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Abstract 

Technological breakthroughs in computing over the last few decades have resulted in 

important advances in natural hazards analysis. In particular, integration of a wide variety of 

information sources, including observations from spatially-referenced physical sensors and 

new social media sources, enables better estimates of real-time hazard. The main goal of this 

work is to utilize innovative streaming algorithms for improved real-time seismic hazard 

analysis by integrating different data sources and processing tools into cloud applications. In 

streaming algorithms, a sequence of items from physical and social sensors can be processed 

in as little as one pass with no need to store the data locally. Massive data volumes can be 

analyzed in near-real time with reasonable limits on storage space, an important advantage 

for natural hazard analysis.  

Seismic hazard maps are used by policymakers to set earthquake resistant construction 

standards, by insurance companies to set insurance rates and by civil engineers to estimate 

stability and damage potential. This research first focuses on improving probabilistic seismic 

hazard map production. The result is a series of maps for different frequency bands at 

significantly increased resolution with much lower latency time that includes a range of high-

resolution sensitivity tests. 

Second, a method is developed for real-time earthquake intensity estimation using joint 

streaming analysis from physical and social sensors. Automatically calculated intensity 

estimates from physical sensors such as seismometers use empirical relationships between 

ground motion and intensity, while those from social sensors employ questionnaires that 

evaluate ground shaking levels based on personal observations. Neither is always sufficiently 

precise and/or timely. Results demonstrate that joint processing can significantly reduce the 

response time to a damaging earthquake and estimate preliminary intensity levels during the 

first ten minutes after an event. The combination of social media and network sensor data, in 

conjunction with innovative computing algorithms, provides a new paradigm for real-time 

earthquake detection, facilitating rapid and inexpensive risk reduction. In particular, 

streaming algorithms are an efficient method that addresses three major problems in hazard 

estimation by improving resolution, decreasing processing latency to near real-time standards 
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and providing more accurate results through the integration of multiple data sets. 
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Chapter 1  

1 General Introduction 

1.1 Objectives 

Today near-real time big data processing approaches strengthen a community's resilience 

to natural hazard throughout the broad implementation of natural hazards applications, 

exposure estimation techniques, disaster impact monitoring, recovery effort coordination 

and vulnerability mitigation methods. 

The overall volume of available data in the natural hazards field has been increasing 

exponentially over the last decade (IDC, 2012) with the appearance of new physical and 

social sensors. In general, this phenomenon is often described as a complex feature 

resulting from the growth of big data. Initially, big data was defined as relatively massive 

datasets that cannot be captured, stored, managed, and analyzed by standard database 

software tools (Manyika et al. 2011). This definition has been changed over time and 

today big data is not described in terms of large volumes alone. In reality these datasets 

include other characteristics defined as the ‘V’s’ of big data, such as volume, velocity, 

variety, veracity, variability and validity (Tiampo et al., 2016). Data velocity decribes the 

rate of data production or usage (for instance, the rate of readings taken from a sensor 

operating in real-time). Data variety is a property refers to structural complexity of big 

data sets. Also, big data can be uncertain, imprecise and incomplete, and this is defined 

by the property of veracity. Variability refers to data whose meaning is constantly 

changing in time. Finally, validity is related to the data accuracy and correctness in the 

context of usage (Tiampo et al., 2016). Because there is some overlap between these 

terms, the following discussion will focus on volume, velocity, variety and variability.   

The growth in both data volume and variability has had a significant demand on the 

capacity improvement of hazard monitoring tools. Response methodologies can be 

improved by adding new, complementary data to existing analysis techniques. In 

practice, these advances are complicated by the fact that data often is not unified and 

needs to be processed using various technologies and methods that are all factors studied 



2 

 

under the complex field of big data today (Hu et al., 2014). For example, data integration 

becomes important in cases where new data sources can significantly speed up the 

calculations that are critical for natural hazard monitoring applications. Joint streaming 

processing of data from physical and social sensors for natural hazards monitoring and 

mitigation can significantly improve not only temporal but also spatial resolution of 

existing analysis approaches such as hazard intensity mapping. The explosion of big data 

has made existing data management methods inefficient and new approaches have been 

proposed to deal with the various aspects associated with their incorporation and analysis. 

