
Parallel and I/O-efficient Randomisation of
Massive Networks using Global Curveball Trades
Corrie Jacobien Carstens
University of Amsterdam, Netherlands
c.j.carstens@uva.nl

Michael Hamann
Karlsruhe Institute of Technology, Germany
michael.hamann@kit.edu

Ulrich Meyer
Goethe University, Frankfurt, Germany
umeyer@ae.cs.uni-frankfurt.de

Manuel Penschuck
Goethe University, Frankfurt, Germany
mpenschuck@ae.cs.uni-frankfurt.de

Hung Tran
Goethe University, Frankfurt, Germany
htran@ae.cs.uni-frankfurt.de

Dorothea Wagner
Karlsruhe Institute of Technology, Germany
dorothea.wagner@kit.edu

Abstract
Graph randomisation is a crucial task in the analysis and synthesis of networks. It is typically
implemented as an edge switching process (ESMC) repeatedly swapping the nodes of random
edge pairs while maintaining the degrees involved [23]. Curveball is a novel approach that instead
considers the whole neighbourhoods of randomly drawn node pairs. Its Markov chain converges
to a uniform distribution, and experiments suggest that it requires less steps than the established
ESMC [6]. Since trades however are more expensive, we study Curveball’s practical runtime by
introducing the first efficient Curveball algorithms: the I/O-efficient EM-CB for simple undir-
ected graphs and its internal memory pendant IM-CB. Further, we investigate global trades [6]
processing every node in a single super step, and show that undirected global trades converge
to a uniform distribution and perform superior in practice. We then discuss EM-GCB and EM-
PGCB for global trades and give experimental evidence that EM-PGCB achieves the quality of
the state-of-the-art ESMC algorithm EM-ES [15] nearly one order of magnitude faster.

2012 ACM Subject Classification Mathematics of computing → Random graphs

Keywords and phrases Graph randomisation, Curveball, I/O-efficiency, Parallelism

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.11

Supplement Material Stable versions of IM-CB and EM-GCB are released as part of NetworKit
(http://network-analysis.info).

Funding This work was partially supported by Deutsche Forschungsgemeinschaft (DFG) under
grants ME 2088/3-2, ME 2088/4-2, and WA 654/22-2.

Acknowledgements We thank the anonymous reviewers for their many insightful comments and
suggestions.

© Corrie Jacobien Carstens, Michael Hamann, Ulrich Meyer, Manuel Penschuck, Hung Tran, and
Dorothea Wagner;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 11; pp. 11:1–11:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197485817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:c.j.carstens@uva.nl
mailto:michael.hamann@kit.edu
mailto:umeyer@ae.cs.uni-frankfurt.de
mailto:mpenschuck@ae.cs.uni-frankfurt.de
mailto:htran@ae.cs.uni-frankfurt.de
mailto:dorothea.wagner@kit.edu
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.11
http://network-analysis.info
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Randomisation of Massive Networks using Global Curveball Trades

1 Introduction

In the analysis of complex networks, such as social networks, the underlying graphs are
commonly compared to random graph models to understand their structure [17, 27, 34].
While simple models like Erdős-Rényi graphs [11] are easy to generate and analyse, they are
too different from commonly observed powerlaw degree sequences [27, 26, 34]. Thus, random
graphs with the same degree sequence as the given graph are frequently used [8, 17, 32]. In
practice, many of these graphs are simple graphs, i.e. graphs without self-loops and multiple
edges. In order to obtain reliable results in these cases, the graphs sampled need to be simple
since non-simple models can lead to significantly different results [31, 32]. The randomisation
of a given graph is commonly implemented as an edge switching Markov chain ESMC [8, 24].

Nowadays, massive graphs that cannot be processed in the RAM of a single computer,
require new analysis algorithms to handle these huge datasets. In turn, large benchmark
graphs are required to evaluate the algorithms’ scalability – in terms of speed and quality.
LFR is a standard benchmark for evaluating clustering algorithms which repeatedly generates
highly biased graphs that are then randomised [18, 19]. [15] presents the external memory
LFR generator EM-LFR and its I/O-efficient edge switching EM-ES. Although EM-ES
is faster than previous results even for graphs fitting into RAM, it dominates EM-LFR’s
running time. Alternative sampling via the Configuration Model [25] was studied to reduce
the initial bias and the number of ESMC steps necessary [14]. Still, graph randomisation
remains a major bottleneck during the generation of these huge graphs.

The Curveball algorithm has been originally proposed for randomising binary matrices
while preserving row and column sums [35, 36] and has been adopted for graphs [5, 6]: instead
of switching a pair of edges as in ESMC , Curveball trades the neighbours of two nodes in each
step. Carstens et al. further propose the concept of a global trade, a super step composed of
single trades targetting every node1 in a graph once [6]. The authors show that global trades
in bipartite or directed graphs converge to a uniform distribution, and give experimental
evidence that global trades require fewer Markov chain steps than single trades. However,
while fewer steps are needed, the trades themselves are computationally more expensive.
Since we are not aware of previous efficient Curveball algorithms and implementations, we
investigate this trade-off here.

Our contributions. We present the first efficient algorithms for Curveball: the (sequential)
internal memory and external memory algorithms IM-CB2 and EM-CB for the Simple
Undirected Curveball algorithm (see section 4). Experiments in section 5, indicate that they
are faster than the established edge switching approaches in practice.

In section 3, we show that random global trades lead to uniform samples of simple,
undirected graphs and demonstrate experimentally in section 5 that they converge even faster
than the corresponding number of uniform single trades. Exploiting structural properties
of global trades, we simplify EM-CB yielding EM-GCB and the parallel I/O-efficient EM-
PGCB which achieves EM-ES’s quality nearly one order of magnitude faster in practice (see
section 5).

1 For an odd number n of nodes, either a single node is left out or equivalently an isolated node is added.
2 We prefix internal memory algorithms with IM and I/O-efficient algorithms with EM. The suffices CB, GCB,

and PGCB denote Curveball, CB. with global trades, and parallel CB. with global trades respectively.

C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner 11:3

2 Preliminaries and Notation

We define the short-hand [k] := {1, . . . , k} for k ∈ N>0, and write [xi]bi=a for an ordered
sequence [xa, xa+1, . . . , xb].

