research in this direction has uncovered a large number of dis-

tinct dependency schemes. The most basic dependency scheme is called the trivial

dependency scheme [32], which stipulates that each variable depends on all variables

with distinct quantification that come before it in the prefix. When using this depen-

dency scheme, we obtain (by combining Theorem 2 with Theorem 34):

Theorem 1. QBF is FPT parameterized by the prefix pathwidth with respect to the

trivial dependency scheme.

All of our results can also be applied to prefix pathwidth with respect to so-called

permutation dependency schemes [35]. Informally, a dependency scheme is a permu-

tation dependency scheme if the satisfiability of a QBF formula is independent of the

ordering of the variables in the quantifier prefix as long as the ordering is consistent

with the ordering implied by the dependency scheme. Since almost all known depen-

dency schemes are permutation dependency schemes all our results apply to a wide

range of dependency schemes. In practice, using different dependency schemes may

lead to better prefix path-decompositions, in turn resulting in significantly faster algo-

rithms.

In their full generality, our main results on solving QBF using prefix pathwidth can

be separated into two components:

1. using a prefix path-decomposition of small prefix pathwidth to solve the given

QBF I , and

2. finding a suitable prefix path-decomposition to be used for step 1.

We resolve the first task by applying advanced dynamic programming techniques

on partial existential strategies for the Hintikka game (see e.g., the work of Grädel et
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al. [14]) played on the QBF. Essentially, the game approach allows us to translate the

question of whether a QBF is true to the question of whether there exists a winning

strategy for one player in the Hintikka game. We show that although the number of

such strategies is unbounded, at each point in the prefix path-decomposition there is

only a small number of partial strategies on the processed vertices that need to be

considered. Thus we obtain:

Theorem 2. QBF is FPT parameterized by the width of a prefix path-decomposition

w.r.t. any permutation dependency scheme, when such a decomposition is provided as

part of the input.

Resolving step 2 boils down to an algorithmic problem on graphs, which is related

to the problem of computing various established parameters of directed graphs, such

as directed pathwidth or directed treewidth. It is an important open problem whether

computing these parameters is FPT or not [39] and the same obstacles seem to also be

present for computing our parameter in the general sense. To bypass this barrier, we

develop new algorithmic techniques to obtain three distinct algorithms for computing

prefix path-decompositions. The first of these algorithms, presented in Theorem 34,

works for the trivial dependency poset as well as other posets that have a similar “lay-

ered” structure. The latter two of our algorithms then focus on general posets, but

their performance depends on the poset-width (i.e., the size of a maximum anti-chain)

of the dependency relation; on a high level, the poset-width captures the density of

dependencies between variables. In particular, we obtain one polynomial-time approx-

imation algorithm (Theorem 30) and one FPT algorithm (Theorem 29). In combination

with the previous Theorem 2, Theorem 30 yields one of our main contributions, for-

malized in Theorem 3 below. Observe that here we do not require a decomposition to

be part of the input.

Theorem 3. Let τ be a fixed permutation dependency scheme. There exists an FPT

algorithm that takes as input a QBF I and decides whether I is true in time f(k,w) ·
|I|O(1), where f is a computable function, k is the prefix pathwidth and w is the poset-

width of I w.r.t. τ .

We remark that our results have implications for the tractability of QBF with respect

to already established structural parameters. We provide an example of this in the

Concluding Notes, where we show that QBF is FPT when parameterized by the vertex

cover number of the matrix (irrespective of the prefix), i.e., the QBF formula without

the prefix.

1.1. Related Work

After showing that QBF remains PSPACE-complete on graphs of bounded path-

width [3], the authors introduced a width parameter based on treewidth, which is

called respectful treewidth, that allows to take into account dependencies between the

variables in a QBF formula. They showed that QBF is fixed-parameter tractable pa-

rameterized by respectful treewidth provided that a corresponding tree decomposition

is given as part of the input. Similar results have been shown for first-order model

checking [1] and quantified constraint satisfaction [9]. In the former reference, it is
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also shown that computing an optimal respectful tree decomposition is fixed-parameter

tractable, showing that QBF is fixed-parameter tractable parameterized by respectful

treewidth. As we will show in Section 3, respectful treewidth is incomparable to our

new parameter prefix pathwidth. Informally, there are two main differences between

respectful treewidth and prefix pathwidth: (1) whereas respectful treewidth requires

the ordering in which the variables are introduced (along the tree decomposition) to

be compatible with the dependencies, prefix pathwidth needs the ordering in which

the variables are forgotten (along the path decomposition) to be compatible with the

dependencies and (2) respectful treewidth is solely defined for the trivial dependency

scheme, while prefix pathwidth allows the use of arbitrary permutation dependency

schemes. Other structural parameters such as backdoors have also been studied in the

context of QBF [32].

Recent follow-up work that builds upon the results established in this paper in-

clude a paper by Lampis and Mitsou [23], which (1) investigates upper and lower

bounds when using treewidth to solve QBF with a single quantifier alternation, and

(2) improves the running time of the fixed-parameter algorithm parameterized by the

vertex cover number presented in our Theorem 40. In another recent follow-up [16],

the authors of this paper investigate a different and incomparable parameter related to

treewidth that can be used for solving QBF; the incomparability of that parameter with

the one presented here is established in Lemma 4 in [16].

2. Preliminaries

For i ∈ N, we let [i] denote the set {1, . . . , i}. We refer to the book by Diestel ([12])

for standard graph-theoretic terminology. Given an undirected graph G, we denote by

V (G) and E(G) its vertex and edge set, respectively. We use ab as a shorthand for the

edge {a, b}. For a set of vertices V ′ ⊆ V (G) the guards of V ′, denoted by ∂(V ′), are

the vertices in V ′ with at least one neighbor in V (G) \ V ′. For a vertex v ∈ V (G), we

denote by N(v) the set of its neighbors (excluding v) and for a vertex set V ′ ⊆ V (G),
we denote by N(V ′) the set

⋃

v∈V ′ N(v) \ V ′.

We refer to the standard textbooks [13, 11] for an in-depth overview of parameter-

ized complexity theory. Here, we only recall that a parameterized problem (Q, κ) is a

problem Q ⊆ Σ∗ together with a (computable) parameterization κ : Σ∗ → N, where

Σ is a finite alphabet. A parameterized problem (Q, κ) is fixed-parameter tractable

(w.r.t. κ), in short FPT, if there exists a decision algorithm for Q, a computable func-

tion f : N → N, and a polynomial function p : N → N, such that for all x ∈ Σ∗, the

running time of the algorithm on x is at most f(κ(x)) · p(|x|). Algorithms with this

running time are then referred to as FPT algorithms.

2.1. Quantified Boolean Formulas

For a set of propositional variables K, a literal is either a variable x ∈ K or its

negation ¬x, where var(x) = var(¬x) = x denote the variable of a literal. A clause

is a disjunction over literals. A propositional formula in conjunctive normal form (i.e.,

a CNF formula) is a conjunction of clauses. We say that a CNF formula φ is over a

variable set K if each literal x in φ satisfies var(x) ∈ K, and denote the set of variables
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that occur in φ by var(φ). For notational purposes, we will view a clause as a set

of literals and a CNF formula as a set of clauses. We refer interested readers to the

Handbook of Satisfiability for extended definitions and an in-depth discussion of the

notions presented in this subsection [5].

A quantified Boolean formula is a tuple (φ, τ) where φ is a CNF formula and τ
is a sequence of quantified variables (containing any variable at most once), denoted

var(τ), that satisfies var(τ) ⊇ var(φ); then φ is called the matrix and τ is called the

prefix. A QBF (φ, τ) is true if the formula τφ is true. An (partial) assignment is a

mapping from (a subset of) the variables of var(φ) to {0, 1}.

Given a QBF I = (φ, τ) and a partial assignment ω : Q → {0, 1} where Q ⊆
var(φ), we denote by Iω the instance obtained by applying the partial assignment ω;

similarly, for a clause c ∈ φ we let cω denote the clause obtained from c by applying ω.

The primal graph of a QBF I = (φ, τ) is the graph GI defined as follows. The

vertex set of GI consists of the set of variables that occur in φ, and st is an edge in GI

iff there exists a clause in φ containing both s and t.

2.2. Dependency Schemes and Posets for QBF

We use dependency posets to provide a general and formal way of speaking about

the various dependency schemes introduced for QBF [32].

We begin by formally defining dependency schemes. For a binary relation R over

some set V we write R to denote its inverse , i.e., R = {(y, x) : (x, y) ∈ R}, and we

write R∗ to denote the reflexive and transitive closure of R i.e., the smallest set R∗ such

that R∗ = R∪{(x, x) : x ∈ V }∪{(x, y) : ∃z such that (x, z) ∈ R∗ and (z, y) ∈ R}.

Given a relation R over some set V such that R∗ is antisymmetric, a linear extension

of R is any total order TR over V such that if (a, b) ∈ R∗, then (a, b) ∈ TR. Moreover,

we let R(x) = {y : (x, y) ∈ R} for x ∈ V and R(X) = ∪x∈XR(x) for X ⊆ V .

Given a QBF I = (φ, τ) we will also need the following binary relation over var(τ):
RI = { (x, y) | x, y ∈ var(τ), x is before (to the left of) y in τ }.

To define dependency schemes we need also the notion of shifting, which takes

some subset of the variables of I in the prefix and puts them together with their quan-

tifiers, in the same relative order, to the end (down-shifting) or to the beginning (up-

shifting) of the prefix.

Definition 4 (Shifting, [32]). Let I = (φ, τ) be a QBF and A ⊆ var(τ). We say

that I ′ = (φ, τ ′) is obtained from I by down-shifting (up-shifting) A, in symbols I ′ =
S↓(I, A) (I ′ = S↑(I, A)), if I ′ is obtained from I by reordering quantifiers together

with their variables in the prefix such that the following holds:

1. A = RI′(x) (A = RI′(x)) for some x ∈ var(τ) and

2. (x, y) ∈ RI′ iff (x, y) ∈ RI for all x, y ∈ A and

3. (x, y) ∈ RI′ iff (x, y) ∈ RI for all x, y ∈ var(τ) \A

Definition 5 (Dependency Scheme, [32]). A dependency scheme D assigns to each

QBF I a binary relation DI ⊆ RI such that I and S↓(I,D∗
I (x)) are satisfiability-

equivalent (i.e., logically equivalent) for every variable x of I .
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Observe that since DI ⊆ RI , D∗
I is always antisymmetric. It is important to note

that dependency schemes in general are too general a notion for our purposes. Namely,

for our algorithm for QBF using prefix pathwidth, we require dependency schemes

that lead to satisfiability-equivalent QBF instances even after several (up-)shifting op-

erations; without updating the dependency scheme DI after up-shifting. This is why

we will focus our attention on so-called permutation dependency schemes [35], which

are known to satisfy this condition.

Definition 6 (Permutation dependency scheme, [35]). A dependency scheme D is a

permutation dependency scheme if for every QBF I = (φ, τ) and every linear exten-

sion D′
I of D∗

I , it holds that the QBF obtained by permuting the prefix τ according to

D′
I is equivalent with I .

Note that the definition above implies that permutation dependency schemes pre-

serve satisfiability (i.e., result in satisfiability-equivalent instances) after several (up-

or down-) shifting operations because each shifting operation leads to an ordering of

the prefix that is a linear extension of the dependency scheme applied to the original

formula.

A partially ordered set (poset) V is a pair (V,≤V ) where V is a set and ≤V is a

reflexive, antisymmetric, and transitive binary relation over V . A chain W of V is a

subset of V such that x ≤V y or y ≤V x for every x, y ∈ W . An anti-chain A of

V is a subset of V such that for all x, y ∈ V neither x ≤V y nor y ≤V x. A chain

partition of V is a tuple (W1, . . . ,Wk) such that {W1, . . . ,Wk} is a partition of V and

for every i with 1 ≤ i ≤ k the poset induced by Wi is a chain of V . The width (or

poset-width) of a poset V , denoted by width(V) is the maximum cardinality of any anti-

chain of V , which by Dilworth’s theorem is equal to the minimum size of any chain

partition of V . A subset A of V is downward-closed if for every a ∈ A it holds that

b ≤V a =⇒ b ∈ A. For brevity we will often write ≤V for the poset V := (V,≤V ).

Proposition 7 ([18]). Let V be a poset. Then in time O(width(V) · ‖V‖2), it is possible

to compute both width(V) = w and a corresponding chain partition (W1, . . . ,Ww)
of V .