One potential solution includes analyzing large volumes of data from multiple sources on 

the fly without storing it, often called “data in motion” or streaming analysis. Streaming 

analysis focuses on rapid processing of continuous unstructured data. As a result, data is 

continuously analyzed and transformed in memory. As a result, the streaming approach 

addresses problem arising on the overlap between big data characteristics described 

above, such as volume, velocity, variability and variety and affects storage, transmission, 

and access of that data (Tiampo et. al., 2016). The processing of data streams works by 

processing “time windows” of data in memory across a cluster of servers. Streaming 

analysis can be applied to data sources such as seismic monitoring stations, deep ocean 

bottom pressure sensors in tsunami stations, sea level stations, water level and flow 

sensors in river gauging stations, satellite and airborne altimetry systems and other 

physical sensors. In addition, big streams of social sensors create data packets with high 

frequency in real time that can be imported into a streaming environment as well.  

Here we use the IBM InfoSphere Streams application for the development of near real-

time hazards assessment and response applications. The goal of this work was to develop 

an efficient application, aimed at better characterizing the exposure and hazard associated 

with large earthquakes. The work has been done in collaboration with the consortium of 

Canadian academic institutions, the high-performance computing network SHARCNET, in 

order to use modern computer science advantages such as advanced cloud and streaming 

computing to improve existing solutions and instruments used in hazard and risk assessment. 

First, the resolution of seismic hazard maps was significantly improved through optimization 

of those algorithms that are used to estimate particular values along with a pronounced 

reduction in their execution time.  
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In the second phase of this work, an approach to near real-time earthquake intensity 

estimation using streaming data analysis from social (Twitter data) and physical 

(seismographs and accelerometers) sensors is developed. It was found that seismic intensity 

levels correlate well with tweet rates in the ten minutes following an earthquake in 

regions with a significant number of Twitter users, such as California, Chile, and Japan. 

Four models describing that correlation are proposed: linear, two-segment linear, three-

segment linear and exponential. The relationships were validated and calibrated based on 

a historical data set of intensity records and tweets archives. These relationships can be 

used for near real-time intensity estimation techniques where Twitter data is employed 

either as a complimentary or sole data source. In this case, “near real-time” is related to 

the time delay between the occurrence of a hazard event and the release of the processing 

results to government, emergency response and public users.  Taken together, these 

results demonstrate the significance of streaming computing and joint processing 

techniques in the natural hazards field. 

1.2 Background 

Natural hazards are naturally occurring events that often cause large amounts of 

economic and human loss and that cannot be controlled or eliminated. Over the last 

several decades, climate change has been altering the natural hazard patterns by 

increasing their frequency and intensity (Houghton, 2001). At the same time, constantly 

increasing population density, particularly along the coasts, adds complexity to the 

problem (Hinrichsen, 1998). Despite the increase in number and intensify of natural 

disasters (Houghton, 2001), the effect of natural hazards on people and the environment 

can be mitigated, wherein the level of ability to mitigate and the level of mitigation 

resources directly correlates with general economic situation in the certain country 

(Alexander, 1997). Natural events are more risky in developing countries where the 

economic situation forces human priorities to change and communities to accept a lower 

standard of living and insufficient hazard mitigation actions (UN/ISDR, 2006).   

Proper mitigation of natural hazards, such as forecasting, early warning systems, 

monitoring and disaster response, requires the ability to process large amounts of data at 

high speeds. Since the end of the 2000s, this requirement was one of the reasons for the 
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rapid growth of the big data field. In the context of emergency response, big data is 

comprised of three major components: spatially distributed data sources; infrastructure 

capable of analyzing large amount of data; and people managing analysis of data and 

delivery of results (Cimellaro, 2010). 