Graphs and degree sequences. A graph G = (V,E) has n = |V | sequentially numbered
nodes V = {v1, . . . , vn} and m = |E| edges. Unless stated differently, graphs are assumed
to be undirected and unweighted. To obtain a unique representation of an undirected edge
{u, v} ∈ E, we use ordered edges [u, v] ∈ E implying u ≤ v; in contrast to a directed edge,
the ordering is used algorithmically but does not carry any meaning. A graph is called simple
if it contains neither multi-edges nor self-loops, i.e. E ⊆ {{u, v} |u, v ∈ V with u 6= v }. For
node u ∈ V define the neighbourhood Au := {v : {u, v} ∈ E} and degree deg(u) := |Au|. Let
dmax := maxv{deg(v)} be the maximal degree of a graph. A vector D = [di]ni=1 is a degree
sequence of graph G iff ∀vi ∈ V : deg(vi) = di.

Randomisation and Distributions. Pld ([a, b), γ) refers to an integer Powerlaw Distribution
with exponent −γ ∈ R for γ ≥ 1 and values from the interval [a, b); let X be an integer
random variable drawn from Pld ([a, b), γ) then P[X=k] ∝ k−γ (proportional to) if a ≤ k < b

and P[X=k] = 0 otherwise. A statement depending on some number x > 0 is said to hold
with high probability if it is satisfied with probability at least 1 − 1/xc for some constant
c ≥ 1. Let S be a finite set, x ∈ S and let σ be permutation on S, we define rankσ(x) as the
number of elements positioned in front of x by σ.

2.1 External-Memory Model
In contrast to classic models of computation, such as the unit-cost random-access machine,
modern computers contain deep memory hierarchies ranging from fast registers, over caches
and main memory to solid state drives (SSDs) and hard disks. Algorithms unaware of these
properties may face performance penalties of several orders of magnitude.

We use the commonly accepted external memory (EM) model by Aggarwal and Vitter [1]
to reason about the influence of data locality in memory hierarchies. It features two memory
types, namely fast internal memory (IM or RAM) holding up to M data items, and a slow
disk of unbounded size. The input and output of an algorithm are stored in EM while
computation is only possible on values in IM. An algorithm’s performance is measured in
the number of I/Os required. Each I/O transfers a block of B = Ω(

√
M) consecutive items

between memory levels. Reading or writing n contiguous items is referred to as scanning
and requires scan(n) := Θ(n/B) I/Os. Sorting n consecutive items triggers sort(n) :=
Θ((n/B) · logM/B(n/B)) I/Os. For all realistic values of n, B and M , scan(n) < sort(n)� n.
Sorting complexity constitutes a lower bound for most intuitively non-trivial EM tasks [22].
EM queues use amortised O(1/B) I/Os per operation and require O(B) main memory [28].
An external priority queue (PQ) requires O(sort(n)) I/Os to push and pop n items [2].

2.2 TFP: Time Forward Processing
Time Forward Processing (TFP) is a generic technique to manage data dependencies of
external memory algorithms [21]. Consider an algorithm computing values x1, . . . , xn in
which the calculation of xi requires previously computed values. One typically models these
dependencies using a directed acyclic graph G=(V,E). Every node vi ∈ V corresponds to the
computation of xi and an edge (vi, vj) ∈ E indicates that the value xi is necessary to compute

ESA 2018

11:4 Randomisation of Massive Networks using Global Curveball Trades

v2
x0+x1
x2=1

v3
x1+x2
x3=2

v4
x2+x3
x4=3

v5
x3+x4
x5=5

v6
x4+x5
x6=8

v7
x5+x6
x7=13

1 PQ.push(<key=2, value=0>); PQ.push(<key=2, value=1>)
2 foreach i← 2, . . . , n do
3 sum← 0
4 while PQ.min.key == i do // Two iterations
5 sum← sum + PQ.remove-min().value
6 print(“xi =”, sum)
7 PQ.push(<key=i+1, sum>); PQ.push(<key=i+2, sum>)

Figure 1 Left: Dependency graph of the Fibonacci sequence (ignoring base case). Right: Time
Forward Processing to compute sequence.

xj . For instance consider the Fibonacci sequence x0 = 0, x1 = 1, xi = xi−1 + xi−2 ∀i ≥ 2 in
which each node vi with i ≥ 2 depends on exactly its two predecessors (see Fig. 1). Here, a
linear scan for increasing i suffices to solve the dependencies.

In general, an algorithm needs to traverse G according to some topological order ≺T of
nodes V and also has to ensure that each vj can access values from all vi with (vi, vj) ∈ E.
The TFP technique achieves this as follows: as soon as xi has been calculated, messages of
the form 〈vj , xi〉 are sent to all successors (vi, vj) ∈ E. These messages are kept in a minimum
priority queue sorting the items by their recipients according to ≺T . By construction, the
algorithm only starts the computation vi once all predecessors vj ≺T vi are completed. Since
these predecessors already removed their messages from the PQ, items addressed to vi (if
any) are currently the smallest elements in the data structure and can be dequeued. Using a
suited EM PQ [2], TFP incurs O(sort(k)) I/Os, where k is the number of messages sent.

3 Randomisation schemes

Here, we summarise the randomisation schemes ESMC [24] and Curveball for simple undirec-
ted graphs [5], and then discuss the notion of global trades. Since these algorithms iteratively
modify random parts of a graph, they can be analysed as finite Markov chains. It is well
known that any finite, irreducible, aperiodic, and symmetric Markov chain converges to the
uniform distribution on its state space (e.g. [20]). Its mixing time indicates the number of
steps necessary to reach the stationary distribution.

3.1 Edge-Switching
ESMC is a state-of-the-art randomisation method with a wide range of applications, e.g. the
generation of graphs [15, 19], or the randomisation of biological datasets [16]. In each step,
ESMC chooses two edges e1 = [u1, v1], e2 = [u2, v2] and a direction d ∈ {0, 1} uniformly at
random and rewires them into {u1, u2}, {v1, v2} if d=0 and {u1, v2}, {v1, u2} otherwise. If
a step yields a non-simple graph, it is skipped. ESMC ’s Markov chain is irreducible [10],
aperiodic and symmetric [23] and hence converges to the uniform distribution on the space of
simple graphs with fixed degree sequence. While analytic bounds on the mixing time [12, 13]
are impractical, usually a number of steps linear in the number of edges is used in practice [29].

3.2 Simple Undirected Curveball algorithm
Curveball is a novel randomisation method. In each step, two nodes trade their neighbour-
hoods, possibly yielding faster mixing times [5, 35, 36].

