318 research outputs found

    Using Physical and Social Sensors in Real-Time Data Streaming for Natural Hazard Monitoring and Response

    Get PDF
    Technological breakthroughs in computing over the last few decades have resulted in important advances in natural hazards analysis. In particular, integration of a wide variety of information sources, including observations from spatially-referenced physical sensors and new social media sources, enables better estimates of real-time hazard. The main goal of this work is to utilize innovative streaming algorithms for improved real-time seismic hazard analysis by integrating different data sources and processing tools into cloud applications. In streaming algorithms, a sequence of items from physical and social sensors can be processed in as little as one pass with no need to store the data locally. Massive data volumes can be analyzed in near-real time with reasonable limits on storage space, an important advantage for natural hazard analysis. Seismic hazard maps are used by policymakers to set earthquake resistant construction standards, by insurance companies to set insurance rates and by civil engineers to estimate stability and damage potential. This research first focuses on improving probabilistic seismic hazard map production. The result is a series of maps for different frequency bands at significantly increased resolution with much lower latency time that includes a range of high-resolution sensitivity tests. Second, a method is developed for real-time earthquake intensity estimation using joint streaming analysis from physical and social sensors. Automatically calculated intensity estimates from physical sensors such as seismometers use empirical relationships between ground motion and intensity, while those from social sensors employ questionaries that evaluate ground shaking levels based on personal observations. Neither is always sufficiently precise and/or timely. Results demonstrate that joint processing can significantly reduce the response time to a damaging earthquake and estimate preliminary intensity levels during the first ten minutes after an event. The combination of social media and network sensor data, in conjunction with innovative computing algorithms, provides a new paradigm for real-time earthquake detection, facilitating rapid and inexpensive risk reduction. In particular, streaming algorithms are an efficient method that addresses three major problems in hazard estimation by improving resolution, decreasing processing latency to near real-time standards and providing more accurate results through the integration of multiple data sets

    VERCE delivers a productive e-Science environment for seismology research

    Get PDF
    The VERCE project has pioneered an e-Infrastructure to support researchers using established simulation codes on high-performance computers in conjunction with multiple sources of observational data. This is accessed and organised via the VERCE science gateway that makes it convenient for seismologists to use these resources from any location via the Internet. Their data handling is made flexible and scalable by two Python libraries, ObsPy and dispel4py and by data services delivered by ORFEUS and EUDAT. Provenance driven tools enable rapid exploration of results and of the relationships between data, which accelerates understanding and method improvement. These powerful facilities are integrated and draw on many other e-Infrastructures. This paper presents the motivation for building such systems, it reviews how solid-Earth scientists can make significant research progress using them and explains the architecture and mechanisms that make their construction and operation achievable. We conclude with a summary of the achievements to date and identify the crucial steps needed to extend the capabilities for seismologists, for solid-Earth scientists and for similar disciplines.Comment: 14 pages, 3 figures. Pre-publication version of paper accepted and published at the IEEE eScience 2015 conference in Munich with substantial additions, particularly in the analysis of issue

    Scientific Workflows: Moving Across Paradigms

    Get PDF
    Modern scientific collaborations have opened up the opportunity to solve complex problems that require both multidisciplinary expertise and large-scale computational experiments. These experiments typically consist of a sequence of processing steps that need to be executed on selected computing platforms. Execution poses a challenge, however, due to (1) the complexity and diversity of applications, (2) the diversity of analysis goals, (3) the heterogeneity of computing platforms, and (4) the volume and distribution of data. A common strategy to make these in silico experiments more manageable is to model them as workflows and to use a workflow management system to organize their execution. This article looks at the overall challenge posed by a new order of scientific experiments and the systems they need to be run on, and examines how this challenge can be addressed by workflows and workflow management systems. It proposes a taxonomy of workflow management system (WMS) characteristics, including aspects previously overlooked. This frames a review of prevalent WMSs used by the scientific community, elucidates their evolution to handle the challenges arising with the emergence of the “fourth paradigm,” and identifies research needed to maintain progress in this area

    The Third NASA Goddard Conference on Mass Storage Systems and Technologies

    Get PDF
    This report contains copies of nearly all of the technical papers and viewgraphs presented at the Goddard Conference on Mass Storage Systems and Technologies held in October 1993. The conference served as an informational exchange forum for topics primarily relating to the ingestion and management of massive amounts of data and the attendant problems involved. Discussion topics include the necessary use of computers in the solution of today's infinitely complex problems, the need for greatly increased storage densities in both optical and magnetic recording media, currently popular storage media and magnetic media storage risk factors, data archiving standards including a talk on the current status of the IEEE Storage Systems Reference Model (RM). Additional topics addressed System performance, data storage system concepts, communications technologies, data distribution systems, data compression, and error detection and correction

    NUC BMAS Sciences PG

    Get PDF

    Optimisation of the enactment of fine-grained distributed data-intensive work flows

    Get PDF
    The emergence of data-intensive science as the fourth science paradigm has posed a data deluge challenge for enacting scientific work-flows. The scientific community is facing an imminent flood of data from the next generation of experiments and simulations, besides dealing with the heterogeneity and complexity of data, applications and execution environments. New scientific work-flows involve execution on distributed and heterogeneous computing resources across organisational and geographical boundaries, processing gigabytes of live data streams and petabytes of archived and simulation data, in various formats and from multiple sources. Managing the enactment of such work-flows not only requires larger storage space and faster machines, but the capability to support scalability and diversity of the users, applications, data, computing resources and the enactment technologies. We argue that the enactment process can be made efficient using optimisation techniques in an appropriate architecture. This architecture should support the creation of diversified applications and their enactment on diversified execution environments, with a standard interface, i.e. a work-flow language. The work-flow language should be both human readable and suitable for communication between the enactment environments. The data-streaming model central to this architecture provides a scalable approach to large-scale data exploitation. Data-flow between computational elements in the scientific work-flow is implemented as streams. To cope with the exploratory nature of scientific work-flows, the architecture should support fast work-flow prototyping, and the re-use of work-flows and work-flow components. Above all, the enactment process should be easily repeated and automated. In this thesis, we present a candidate data-intensive architecture that includes an intermediate work-flow language, named DISPEL. We create a new fine-grained measurement framework to capture performance-related data during enactments, and design a performance database to organise them systematically. We propose a new enactment strategy to demonstrate that optimisation of data-streaming work-flows can be automated by exploiting performance data gathered during previous enactments

    Image Processing Using FPGAs

    Get PDF
    This book presents a selection of papers representing current research on using field programmable gate arrays (FPGAs) for realising image processing algorithms. These papers are reprints of papers selected for a Special Issue of the Journal of Imaging on image processing using FPGAs. A diverse range of topics is covered, including parallel soft processors, memory management, image filters, segmentation, clustering, image analysis, and image compression. Applications include traffic sign recognition for autonomous driving, cell detection for histopathology, and video compression. Collectively, they represent the current state-of-the-art on image processing using FPGAs

    ACADEMIC HANDBOOK (UNDERGRADUATE) COLLEGE OF ENGINEERING (CoE)

    Get PDF

    Data bases and data base systems related to NASA's aerospace program. A bibliography with indexes

    Get PDF
    This bibliography lists 1778 reports, articles, and other documents introduced into the NASA scientific and technical information system, 1975 through 1980
    corecore