Big data is one of the most promising areas for natural disasters risk mitigation. As the 

amount of wireless telephone and internet users grows in developing countries over the 

next decade (Poushter, 2016), the ability to use new information sources for effective 

mitigation techniques has a great potential. Cell phones can provide detailed information 

on population density and movement and social networks such as Twitter or Facebook 

can assist with monitoring and response to natural hazards as well as provide data 

suitable for analysis during and after an event.  

The exploitation of new data sources also brings new concerns related to the amount of 

data being collected, the ability to access that data and the accompanying security and 

privacy (Herold, 2016). Also, while available methods of gathering information work 

well in developed countries, they are still less successful in places with a smaller user 

base. As a result, existing uncertainty and multiple requirements make the assessment of 

new methods difficult. 

Big data is not only addressing as the  volume of data, its variety and variability (the 

number of data types and how it is changing with time) and velocity (the speed of data 

processing) (Laney, 2001).  There also are issues related to data complexity, or the lack 

of a trivial description of data interactions, and recency, defined as the ability of a social 

sensor to react in real-time. Therefore, big data should be seen as an ecosystem that is a 

function of the new kinds of information that can be obtained and the necessary 

additional computational resources and analytical tools required by various new players 

in the field (Cimellaro, 2010). Big data is a complex social system defined by the three 

Cs (Letouze, 2013): 

 Digital bread crumbs (Cimellaro, 2010). This is the data created by digitizing 

human actions and interactions. The majority is passively generated by multiple 

digital devices and services, primarily as a side effect of their operation.  It can 
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be divided into three categories: digital content, exhaust data and sensing data 

(Costello et al., 2009). 

 Capacities and analytics. These define the infrastructure, methods, instruments 

and skills required to process new information and include visualization 

techniques, algorithms and machine learning approaches (Letouze, 2013). 

 Communities.  These describe the players in the ecosystem such as data 

generators, processors and end users.  Potentially this includes the entire 

population (Letouze, 2013). 

To date, there are a number of big data solutions proposed and developed in the natural 

hazards field.  These methods can be divided by the application purpose into three 

categories: disaster monitoring, hazard mapping and disaster response applications. Note 

that the research of this thesis falls into each of these categories. Below the overview of 

existing solutions in each category is provided.  

1.2.1 Disaster monitoring 

Proper monitoring is vital for disaster mitigation and big data solutions are already being 

used for that purpose in certain areas. For instance, remote sensing techniques include 

monitoring satellites with panchromatic, multispectral, infrared and thermal sensors for 

the near real-time smoke and fire detection (Nirupama and Simonovic, 2002). Further 

advancements in monitoring techniques can be accomplished by improving the existing 

systems and mastering new data sources. 

One of the biggest avenues for improvement of existing monitoring solutions is risk 

measurement systems. New satellite data can provide more detailed information for 

hazard detection and mapping. For example, the National Aeronautics and Space 

Administration (NASA) Gravity Recovery and Climate Experiment (GRACE) satellites 

launched in 2002 are used to improve monitoring of groundwater depletion (Tapley et al., 

2004) and the NASA Soil Moisture Active Passive mission (SMAP) (Entekhabi et al., 

2010) will be able to provide the more accurate data related to soil moisture. These two 
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sources, when combined together, can help with detection of arid lands and identification 

of potentially food-insecure areas. 

Another area where existing monitoring can be improved is early warning systems. For 

example, tsunami risk can be assessed by analyzing wave surface information obtained 

from satellite altimeters together with GPS data on ionospheric perturbations (Occhipinti 

et al., 2008). However, the associated requirement for real time ionosphere monitoring 

for anomaly detection make this solution hard to use in reality. Therefore, new big data 

solutions will be necessary in order to provide a more realistic approach to real-time 

tsunami mapping. 