I Definition 1 (Simple Undirected Trade). Let G = (V,E) be a simple graph, A be its
adjacency list representation, and Au be the set of neighbours of node u. A trade t = (i, j, σ)

C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner 11:5

i j

1
2 3

4

5

6

i j

1
2

2

3
4

5

6

Ai = {1, 2, 6, j}
Aj = {3, 4, 5, 6, i}

Bi = {3, 4, 6, j}
Bj = {1, 2, 5, 6, i}

Bi−j = {3, 4}
Bj−i = {1, 2, 5}

σ(1,2︸︷︷︸
Ai−j

, 3,4,5︸ ︷︷ ︸
Aj−i

) 7→ (4,3︸︷︷︸
Bi−j

, 5,1,2︸ ︷︷ ︸
Bj−i

)

Figure 2 The trade (i, j, σ) between nodes i and j only considers edges to the disjoint neigh-
bours {1, . . . , 5}. For the reassigned disjoint neighbours we use the short-hand Bi−j := {x | x ∈
Dij , rankσ(x) ≤ |Ai−j |} and Bj−i := {x | x ∈ Dij , rankσ(x) > |Ai−j |}. The triangle (i, j, 6) is
omitted as trading any of its edges would either introduce parallel edges, self loops, or result in no
change at all. Then, the given σ exchanges four edges.

from A to adjacency list B is defined by two nodes i and j, and a permutation σ : Dij → Dij

where Ai−j := Ai \ (Aj ∪ {j}) and Dij := Ai−j ∪Aj−i. As shown in Fig. 2, performing t on
G results in Bi = (Ai\Ai−j) ∪ {x | x ∈ Dij , rankσ(x) ≤ |Ai−j |} and Bj = (Aj\Aj−i) ∪ {x |
x ∈ Dij , rankσ(x) > |Ai−j |}. Since edges are undirected, symmetry has to be preserved: for
all u ∈ Ai\Bi the label j in adjacency list Bu is changed to i and analogously for Aj \Bj .

Simple Undirected Curveball randomises a graph by repeatedly selecting a node pair
{i, j} and permutation σ on the disjoint neighbours uniformly at random. Its Markov chain
is irreducible, aperiodic and symmetric and hence converges to the uniform distribution [6].

3.3 Undirected Global Trades
Trade sequences typically consist of pairs in which each constituent is drawn uniformly at
random. While it is a well-known fact3 that Θ(n logn) trades are required in expectation
until each node is included at least once, there is no apparent reason why this should be
beneficial; in fact, experiments in section 5 suggest the contrary.

Carstens et al. propose the notion of global trades for directed or bipartite graphs as a
2-partition of all nodes implicitly forming n/2 node pairs to be traded in a single step [6].
This concept is not applicable to undirected graphs where in general the two directions (u, v)
and (v, u) of an edge {u, v} cannot be processed independently in a single step. We hence
extend global trades to undirected graphs by interpreting them as a sequence of n/2 single
trades which together target each node exactly once (we assume n to be even; if this is
not the case we add an isolated node). Dependencies are then resolved by the order of this
sequence.

I Definition 2 (Undirected Global trade). Let G = (V,E) be a simple graph and π : V → V

be a permutation on the set of nodes. A global trade T = (t1, . . . , t`) for ` = bn/2c is a
sequence of trades ti = {π(v2i−1), π(v2i), σi}. By applying T to G we mean that the trades
t1, . . . , t` are applied successively starting with G.

Theorem 3 allows us to use global trades as a substitute for a sequence of single trades,
as global trades preserve the stationary distribution of Curveball’s Markov chain. The proof
extends [6], which shows convergence of global trades in bipartite or directed graphs, to
undirected graphs and uses similar techniques.

3 For instance studied as the coupon collector problem.

ESA 2018

11:6 Randomisation of Massive Networks using Global Curveball Trades

I Theorem 3. Let G = (V,E) be an arbitrary simple undirected graph, and let ΩG be the
set of all simple directed graphs that have the same degree sequence as G. The Curveball
algorithm with global trades and started at G converges to the uniform distribution on ΩG.

Proof. In order to prove the claim, we have to show irreducibility and aperiodicity of the
Markov chain as well as symmetry of the transition probabilities.

For the first two properties it suffices to show that whenever there exists a single trade from
state A to B, there also exists a global trade from A to B (see [4] for a similar argument).4
Observe that there is a non-zero probability that a single trade does not change the graph,
e.g. by selecting σi as the identity. Hence there is a non-zero probability that . . .

a global trade does not alter the graph at all. This corresponds to a self-loop at each
state of the Markov chain and hence guarantees aperiodicity.
all but one single trade of a global trade do not alter the graph. In this case, a global
trade degenerates to a single trade and the irreducibility shown in [4] carries over.

It remains to show that the transition probabilities are symmetric. Let T gAB be the set of
global trades that transform state A to state B. Then the transition probability between
A and B equals the sum of probabilities of selecting a trade sequence from T gAB. That is
PAB =

∑
T∈T g

AB
PA(T) where PA(T) denotes the probability of selecting global trade T in

state A.
The probability PA(t) of selecting a single trade t = (i, j, σ) from state A to state B

equals the probability PB(t̃) of selecting the reverse trade t̃ = (i, j, σ−1) from state B to
A [6]. We now define the reverse global trade of T = (t1, . . . , t`) as T̃ = (t̃`, . . . , t̃1). It is
straight-forward to check that this gives a bijection between the sets T gAB and T gBA.

It remains to show that the middle equality holds in

PAB =
∑

T∈T g
AB

PA(T) !=
∑

T̃∈T g
BA

PB(T̃) = PBA.

Let T = (t1, . . . , t`) be a global trade from A to B as implied by π and A=A1, . . . , A`+1=B
be the intermediate states. We denote the reversal of T and π as T̃ and π̃ respectively
and obtain PA(T) = P(π)PA1(t1) . . .PA`

(t`) = P(π̃)PB(t̃`) . . .PA2(t̃1) = PB(T̃). Clearly
P(π) = P(π̃) as we are picking permutations uniformly at random. The second equality
follows from PA(t) = PB(t̃) for a single trade between A and B. J

4 Novel Curveball algorithms for undirected graphs

In this section we present the related algorithms EM-CB, IM-CB, EM-GCB and EM-PGCB.
The algorithms receive a simple graph G and a trade sequence T = [{ui, vi}]`i=1 as input
and compute the result of carrying out the trade sequence T (see section 3.2) in order.

EM-CB and IM-CB are sequential solutions suited to process arbitrary trade sequences T .
For our analysis, we assume T ’s constituents to be drawn uniformly at random (as expected
in typical applications). Both algorithms share a common design, but differ in the data
structures used. EM-CB is an I/O-efficient algorithm while IM-CB is optimised for small
graphs allowing for unstructured accesses to main memory. In contrast, EM-GCB and
EM-PGCB process global trades only. This restricted input model allows us to represent the
trade sequence T implicitly by hash functions which further accelerates trading.