Definition 8 (Dependency poset). Given a QBF I = (φ, τ) a dependency poset V =
(var(φ),≤I) of I is a poset over var(φ) such that for every linear extension < of V , it

holds that I and the QBF instance obtained from I after reordering its prefix according

to < are equivalent.

Note that every permutation dependency scheme gives rise to an dependency poset.

Namely, given a QBF I = (φ, τ) and a permutation dependency scheme D, the poset

over var(φ) such that x ≤I y iff (x, y) ∈ D∗
I for all x, y ∈ var(φ) is a dependency

poset.

The trivial dependency scheme assigns to each variable x the closest variables on

the right of x in the prefix with different quantification; this corresponds to the fact

that variables within the same quantifier block can be permuted without changing the

semantics of the formula. This gives rise to the trivial dependency poset, which has

a certain “layered” structure; more details about these posets are presented in Subsec-

tion 5.2. However, more refined dependency posets are known to exist and can be

computed efficiently [32].
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To illustrate these definitions, consider the following QBF I:

∀x∃y∀u∃v(x ∨ ¬y ∨ v) ∧ (¬u ∨ ¬v ∨ y) ∧ (¬x ∨ u ∨ ¬v).

As an example, consider the following dependency poset on variables of I: x ≤I

u ≤I v, and y is incomparable to all other variables. Up-shifting of the downward-

closed set {x, u} yields the QBF I ′:

∀x∀u∃y∃v(x ∨ ¬y ∨ v) ∧ (¬u ∨ ¬v ∨ y) ∧ (¬x ∨ u ∨ ¬v).

One can readily see that I and I ′ are both true. The trivial dependency poset over I
is the poset given by the chain x ≤I y ≤I u ≤I v, where every downward-closed set

cannot be further up-shifted.

2.3. Pathwidth and Treewidth

Definition 9 (Tree decomposition). A tree-decomposition of a graph G is a pair

(T, {Xt}t∈V (T )), where T is a rooted tree whose every vertex t is assigned a vertex

subset Xt ⊆ V (G), called a bag, such that the following properties hold:

(P1) ∪t∈V (T )Xt = V (G),

(P2) for every u ∈ V (G), the set Tu = {t ∈ V (T ) : u ∈ Xt} induces a connected

subtree of T , and

(P3) for each uv ∈ E(G) there exists t ∈ V (T ) such that u, v ∈ Xt.

To distinguish between the vertices of the tree T and the vertices of the graph G,

we will refer to the vertices of T as nodes. The width of the tree-decomposition T is

maxt∈T |Xt| − 1. The treewidth of G, tw(G), is the minimum width over all tree-

decompositions of G.

For our definition of respectful treewidth the following alternative characterization

of the treewidth of a graph becomes handy.

Definition 10 (Elimination ordering). An elimination ordering of a graph is a linear

order π = (v1, . . . , vn) of its vertices. Given an elimination ordering π of the graph

G, the fill-in graph H of G w.r.t. π is the unique minimal graph such that:

• V (G) = V (H).

• E(H) ⊇ E(G).

• If 0 ≤ k < i < j ≤ n and vi, vj ∈ NH(vk), then vivj ∈ E(H).

The width of elimination ordering π is the maximum number of neighbors of any vertex

v that are larger than v (w.r.t. π) in H .

The following proposition shows that tree decompositions and elimination order-

ings are two equivalent characterizations of treewidth.

Proposition 1 ([22]). Let G be a graph. The following two statements are equivalent:
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• G has treewidth k,

• G has an elimination ordering of width k,

A path-decomposition P is a tree decomposition where the tree T is a path (rooted

at one of the endpoints). Observe that any path-decomposition can be fully charac-

terized by the order of appearance of its bags along T , and hence we will consider

succinct representations of path-decompositions in the form P = (P1, . . . , Pd), where

Pi is the i-th bag in P . The width of a path-decomposition and the pathwidth of G,

pw(G), are defined analogously.

We say that a path-decomposition P = (P1, . . . , Pd) is nice if P1 = Pd = ∅,

and furthermore for all i = 1, . . . , d − 1 either |Pi+1| = |Pi| + 1 and Pi ⊆ Pi+1

(in which case we call the node Pi+1 an introduce node) or |Pi+1| = |Pi| − 1 and

Pi ⊇ Pi+1 (in which case we call the node Pi+1 a forget node). We note that there

exists a polynomial-time algorithm that converts a given arbitrary path-decomposition

into a nice path-decomposition of the same width [22, 7].

2.4. Respectful Treewidth

For our comparison to prefix pathwidth, we need to define respectful treewidth as

it has for instance been introduced in [9, 1, 3].

Let I = (φ, τ) be an QBF instance. An elimination ordering of GI is respectful if

it is a linear extension of the reverse of the trivial dependency scheme for I; intuitively,

this corresponds to being forced to eliminate variables that have the most dependencies

first. The respectful treewidth is then defined as the minimum width of any respectful

elimination ordering of GI .

3. Prefix Pathwidth for QBF

Let G = (V,E) be a graph and ≤V be a partial order of V . For a vertex v ∈
V , we denote by D≤V (v) the downward closure of v w.r.t. ≤V , i.e., the set {u ∈
V (G) | u ≤V v }. Similarly, for W ⊆ V we let D≤V (W ) =

⋃

v∈W D≤V (v).
Let T = (T, {Xt}t∈V (T )) be a tree decomposition of G. For a node t of T we

denote by Tt the subtree of T rooted at t, by T≤t the set
⋃

s∈Tt
Xs, and by T<t the set

T≤t \ Xt. For a vertex v ∈ V (G) we denote by fT (v) the unique node t satisfying

v ∈ Xt and v 6∈ Xs, where s is the parent of t in T . For a path decomposition

P = (P1, . . . , Pn) of G we define P≤i, P<i, and fP(v) analogously; here and in the

following, we will assume that a path decomposition is rooted in the right-most node,

which in this example is Pn.

A prefix tree-decomposition of G = (V,E) w.r.t. ≤V is a tree-decomposition T =
(T, {Xt}t∈V (T )) that has the downward closure property, i.e., for every vertex v ∈ V
it holds that D≤V (v) ⊆ T≤fT (v). Analogously, a prefix path-decomposition of G =
(V,E) w.r.t. ≤V is a path-decomposition P that has the downward closure property.

The prefix treewidth of G w.r.t. ≤V , denoted by ptw≤V (G), is the minimum width

over all prefix tree decompositions of G. The prefix pathwidth, denoted by ppw(G), is

defined analogously.
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The following theorem shows us that if the width of the dependency poset is small,

then prefix pathwidth is actually a good approximation of the prefix treewidth w.r.t. the

same dependency poset and hence by using the simpler path-decompositions we can

get the same result.

Theorem 11. Let G = (V,E) be a graph and w the width of the poset (V,≤V ). Then

ppw≤V (G) ≤ w · ptw≤V (G).

Proof. Let T = (T, {Xt}t∈T ) be an optimal prefix tree-decomposition of G w.r.t. ≤V .

We begin our proof by showing the following claim:

Claim 1. Let W be a chain of the poset (V,≤V ). Then there exists a leaf-to-root path

in T that contains fT (v) for every v ∈ W .

Proof of Claim. Suppose for a contradiction that the set { fT (v) | v ∈ W } does not

lie on a leaf-to-root path. This means that there exist two vertices u, v ∈ W such

that fT (v) 6∈ TfT (u) and fT (u) 6∈ TfT (v). W.l.o.g. we can assume that u ≤V v.

The downward closure property of T then implies that u ∈ T≤fT (v), but then either

u ∈ XfT (v) and fT (v) ∈ TfT (u), or u 6∈ XfT (v) and by then the downward closure

property also fT (u) ∈ TfT (v), in either case leading to a contradiction. �

From the above claim it follows that if T does not contain unnecessary nodes, i.e.,

a node t of T is unnecessary if Xt ⊆ Xp for the parent p of t in T , then T has at

most w leaves. Hence, the prefix path-decomposition P := (P1, . . . , Ph), where h is

the height of T , defined by Pi = { v | v ∈ B, where B is a bag of distance i from the

root of T } is a prefix path-decomposition of G w.r.t. ≤V of width at most w times the

width of T .

We build on the above definitions to define the notions we need on QBFs. A prefix

path-decomposition of a QBF I = (φ, τ) w.r.t. a dependency poset V = (var(φ),≤I)
is a prefix path-decomposition of the primal graph GI w.r.t. ≤I . The prefix pathwidth

of I is then the minimum width over all prefix path-decompositions of GI w.r.t. V . We

note that using the same technique as for path-decomposition, one can show that every

prefix path-decomposition of G can be turned into a nice prefix path-decomposition

of the same width in polynomial time. We also remark that if the dependency poset

imposes no restrictions, as it is the case, e.g., if all variables are quantified in the same

way, then prefix pathwidth is equal to the pathwidth (of the primal graph).

In order to compute prefix path-decompositions, we will later (in Section 5) in-

troduce other equivalent characterizations of prefix pathwidth, and these may provide

additional insight into the notion. For instance, readers familiar with the notion of

directed pathwidth [39] may be interested in the characterization provided by Obser-

vation 27.

3.1. Comparison to Respectful Treewidth

Respectful treewidth is based on Q-resolution [8] and thus decomposes the depen-

dency structure beginning from variables that have the most dependencies (i.e., could

be down-shifted to the end of the prefix). In contrast, our parameter prefix pathwidth

is based on bounding the number of viable strategies in the classical two-player game

9



characterization of the QBF problem. As such, it decomposes the dependency structure

of a QBF instance beginning from variables that have the least dependencies (i.e., may

be up-shifted to the beginning of the prefix). Lemma 12 shows that both approaches

are, in principle, incomparable: there exist classes of QBF instances where one ap-

proach leads to polynomial-time algorithms and the other does not, and vice-versa.

Lemma 12. Let P be the trivial dependency poset. There exist infinite classes A,B of

QBF instances such that:

a. A has unbounded respectful treewidth but prefix pathwidth w.r.t. P at most 1;

b. B has unbounded prefix pathwidth (and prefix treewidth) w.r.t. P but respectful

treewidth at most 1.

Proof. a. Let

Ai = ∃x1, . . . , ∃xi∀y∃x(y ∨ x) ∧
i
∧

j=1

(xj ∨ x).

The trivial dependency poset Pi for Ai is {x1, . . . , xi} ≤ y ≤ x. Hence every re-

spectful elimination ordering must start with x, and then the width of such an ordering

would be i + 1. On the other hand, it is straightforward to verify that the path decom-

position Q = (Q1, . . . , Qi+1), where Qj = {xj , x} for 1 ≤ j ≤ i and Qi+1 = {y, x},

is a prefix path-decomposition w.r.t. Pi of width 1.

b. Consider the following formula with alternating prefix:

Bi = ∃x1∀x2∃x3 . . . ∀x2i∃x2i+1

2i−1
∧

j=1

((xj ∨ x2j) ∧ (xj ∨ x2j+1).

Since the quantifiers in the prefix of Bi alternate, the trivial dependency poset Pi for Bi

would be the linear order x1 ≤ x2 ≤ · · · ≤ x2i . It is readily observed that the primal

graph of Bi is a balanced binary tree of depth i, and it is known that the pathwidth of

such trees is ⌈(i− 1)/2⌉ [33]. From the fact that pathwidth is a trivial lower bound for

prefix pathwidth together with Theorem 11, it follows that i − 1 is a lower bound on

the prefix treewidth of Bi.

On the other hand, since Pi is a linear order, the only respectful elimination order-

ing is the reverse of Pi. Moreover, from the definition of Bi, it is easily seen that xj has

at most 1 neighbor that is smaller w.r.t. Pi, namely x⌊j/2⌋. Therefore, the respectful

treewidth of Bi is one.

4. Using Prefix Pathwidth

In this section we will show that deciding the satisfiability of a QBF is fixed-

parameter tractable parameterized by the width of a prefix path-decomposition, which

is assumed to be provided as part of the input. The next section will then show how

such a prefix path-decomposition can be computed efficiently.
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4.1. Section Overview

The route to the main goal of this section, i.e., an FPT algorithm for QBF, can be

conceptually separated into three parts, each corresponding to one subsection. First,

our techniques essentially rely on the well-known Hintikka Games [14], which we

introduce in the next subsection. In particular, the notion of a “winning existential

strategy” will be crucial for the algorithm; a QBF instance is true if and only if the

existential player has a winning strategy. Second, we show that even though the num-

ber of existential strategies can be potentially unbounded, they can be grouped into

a small (i.e., bounded by k) number of equivalence classes. This equivalence is for-

malized in Definition 17 via the use of so-called “signatures”. The final subsection

then presents the dynamic programming algorithm itself; the algorithm maintains and

dynamically computes records of relevant signatures, which contain all the needed in-

formation about existential strategies on the dynamically processed variables.