Early warning systems are also an area where new data sources can be used to improve 

monitoring techniques. For example, accelerometers build into cell phones can be used to 

detect earthquakes (Kong et al., 2016) while hand water pump sensors can provide 

hydrological data (Taylor and Alley, 2001). 

New data sources combined with existing networks of sensors can offer great 

opportunities for improving accuracy and coverage of monitoring systems. For instance, 

the United States Geological Survey (USGS) uses social media data in conjunction with 

seismometers to detect earthquakes. USGS presented and evaluated an earthquake 

detection procedure that relies on Twitter data. Tweet-frequency time series were 

extracted from positive tweets and clearly presents large spikes correlated with the origin 

times of widely felt earthquakes (Earle et al., 2012). A recent study by Jongman et al. 

(2015) describes how social networks can be utilized to obtain images and descriptions of 

ongoing events in real time. Another example is the Global Flood Detection System, 

implemented in the Philippines and Pakistan, has been combined with Floodtags, an 

analytics platform based on Twitter posts. This combination proved to work better in 

highly populated areas during unexpected flood events, such as breaches of flood defense 

(Jongman et al., 2015). 

Despite the fact that the examples above demonstrate that incorporation of new sensor 

networks is a promising approach to improve existing hazard event detection solutions, 

there are still many challenges. The variety of geographical areas will require different 
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thresholds and new ways of sampling the data in order to ensure success. Certain 

communities may require additional awareness about the usefulness of their social 

network posts or cell phone data disaster detection and response. 

1.2.2 Hazard Mapping with Big Data 

Correct assessment of vulnerabilities and hazard exposure is crucial for risk estimation 

and mitigation. Big data solutions are able to access some exposure characteristics such 

as information about population, infrastructure and economic situation and identify the 

vulnerability of certain geographical areas and countries. Also, while traditional hazard 

mapping systems rely on historical and statistical data available, multiple big data 

methods developed during recent years work well for environments where data is less 

available data or there is a complete absence of historical records. Musaev et al. (2014) 

developed the landslide detection and mapping system LITMUS by integrating multiple 

data sources from social sensors (Twitter, Instagram, and YouTube) and physical sensors 

(USGS seismometers and Tropical Rainfall Measuring Mission (TRMM) satellite). The 

system demonstrated better performance than traditional techniques employed by USGS 

for real-time hazard mapping. 

Satellite images that are available today at relatively low cost have resulted in the rapid 

development of algorithms designed for their mapping to the existing landscape. Earlier 

approaches based on expert models do not allow scaling to global coverage, more 

frequent sampling or the use of data from multiple sources (Pesaresi and Freire, 2014). 

Better satellite images have driven the creation of new systems designed to process them. 

For example, GlobCover38 and the moderate-resolution imaging spectroradiometer 

(MODIS) Land Cover Type39, developed over the last decade, can classify urban areas 

with accuracy close to 96% (Klotz et al., 2014). Both systems, combined with global 

population information, are capable of performing risk analysis for countries lacking data 

suitable for other existing solutions. 

Global Human Settlement Layer (GHSL), developed by the European Union’s Joint 

Research Centre, and the Global Urban Footprint (GUF), created by the German 

Aerospace Center, is designed to perform global mapping at the best existing spatial 



8 

 

details. Both systems are capable of detecting small settlements based on the images 

received from the satellites. GHSL is expected to be more flexible as it is capable of 

quickly retrieving and integrating large amounts of image data as well as providing 

detailed information on current development such as buildings and other exposure 

characteristics (Pesaresi et al., 2013.). Maps produced by GHSL already show how 

vulnerable existing building are because of the way they were built or their age. Both 

solutions are currently being tested but preliminary results show them to be reliable 

(Klotz et al., 2014). 