4 Since each global trade can be emulated by its n/2 decomposed single trades, the reverse is true for a
hop of n/2 single trade steps. Due to dependencies however the transition probabilities generally do not
match, see V = {1, 2, 3, 4} and E = {[1, 2], [3, 4]} for a simple counterexample.

C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner 11:7

Algorithm 1: EM-CB.
Data: Trade sequence T , simple graph G = (V,E) by edge list E
// Preprocessing: Compute Dependencies

1 foreach trade ti = (u, v) ∈ T for increasing i do
2 Send messages 〈u, ti〉 and 〈v, ti〉 to Sorter SorterTtoV
3 Sort SorterTtoV lexicographically // All trades of a node are next to each other
4 foreach node u ∈ V do
5 Receive S(u) = [t1, . . . , tk] from k messages addressed to u in SorterTtoV
6 Set tk+1 ←∞ // t1 =∞ iff u is never active
7 Send 〈ti, u, ti+1〉 to SorterDepChain for i ∈ [k]
8 foreach directed edge (u, v) ∈ E do
9 if u < v then

10 Send message 〈v, u, t1〉 via PqVtoV
11 else
12 Receive tv1 from unique message received via PqVtoV

13
if t1 ≤ tv1 then Send message 〈t1, u, v, tv1〉 via PqTtoT
else Send message 〈tv1 , v, u, t1〉 via PqTtoT

14 Sort SorterDepChain
// Main phase – Currently at least the first trade has all information it needs

15 foreach trade ti = (u, v) ∈ T for increasing i do
16 Receive successors τ(u) and τ(v) via SorterDepChain
17 Receive neighbours AG(u), AG(v) and their successors τ(·) from PqTtoT
18 Randomly reassign disjoint neighbours, yielding new neighbours A′G(u) and A′G(v).
19 foreach (a, b) ∈ ({u} ×A′G(u)) ∪ ({v} ×A′G(v)) do

20

if τa =∞ and τb =∞ then Output final edge {a, b}
else if τa ≤ τb then Send message 〈τa, a, b, τb〉 via PqTtoT
else Send message 〈τb, b, a, τa〉 via PqTtoT

At core, all algorithms perform trades in a similar fashion: In order to carry out the
i-th trade {ui, vi}, they retrieve the neighbourhoods Aui and Avi , shuffle5 them, and then
update the graph. Once the neighbourhoods are known, trading itself is straight-forward.
We compute the set of disjoint neighbours D = (Aui ∪ Avi) \ (Aui ∩ Avi) and then draw
|Aui

∩D| nodes from D for ui uniformly at random while the remaining nodes go to vi. If
Aui

and Avi
are sorted this requires only O(|Aui

|+ |Avi
|) work and scan(|Aui

|+ |Avi
|) I/Os

(see also proof of Lemma 6 if the neighbourhoods fit into RAM). Hence we focus on the
harder task of obtaining and updating the adjacency information.

4.1 EM-CB: A sequential I/O-efficient Curveball algorithm
EM-CB is an I/O-efficient Curveball algorithm to randomise undirected graphs as detailed
in Alg. 1. This basic algorithm already contains crucial design principles which we further
explore with IM-CB, EM-GCB and EM-PGCB in sections 4.2 and 4.4 respectively.

The algorithm encounters the following challenges. After an undirected trade {u, v} is
carried out, it does not suffice to only update the neighbourhoods Au and Av: consider the
case that edge {u, x} changes into {v, x}. Then this switch also has to be reflected in the
neighbourhood of Ax. Here, we call u and v active nodes while x is a passive neighbour.

5 In contrast to Definition 2, we do not consider the permutation σ of disjoint neighbours as part of
the input, but let the algorithm choose one randomly for each trade. We consider this design decision
plausible as the set of disjoint neighbours only emerges over the course of the execution.

ESA 2018

11:8 Randomisation of Massive Networks using Global Curveball Trades

In the EM setting another challenge arises for graphs exceeding main memory; it is
prohibitively expensive to directly access the edge list since this unstructured pattern triggers
Ω(1) I/Os for each edge processed with high probability.

EM-CB approaches these issues by abandoning a classical static graph data structure
containing two redundant copies of each edge. Following the TFP principle, we rather
interpret all trades as a sequence of points over time that are able to receive messages.
Initially, we send each edge to the earliest trade one of its endpoints is active in.6 This way,
the first trade receives one message from each neighbour of the active nodes and hence can
reconstruct Au1 and Av1 . After shuffling and reassigning the disjoint neighbours, EM-CB
sends each resulting edge to the trade which requires it next. If no such trade exists, the
edge can be finalised by committing it to the output.

The algorithm hence requires for each (actively or passively) traded node u, the index of
the next trade in which u is actively processed. We call this the successor of u and define it to
be∞ if no such trade exists. The dependency information is obtained in a preprocessing step;
given T = [{ui, vi}]`i=1, we first compute for each node u the monotonically increasing index
list S(u) of trades in which u is actively processed, i.e. S(u) :=

[
i |u ∈ ti for i ∈ [`]

]
◦ [∞].

I Example 4. Let G = (V,E) be a simple graph with V = {v1, v2, v3, v4} and trade sequence
T = [t1: {v1, v2}, t2: {v3, v4}, t3: {v1, v3}, t4: {v2, v4}, t5: {v1, v4}]. Then, the successors S

follow as S(v1) = [1, 3, 5,∞], S(v2) = [1, 4,∞], S(v3) = [2, 3,∞], S(v4) = [2, 4, 5,∞].

This information is then spread via two channels:
After preprocessing, EM-CB scans S and T conjointly and sends 〈ti, ui, tui 〉 and 〈ti, vi, tvi 〉
to each trade ti. The messages carry the successors tui and tvi of the trade’s active nodes.
When sending an edge as described before, we augment it with the successor of the
passive node. Initially, this information is obtained by scanning the edge list E and S

conjointly. Later, it can be inductively computed since each trade receives the successors
of all nodes involved.

I Lemma 5. For an arbitrary trade sequence T of length `, EM-CB has a worst-case I/O
complexity of O[sort(`) + sort(n) + scan(m) + `dmax/B logM/B(m/B)]. For r global trades,
the worst case I/O complexity is O(r[sort(n) + sort(m)]).