4.2. Hintikka Games

Alternating prenex form. For the definition of Hintikka Games (and in particular their

strategies), it will be convenient to use an equivalent but more structured represen-

tation of QBFs. A QBF is in alternating prenex form if the prefix has the form

∀y1∃x1, . . . , ∀yℓ∃xℓ. Any QBF in alternating prenex form can then be represented

as a tuple (φ, Y,X) where φ is the matrix and Y = (y1, . . . , yℓ) and X = (x1, . . . , xℓ)
are disjoint ordered sets of the variables in the prefix.

We remark that any QBF can be transformed into alternating prenex form in linear

time by the addition of dummy variables, i.e., variables which do not occur in the

matrix. It is readily observed that if two dummy variables occur consecutively in the

prefix, then they can both be deleted without changing the truth value of the QBF. As a

consequence, we may freely assume that the number of dummy variables will never be

greater than
|var(φ)|

2 . Moreover, adding the dummy variables does not change the prefix

path-decomposition since the dummy variables do not occur in the matrix but solely in

the prefix of the QBF formula. In the remainder of this section, we will assume that

every QBF is in alternating prenex form.

Hintikka Games. Given a QBF (φ, Y,X) such that |X| = |Y | = ℓ, a strat-

egy for Eloise (an existential strategy) is a sequence of mappings Γ = (τi :
{0, 1}i → {0, 1})i=1,...,ℓ. An existential strategy Γ is winning if, for any mapping

δ : {y1, . . . , yℓ} → {0, 1}, the formula φ is true under the assignment yi 7→ δ(yi) and

xi 7→ τi(δ(y1), . . . , δ(yi)) for 1 ≤ i ≤ ℓ. A partial existential strategy is a sequence

of mappings Γ = (τi : {0, 1}
i → {0, 1})i=1,...,ℓ′ , for some ℓ′ ≤ ℓ.

A strategy for Abelard (a universal strategy) is defined analogously, whereas the

mappings δ and τ are swapped, and we call a universal strategy winning if φ is not

true when variables are valuated according to the strategy. Formally, it is a sequence of

mappings Λ = (λi : {0, 1}
i−1 → {0, 1})i=1,...,ℓ. A universal strategy Λ is winning if,

for any mapping δ : {x1, . . . , xℓ} → {0, 1}, the formula φ is false under the assignment

xi 7→ δ(xi) for 1 ≤ i ≤ ℓ, y1 7→ λ1, and yi 7→ λi(δ(x1), . . . , δ(xi−1)) for 2 ≤ i ≤ ℓ.
A mapping δ from a subset of Y to {0, 1} is called a universal play, and similarly a

mapping δ from a subset of X to {0, 1} is called an existential play. It will sometimes
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be useful to view plays as binary strings, and in this context we will use the symbol ◦
to denote the concatenation of two strings; for instance, if δ(x1) = 1 and δ(x2) = 0,

then one can represent δ as (1, 0), and (1, 0) ◦ (0) = (1, 0, 0). It is easily observed that

plays on dummy variables do not need to be taken into account by a winning existential

strategy.

Proposition 13 (folklore). A QBF I is true iff there exists a winning existential strategy

on I iff there exists no winning universal strategy on I .

Let α be a partial existential strategy restricted to X ′ = (x1, . . . , xa) and let β
be a universal play over Y ′ = {y1, . . . , yb}. Then the pair (β, α) results in a partial

assignment δ of X ′ ∪ Y ′, formally given as follows (for i up to min(a, b)): δ(yi) =
β(yi) and δ(xi) = α(β(y1), β(y2), . . . , β(yi)). We denote this as (β, α)  δ. For

brevity, we also sometimes just write (β, α) for the assignment δ given by (β, α) δ.

For the remainder of this section, we fix the following notions. Let I = (φ, Y,X)
be a QBF, let ≤I be a partial order forming a dependency poset of I (w.r.t. some permu-

tation dependency scheme), and let P := (P1, . . . , Pn) be a prefix path-decomposition

of I w.r.t. ≤I of width k. Moreover, for every i with 1 ≤ i ≤ n, let Di = D≤I (P<i),
Ci = P<i (see Figure 1), and let I be up-shifted on Di.

Pi

GI \ (Pi ∪Ci)Ci Di

Figure 1: Pi is a bag in P that separates Ci, i.e., vertices forgotten in some bag before Pi, from the rest of

the graph. Di is the downward closure of Ci w.r.t. ≤I .

Observation 14. For any i with 1 ≤ i ≤ n, Pi forms a separator in GI and hence each

clause in φ either contains only variables in P≤i or only variables in (Y ∪ X) \ Ci.

Furthermore, Di ⊆ P≤i and Ci ⊆ Di.

Note that Ci can be a proper subset of Di since the downward closure D≤I (P<i)
can contain a vertex in Pi ∩ Pi−1.

Hintikka games allow us to decide the truthfulness of a QBF by computing all

strategies for the existential player. We will show next that even though the number of

possible strategies that can be used for the variables in each P≤i is huge, it is sufficient

to only remember a small number of “representative strategies” that can be used on

P≤i to allow dynamic programming along the prefix path-decomposition. The proof

of this claim is based on considering two layers of equivalences and showing that they

both only have a small number of equivalence classes.

4.3. Equivalence of Assignments

Recall that for a partial assignment δ the notion Iδ refers to I after δ has been

applied. Also recall that we view clauses as sets of literals and CNF formulas as sets
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of clauses. Therefore, it is possible that Iδ1 = Iδ2 even if δ1 6= δ2.

The first equivalence, which serves as the building block for the latter one, consid-

ers partial assignments that are defined exactly on the variable set Di.

Definition 15. Let δ1 and δ2 be two partial assignments defined exactly on the vari-

ables in Di. Then we say δ1 ≈ δ2 if Iδ1 = Iδ2 .

It is readily observed that ≈ is an equivalence. We prove that its index is bounded

by a function of k.

Lemma 16. ≈ has at most 22
O(k)

equivalence classes.

Proof. Consider two partial assignments δ1, δ2 defined exactly on the variables in Di.

Let U be the set of all possible clauses over Pi \ Di (including the empty clause);

clearly |U | ≤ 3k. Let U1 contain the clauses from U that occur in Iδ1 , and similarly

for U2 and Iδ2 . Let δ′i be the restriction of δi to variables from Di ∩ Pi.

Claim 2. If U1 = U2 and δ′1 = δ′2, then δ1 ≈ δ2.

Proof of Claim. Clearly, Iδ1 and Iδ2 are defined on the same variables. It remains to

show that both contain the same clauses. Let c be a clause of I . Because of Observa-

tion 14 either c ⊆ (X ∪ Y ) \ Ci or c ⊆ P≤i. In the first case, it follows from δ′1 = δ′2
that cδ1 = cδ2 and hence Iδ1 contains cδ1 if and only if so does Iδ2 . In the later case,

we obtain that cδ1 ⊆ Pi \ Di. Hence, because U1 = U2, we obtain that Iδ1 contains

cδ1 if and only if so does Iδ2 . �

The Lemma then follows from the above claim because there are at most 2|U | = 23
k

possible choices of Ui and at most 2k possible choices of δ′i.

4.4. Equivalence of Strategies

For a partial existential strategy α on Di, we denote by Sα (referred to as the signa-

ture) the set containing each instance I ′ such that there exists a universal play β that to-

gether with α results in I ′; formally, Sα = { Iδ | ∃ universal play β such that (β, α) 
δ }.

Definition 17. Let α1 and α2 be two partial existential strategies on Di. Then α1 ≡ α2

iff Sα1
= Sα2

.

Once again, it is easy to verify that ≡ is transitive, reflexive and symmetric, and

hence is an equivalence relation. We show that its index is also upper-bounded by a

function of k.

Lemma 18. For any partial existential strategy α on Di it holds that |Sα| ≤ 22
O(k)

.

Furthermore, ≡ has at most 22
2O(k)

equivalence classes.

Proof. By Lemma 16 each partial assignment δ that is defined exactly on the variables

in Di results in one of at most 22
O(k)

many distinct QBF instances Iδ . Because Sα is

a subset of the set of all these instances for any partial existential strategy α, it follows

that |Sα| ≤ 22
O(k)

and moreover that there are at most 22
2O(k)

distinct choices for

Sα.
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Below we prove that the signatures of partial strategies obtained from winning

strategies contain only true instances.

Lemma 19. Let I be a QBF and let α be a winning existential strategy for I . Then, for

any partial existential strategy α′ that is a subset of α, it holds that I ′ is true for any

I ′ ∈ Sα′ .

Proof. Assume for a contradiction that this is not case and let α′ be defined on the

variables in X ′ ∪ Y ′, where X ′ ⊆ X and Y ′ ⊆ Y and let I ′ ∈ Sα′ be a no-instance.

Because I ′ ∈ Sα′ there is a universal play β0 on the variables in Y ′ such that I ′ = Iδ0 ,

where (β0, α
′)  δ0. Because I ′ is a no-instance there is an universal play β1 on the

variables in Y \ Y ′ such that the instance Iδ , where (β0 ◦ β1, α)  δ, contains the

empty clause. Hence, the universal play β0 ◦ β1 wins against α on I , contradicting our

assumption that α is a winning strategy.

We will also need the converse of the above claim, formulated below.

Observation 20. If there exists a partial existential strategy α on Di such that each

I ′ ∈ Sα is true, then I is true.

Proof. A winning existential strategy for I can simply apply α until it reaches a true

(sub)-instance I ′ ∈ Sα. From there on, it can continue with a winning existential

strategy for I ′.

4.5. The Algorithm

In this subsection, we develop a dynamic programming algorithm on a nice prefix

path-decomposition P = (P1, . . . , Pn) of I to decide whether I is true. Recall that by

the above, for each partial existential strategy α on Di there is a signature Sα. For each

Di, we will compute the set Ki of all signatures corresponding to any partial existential

strategy on Di; formally, Ki = {Sα | α is an existential strategy on Di }. We call Ki

the signature set of Di, and the algorithm proceeds by computing the sets K1, . . . ,Kn

for the bags P1, . . . Pn. One key observation is that for the construction of the sets Ki

one only needs to consider a special type of partial existential strategies on Di, which

we will call oblivious.

A (partial) existential strategy α on X0 = (x1, . . . , xj) is oblivious if it does not

distinguish between universal plays that lead to the same reduced instance. More pre-

cisely, if two universal plays on the first l universal variables result in the same reduced

instance, then an oblivious (partial) existential strategy α shall not distinguish between

these two universal plays in the moves following after l. Formally, α is oblivious if

it satisfies the following condition for every partial existential strategy α′ obtained as

a restriction of α to (x1, . . . , xl), l < j, and for every two universal plays β1, β2 on

(y1, . . . , yl) such that Iδ1 = Iδ2 where (β1, α
′)  δ1 and (β2, α

′)  δ2. Let p sat-

isfy l < p ≤ j, and for each βp = {0, 1}p−l let (β1 ◦ βp, α)  δ′′1 and similarly

(β2 ◦ βp, α) δ′′2 . Then, for every xi where l < i ≤ p, it holds that δ′′1 (xi) = δ′′2 (xi).
The following shows we can compute Ki, by merely considering signatures of oblivi-

ous partial existential strategies.
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Lemma 21. Let I be a QBF. For any partial existential strategy there is an oblivious

partial existential strategy that has the same signature.

Proof. Let α be a partial existential strategy of I . If α is oblivious, then the claim of

the lemma holds. So assume that α is not oblivious. We will show how to transform α
into an oblivious partial existential strategy without changing the signature. Let l be the

smallest number such that the restriction α′ of α to (x1, . . . , xl) violates the definition

of obliviousness for some universal plays β1, β2 on (y1, . . . , yl). Let S = { Iδ | ∃β′ ∈
{0, 1}l : (β′, α′)  δ }, and for each Iδ ∈ S let us choose an arbitrary representative

βδ such that (βδ, α
′) δ.