Another relatively new hazard mapping method is crowd sourcing, also called 

participatory mapping. Most of the existing projects involve volunteers with local 

knowledge to map images and social media information such as videos and photos. One 

of the projects is OpenStreetMap (OSM), started in 2004. Today OSM is an organization 

with more than 1.5 million users from over 80 countries who work together on creating 

open digital map of the entire world (Palen et al., 2014). Users are organized into groups 

by geographical area. There is a single database with information about existing building, 

roads etc. edited by project users remotely. Currently OSM does not cover all territories 

evenly but the data available in the database is of high quality when compared to other 

sources (Haklay, 2010). The Humanitarian OSM Team (HOT) is a part of OSM focused 

on disaster applications. HOT has proven its importance by providing detailed maps after 

earthquake in Haiti (2010), Typhoon Yolanda (2014) and the earthquake in Nepal (2015). 

HOT’s Missing Maps Project is focused on mapping world’s most vulnerable places, 

mostly in developing countries, to improve disaster response in future (Missing Map, 

2015). Other HOT projects are aimed to map specific vulnerabilities. For example, one is 

working on infrastructure vulnerable to floods in Dar es Salaam, Tanzania (HotOSM, 

2016) while another is collecting exposure data for risk modelling software in Indonesia 

(HotOSM, 2016). At the same time there is not enough transparency about how the 

coordination of efforts works in OSM. It is not always clear who the users are and if there 

is a potential way to improve the consistency and accuracy of the data (Palen et al., 

2014). More detailed evaluation may be required to identify potential areas of 

improvement and application of OSM and similar projects. 
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Another type of data that has been used in big data hazard mitigation projects is wireless 

details. Wireless call records combined with phone metadata can be used to assess the 

level of disaster preparedness and identify exposures. Call detail records (CDRs) are 

metadata related to wireless calls with details about the number of calls performed 

between towers and the amount of airtime used. Collected in developing countries, where 

cell phone penetration rate is over 90% (Parkes, 2013), such data can provide detailed 

and dynamic information related to population. Several researches have been conducted 

where CDRs were used to obtain information about the migration of people (Bengtsson et 

al., 2011), population density and the dynamics in Europe, Haiti and New York (Deville 

et al., 2014). 

Data extracted from phone records can be useful not just for building exposure maps or 

designing evacuation routes but also for tasks like evaluating the risk of disease after a 

disaster (Wesolowski et al., 2012), adjusting exposure maps according to the patterns of 

seasonal migration (Pentland, 2012), determining the economic status of certain 

communities to identify groups of people missed by official surveys. Projects have been 

conducted in Rwanda (Blumenstock, 2014), Latin America (Frias-Martinez et. al., 2012) 

and UK (Eagle, 2010)). 

Research using wireless data is still an emerging area and at this point some applications 

have been well tested while others are less so. One of the promising applications is the 

ability to use CDRs to assess social network features (Aldrich et al., 2014). For example, 

during the earthquake in Haiti in 2010, phone records combined with social networks 

were used to connect refuges with their family members in other areas of the country and 

provide assistance exactly where it was needed (Eagle et al. 2009, Onnela et al. 2007). 

Phone records are a promising area for research, but compared to social media data they 

do contain less of the information required for vulnerability management.  For example, 

they do not routinely incorporate education, age, health or access to water or other 

infrastructure sources. As a result, they have a lower potential for practical applications 

than other social sensors. 
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1.2.3 Disaster response 

As a part of International Decade for Natural Disaster Reduction (1990–1999) and 

additional efforts, several organizations have been created to collect, analyze and share 

data used for effective natural disaster response. While these organizations are proven to 

be effective (UN/ISDR, 2015), several challenges remain to be addressed. Warning 

delays need to be reduced, especially during floods and storms. In addition, 

telecommunication systems in developing countries require an upgrade. 

The success of big data applications to the field of natural hazard response depends on its 

ability to improve situational awareness and short-term impact assessment (Letouze et al., 

2013). 