Proof. Refer to the full article [7] for the proof. J

4.2 IM-CB: An internal memory version of EM-CB
While EM-CB is well-suited if memory access is a bottleneck, we also consider the modified
version IM-CB. As shown in section 5, IM-CB is typically faster for small graph instances.
IM-CB uses the same algorithmic ideas as EM-CB but replaces its priority queues and
sorters7 by unstructured I/O into main memory (see [7] for details):

Instead of sending neighbourhood information in a TFP-fashion, we now rely on a classical
adjacency vector data structure AG (an array of arrays). Similarly to EM-CB, we only

6 If an edge connects two nodes that are both actively traded we implicitly perform an arbitrary tie-break.
7 The term sorter refers to a container with two modes of operation: in the first phase, items are pushed

into the write-only sorter in an arbitrary order by some algorithm. After an explicit switch, the filled
data structure becomes read-only and the elements are provided as a lexicographically non-decreasing
stream which can be rewound at any time. While a sorter is functionally equivalent to filling, sorting and
reading back an EM vector, the restricted access model reduces constant factors in the implementation’s
runtime and I/O-complexity [3].

C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner 11:9

v3

π1(1)
v1

π1(2)
v2

π1(3)
v5

π1(4)
v4

π1(5)
v6

π1(6)
v6

π2(1)
v3

π2(2)
v5

π2(3)
v1

π2(4)
v2

π2(5)
v4

π2(6)

current trade

,v1 v2new edge produced: { }

〈round: 2, slot: 4, neighbour: v2〉

Figure 3 During the trade j=1, i1=3, i2=4 the edge {v1, v2} is produced; the arrows indicate
positions considered as successors. Since v1 and v2 are already processed in round j=1, π2 is used
to compute the successor. Then, the message is sent to v1 in round 2 as v1 is processed before v2.

keep one directed representation of an undirected edge. As an invariant, an edge is always
placed in the neighbourhood of the incident node traded before the other. To speed-up
these insertions, IM-CB maintains unordered neighbourhood buffers.
IM-CB does not forward successor information, but rather stores S in a contiguous block
of memory. The algorithm additionally maintains the vector Sidx[1 . . . n] where the i-th
entry points to the current successor of node vi. Once this trade is reached, the pointer
is incremented giving the next successor.

I Lemma 6. For a random trade sequence T of length `, IM-CB has an expected running
time of O(n+ `+m+ `m/n). In the case of r many global trades (each consisting of n/2
normal trades) the running time is given by O(n+ rm).

Proof. Refer to the full article [7] for the proof. J

4.3 EM-GCB: An I/O-efficient Global Curveball algorithm

EM-GCB builds on EM-CB and exploits the regular structure of global trades to simplify
and accelerate the dependency tracking. As discussed in section 3.3, a global trade can
be encoded as a permutation π : [n] → [n] by interpreting adjacent ranks as trade pairs,
i.e. Tπ = [{vπ(2i−1), vπ(2i)}]n/2

i=1. In this setting, a sequence of global trades is given by r
permutations [πj]rj=1. The model simplifies dependencies as it is not necessary to explicitly
gather S and communicate successors.

As illustrated in Fig. 3, we also change the addressing scheme of messages. While EM-CB
sends messages to specific nodes in specific trades, EM-GCB exploits that each node vi is
actively traded only once in each round j and hence can be addressed by its position πj(i).
Successors can then be computed in an ad hoc fashion; let a trade of adjacent positions
i1 < i2 of the j-th global trade produce (amongst others) the edge {vx, vy}. The successor of
vx (and analogously the one of vy) is Sj,i2 [vx] = (j, πj(x)) if vx is processed later in round j
(i.e. πj(x)/2 > i2) and otherwise Sj,i2 [vx] = (j+1, πj+1(x)). Here we imply an untraded
additional function πr+1(x) = x which avoids corner cases and generates an ordered edge list
as a result of the r-th global trade.

To reduce the computational cost of the successor computation, EM-GCB supports fast
injective functions f : X → Y where [n] ⊆ X and [n] ⊆ Y . In contrast to the original
permutations, their relevant image { f(x) | x ∈ [n] } may contain gaps which are simply
skipped by EM-GCB. This requires minor changes in the addressing scheme.

In practice, we use functions from the family of linear congruential maps Hp :=
{ha,b | 1 ≤ a < p and 0 ≤ b < p } with ha,b(x) ≡ [(ax + b) mod p] where p is the smal-
lest prime number p ≥ n. Random choices from Hp are well suited for EM-GCB since they

ESA 2018

11:10 Randomisation of Massive Networks using Global Curveball Trades

1 k 1 k

In EM
In IM (front block)

current round next round

1 z

macrochunk

1 p

batch
the p microchunks in a batch are processed in parallel

Figure 4 EM-PGCB splits each global trade into k macrochunks and maintains an external
memory queue for each. Before processing a macrochunk, the buffer is loaded into IM and sorted,
and further subdivided into z batches each consisting of p microchunks. A type (ii) message is
visualised by the red intra-batch arrow.

are 2-universal8 and contain only O(log(n)) gaps (see [7] for details). They are also bijections
with an easily computable inverse h−1

a,b that allows EM-GCB to determine the active node
h−1
a,b(i) traded at position i; this operation is only performed once for each traded position.

EM-GCB also supports non-invertible functions. This can be implemented with messages
〈h(i), i〉 that are generated for 1 ≤ i ≤ n and delivered using TFP.

4.4 EM-PGCB: An I/O-efficient parallel Global Curveball algorithm
EM-PGCB adds parallelism to EM-GCB by concurrently executing multiple sequential trades.
As in Fig. 4, we split a global trade into microchunks each containing a similar number of
node pairs and then execute a batch of p such subdivisions in parallel. The batch’s size is a
compromise between intra-batch dependencies (messages are awaited from another processor)
and overhead caused by synchronising threads at the batch’s end (see [7] for details).

EM-PGCB processes each microchunk similarly as in EM-CB but differentiates between
messages that are sent (i) within a microchunk, (ii) between microchunks of the same batch
(iii) and microchunks processed later. Each class is transported using an optimised data
structure (see below) and only type (ii) messages introduce dependencies between parallel
executions and are resolved as follows: each processor retrieves the messages that are sent
to its next trade and checks whether all information required is available by comparing the
number of messages to the active nodes’ degrees. If data is missing the trade is skipped and
later executed by the processor that adds the last missing neighbour.

For graphs with m = O(M2/B) edges9, we optimise the communication structure for
type (iii) messages. Observe that EM-PGCB sends messages only to the current and
the subsequent round. We partition a round into k macrochunks each consisting of Θ(n/k)
contiguous trades. An external memory queue is used for each macrochunk to buffer messages
sent to it; in total, this requires Θ(kB) internal memory. Before processing a macrochunk, all
its messages are loaded into IM, subsequently sorted and arranged such that missing messages
can be directly placed to the position they are required in. This can also be overlapped
with the processing of the previous macrochunk. The number k of macrochunks should be
as small as possible to reduce overheads, but sufficiently large such that all messages of a
macrochunk fit into main memory (see [7] for details).