Now consider the strategy α′′ which copies α in all mappings except for the fol-

lowing. For each universal play β1 on (y1, . . . , yl) such that β1 is distinct from each

of the representatives βδ , for each p where l < p, and for each βp ∈ {0, 1}p−l, we set

α′′
p(β1 ◦ βp) := αp(βδ ◦ βp), where δ satisfies Iδ = I(β1,α). Observe that α′′ no longer

violates the condition of obliviousness for any β1 on (y1, . . . , yl). Additionally, if the

condition of obliviousness was satisfied by α for a pair of universal plays β′
1, β′

2 then

it remains satisfied also by α′′. For now, assume α′′ has the same signature as α; then

by repeating the above procedure until we obtain an oblivious strategy would prove the

claim of the lemma.

To complete the proof, we argue that α′′ has the same signature as α. Let β be

an assignment of Y partitioned into β1 (on (y1, . . . , yl)) and βr (on the remaining

universal variables) and let δ1 be the assignment obtained as (β1, α
′′) δ1. Moreover,

let βδ be the representative of Iδ1 and let δ2 be the assignment obtained as (βδ, α)  
δ2. Then, Iδ1 = Iδ2 and (β1 ◦ βr, α

′′) is equal to (βδ ◦ βr, α) on all variables xi, yi
with i > l (by definition of α′′). Hence, Iδ′1 = Iδ′2 , where (β1 ◦ βr, α

′′)  δ′1 and

(βδ ◦ βr, α) δ′2, as required.

The algorithm then consists of the following four procedures, each tied to a specific

claim:

1. Initialization(Observation 22): this is the procedure that is called at the beginning

of the algorithm, i.e., for the empty bag P1.

2. Introduce (Observation 23): this is the procedure that is called whenever we have

computed Ki−1 and Pi is an introduce node.

3. Forget (Lemma 24): this is the procedure that is called whenever we have com-

puted Ki−1 and Pi is a forget node.

4. Termination (Observation 25): this is the procedure that is called when we have

computed Kn.

The claims are provided below. We remark that each procedure not only computes

the next signature set, but also implicitly ensures that I is up-shifted on Di.

Observation 22. There exists a constant-time algorithm which takes as input a QBF

instance I and a prefix path-decomposition P and outputs K1.
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Proof. Since D1 is empty, K1 contains only a single signature (the signature of the

empty strategy), which contains I . In other words, K1 = {{I}}. Observe that I is

up-shifted on D1.

Observation 23. There exists a constant-time algorithm which takes as input a QBF

instance I , a prefix path-decomposition P and the signature set Ki−1 and outputs Ki

when Pi is an introduce node.

Proof. Assume Pi = Pi−1 ∪ {z}, where z ∈ X ∪ Y . Then P<i−1 = P<i and in

particular z 6∈ Di. Hence Ki = Ki−1. Observe that if I was up-shifted on Di−1, then

I will also be up-shifted on Di.

Lemma 24. There exists an FPT algorithm (with run-time 22
2O(k)

· |φ|) which takes as

input a QBF I , a prefix path-decomposition P such that I is up-shifted on Di−1 and

the signature set Ki−1 and outputs Ki when Pi is a forget node.

Proof. Assume Pi = Pi−1 \ {z}, where z ∈ X ∪ Y . Then z ∈ P<i but z 6∈ P<i−1,

which implies that Di = Di−1 ∪ D≤I (z). The algorithm checks whether z ∈ Di−1

or not. If z ∈ Di−1, then D≤I (z) ⊆ Di−1 and hence Di = Di−1. This means that

Ki = Ki−1.

If z 6∈ Di−1, then let Z = D≤I (z) \ Di−1 = Di \ Di−1. Observe that Z ⊆ Pi

and hence |Z| ≤ k. We apply up-shifting on Di; since I was already up-shifted on

Di−1, this means that after up-shifting the prefix of I will contain first the variables in

Di−1, followed by the variables in Z, and then all remaining variables. Our goal is now

to expand the signature set Ki−1 by considering all possible results of an existential

strategy and universal play on Z. We first formalize the notion of extended signature

below, and then describe how the algorithm proceeds.

Let S be a signature in Ki−1 and let Iδ ∈ S. Let A be the set of all partial

existential strategies in Iδ on the variable set Z ∩ X . Since Z forms a prefix of Iδ
and |Z| ≤ k, it follows that |A| ≤ 22

O(k)

. Similarly, let B be the set of all universal

plays in Iδ on the variable set Z ∩ Y , and observe |B| ≤ 2k. The extended signature

w.r.t. Iδ and α0 ∈ A is the set SIδ
α0

= { Iω | ω = δ ∪ δ′, whereas ∃β0 ∈ B :
(β0, α0)  δ′ within Iδ }. Observe that, by the bound on |B|, it follows that each

extended signature can be computed from a given Iδ and α0 in 2k · O(|φ|) time.

The algorithm begins by setting K ′
i := ∅ and iteratively processes each S ∈

Ki−1 as follows. Let S = {I1, . . . , Im}. The algorithm branches over all m-

tuples of (possibly non-distinct) partial existential strategies from A, and for each

such τ = (α1, α2, . . . , αm) ∈ Am it produces m pair-wise extended signatures

SI1
α1
, SI2

α2
, . . . , SIm

αm
. It then computes their union Sτ =

⋃

j∈[m] S
Ij
αj , and updates

K ′
i := K ′

i ∪ {Sτ}. Therefore, for every S ∈ Ki−1, the run-time for updating K ′
i

is equal to (|A|)|S|2k|φ|. Since |A| ≤ 22
O(k)

, |S| ≤ 22
O(k)

(by Lemma 18), and

|Ki−1| ≤ 22
2O(k)

(by Lemma 18), we obtain that the total run-time of this algorithm is

at most 22
2O(k)

· |φ|.
It remains to show that K ′

i = Ki. We first show that if S ∈ K ′
i, then S ∈ Ki.

Because S ∈ K ′
i, there exists S0 ∈ Ki−1, where S0 = {I1, . . . , Im}, along with an

m-tuple τ := (α1, . . . , αm) of partial existential strategies such that S =
⋃

j∈[m] S
Ij
αj .
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Let us fix one arbitrary partial existential strategy α0 on Di−1 with the signature S0.

Then, α0 partitions all possible assignments B of Y ∩Di−1 into sets B1, . . . ,Bm where

β ∈ Bj iff (β, α0) Ij .

Consider the partial existential strategy α on Di which proceeds as follows. On

Di−1, it copies α0. On Di \ Di−1, it takes each universal play β and decomposes it

into β0 ◦βz , where β0 is the universal play on Di−1 and βz is the universal play on the

remaining variables, i.e., a subset of Di \Di−1 and copies αj on βz . By construction,

it follows that α has the signature S, which implies that S ∈ Ki, as required.

Now assume that S ∈ Ki. Because of Lemma 21, it holds that S is the signature

of an oblivious partial existential strategy α on Di. Let α0 be the restriction of α to

Di−1, and let S0 = {I1, . . . , Im} be the signature of α0 in Ki−1. Then α0 once again

partitions all possible assignments B of Y ∩Di−1 into sets B1, . . . ,Bm where β ∈ Bj

iff I(β,α0) = Ij .

For any j ∈ [m], let βj be an arbitrary universal play in Bj . Moreover, let αj be

the partial existential strategy (operating on Ij) defined as follows. For each universal

play βz on (a subset of) Y ∩Z, we let αj copy the move of α against the universal play

βj ◦ βz . Observe that because α is oblivious, αj is independent of the actual choice of

βj in Bj .

We claim that S = Sτ for τ = (α1, . . . , αm), which implies that S ∈ K ′
i. We first

show that if I ∈ S then I ∈ Sτ . Hence, let I ∈ S. Then, there is a universal play β
on Di such that I = I(β,α). Let β0 be the restriction of β to Di−1 ∩ Y , let β1 be the

restriction of β to Z ∩ Y , and let j be such that β0 ∈ Bj . Then, because α is oblivious,

it holds that I = I(βj◦β1,α) ∈ S
Ij
αj . This shows that I ∈ Sτ , as required.

For the reverse direction let I ∈ Sτ . Then, there is a j ∈ [m] such that I ∈ S
Ij
αj .

Hence, there is a universal play βz on Z ∩ Y such that I = I(βj◦βz,α), which implies

I ∈ S, as required.

Observation 25. There exists a constant-time algorithm which takes as input a QBF

instance I and a prefix path-decomposition P = {P1, . . . , Pn} and the signature set

Kn and decides whether I is true.

Proof. After processing the last bag Pn of P , it holds that D = X ∪ Y and hence

every signature in Kn can only contain two possible instances: the trivial true instance

IT which contains no variables and no clauses, and the trivial false instance IF , which

contains no variables and the empty clause. If {IT } ∈ Kn, then the algorithm outputs

true, and otherwise it outputs false. Correctness follows from Lemma 19 and Observa-

tion 20.

Having established the procedures for the individual nodes of the path-

decomposition, we can now prove the correctness of the whole dynamic programming

algorithm. We note that the following theorem applies to arbitrary QBF instances (not

only those in alternating prenex form).

Theorem 26. There exists an FPT algorithm which takes as input a QBF I , an integer

parameter k, and a prefix path-decomposition P of I of width at most k (w.r.t. to some

dependency poset) and decides whether I is true.
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Proof. If I is not already in alternating prenex form, we convert it by adding dummy

variables as described in Subsection 4.2. As mentioned in the preliminaries, it is possi-

ble to transform a prefix path-decomposition P into a nice prefix path-decomposition

P ′ containing at most O(k|I|) bags; let n = |P ′|. It then computes the signature set

K1 by Observation 22 and proceeds by iteratively computing K2,K3, . . . ,Kn by Ob-

servation 23 and Lemma 24. The run-time for each step is dominated by the run-time

of Lemma 24 and therefore the total run-time is equal to 22
2O(k)

· |φ| · n, which shows

that the algorithm runs in fpt-time w.r.t k. Once the algorithm computes the signature

set Kn, it outputs based on Observation 25.

5. Computing Prefix Pathwidth

This section is devoted to parameterized and approximation algorithms for com-

puting the prefix pathwidth. Observe that the prefix pathwidth of the graph G w.r.t. the

empty partial ordering is the same as the pathwidth of G. Therefore, since computing

pathwidth is NP-complete so is computing prefix pathwidth.

Before we present our algorithms, we will state some interesting observations about

prefix path-decompositions. For the remainder of this section let G be a graph and

(V (G),≤V ) a poset on V (G) of width w. The first observation relates prefix path-

width with a well-known decompositional parameter for directed graphs, i.e., directed

pathwidth [4].

Definition 26.1 (Directed path-decomposition ([4])). Let D be a directed graph. A

directed path-decomposition is a sequence P := (P1, . . . , Pn) of subsets of vertices of

D such that:

(D1)
⋃

1≤i≤n Pi = V (D),

(D2) for every u ∈ V (D), the set Du = { i ∈ {1, . . . , n} | u ∈ Wi } induces an

interval, and

(D3) for each uv ∈ E(D) there are i and j with 1 ≤ i ≤ j ≤ n such that u ∈ Wi and

v ∈ Wj .

The width of a directed path-decomposition and the directed pathwidth of D, de-

noted by dpw(D) are defined analogously to the corresponding notions for path-

decompositions.

Observation 27. Let D be the directed graph obtained from G by replacing every

edge by two anti-parallel arcs and adding an arc uv for every u, v ∈ V (G) such that

u ≤V v. Then, ppw≤V (G) = dpw(D).

Proof. We will show an even stronger statement, namely that any prefix path-

decomposition of G w.r.t. ≤V is also a directed path-decomposition of the graph D
and vice versa.

Suppose that P := (P1, . . . , Pn) is a prefix path-decomposition of G w.r.t. ≤V .

Then, P satisfies Properties D1 and D2, because P satisfies Properties P1 and P2.

Towards showing Property D3, let uv be any arc in D. If uv is also an edge of G, then
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Property D3 follows because P satisfies Property P3. Otherwise, u ≤V v and because

of the downward closure property of P , we obtain that u ∈ P≤fP(v). Hence, there is

an i with i ≤ fP(v) and u ∈ Pi, which because v ∈ PfP(v) implies Property D3.

On the other hand, let P be a directed path-decomposition of D. Then, properties

P1 and P2 follow immediately from properties D1 and D2 of P . Towards showing

Property P3, let uv ∈ E(G) be an edge of G. Then, both uv and vu are arcs in D
and it follows from Property D3 that there are i, j, i′, and j′ with 1 ≤ i < j ≤ n and

1 ≤ i′ ≤ j′ ≤ n such that u ∈ Pi, v ∈ Pj , v ∈ Pi′ , and u ∈ Pj′ . Because of Property

D2, we obtain that u ∈ Pl for every l between i and j′ and v ∈ Pl for every l between

i′ and j. Hence, because i < j and i′ < j′ there exists an h with 1 ≤ h ≤ n such that

u, v ∈ Ph, showing Property P3.