1.2.3.1 Situational awareness 

Situational awareness is defined as “all knowledge that is accessible and can be 

integrated into a coherent picture, when required, to assess and cope with a situation” 

(Sarter and Woods, 1991). As mentioned above, disaster events tend to correlate with 

activity in social media and as a result can contribute to the enhancement of situational 

awareness.  In one example, the USGS uses Twitter not only for earthquake detection 

worldwide, but also for alert posts (Smyrl et al. 2011). The Billion Prices Project 

developed by the Massachusetts Institute of Technology (MIT) collects information about 

prices posted online to monitor food security and detect and post inflation patterns (BBT, 

2016). The public sector uses disease information obtained from digital sources to create 

alerts about possible outbreaks (WHO, 2016). To take advantage of existing platforms 

during emergency more of the following is required: capacity to be able to create tools 

and platforms, proper information delivery mechanisms, and adequate guidelines and 

procedures to provide required information to all parties. 

1.2.3.2 Short-term effect assessment 

Full and timely assessment of the immediate impact of a disaster heavily relies on 

multiple data sources available for analysis. Remote sensing is one of the main sources 

today for this kind of assessment. Its main functions are better situational awareness and 
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proper damage mapping with large coverage, damage assessment for the most critical 

properties, such as office buildings and homes, and the evaluation of impact on critical 

infrastructure such as water pipes, energy grids, and roads (Stow et al., 2015). 

One of the projects that has shown promising results was the damage assessment with 

laser scanning devices capable of creating 3D images of an area (Qiu et al., 2014). 

Satellite images are being used more now for evaluating damage caused by hurricanes in 

tropical forests (Rossi et al., 2009) and tsunamis (Cervone et al., 2013). They provide 

high accuracy data for damage assessment after earthquakes, such as the ones that 

occurred in Japan on 11 March 2011 (Yamazaki et al., 2013) and in Haiti on 12 January 

2010 (Pham et al., 2015). Also, new automated image processing solutions are being 

developed (Polli et al., 2013; Nex et al., 2014). At the same time, social sensors such are 

being used increasingly to improve the accuracy and details of the disaster impact. Crowd 

sourcing platforms in social media c allow for the implementation of algorithms to speed 

up the processing of images received from satellites and drones by breaking it into 

smaller chunks and involving multiple contributors for simultaneous processing (Meier, 

2014). 

During the wildfires in Russia (2010), digital activists used social networks to coordinate 

the efforts of volunteer firefighters (Asmolov, 2014). Big data, together with social 

media, was able to direct the efforts of decentralized groups and improve interactions 

between them. Such technologies can help to synchronize the efforts of organizations 

involved in disaster response. Thus health professionals providing aid during the 2010 

earthquake in Haiti successfully coordinated their efforts using Twitter. The examples 

above demonstrate the potential applications and usefulness for similar platforms and 

technologies. An overview of existing Big Data analysis approaches is provided in the 

following section. 

1.3 Big Data analysis approaches 

Big data involves combining data crumbs with advanced data processing tools to perform 

the following types of analysis: 
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● Descriptive analysis – qualitative description of changes or concerns such as 

hurricane damage assessment or flood detection on early stages. 

● Predictive analysis – statements and conclusions about non-observable or hard-

to-measure entities. For example, information about migration and interaction 

patterns between people during disasters can be obtained from the analysis of 

wireless calls, cell phone relocation and recharge patterns. This type of analysis 

is more focused on what will happen in the future and can be used for tasks such 

as more detailed weather forecasts or the prediction of sudden disasters. 

● Prescriptive analysis – predictive analysis considers possible future situations by 

examining the most probable pathways. Once the list of scenarios has been 

identified each can be assessed further with predictive analysis. 

● Discursive analysis – disaster mitigation with the help of the third C (above), 

communities. This is achieved by creating additional awareness and 

preparedness while providing early warning and real-time feedback (Data-Pop 

Alliance, 2015). 

For all of the types of analysis listed above, stream computing techniques can be used to 

decrease processing velocities without relying on the need to increase storage volume. 

Below, the theoretical overview of the streaming processing concept is discussed. 