I Theorem 7. EM-PGCB requires O(r · [sort(n) + sort(m)]) I/Os to perform r global trades.

Proof. Observe that we can analyse each of the r rounds individually. A constant amount
of auxiliary data is needed per node to provision gaps for missing data, to detect whether a

8 i.e. given one node in a single trade, the other is uniformly chosen among the remaining nodes.
9 Even with as little as 1 GiB of internal memory, several billion edges are supported.

C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner 11:11

20 21 22 23

Thinning

10−2

10−1

1
-

m
in

(i
n

d
ep

en
d

en
ce

ra
te

) [MaxDeg 25] Maximum dependent edges

ES

CBU

CBG

20 21 22 23

Thinning

10−2

10−1

[MaxDeg 750] Maximum dependent edges

ES

CBU

CBG

Figure 5 Fraction of edges still correlated as a function of the thinning parameter k for graphs
with n = 2·103 nodes and degree distribution Pld ([a, b), γ) with γ = 2, a = 5, and b ∈ {25, 750}.
The (not thinned) long Markov chains of edge switching (ES), uniform Curveball (CBU) and global
Curveball (CBG) contain 6000 super steps each.

trade can be executed and (if required) to invert the permutation. This accounts for Θ(n)
messages requiring sort(n) I/Os to be delivered. Using an ordinary PQ, the analysis of
EM-CB (see Lemma 5) carries over, requiring sort(m) I/Os for a global trade. J

5 Experimental Evaluation

In this section we evaluate the quality of the proposed algorithms and analyse the runtime
of our C++ implementations.10 EM-CB, IM-CB, EM-GCB are designed as modules of
NetworKit [33]; due to their superior performance, only the latter two were added to
the library and are available since release 4.6. EM-PGCB’s implementation is developed
separately and facilitates external memory data structures and algorithms of STXXL [9].

Intuitively, graphs with skewed degree distributions are hard instances for Curveball since
it shuffles and reassigns the disjoint neighbours of two trading nodes. Hence, limited progress
is achieved if a high-degree node trades with a low-degree node. Since our experiments
support this hypothesis, we focus on graphs with powerlaw degree distributions as difficult
but highly relevant graph instances. Our experiments use two parameter sets:

(lin) − The maximal possible degree scales linearly as a function of the number n of
nodes. The degree distribution Pld ([a, b), γ) is chosen as a = 10, b = n/20 and γ = 2.
(const) − The extremal degrees are kept constant. In this case the parameters are chosen
as a = 50, b = 10000 and γ = 2.

We select these configurations to be comparable with [15] where both parameter sets are
used to evaluate EM-ES. The first setting (lin) considers the increasing average degree
of real-world networks as they grow. The second setting (const) approximates the degree
distribution of the Facebook network in May 2011 (refer to [14] for details). Runtimes are
measured on the following off-the-shelf machine: Intel Xeon E5-2630 v3 (8 cores at 2.40GHz),
64GB RAM, 2× Samsung 850 PRO SATA SSD (1 TB), Ubuntu Linux 16.04, GCC 7.2.

5.1 Mixing of Edge-Switching, Curveball and Global Curveball
We are not aware of any practical theoretical bounds on the mixing time of Markov chains of
Curveball, Global Curveball or edge switching (see section 3). Hence, we quantitatively study
the progress made by Curveball trades compared to edge switching and approximate the

10Code used for the presented benchmarks can be found at our fork https://github.com/hthetran/
networkit (IM-CB and EM-CB) and https://github.com/massive-graphs/extmem-lfr (EM-PGCB).

ESA 2018

https://github.com/hthetran/networkit
https://github.com/hthetran/networkit
https://github.com/massive-graphs/extmem-lfr

11:12 Randomisation of Massive Networks using Global Curveball Trades

mixing time of the underlying Markov chains by a method developed in [30]. This criterion
is a more sensitive proxy to the mixing time than previously used alternatives, such as the
local clustering coefficient, triangle count and degree assortativity [14].

Intuitively, one determines the number of Markov chain steps required until the correlation
to the initial state decays. Starting from an initial graph G0, the Markov chain is executed
for a large number of steps, yielding a sequence (Gt)t≥0 of graphs evolving over time. For
each occurring edge e, we compute a boolean vector (Ze,t)t≥0 where a 1 at position t indicates
that e exists in graph Gt. We then derive the k-thinned series (Zke,t)t≥0 only containing
every k-th entry of the original vector (Ze,t)t≥0 and use k as a proxy for the mixing time.

To determine if k Markov chain steps suffice for edge e to lose the correlation to the
initial graph, the empirical transition probabilities of the k-thinned series (Zke,t)t≥0 are fitted
to both an independent and a Markov model respectively. If the independent model is a
better fit, we deem edge e to be independent.

The results presented here consider only small graphs due to the high computational cost
involved. However, additional experiments suggest that the results hold for graphs at least
one order of magnitude larger which is expected as powerlaw distributions are scale-free.

We compare a sequence of uniform (single) trades, global trades and edge switching
and visually align the results of these schemes by defining a super step. Depending on the
algorithm a super step corresponds to either a single global trade, n/2 uniform trades or m
edge-swaps. Comparing n/2 uniform trades with a global trade seems sensible since a global
trade consists of exactly n/2 single trades, furthermore randomising with n/2 single trades
considers the state of 2m edges which is also true for m edge-swaps. The alignment accounts
for the fact that a single Curveball Markov chain step may execute multiple neighbour
switches, thus easily outperforming ESMC in a step-by-step comparison.

Fig. 5 contains a selection of results obtained for small powerlaw graph instances using
this method (see [7] for the complete dataset). Progress is measured by the fraction of edges
that are still classified as correlated, i.e. the faster a method approaches zero the better the
randomisation. We omit an in-depth discussion of uniform trades and rather focus on global
trades which consistently outperform the former (cf. section 3.2).

In all settings ESMC shows the fastest decay. The gap towards global trades growths
temporarily as the maximal degree is increased which is consistent with our initial claim
that skewed degree distributions are challenging for Curveball. The effect is however limited
and in all cases performing 4 global trades for each edge switching super step gives better
results. This is a pessimistic interpretation since typically 10m to 100m edge switches are
used to randomise graphs in practice; in this domain global trades perform similarly well
and 20 global trades consistently give at least the quality of 10m edge switches.

5.2 Runtime performance benchmarks
We measure the runtime of the algorithms proposed in section 4 and compare them to two
state-of-the-art edge switching schemes (using the authors’ C++ implementations):

VL-ES is a sequential IM algorithm with a hashing-based data structure optimised for
efficient neighbourhood queries and updates [37]. To achieve comparability, we removed
connectivity tests, fixed memory management issues, and adopted the number of swaps.
EM-ES is an EM edge switching algorithm and part of EM-LFR’s toolchain [15].