Towards showing the downward closure property for P , recall that for every u ∈
D≤V (v) there exists a directed edge uv in D. It hence follows from Property D3 that

either there exists i with 1 ≤ i ≤ n such that u, v ∈ Wi, or there are i and j with

1 ≤ i < j ≤ n such that u ∈ Wi and v ∈ Wj . Therefore, u ∈ P≤fP(v) for every

u ∈ D≤V (v) and P has the downward closure property.

Since it has been shown [39] that deciding whether the directed pathwidth of a

digraph is at most k is solvable in polynomial-time for every fixed k, the above obser-

vation implies that the same holds for the prefix pathwidth (w.r.t. an arbitrary depen-

dency poset). It is an important open question, however, whether computing directed

pathwidth is fixed-parameter tractable.

Let G be a graph and ≤ a total ordering on V (G). We say that G is a minor

of a graph G′ if G can be obtained from G′ by a sequence of operations of any of

the following kind: (1) vertex deletion, (2) edge deletion, or (3) edge-contraction, i.e.

replacing the two endpoints of an edge e with a new vertex adjacent to the union of

the neighbors of the endpoints of e. We call the pair (G,≤) an ordered graph. We

say that an ordered graph (G,≤) is an ordered minor of an ordered graph (G′,≤′),
if (G,≤) can be obtained from (G′,≤′) by a sequence of operations of any of the

following kind: (1) vertex deletion, (2) edge deletion, or (3) ordered edge-contraction,

i.e. an edge-contraction for which the resulting vertex can take the place of any of the

endpoints of the contracted edge in the ordering ≤′. Let X be a set and ≤ a reflexive

and transitive binary relation on X . Then, X is well-quasi ordered w.r.t. ≤ if every

infinite sequence x1, x2, . . . of elements of X contains an increasing pair xi ≤ xj

where i < j. If the set of ordered graphs of prefix-pathwidth at most k was well-quasi

ordered w.r.t. the ordered minor relation, this would be an important step towards a

FPT algorithm for determining whether a graph has prefix-pathwidth at most k [20].

However, we show that this is actually not the case.

Observation 28. The set of ordered graphs is not well-quasi ordered w.r.t. the ordered

minor relation.

Proof. It has been shown that the set of all permutations of the natural numbers is not

well-quasi ordered w.r.t. the removal of entries [36]. In particular, Bona and Spiel-

man [36] constructed an infinite antichain of permutations for this setting. We will

make use of this antichain to construct an infinite antichain of ordered graphs w.r.t. the

ordered minor relation.
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Let P = (p1, p2, . . . ) be the infinite sequence of permutations (also called an an-

tichain) witnessing that the set of all permutations is not well-quasi ordered w.r.t. to

the removal operation as defined by Bona and Spielman [36]. We define a correspond-

ing sequence G = (g1, g2, . . . ) of ordered graphs as follows: for every permutation

p ∈ P , let g(p) be the ordered graph (G,≤), where G is a path given by the sequence

(v0, v1, . . . , v|p|) of vertices (with endpoints v0 and v|p|) and the partial ordering ≤ is

defined by vi ≤ vj if and only if p−1[i] ≤ p−1[j] for every 0 < i, j ≤ n. Note that be-

cause G is a path and the endpoint v0 is the only vertex of G, which is not comparable

(w.r.t. ≤) to any other vertex, it holds that g(p) = g(p′) if and only if p = p′ (hence g
is a bijection). We set G := (g(p1), g(p2), . . . ). It remains to show that G is an infinite

antichain w.r.t. to the ordered minor relation, i.e. there is no pair i, j with i < j such

that gi is an ordered minor of gj .

Suppose for a contradiction that there is such a pair say i, j such that i < j and

gi := (Gi,≤i) is an ordered minor of gj := (Gj ,≤j). Then, in particular, Gi is a minor

of Gj and because both Gi and Gj are paths we can assume w.l.o.g. that gi is obtained

from gj by a sequence of ordered edge-contractions. Moreover, because any ordered

edge-contraction of an edge e = {u, v} ∈ Gj for which the resulting vertex takes the

place of say u in the ordering leads to an ordered graph isomorphic to g(p′j), where p′j
is the permutation obtained from pj after removing the element corresponding to v in

pj , we obtain that any permutation p such that gi = g(p) is can be obtained from any

permutation p′ such that gj = g(p′). Finally, because g(p) is a bijection, we obtain that

pi can be obtained from pj via the removal of elements, contradicting our assumption

that the set of all permutations is well-quasi ordered under removal of elements.

The above observations suggest that deciding whether computing prefix pathwidth

(w.r.t. an arbitrary poset) is fixed-parameter tractable is a difficult question.

5.1. Algorithms for Posets of Bounded Width

In the following we will give two algorithms that compute the prefix path-

decomposition of a graph that are efficient in the case that the given poset has small

width. Our first algorithm shows that if the width of the poset ≤V is bounded by a

constant, then deciding whether G has a prefix path-decomposition w.r.t. ≤V of width

at most k is fixed-parameter tractable (in k). Recall that as before we assume that we

are given a graph G together with a poset (V (G),≤V ) on the vertices of G of width w.

Theorem 29. Finding a prefix path-decomposition of a graph G w.r.t. a partial order

≤V of width at most k or deciding that no such prefix path-decomposition exists can

be done in time O((|V (G)|wk2k)2|V (G)|), where w = width(V (G),≤V ). Hence, for

any constant w computing a prefix path-decomposition is fixed-parameter tractable in

k.

Whereas the above algorithm allows us to compute the prefix pathwidth exactly it

has one serious drawback since it does not run in fpt-time w.r.t. the combined parameter

prefix pathwidth k and the width w of the poset and hence is not sufficient to show an

fpt-result for QBF parameterized these two parameters. Our second main result of this

section circumvents this issue at the expense of obtaining only an approximate solu-

tion. Namely, our second algorithm allows us to compute a prefix path-decomposition
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in polynomial-time whose relative difference from the optimal width can be bounded

in terms of k and w. Using this approximate prefix path-decomposition as an input to

the algorithm in Theorem 26, then shows that QBF is fixed-parameter tractable param-

eterized by k and w.

Theorem 30. There is a polynomial-time algorithm that, given a graph G, a poset

(V (G),≤V ) of width w, and an integer k, outputs a prefix path-decomposition of G
w.r.t. ≤V of width at most 2w(2k2 + k) + 1 or outputs correctly that no prefix path-

decomposition of G w.r.t. ≤V of width at most k exists.

The remainder of this section is devoted to a proof of the above theorems. For a

subset V ′ ⊆ V , let P≤V (V ′) be the prefix of V ′ w.r.t. ≤V , i.e., the set of all vertices v
in V ′ with D≤V (v) ⊆ V ′, and let S≤V (V ′) be the suffix of V ′ w.r.t. ≤V , i.e., the set

V ′ \ P≤V (V ′).
Let B(V ′) be the bipartite graph with bipartition (∂(V ′), N(∂(V ′)) \ V ′) contain-

ing all edges of G with one endpoint in ∂(V ′) and the other endpoint in N(∂(V ′))\V ′.

Moreover, for a prefix path-decomposition P := (P1, . . . , Pn) of G w.r.t. ≤V and for

every i with 1 ≤ i ≤ n, let BP(i) be the bipartite graph B(P≤V (P≤i)).
Before we proceed to prove the required statements for the algorithm, let us first

provide an informal overview of the algorithm. The main observation behind the algo-

rithm (which is shown in Lemma 31 below) is that in any prefix path-decomposition of

G w.r.t. ≤V , the intersection between any two bags, say Pi and Pi+1, can be charac-

terized by a pair (D,C), where D is a downward closed set of vertices of G equal to

P≤V (P≤i) and C is a minimal vertex cover of the bipartite graph between the guards

of D and the neighbors of these guards in the remainder of G, i.e. the bipartite graph

BP(i). Given this crucial observation, it is then straightforward to define simple condi-

tions for deciding whether a pair (D,C) can be the intersection of two bags in a prefix

path-decomposition of width at most k as well as conditions for deciding whether the

intersection of two bags corresponding to a pair (D,C) can be followed by (in some

prefix path-decomposition of width at most k) the intersection of two bags correspond-

ing to the pair (D′, C ′) (these conditions are defined in Lemma 32). Computing a

prefix path-decomposition then boils down to deciding whether there is a directed path

from the pair (∅, ∅) to the pair (V (G), ∅) in the digraph whose vertex set consists of all

pairs (D,C) such that (D,C) can be the intersection between two bags in some prefix

path decomposition of width at most k and whose arcs are defined using the above

mentioned conditions (see the proof of Theorem 29). Because the number of down-

ward closed sets is bounded by |V (G)|w and one can show (see Lemma 33) that the

number of possible minimal vertex covers (for each downward closed set) is bounded

by k2k, this then leads to the required result.

We are now ready to prove the formal statements required by the algorithm as

outlined above.

Lemma 31. Let P := (P1, . . . , Pn) be a prefix path decomposition of G w.r.t. ≤V of

width at most k, which is minimal in the sense that no bag of P contains unnecessary

vertices. Then, for every i with 1 ≤ i < n, it holds that Pi ∩ Pi+1 is a minimal vertex

cover of BP(i).
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Proof. We first show that Pi ∩ Pi+1 contains a vertex cover of BP(i) for every i with

1 ≤ i < n. Suppose not, then there is an i with 1 ≤ i < n such that Pi ∩ Pi+1 is not

a vertex cover of BP(i). Hence, there is an edge {v, u} ∈ E(BP(i)) ⊆ E(G) with

v ∈ P≤V (P≤i) and u ∈ N(∂(P≤V (P≤i))) \ (P≤V (P≤i)) such that v, u /∈ Pi ∩ Pi+1.

Hence, either u /∈ P≤i or u ∈ S≤V (P≤i). In the former case, because v ∈ P≤i but

v /∈ Pi+1, we obtain that property P3 of P is violated. In the latter case, because

S≤V (P≤i) ⊆ Pi, we obtain that u /∈ Pi+1 and hence fP(u) = i. Consequently,

D≤V (u) 6⊆ P≤i = P≤f(u), contradicting the downward closure property of P .

Towards showing the minimality of the vertex cover, assume for a contradiction

that this is not the case and there is an i with 1 ≤ i < n such that Pi ∩ Pi+1 is not

a minimal vertex cover of BP(i). Then, there is a vertex v ∈ Pi ∩ Pi+1 such that

(Pi ∩ Pi+1) \ {v} is still a vertex cover of BP(i). Then, either v ∈ P≤V (P≤i) or

v ∈ S≤V (P≤i).
In the first case, let P ′ := (P ′

1, . . . , P
′
n) be obtained from P after removing v from

every bag Pj with j ≥ i + 1. We show that P ′ is still a prefix path-decomposition,

contradicting our assumption that no bag of P contained unnecessary vertices. It is

easy to verify that conditions (P1) and (P2) as well as the downward closure property

still hold for P ′. Towards showing (P3), let {v, u} ∈ E(G). Because (Pi∩Pi+1)\{v}
is a vertex cover of BP(i), we obtain that if {v, u} ∈ BP(i), then u ∈ P ′

i , as required.

If {v, u} /∈ BP(i), then u ∈ P≤V (P≤i) and because P satisfies condition (P3), it

follows that {u, v} is covered by some bag Pj with j ≤ i, as required.

In the second case, let P ′ := (P ′
1, . . . , P

′
n) be obtained from P after removing v

from every bag Pj with j ≤ i. We show that P ′ is still a prefix path-decomposition,

contradicting our assumption that no bag of P contained unnecessary vertices. It is

easy to verify that conditions (P1) and (P2) as well as the downward closure property

still hold for P ′. Towards showing (P3), let {v, u} ∈ E(G). Because (Pi∩Pi+1)\{v}
is a vertex cover of BP(i), we obtain that if {v, u} ∈ BP(i), then u ∈ P ′

i+1, as

required. If {v, u} /∈ BP(i), then either u ∈ S≤V (P≤i) in which case because of

the downward closure property of P also u ∈ Pi+1 and hence u ∈ P ′
i+1, as required,

or u ∈ V (G) \ P≤i and because P satisfies condition (P3), we obtain that {v, u} is

covered by some bag Pj with j ≥ i+ 1, as required.