1.3.1 Big Data Streaming Processing Concept Overview 

Streaming computing is a relatively new approach to manage the volume, velocity, 

variety and variability of big data. A data stream is defined as a sequence of values that 

are normally both infinite and change with time. Simple examples are heart rate 

measurements or stock market tickers. More complex events or patterns also can be 

represented as a single or multiple data streams. The processing of data streams involves 

querying, filtering and transforming of values arriving from the producers, and feeding 

the relevant data, formatted properly, to end users. The high-performance clusters can be 

used to process high-dimensional streams from multiple sensors. In many cases, 

sequential implementations of even single-pass algorithms cannot keep up with the speed 
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of real-world streams due to the high cost of similarity computation. In this cases real-

time stream clustering implemented through parallelization (Cugola and Margara, 2011). 

The main goal of data stream processing is to observe the evolution of the data and 

analysis products with time.  In many cases, more recent data is of higher importance 

than the older one. Streaming applications generally focus on live data while historical 

values are often aggregated and archived in case they are needed later for additional 

analysis. Thus, time becomes a key factor in data analysis from streams. Clearly, this 

requirement makes utilization of traditional database systems quite difficult as they deal 

mostly with static data, and are designed to query and retrieve the values as they were at a 

particular point of time. 

Another common requirement of data streams processing is real-time or near real-time 

evaluation of fresh data and uninterrupted delivery of results. Data is evaluated 

continuously, a principle which again differs with well-known models of relational 

databases that store static data (Babcock et al.,2002). 

At the same time, quite often, future data rates of new values being produced by the 

stream sources are unknown and, in most cases, the processing application does not 

control the arrival of data. Thus, the processor needs to constantly monitor the arrival of 

new values and must be ready to compare them to the data acquired and processed earlier 

(Babu and Widom, 2001). 

The infinite nature of streams and the requirement for continuous and often real-time 

evaluation of fresh data, as well as the other requirements discussed earlier, demand new 

approaches to data processing. These approaches are expected to be different from the 

models used in conventional data management systems and have resulted in the new field 

of streaming data research. Below is a brief overview of the key aspects of the existing 

stream processing models. 

Earlier models proposed for stream processing emerged from the field of relational 

databases, and based on relations between old and new values. In some cases, these 

models were limited to append-only updates, often compared to Tapestry, an 
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experimental mail system developed at the Xerox Palo Alto Research Center (Terry et al., 

1992). Data streaming was seen as a sequence of data tuples continuously arriving at a 

given order. At a certain point, the Tapestry model was a convenient approach as it could 

be considered more as an extension to existing systems, and it allowed the field to 

maintain its existing approaches, query operators and languages intact. 

One of the popular models views a stream as a continuously arriving unbounded 

sequence of tuples, being appended to existing data with a timestamp or another time-

based index (Golab and Özsu, 2003). The timestamp indicates the time of arrival or 

observation and implies the time when the tuple was produced as well as its sequential 

order. Each tuple may include additional attributes according to various requirements and 

defined data structure. 

This model allows more than one tuple for each given timestamp. Examples of the 

systems based on this approach are STREAM (Arasu et al., 2007), TelegraphCQ 

(Chandrasekaran et al., 2003) and Aurora (Abadi et al., 2003). The STREAM system 

provided the formal definition of the model (Arasu et al.,2007), where a stream is a set of 

tuple and timestamp pairs. Tuples can be simple, with only one data type object, or more 

complex. In that case  Data Definition Language (DDL) (Sullivan and Heybey, 1998) or 

COUGAR, with more broad data types (Bonnet et al., 2001), may be used to define a 

tuple. Some implementations use XML to represent each tuple instead of storing them in 

the form of relational table (Chen et al., 2000). In the general case, every data stream 

format is independent of the existing data model. 