We carry out experiments using the (const) and (lin) parameter sets, and limit the
problem sizes for internal memory algorithms to avoid exhaustion of the main memory. For

C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner 11:13

106 107 108 109 1010

Number m of edges

102

103

T
im

e
/

ed
ge

/
su

p
er

st
ep

[n
s]

Parameter set: (const)

EM-CB

EMG-CB

IM-CB

VL-ES

EM-ES

EM-PGCB

105 106 107 108 109 1010

Number m of edges

102

103

Parameter set: (lin)

Figure 6 Runtime per edge and super step (global trade or m edge swaps) of the proposed
algorithms IM-CB, EM-CB and EM-PGCB compared to state-of-the-art IM edge switching VL-ES
and EM edge switching EM-ES. Each data point is the median of S ≥ 5 runs over 10 super steps
each. The left plot contains the (const)-parameter set, the right one (lin). Observe that the super
steps of different algorithms advance the randomisation process at different speeds (see discussion).

each data point we carry out 10 super steps (i.e. 10 global trades or 10m edge swaps) on a
graph generated with Havel-Hakimi from a random powerlaw degree distribution.

Figure 6 presents the walltime per edge and super step including pre-computation11
required by the algorithms but excluding the initial graph generation process. The plots
include (mostly small) errorbars corresponding to the unbiased estimation of the standard
deviation of S repetitions per data point (with different random seeds).

The number k of macrochunks does not significantly affect EM-PGCB’s performance
for small graphs due to comparably high synchronisation cost. In contrast, adjusting k for
larger graphs can noticeably increase the performance of EM-PGCB. We thus experimentally
determined the value k = 32 for both (const) and (lin) with n = 107 nodes and use that
value for all other instances.

All Curveball algorithms outperform their direct competitors significantly – even if we
pessimistically executed two global trades for each edge switching super step (see section 5.1).
For large instances of (const) EM-PGCB carries out one super step 14.3 times faster than
EM-ES and 5.8 times faster for (lin). EM-PGCB also shows a superior scaling behaviour
with an increasing speed-up for larger graphs. Similarly, IM-CB processes super steps up to
6.3 times faster than VL-ES on (const) and 5.1 times on (lin).

On our test machine, the implementation of IM-CB outperforms EM-CB in the internal
memory regime; EM-GCB is faster for large graphs. As indicated in [7], this changes
qualitatively for machines with slower main memory and smaller cache; on such systems the
unstructured I/O of IM-CB and VL-ES is more significant rendering EM-CB and EM-GCB
the better choice with a speed-up factor exceeding 8 compared to VL-ES.

6 Conclusion and outlook

We applied global Curveball trades to undirected graphs simplifying the algorithmic treatment
of dependencies and showed that the underlying Markov chain converges to a uniform
distribution. Experimental results show that global trades yield an improved quality compared
to a sequence of uniform trades of the same size.

11For VL-ES we report only the swapping process and the generation of the internal data structures.

ESA 2018

11:14 Randomisation of Massive Networks using Global Curveball Trades

We presented IM-CB and EM-CB, the first efficient algorithms for Simple Undirected
Curveball algorithms; they are optimised for internal and external memory respectively.
Our I/O-efficient parallel algorithm EM-PGCB exploits the properties of global trades and
executes a super step 14.3 times faster than the state-of-the-art edge switching algorithm
EM-ES; for IM-CB we demonstrate speed-ups of up to 6.3 (in a conservative comparison the
speed-ups should be halved to account for the differences in mixing times of the underlying
Markov chains). The implementations of all three algorithms are freely available and are in
the process of being incorporated into EM-LFR and considered for NetworKit.

References

1 A. Aggarwal, J. Vitter, et al. The input/output complexity of sorting and related problems.
Communications of the ACM, 31(9):1116–1127, 1988. doi:10.1145/48529.48535.

2 L. Arge. The buffer tree: A new technique for optimal I/O-algorithms, pages 334–345.
Springer Berlin Heidelberg, 1995. doi:10.1007/3-540-60220-8_74.

3 A. Beckmann, R. Dementiev, and J. Singler. Building a parallel pipelined external memory
algorithm library. In IPDPS’09, 2009. doi:10.1109/IPDPS.2009.5161001.

4 C. J. Carstens. Proof of uniform sampling of binary matrices with fixed row sums and
column sums for the fast curveball algorithm. Physical Review E, 91:042812, 2015.

5 C. J. Carstens. Topology of Complex Networks: Models and Analysis. PhD thesis, RMIT
University, January 2016.

6 C. J. Carstens, A. Berger, and G. Strona. Curveball: a new generation of sampling al-
gorithms for graphs with fixed degree sequence. CoRR, 2016. arXiv:1609.05137.

7 C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner. Parallel
and I/O-efficient randomisation of massive networks using global curveball trades. CoRR,
abs/1804.08487, 2018.

8 G. W. Cobb and Y.-P. Chen. An application of markov chain monte carlo to community
ecology. The American Mathematical Monthly, 110(4):265–288, 2003.

9 R. Dementiev, L. Kettner, and P. Sanders. STXXL: standard template library for XXL
data sets. Software: Practice and Experience, 38(6):589–637, 2008. doi:10.1002/spe.844.

10 R. B. Eggleton and D. A. Holton. Simple and multigraphic realizations of degree sequences,
pages 155–172. Springer Berlin Heidelberg, 1981. doi:10.1007/BFb0091817.

11 P. Erdős and A. Rényi. On random graphs I. Publicationes Mathematicae Debrecen, 1959.
12 C. Greenhill. A polynomial bound on the mixing time of a markov chain for sampling

regular directed graphs. The Electronic Journal of Combinatorics, 18(1):P234, 2011.
13 C. Greenhill. The switch markov chain for sampling irregular graphs: Extended abstract.

In Proceedings of SODA ’15, pages 1564–1572, 2015.
14 M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner. I/O-efficient generation

of massive graphs following the LFR benchmark. CoRR, 2017. arXiv:1604.08738.
15 M. Hamann, U. Meyer, M. Penschuck, and D. Wagner. I/O-efficient generation of massive

graphs following the LFR benchmark. In ALENEX, 2017. doi:10.1137/1.9781611974768.
16 F. Iorio, M. Bernardo-Faura, A. Gobbi, T. Cokelaer, G. Jurman, and J. Saez-Rodriguez.

Efficient randomization of biological networks while preserving functional characterization
of individual nodes. BMC bioinformatics, 17(1):542, 2016.

