21 research outputs found

    Making Markov chains less lazy

    Full text link
    The mixing time of an ergodic, reversible Markov chain can be bounded in terms of the eigenvalues of the chain: specifically, the second-largest eigenvalue and the smallest eigenvalue. It has become standard to focus only on the second-largest eigenvalue, by making the Markov chain "lazy". (A lazy chain does nothing at each step with probability at least 1/2, and has only nonnegative eigenvalues.) An alternative approach to bounding the smallest eigenvalue was given by Diaconis and Stroock and Diaconis and Saloff-Coste. We give examples to show that using this approach it can be quite easy to obtain a bound on the smallest eigenvalue of a combinatorial Markov chain which is several orders of magnitude below the best-known bound on the second-largest eigenvalue.Comment: 8 page

    On the swap-distances of different realizations of a graphical degree sequence

    Get PDF
    One of the first graph theoretical problems which got serious attention (already in the fifties of the last century) was to decide whether a given integer sequence is equal to the degree sequence of a simple graph (or it is {\em graphical} for short). One method to solve this problem is the greedy algorithm of Havel and Hakimi, which is based on the {\em swap} operation. Another, closely related question is to find a sequence of swap operations to transform one graphical realization into another one of the same degree sequence. This latter problem got particular emphases in connection of fast mixing Markov chain approaches to sample uniformly all possible realizations of a given degree sequence. (This becomes a matter of interest in connection of -- among others -- the study of large social networks.) Earlier there were only crude upper bounds on the shortest possible length of such swap sequences between two realizations. In this paper we develop formulae (Gallai-type identities) for these {\em swap-distance}s of any two realizations of simple undirected or directed degree sequences. These identities improves considerably the known upper bounds on the swap-distances.Comment: to be publishe

    Parallel enumeration of degree sequences of simple graphs. II.

    Get PDF
    Abstract In the paper we report on the parallel enumeration of the degree sequences (their number is denoted by G(n)) and zerofree degree sequences (their number is denoted by (Gz(n)) of simple graphs on n = 30 and n = 31 vertices. Among others we obtained that the number of zerofree degree sequences of graphs on n = 30 vertices is Gz(30) = 5 876 236 938 019 300 and on n = 31 vertices is Gz(31) = 22 974 847 474 172 374. Due to Corollary 21 in [52] these results give the number of degree sequences of simple graphs on 30 and 31 vertices.</jats:p

    Parallel and I/O-efficient randomisation of massive networks using global curveball trades

    Get PDF
    Graph randomisation is a crucial task in the analysis and synthesis of networks. It is typically implemented as an edge switching process (ESMC) repeatedly swapping the nodes of random edge pairs while maintaining the degrees involved [23]. Curveball is a novel approach that instead considers the whole neighbourhoods of randomly drawn node pairs. Its Markov chain converges to a uniform distribution, and experiments suggest that it requires less steps than the established ESMC [6]. Since trades however are more expensive, we study Curveball’s practical runtime by introducing the first efficient Curveball algorithms: the I/O-efficient EM-CB for simple undirected graphs and its internal memory pendant IM-CB. Further, we investigate global trades [6] processing every node in a single super step, and show that undirected global trades converge to a uniform distribution and perform superior in practice. We then discuss EM-GCB and EMPGCB for global trades and give experimental evidence that EM-PGCB achieves the quality of the state-of-the-art ESMC algorithm EM-ES [15] nearly one order of magnitude faster
    corecore