Lemma 32. There is a prefix path-decomposition of G w.r.t. ≤V of width at most k if

and only if there is a sequence S := ((D0, C0), . . . , (Dn, Cn)) of pairs (Di, Ci) such

that:

C1 D0 = C0 = ∅, Dn = V (G), Cn = ∅,

C2 for every i with 0 ≤ i ≤ n:

C2A Di is downward closed,

C2B Ci is a minimal vertex cover of B(Di),

C3 for every i with 0 ≤ i < n:

C3A |(Di+1 \Di) ∪ Ci ∪ Ci+1| ≤ k,

C3B Ci \ Ci+1 ⊆ Di+1,

22



C3C Di ⊆ Di+1.

Proof. For the forward direction, suppose there is a prefix path-decomposition P :=
(P1, . . . , Pn) of G w.r.t. ≤V of width at most k. W.l.o.g. we can assume that P is

minimal (in the sense that no bag contains unnecessary vertices). It hence follows

from Lemma 31 that Pi ∩ Pi+1 is a minimal vertex cover of BP(i) for every i with

1 ≤ i < n.

We claim that S := ((D0, C0), (D1, C1), . . . , (Dn, Cn)) with D0 := ∅, C0 := ∅,

Di := P≤V (P≤i), Ci := Pi ∩ Pi+1 for every i with 1 ≤ i < n, Dn = V (G),
and Cn = ∅ is the required sequence. Conditions C1 and C2A are trivially satisfied.

Condition C2B follows from Lemma 31 applied to P . Towards condition C3A observe

that

|(Di+1 \Di) ∪ Ci ∪ Ci+1|

= |((P≤V (P≤i+1)) \ (P≤V (P≤i))) ∪

(Pi ∩ Pi+1) ∪ (Pi+1 ∩ Pi+2)|

≤ |((P≤V (P≤i+1)) \ (P≤V (P≤i))) ∪ Pi+1|

≤ |((P≤i+1) \ (P≤V (P≤i))) ∪ Pi+1|

≤ |Pi+1 ∪ Pi+1|

≤ k

The second to last inequality follows because P≤i+1 \ P≤V (P≤i) ⊆ Pi+1, which in

turn can be seen as follows. Let v ∈ P≤i+1 \ P≤V (P≤i), then either v ∈ P≤i+1 \ P≤i

or v ∈ S≤V (P≤i). In the former case v ∈ Pi+1 (due to the definition of P≤i+1) and in

the later case v ∈ Pi+1 because of the downward closure property of P .

Towards showing C3B, it suffices to show that v ∈ Ci \Ci+1 implies v ∈ Di+1 for

every v ∈ V (G). Because Ci\Ci+1 = (Pi∩Pi+1)\(Pi+1∩Pi+2) = (Pi∩Pi+1)\Pi+2,

we obtain that v ∈ Ci \ Ci+1 implies that fP(v) = i+ 1. Hence, using the fact that P
satisfies the downward closure property, we obtain that D≤V (v) ⊆ Di+1. In particular,

v ∈ Di+1, as required.

Condition C3C, i.e., Di ⊆ Di+1 or equivalently P≤V (P≤i) ⊆ P≤V (P≤i+1) is

satisfied because P≤i ⊆ P≤i+1 and the downward closed subset of a set contains the

downward closed subset of any subset of the set.

For the reverse direction suppose that we are given a sequence S :=
((D0, C0), . . . , (Dn, Cn)) satisfying the conditions given in the statement of the

lemma. We claim that P := (P1, . . . , Pn) with Pi := Di \ Di−1 ∪ Ci−1 ∪ Ci for

every i with 1 ≤ i ≤ n is a prefix path-decomposition of G w.r.t. ≤V of width at most

k. Because of condition C1, it holds that P≤i =
⋃

1≤j≤i Dj \ Dj−1 ∪ Cj−1 ∪ Cj =
⋃

1≤j≤i Dj ∪ Cj and again using condition C1, we obtain P≤n = V (G). It follows

that P satisfies property P1.

To show the remaining properties for P , we need the following claim.

Claim 3. Let v ∈ V (G) be any vertex such that v ∈ Pi \ Pi+1, then v ∈ Di, v /∈ Ci,

and all neighbors of v outside of Di are in Ci.
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Proof of Claim. Let v ∈ V (G) be any vertex such that v ∈ Pi \ Pi+1 = (Di \Di−1 ∪
Ci−1 ∪ Ci) \ (Di+1 \Di ∪ Ci ∪ Ci+1) for some i with 1 ≤ i < n, i.e., v is forgotten

at position i. There are two cases for this to happen, i.e., either v ∈ Di \ Di−1 or

v ∈ Ci−1. Note that in both cases v /∈ Ci. In the latter case, we obtain from C3B that

v ∈ Di. Hence, we have already shown that v ∈ Di and v /∈ Ci. Moreover, because

v /∈ Ci we obtain from C2B that Ci contains all the neighbors of v outside of Di. This

completes the proof of the above claim. �

To show property P2 for P , it suffices to show that for any v ∈ V (G) with v ∈ Pi \
Pi+1 for some position i with 1 ≤ i < n, it holds that v /∈ Pj = Dj \Dj−1∪Cj−1∪Cj

for any j > i+ 1. From Claim 3, we obtain that v ∈ Di, v /∈ Ci, and all the neighbors

of v outside of Di are in Ci. Because v ∈ Di, we obtain from C3C that v /∈ Dj \Dj−1.

Consequently, it is sufficient to show that v /∈ Cj for any j > i+1. Because Ci contains

all the neighbors of v outside of Di, we obtain from C3B that for every j > i + 1 it

holds that Cj contains all the neighbors of v outside of Dj . Using C2B (in particular

the minimality of Cj), we obtain that Cj does not contain v, as required.

We will show property P3 for P by showing (by induction on the index of the

forgotten vertices) that whenever a vertex is forgotten at position i, then every edge

incident to it is contained in some bag j ≤ i. This clearly holds if v is the first vertex

that is forgotten, because all neighbors of v in Di must still be in Pi and all neighbors

of v outside of Di are in Ci ⊆ Pi (because of Claim 3). So assume that v is the l-th
vertex that is forgotten and v is forgotten at some position i. Again, all neighbors of v
in Di are either still in Pi or have been forgotten before v and hence (by the induction

hypotheses) every edge incident to the forgotten neighbors is contained in some bag Pj

with j ≤ i. Moreover, because of Claim 3 all the neighbors of v outside of Di are in

Ci and hence also in Pi, as required.

We show next that P has the downward closure property. Again, because of

Claim 3, if a vertex v is forgotten at some position i, then v ∈ Di. The downward

closure property for P , then follows from C2A.

Because of C3A, we have that the width of P is at most k. Hence, P is a prefix

path decomposition of G w.r.t. ≤V of width at most k, as required.

Lemma 33. Let D ⊆ V (G) be a downward closed set w.r.t. ≤V , then there are at most

O(k2k) minimal vertex covers of B(D) of size at most k and these can be enumerated

in time O(k2k|B(D)|)

Proof. Let C0 be all vertices in B(D) whose degree is greater then k. Note that C0

has to be contained in any vertex cover of size at most k. It follows that B(D) \ C0

contains at most k(k−|C0|) edges because every vertex in B(D)\C0 can cover at most

k edges (since it has degree at most k) and one needs to cover all edges in B(D) \ C0

with at most k−|C0| vertices. It follows that B(D)\C0 contains at most 2k(k−|C0|)
non-isolated vertices. Furthermore, the isolated vertices of B(D) do not occur in any

minimal vertex cover. Hence, there are at most
(

2k(k−|C0|)
k−|C0|

)

∈ O(k2k) vertex covers of

B(D) and for each of those one can check in O(k(2k(k− |C0|))) time, whether it is a

minimal vertex cover.
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In the following let w = width((V (G),≤V ) and let (W1, . . . ,Ww) be a chain

partition of (V (G),≤V ) (which due to Proposition 7 can be computed in polynomial-

time). For a vector v ∈ [|W1|]×. . .×[|Ww|], let D≤V (v) be the set of vertices of V (G)
that contains the first v[i] vertices from every chain Wi. Note that for every downward

closed set V ′ there is a vector v ∈ [|W1|] × . . . × [|Ww|] such that V ′ = D≤V (v),
which we denote by v≤V (V ′).

Let P := (P1, . . . , Pn) be a prefix path decomposition of G w.r.t. ≤V of width at

most k. Note that because P≤V (P≤i) is downward closed the vector v(P≤V (P≤i)) is

well-defined. We are now ready to show our two main results of this section.

Proof of Theorem 29. To decide whether G has a prefix path-decomposition w.r.t. ≤V

of width at most k, we first build an auxiliary directed graph H as follows.

The vertex set of H consists of all pairs (D,C) such that D ⊆ V (G) is a downward

closed set and C is a minimal vertex cover of B(D) of size at most k. Furthermore,

there is an arc from (D,C) to (D′, C ′) of H if and only if (D,C) and (D′, C ′) satisfy

the conditions C3A-C3C given in Lemma 32 (with Di = D, Ci = C, Di+1 = D′,

and Ci+1 = C ′). This completes the construction of H . Because of Lemma 32, we

obtain that G has a prefix path decomposition w.r.t. ≤V of width at most k if and only

if there is a directed path in H from (∅, ∅) to (V (G), ∅). Hence, given H we can decide

whether G has a prefix path-decomposition w.r.t. ≤V of width at most k (and output

such a path-decomposition if it exists) in time O(|V (H)| log(|V (H)|) + E(H)) (e.g.,

by using Dijkstra’s algorithm). It remains to analyze the time required to construct H
(as well as its size).

Because every downward closed set D can be characterized by a vector v ∈
[|W1|] × . . . × [|Ww|] (namely by the vector v(D)), there are at most |V (G)|w such

sets D. Moreover, due to Lemma 33 for each such D there are at most O(k2k) mini-

mal vertex covers of B(D) of size at most k. Hence, H has at most O(|V (G)|wk2k)
vertices and again using Lemma 33, the vertex set of H can be constructed in time

O(|V (G)|w+1k2k). To compute the arc set of H , we go over all of the at most

O((|V (G)|wk2k)2) pairs of vertices of H and check the conditions C3A–C3C, which

can be done in time O(|V (G)|) (for each of these pairs). Hence, the total time required

to construct H is O((|V (G)|wk2k)2|V (G)|) and since this dominates the time required

to find a shortest path in H , this is also the total running time of the algorithm.

Proof of Theorem 30. For a vector v ∈ [|W1|] × . . . × [|Ww|] and i with 1 ≤ i ≤ w,

let A(v, i) be the set of vertices ∂(D≤V (v)) ∩ Wi, let B(v, i) be the set of vertices

N(∂(D≤V (v)) ∩ Wi) \ D≤V (v)), and let G(v, i) be the bipartite graph with bipar-

tition (A(v, i), B(v, i)) containing all edges of G between A(v, i) and B(v, i). Let

H(G(v, i)) be the set of vertices of G(v, i) with degree larger than k and let C(G(v, i))
consist of H(G(v, i)) and all vertices in A(v, i)\H(G(v, i)) with at least one neighbor

in G(v, i) \H(G(v, i)). We also set P (v) to be the set of vertices
⋃

1≤i≤w C(G(v, i)).
We are now ready to describe the algorithm that outputs a prefix path-

decomposition of G w.r.t. to ≤V of width at most 2w(2k2 + k) + 1 or outputs

“No” if no prefix path-decomposition of G w.r.t. ≤V of at width at most k ex-

ists. The algorithms tries to iteratively construct a sequence (v1, . . . , vn) of vectors

vi ∈ [|W1|] × . . . × [|Ww|] such that v1 is the all zero vector, vn is the vector
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(|W1|, . . . , |Ww|), vi+1 is obtained from vi by increasing exactly one component of

vi by one, and |C(G(vi, j))| ≤ 2k2 + k for every i and j with 1 ≤ i ≤ n and j with

1 ≤ j ≤ w. The algorithm tries to find the sequence in a greedy manner, i.e., after

having constructed the sequence (v1, . . . , vi) it first checks whether vi is the vector

(|W1|, . . . , |Ww|) (in which case the algorithm has succeeded). Otherwise it goes over

all j with 1 ≤ j ≤ w and checks whether the vector v′ obtained from vi by increasing

the j-th entry by one satisfies v′[j] ≤ |Wj | and |C(G(v′, j))| ≤ 2k2 + k. If so it

continues on the sequence (v1, . . . , vi, v
′). Otherwise, it outputs that G does not have

a prefix path-decomposition w.r.t. ≤V of width at most k.