17 S. Itzkovitz, R. Milo, N. Kashtan, G. Ziv, and U. Alon. Subgraphs in random networks.
Physical review E, 68:026127, Aug 2003. doi:10.1103/PhysRevE.68.026127.

18 A. Lancichinetti and S. Fortunato. Benchmarks for testing community detection algorithms
on directed and weighted graphs with overlapping communities. Phys. Rev. E, 80:016118,
Jul 2009. doi:10.1103/PhysRevE.80.016118.

http://dx.doi.org/10.1145/48529.48535
http://dx.doi.org/10.1007/3-540-60220-8_74
http://dx.doi.org/10.1109/IPDPS.2009.5161001
http://arxiv.org/abs/1609.05137
http://dx.doi.org/10.1002/spe.844
http://dx.doi.org/10.1007/BFb0091817
http://arxiv.org/abs/1604.08738
http://dx.doi.org/10.1137/1.9781611974768
http://dx.doi.org/10.1103/PhysRevE.68.026127
http://dx.doi.org/10.1103/PhysRevE.80.016118

C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner 11:15

19 A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs for testing community
detection algorithms. Phys. Rev. E, 78:046110, 2008. doi:10.1103/PhysRevE.78.046110.

20 D. A. Levin, Y. Peres, and E. L. Wilmer. Markov chains and mixing times. American
Mathematical Society, Providence, Rhode Island, 2009.

21 A. Maheshwari and N. Zeh. A Survey of Techniques for Designing I/O-Efficient Algorithms,
pages 36–61. Springer Berlin Heidelberg, 2003.

22 U. Meyer, P. Sanders, and J. Sibeyn. Algorithms for Memory Hierarchies: Advanced Lec-
tures. Springer Berlin Heidelberg, 2003. doi:10.1007/3-540-36574-5.

23 C. G. M. Mihail and E. Zegura. The markov chain simulation method for generating
connected power law random graphs. In Proceedings of ALENEX ’03. SIAM, 2003.

24 R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U. Alon. On the uniform
generation of random graphs with prescribed degree sequences. CoRR, 2003. arXiv:
cond-mat/0312028.

25 M. Molloy and B. Reed. A critical point for random graphs with a given degree sequence.
Random Struct. Algorithms, 6(2/3):161–179, 1995.

26 M. E. J. Newman. The Structure and Function of Complex Networks. SIAM Review,
45(2):167–256, 2003. doi:10.1137/S003614450342480.

27 M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary degree
distributions and their applications. Phys. Rev. E, 64:026118, Jul 2001. doi:10.1103/
PhysRevE.64.026118.

28 R. Pagh. Basic external memory data structures, pages 36–61. Springer Berlin Heidelberg,
2003.

29 J. Ray, A. Pinar, and C. Seshadhri. Are We There Yet? When to Stop a Markov Chain
while Generating Random Graphs, pages 153–164. Springer Berlin Heidelberg, 2012. doi:
10.1007/978-3-642-30541-2_12.

30 J. Ray, A. Pinar, and C. Seshadhri. A stopping criterion for markov chains when generating
independent random graphs. J. of Compl. Net., 3(2), 2015. doi:10.1093/comnet/cnu041.

31 W. E. Schlauch, E. Á. Horvát, and K. A. Zweig. Different flavors of randomness: comparing
random graph models with fixed degree sequences. Social Network Analysis and Mining,
5(1):1–14, 2015. doi:10.1007/s13278-015-0267-z.

32 W. E. Schlauch and K. A. Zweig. Influence of the null-model on motif detection. In
ASONAM’15, NY, USA, 2015. ACM. doi:10.1145/2808797.2809400.

33 C. L. Staudt, A. Sazonovs, and H. Meyerhenke. NetworKit: A tool suite for large-scale
complex network analysis. Network Science, 4(04), 2016. doi:10.1017/nws.2016.20.

34 S. H. Strogatz. Exploring complex networks. Nature, 410(6825):268, 2001.
35 G. Strona, D. Nappo, F. Boccacci, S. Fattorini, and J. San-Miguel-Ayanz. A fast and

unbiased procedure to randomize ecological binary matrices with fixed row and column
totals. Nature Communications, 5:4114–, 2014. doi:10.1038/ncomms5114.

36 N. D. Verhelst. An efficient MCMC algorithm to sample binary matrices with fixed mar-
ginals. Psychometrika, 73(4):705–728, 2008.

37 F. Viger and M. Latapy. Fast generation of random connected graphs with prescribed
degrees. CoRR, feb 2005. Source code available at https://www-complexnetworks.lip6.
fr/~latapy/FV/generation.html. arXiv:cs/0502085.

ESA 2018

http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1007/3-540-36574-5
http://arxiv.org/abs/cond-mat/0312028
http://arxiv.org/abs/cond-mat/0312028
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1007/978-3-642-30541-2_12
http://dx.doi.org/10.1007/978-3-642-30541-2_12
http://dx.doi.org/10.1093/comnet/cnu041
http://dx.doi.org/10.1007/s13278-015-0267-z
http://dx.doi.org/10.1145/2808797.2809400
http://dx.doi.org/10.1017/nws.2016.20
http://dx.doi.org/10.1038/ncomms5114
https://www-complexnetworks.lip6.fr/~latapy/FV/generation.html
https://www-complexnetworks.lip6.fr/~latapy/FV/generation.html
http://arxiv.org/abs/cs/0502085

Revision Notice

This is a revised version of the eponymous paper appeared in the proceedings of ESA 2018
(LIPIcs, volume 112, http://www.dagstuhl.de/dagpub/978-3-95977-081-1 published in
August, 2018), in which the concept of global trades is now correctly attributed to Carstens,
Berger, Strona. Curveball: a new generation of sampling algorithms for graphs with fixed degree
sequence. arXiv:1609.05137.

Dagstuhl Publishing – August 27, 2018.

http://www.dagstuhl.de/dagpub/978-3-95977-081-1
https://arxiv.org/abs/1609.05137

	Introduction
	Preliminaries and Notation
	External-Memory Model
	TFP: Time Forward Processing

	Randomisation schemes
	Edge-Switching
	Simple Undirected Curveball algorithm
	Undirected Global Trades

	Novel Curveball algorithms for undirected graphs
	EM-CB: A sequential I/O-efficient Curveball algorithm
	IM-CB: An internal memory version of EM-CB
	EM-GCB: An I/O-efficient Global Curveball algorithm
	EM-PGCB: An I/O-efficient parallel Global Curveball algorithm

	Experimental Evaluation
	Mixing of Edge-Switching, Curveball and Global Curveball
	Runtime performance benchmarks

	Conclusion and outlook