If the algorithm succeeds, it outputs P := (P1, . . . , Pn) with P1 = ∅ and Pi :=
P (vi) ∪ P (vi−1) ∪ (D≤V (vi) \D≤V (vi−1)) for every i with 1 < i ≤ n as the prefix

path-decomposition of G w.r.t. ≤V . Otherwise, it returns that G does not have a prefix

path-decomposition w.r.t. of width at most k. This completes the description of the

algorithm.

It is straightforward to check that the algorithm runs in polynomial-time. It remains

to show correctness of the algorithm.

We start by showing that if the algorithm succeeds and outputs the sequence

P := (P1, . . . , Pn), then P is a prefix path-decomposition of G w.r.t. ≤V of width

at most 2w(2k2+k)+1. Let (v1, . . . , vn) be the sequence of vectors computed by the

algorithm. Recall that v1 is the all-zero vector, vn is the vector (|W1|, . . . , |Wn|), vi+1

is obtained from vi by increasing exactly one entry by one, and |C(G(vi, j)| ≤ 2k2+k
for every i and j with 1 ≤ i ≤ n and j with 1 ≤ j ≤ w. Because for every i with

1 < i ≤ n, Pi contains (at least) the vertex D≤V (vi) \ D≤V (vi−1), it holds that
⋃

1≤i≤n Pi = V (G), which shows property P1 for P .

Claim 4. Let v ∈ V (G) be any vertex such that v ∈ Pi \ Pi+1, then v ∈ D≤V (vi),
and all neighbors of v outside of D≤V (vi) are in Pi and have degree more than k in

G(vi, j) for every 1 ≤ j ≤ w.

Proof of Claim. We first show that v ∈ D≤V (vi). Assume for a contradiction that

v /∈ D≤V (vi). Then, because v ∈ Pi, it holds that v ∈ P (vi)∪P (vi−1). If v ∈ P (vi),
then v ∈ Pi+1 contradicting our assumption. Hence, v ∈ P (vi−1). In particular, there

is some j with 1 ≤ j ≤ w such that v ∈ B(vi−1, j) and either v has degree larger than

k in G(vi−1, j). Note that because v /∈ Pi+1, we obtain that v /∈ D≤V (vi+1)\D≤V (vi)
and hence also v /∈ D≤V (vi+1). It follows that v ∈ B(vi+1, j). Furthermore, if v had

degree more than k in G(vi−1, j), then because vi−1 ≤ vi+1, v still has degree more

than k in G(vi+1, j) and hence v ∈ C(vi+1, j) ⊆ Pi+1 contradicting our assumption.

This shows that v ∈ D≤V (vi).
We show next that all neighbors of v outside of D≤V (vi) are in Pi. Because v /∈

Pi+1, we obtain that v /∈ P (vi). Consequently, for every j with 1 ≤ j ≤ w, all

neighbors of v in G(vi, j) have degree more than k. Hence, all neighbors of v outside

of D≤V (vi) are in C(vi, j) ⊆ Pi. This completes the proof of the claim. �

To show property P2 for P , it suffices to show that for any v ∈ V (G) with v ∈
Pi \ Pi+1 for some position i with 1 ≤ i < n, it holds that v /∈ Pj = D≤V (vj) \
D≤V (vj−1) ∪ P (vj−1) ∪ P (vj) for any j > i + 1. From Claim 4, we obtain that

v ∈ D≤V (vi), and all the neighbors of v outside of D≤V (vi) have degree more than k
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in G(vi, l) for every l with 1 ≤ l ≤ w. Because v ∈ D≤V (vi) and vi ≤ vj , we obtain

that v /∈ D≤V (vj) \D≤V (vj−1). Consequently, it is sufficient to show that v /∈ P (vj)
for any j > i+1. Because all the neighbors of v outside of D≤V (vi) have degree more

than k in G(vi, l) for every l with 1 ≤ l ≤ w and vi ≤ vj , we obtain that for every

j > i + 1 and every l with 1 ≤ l ≤ w, it holds that all the neighbors of v outside of

D≤V (vj) have degree more than k in G(vj , l). It follows that v /∈ P (vj), as required.

We will show property P3 for P by showing (by induction on the index of the

forgotten vertices) that whenever a vertex is forgotten at position i, then every edge

incident to it is contained in some bag j ≤ i. This clearly holds if v is the first vertex

that is forgotten, because all neighbors of v in D≤V (vi) must still be in Pi and all

neighbors of v outside of D≤V (vi) are in Pi by Claim 4. So assume that v is the l-th
vertex that is forgotten and v is forgotten at some position i. Again, all neighbors of v
in D≤V (vi) are either still in Pi or there have been forgotten before v and hence (by

the induction hypotheses) the edges incident to the forgotten neighbors are contained in

some bag Pj with j ≤ i. Moreover, because of Claim 4 all the neighbors of v outside

of D≤V (vi) are in Pi, as required.

The downward closure property of P follows immediately from Claim 3 and the

fact that D≤V (vi) is downward closed for every i with 1 ≤ i ≤ n.

By construction the width of P is at most 2w(2k2 + k) + 1. This shows that P is a

prefix path-decomposition of G w.r.t. ≤V of width at most 2w(2k2 + k) + 1.

We show next that if the algorithm is not successful, then G does not have a prefix

path-decomposition w.r.t. ≤V of width at most k. Because the algorithm is not success-

ful, there is a vector v ∈ [|W1|]× . . .× [|Ww|] with v 6= (|W1|, . . . , |Ww|) such that for

every j with 1 ≤ j ≤ w either v′[j] > |Wj | or |C(G(v′, j))| > 2k2 + k, where v′ is

the vector obtained from v by increasing the j-th entry of v by one. Assume for a con-

tradiction that there is a prefix path-decomposition P := (P1, . . . , Pn) of G w.r.t. ≤V

of width at most k. W.l.o.g. we will assume that |Pi△Pi+1| ≤ 1. Let i be the smallest

integer with 1 ≤ i ≤ n such that there is a l with 1 ≤ l ≤ w with vP [l] > v[l], where

vP := v(P≤V (P≤i)). Observe that because |Pi△Pi+1| ≤ 1, the integer l is unique and

moreover vP [l] ≤ v[l] + k. Hence, vP [l
′] ≤ v[l′] for any l′ 6= l and 1 ≤ l′ ≤ w and

v[l] < vP [l] ≤ v[l] + k. It follows that there is a set D of at most k vertices of G(v, l)
in B(v, l) such that G(v, l) \ D is an induced subgraph of G(vP , l). Because every

vertex in D can reduce the size of C(v, l) by at most k, i.e., if its degree in G(v, l) is

exactly k, we obtain that |C(vP , l)| ≥ |C(v, l)| − k2 > 2k2 + k − k2 = k2 + k.

Because of Lemma 31, Pi has to contain a vertex cover of BP(i). In particular,

because G(vP , l) is a subgraph of BP(i), Pi has to contain a vertex cover of G(vP , l).
It remains to show that because |C(vP , l)| > k2 + k, G(vP , l) cannot have a vertex

cover of size at most k. Assume for a contradiction that G(vP , l) has a vertex cover

C of size at most k. Clearly, H(vP , l) ⊆ C. Furthermore, because every vertex in

G(vP , l) \ H(vP , l) has degree at most k, any such vertex can cover the edges of at

most k non-isolated vertices in A(vP , l)∩C(vP , l). It follows that |C(vP , l)| ≤ k+k2

a contradiction.

5.2. FPT for Trivial Dependency Scheme

We say that a dependency poset ≤V is layered if there is a partition of the elements

into layers V1, . . . , Vℓ such that for every xi ∈ Vi, xj ∈ Vj we have xi < xj if and
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only if i < j. Informally, such posets are divided into a chain of layers of incomparable

elements. We note that every trivial dependency poset is a layered poset; however, other

dependency posets may in some cases also be layered.

The remainder of this section is devoted to a proof of the following theorem.

Theorem 34. Let ≤V be a layered dependency poset and k a natural number.

There exists an FPT algorithm (parameterized by k) that either finds a prefix path-

decomposition of G w.r.t. ≤V of width at most k or determines that no such path-

decomposition exists.

Our general proof strategy will be to first show that any prefix path-decomposition

w.r.t. a layered dependency poset has a simple structure, which then can be exploited

for an fpt-algorithm that finds such a decomposition of small width. In particular,

we will show that any prefix path-decomposition can be naturally divided into path-

decompositions of the parts (V1, . . . , Vl) given by a layered dependency poset that are

held together via (minimal) separators between these parts.

In the following let G be a graph, ≤V be a layered dependency poset, let

(V1, . . . , Vl) be the ordered partition associated with ≤V , and let P = (P1, . . . , Pm) be

a prefix path-decomposition of G w.r.t. ≤V . Moreover, for every layer i with 1 ≤ i ≤ l,
we denote by V≤i the set

⋃

1≤j≤i Vj and similarly by V>i the set V>i =
⋃

i<j≤l Vj .

We will be interested in (minimal) separators between V≤i and V>i in G. In particu-

lar, we will show that any such separator corresponds to a vertex cover in the bipartite

graph B(i) defined as follows.

• V (B(i)) contains the vertices of G that either lie in V≤i and have at least one

neighbor in V>i, or are in V>i and have at least one neighbor in V≤i.

• {a, b} ∈ E(B(i)) if and only if {a, b} ∈ E(G) and a ∈ V≤i and b ∈ V>i.

Proposition 35. For every i with 1 ≤ i ≤ l, it holds that a set C of vertices of G is a

separator between V≤i and V>i in G if and only if C is a vertex cover of B(i).

Proof. Towards showing the forward direction, let C be a separator between V≤i and

V>i in G. Then C is also a vertex cover of B(i) since otherwise there would be an

edge e between V≤i and V>i in G with C ∩ e = ∅, contradicting our assumption that

C is a separator .

Towards showing the reverse direction, let C be a vertex cover of B(i). Then C is

also a separator between V≤i and V>i in G since otherwise there would be an edge e
between V≤i and V>i in B(i) with C ∩ e = ∅, contradicting our assumption that C is

a vertex cover of B(i).

In the following we will show that for every i with 1 ≤ i ≤ l, P contains at least

one bag that contains all vertices of a minimal separator between V≤i and V>i in G.

Namely, we will show that this holds for the first bag of P which precedes a bag

that forgets a vertex from V>i. We will denote this bag by p(i); formally, we set

p(i) = min{ fP(v) | v ∈ V>i } where “min” returns the left-most bag out of the set.

Lemma 36. For every i with 1 ≤ i ≤ l, it holds that the bag p(i) of P contains a

minimal separator between V≤i =
⋃

1≤j≤i Vj and V>i =
⋃

i<j≤l Vj in G.
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Proof. Because of Proposition 35 it is sufficient to show that the bag p(i) contains

a vertex cover of the bipartite graph B(i). Towards showing this consider an edge

{a, b} ∈ E(B(i)) with a ∈ V≤i and b ∈ V>i. It follows from the choice of p(i) that:

O1 Every vertex in V (B(i))∩ V>i that has been introduced in some bag of P to the

left of p(i) or in p(i) is also in the bag p(i),

O2 Every vertex in V (B(i)) ∩ V≤i has been introduced in some bag of P to the left

of p(i) or in p(i).

If b is contained in the bag p(i) then there is nothing to show. So suppose that b is not in

the bag p(i). It follows from Observation O1 that b has not yet been introduced. Hence,

because of Property P3 of a path-decomposition, we obtain that the vertex a needs to

occur in some bag to the right of p(i) and it now follows from Observation O2 together

with Property P2 of a path-decomposition that a is contained in the bag p(i).

Using Lemma 36, we are ready to show that there always exists an optimal prefix

path-decomposition of a graph G w.r.t. a dependency poset that is layered, which

contains a minimal separator between V≤i and V>i (for each i ≤ l) in G as a bag.

Lemma 37. There exists an optimal prefix path-decomposition Q of G w.r.t. ≤V , such

that Q = (P1, . . . , Pn1
, . . . , Pn2

, . . . , Pni
, . . . , Pnl

), where for every i:

Q1 Pni
is a minimal separator between V≤i and V>i;

Q2 (Pni−1 , . . . , Pni
) is a path-decomposition of Vi ∪ Pni−1 ∪ Pni

;

Q3 every vertex in V>i is forgotten after the bag Pni
, and V≤i ⊆ P≤ni

.

Proof. We start with a given optimal prefix path-decomposition P0 = P and we trans-

form it inductively to prefix path-decompositions P1,P2, . . . ,Pl such that Pj satisfies

properties Q1, Q2 and Q3 up to index j. Clearly, P0 satisfies the conditions Q1, Q2

and Q3 up to index 0. As our inductive hypothesis, we assume we are given a prefix

path-decomposition Pi−1 = (P1, . . . , Pn1
, . . . , Pn2

, . . . , Pni−1
, . . . Pr) which satisfies

the conditions Q1, Q2 and Q3 up to i− 1.

We proceed by showing how to construct Pi from Pi−1. Let Pi′ be the bag p(i)
(i.e., the first bag of Pi−1 that precedes the bag forgetting a vertex from V>i). Since

Q3 holds for i− 1, it is easy to see that i′ ≥ ni−1.

By Lemma 36 Pi′ contains a minimal separator Xi between V≤i and V>i. We

set X≤i = Pi′ ∩ (V≤i \ Xi), and X>i = Pi′ ∩ (V>i \ Xi). Next, we construct

Pi = (P ′
1, . . . , P

′
r+2) such that

• P ′
j = Pj for j ≤ ni−1,

• P ′
j = Pj \X>i for ni−1 < j ≤ i′,

• P ′
i′+1 = Xi, and

• P ′
j+2 = Pj \X≤i for j ≥ i′.

29



Moreover, we set ni = i′ + 1, hence Q1 holds for i. Since we do not change the path

decomposition up to Pni−1 , it is easy to see that Q1, Q2, Q3 still hold for all j < i.
From the choice of Pi′ it follows that all vertices of V>i are forgotten after the bag P ′

i′+1

and all vertices of V≤i are introduced before the bag P ′
i′+1 (because of the downward

closure property). Hence, Q3 holds for i as well. Now we show that Q2 holds. Since Q3

holds for both i−1 and i, it follows that P ′
ni−1

∪P ′
ni−1+1∪· · ·∪P

′
ni

= Vi∪P
′
ni−1

∪P ′
ni

.

From the construction of Pi, it follows that for every vertex x in Vi ∪ P ′
ni−1

∪ P ′
ni

it

holds that if x ∈ Pj for ni−1 ≤ j ≤ i′, then x ∈ P ′
j . Hence, the bags containing x

form an interval. We are left to show that every edge in Vi ∪ P ′
ni−1

∪ P ′
ni

is contained

in some bag Pj for ni−1 ≤ j ≤ i′, hence it is also in the bag P ′
j . Let e be an arbitrary

edge with both endpoints in Vi ∪ P ′
ni−1

∪ P ′
ni

. Since Pi−1 is a path-decomposition,

there is a bag, say Pje , that contain both endpoints of e. However note that all vertices

of Vi∪P ′
ni−1

∪P ′
ni

are forgotten in Pi−1 after the bag Pni−1 and introduced before the

bag Pi′ . Hence if je < ni−1, then e is contained also in Pni−1
and similarly if je > i′

then e is also in the bag Pi′ . Therefore, Pi satisfies all the conditions Q1, Q2, Q3 for i.
We are left to verify that Pi is also a prefix path-decomposition w.r.t. ≤V . It is easy

to verify that since each vertex of G is in a bag of Pi−1, the same holds for Pi as well.

Next, we show that property P2 holds. The only way our operations could have

violated monotonicity is by deletion of X>i from a certain interval of the prefix path-

decomposition, and in particular only for a vertex x ∈ X>i which occurs in Pni−1
and

also in Pi′ . By minimality of the separator in Pni−1
and Q3, there must exist a neighbor

y of x in V≤i−1 which has already been forgotten in Pni−1 . But then every minimal

separator between V≤i and V>i that is contained in Pi′ has to also contain x, since it

has to cover the edge xy. As a consequence, x ∈ Xi which contradicts x ∈ X>i.

We proceed by showing that property P3 holds. Since Xi is a minimal separator

between V>i and V≤i, all edges between X≤i and V>i are contained in the edges

between X≤i and Xi, and hence these are in the bag P ′
i′ . Similarly, all edges between

X>i and V≤i are in P ′
i′+2. Furthermore, all vertices of V>i are forgotten after P ′

i′+2

and all vertices of V≤i are introduced before P ′
i′ . Therefore, the fact that every edge

of G is in a bag of Pi follows from the construction of Pi and the fact that Pi−1 is a

path-decomposition.

Finally, we show that Pi has the downward closure property. We consider three

possibilities. If v ∈ V≤i \ Pi′ , then clearly fPi
(v) = P ′

j for some j < i′ and P ′
≤j =

P≤j or P ′
≤j = P≤j \ X>i. Since v ∈ V≤i and all vertices in X>i are from V>i,

D≤(v) ⊆ P≤j implies D≤(v) ⊆ P ′
≤j . If v ∈ X≤i, then fPi

(v) = P ′
i′ and D≤(v) ⊆

V≤i ⊆ P ′
≤i′ follows from Q3. Otherwise, if fPi

(v) = P ′
j , then fPi−1

(v) = Pj−2 and

D≤(v) ⊆ P ′
≤j = P≤j−2. This concludes the proof of the Lemma.

To later be able to compute a prefix path-decomposition, we need to be able to

enumerate all possible minimal separators between V≤i and V>i for any i with 1 ≤ i ≤
l. The next lemma shows that this is indeed possible.

Lemma 38. For every i with 1 ≤ i ≤ l, there are at most O(k2k) minimal separators

between V≤i and V>i in G and these can be enumerated in time O(k2k|B(i)|).

Proof. Because of Proposition 35 it is sufficient to show the claim for the minimal

vertex covers of B(i). Let C0 be all vertices in B(i) whose degree is greater then k.
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Note that C0 has to be contained in any vertex cover of size at most k. It follows that

B(i) \ C0 contains at most k(k − |C0|) edges because every vertex in B(i) \ C0 can

cover at most k edges (since it has degree at most k) and one needs to cover all edges

in B(i) \ C0 with at most k − |C0| vertices. It follows that B(i) \ C0 contains at most

2k(k − |C0|) non-isolated vertices. Furthermore, the isolated vertices of B(i) do not

occur in any minimal vertex cover. Hence, there are at most
(

2k(k−|C0|)
k−|C0|

)

∈ O(k2k)

vertex covers of B(i) and for each of those one can check in O(k(2k(k−|C0|))) time,

whether it is a minimal vertex cover.

Our proof requires one last technical observation, which states that it is possible to

find path-decompositions starting and ending with a specific bag.

Observation 39. Given a graph G, integer k, and vertex subsets P, P ′ of size at most

k + 1, there exists an FPT algorithm (parameterized by k) which either constructs a

path-decompositions which starts with a bag P and ends with a bag P ′ of width at

most k or determines that no such path-decompositions exists.

Proof. Let us represent an instance (G,P, P ′) as a labeled graph G′ obtained from G
by the addition of two labels: the label P denotes vertices in P and the label P ′ denotes

vertices in P ′. We will show that the existence of a path-decomposition P with the

required properties is closed under the minor operation on the labeled graph G′. Indeed,

any path-decomposition of G′ can be modified to a path-decomposition for any minor

of G′ in exactly the same way as in the case of standard path-decompositions. The

claim then follows from the results of Kawarabayashi et al. [20].

We remark that a more efficient algorithm for Observation 39 could be obtained by

adapting Bodlaender’s algorithm [7]; however, a formal proof of this claim is outside

the scope of this paper.

Proof of Theorem 34. By Lemma 37 we can just concentrate on finding a prefix path-

decomposition such that P = (∅ = P0, . . . , Pn1
, . . . , Pn2

, . . . , Pni
, . . . , Pnl

= ∅),
where Pni

is a minimal separator between V≤i and V>i and (Pni−1
, . . . , Pni

) is a

prefix path decomposition of Vi ∪ Pni−1
∪ Pni

. We say that minimal separators C
between V≤i−1 and V>i−1 and D between V≤i and V>i are compatible if

• if C contains a vertex v ∈ V>i, then D contains v.

• if D contains a vertex v ∈ V<i, then C contains v.

Since by Lemma 37 (property Q3) all vertices in V>i are forgotten in P after the bag

Pni
and V≤i ⊆ P≤ni

it follows that Pni−1
and Pni

are compatible for all i. Since

all vertices of Vi are incomparable, every proper path decomposition of Vi ∪ Pni−1
∪

Pni
starting with the bag Pni−1

and ending with the bag Pni−1
is also a prefix path

decomposition. To decide whether G has such prefix path-decomposition w.r.t. V of

width k we first construct an auxiliary directed graph H as follows. H contains a vertex

(i, P, P ′,P) for every natural number i with 1 ≤ i ≤ l and for every two compatible

minimal separators P, P ′ of size at most k between V≤i−1 and V>i−1 and between V≤i

and V>i, respectively, and P is a path-decomposition of Vi ∪ P ∪ P ′ of width at most

k that starts with P and ends with P ′.
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Moreover, there are two special vertices (0, ∅, ∅, ∅) and (l + 1, ∅, ∅, ∅). There is

an edge in H from every vertex (i, P, P ′,P) to any vertex (i + 1, P ′, P ′′,P ′), where

0 ≤ i ≤ l + 1. By Lemma 38 there are at most O(k2k) minimal separators be-

tween V≤i and V>i in G and these can be enumerated in time O(k2k|B(i)|). There-

fore, H has O(l · k4k) vertices. Moreover, for each i, we can enumerate all pairs P
and P ′ and check their compatibility in time O(k4k|V (G)|). Furthermore, for each

such pair P , P ′, we can compute an optimal path-decomposition of of Vi ∪ P ∪ P ′

starting with P and ending with P ′ by Observation 39. Once H is constructed, it is

easily observed that each path from (0, ∅, ∅, ∅) to (l + 1, ∅, ∅, ∅) gives us a prefix path-

decomposition of G w.r.t. ≤V of width at most k. On the other hand, if there exists a

prefix path-decomposition of G w.r.t. ≤V , then by Lemma 37 there exists one of the

form P = (∅ = P0, . . . , Pn1 , . . . , Pn2 , . . . , Pni
, . . . , Pnl

= ∅), where Pni−1 and Pni

are compatible minimal separators for all i. But then H contains a path (0, ∅, ∅, ∅),
(0, ∅, Pn1

,P1), (0, Pn1
, Pn2

,P2),. . . , (l+1, Pnl
, ∅, ∅). Since finding such a path in H

takes time time at most |V (H)|2, this concludes the proof of the theorem.

6. Concluding Notes

Our results push the frontiers of tractability for QBF to new natural classes of in-

stances. We provide one specific example of this below. A vertex cover of a graph G is

a vertex set of G which is incident to each edge in G, and the vertex cover number of

G is the minimum size of a vertex cover in G. The vertex cover number has often been

used as a structural parameter for graph problems which do not have FPT algorithms

parameterized by treewidth (see for instance [17]).

Theorem 40. QBF is fixed parameter tractable parameterized by the vertex cover

number of the primal graph.

Proof. Let I = (φ, τ) be an instance of QBF and let k be the vertex cover number of

GI . Let n = |var(τ)| and let Z be a vertex cover of GI of cardinality k; recall that

a vertex cover of cardinality k can be computed in time at most O(2k · n) [13]. For

each i ∈ [n], let vi be the i-th variable in the prefix of I , and let Pi = Z ∪ {vi}. Now

consider P = (P1, . . . , Pn). We claim that P is a prefix path-decomposition of width

at most k.

Indeed, clearly each Pi in P contains at most k+1 vertices. It is straightforward to

verify that conditions (P1) and (P2) hold, and condition (P3) must also hold since every

edge has at most one endpoint outside of Z. Finally, P also has the downward closure

property, since for each vertex vi the set D≤V (vi) is a subset of Z ∪ { vj | j < i }, and

hence D≤V (v) ⊆ P≤fP(v).

It follows that I has prefix pathwidth (w.r.t. the trivial dependency poset) at most k.

To conclude the proof, we merely need to use the construction above to obtain a prefix

path-decomposition of small width and then apply Theorem 26.

A number of interesting research questions still remain open in the area, and per-

haps the most prominent of these is whether one can lift our results towards prefix

treewidth. This would be especially interesting for posets of unbounded width, since on
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bounded-width posets these parameters differ only by a constant factor. The exact com-

plexity of computing prefix treewidth and prefix pathwidth on general posets remains

a challenging open problem. Finally, obtaining tight runtime bounds via improving the

running times of the presented algorithms and/or by establishing lower bounds linked

to the Exponential Time Hypothesis would also certainly be a worthwhile endeavour.
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