The main goal of the timestamp is to establish the sequence of tuples. Their order allows 

the determination of which tuples have already been processed. Thus, the timestamp does 

not always represent a measured time and can be a simple integer value that is increased 

for each new tuple. At the same time, tuples are not guaranteed to arrive in correct order, 

even with timestamps (Golab and Özsu, 2003) because these are being applied after the 

arrival. In such cases, post-processing may be required without strictly following the 

existing timestamps. 



15 

 

One of the products developed for streaming computations is InfoSphere Streams 

announced by IBM in April 2009. This product is designed for streamed data analysis 

and is capable of processing large amounts of data at high speed. It is able to perform 

advanced analysis and, as a result, can be used to aid in decision making processes 

related to the actual acquisition of the data itself or the allocation of critical resources. As 

a result, as more data is collected better intelligence is provided in real-time or near real-

time. 

1.3.2 InfoSphere Streams Platform 

Streams is a development platform and a runtime environment which can be used to 

create applications capable of processing various multiple streams, filter the data and 

correlate large volumes of continuous values according to predefined rules that have been 

programmed in advanced. In addition, alerts also can be defined to take actions within a 

defined time frame. 

InfoSphere Streams can process data arriving from a variety of sources such as video 

cameras, sensors, stock tickers or other data feeds, including traditional databases. Each 

input stream must be defined within the application. Expected input may be text, number 

or different non-relational data such as video, audio, radar or sonar inputs. Subsequently, 

input format operators can be defined which will perform the required actions on the data 

(such as filtering, various transformations and applying functions). 

Developers can create applications in the InfoSphere Streams Studio using IBM Streams 

Processing Language (earlier known as Streams Processing Application Declarative 

Engine), a declarative (non-procedural) language that was customized for the stream 

processing application. Programs ready for execution must be deployed to the Streams 

Runtime environment. Streams Live Graph then can be used to monitor cluster 

performance, including each virtual machine and communications between them (Ebbers 

et al., 2013). 

Streams Processing Language (SPL) used in InfoSphere Streams, is a distributed data-

flow composition programming language. It is a full-featured language similar to C++ or 
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Java™. SPL is extensible, meaning that it is possible to add new keywords, concepts, and 

structures to the source language, and supports user-defined data types. Developers can 

create custom functions in SPL or embed a code in C++ or Java, including user-defined 

operators programmed earlier and elsewhere. 

Operators in InfoSphere Streams can be represented as vertices of a directed graph. They 

interact with each other and perform actions on one or multiple data streams which can 

be external or internal, produced by other parts of the application. Each SPL program 

consists of the following basic building blocks: 

● Stream — a sequence of tuples, usually structured and infinite. In most cases it 

is an input to operators and can be consumed through the definition of a window 

or sequentially tuple by tuple. 

● Tuple — a set of values together with their type definition. Tuple type is usually 

defined by its stream structure. 

● Stream type — name and data type of each value in a tuple. 

● Window — a group of tuples limited by specified count number, time frame or 

a set of attributes. 

● Operator — a function that takes stream data, processes it and creates an output 

stream. It’s the main building block of SPL. 

● Processing element (PE) — a single execution block of an SPL program. It 

usually includes one or more operators. 

● Job — Streams application which can be executed. It usually consists of one or 

more PEs. 

When a program written on SPL is compiled, an Application Description Language 

(ADL) file is generated. This file contains a description of the application structure, 

including details about each PE, such as binary files that must be executed, data formats 

and execution restrictions, among others. There also are several pre-defined operators 
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defined in SPL. Each one has its own logic that requires a set of parameters and a list of 

input and output streams. Thus the input and output streams definition is a part of each 

operator invocation. Below is the list of operators available in InfoSphere Streams: 

 Source — consumes streamed data as an input. 

 Sink — sends output data as a stream to external storage or other consumers. 

 Functor — changes arriving stream data by filtering it, performing various 

transformations and applying functions. 

 Sort — arranges arriving stream data according to defined conditions. 

 Split — transforms input stream into two or more output streams. 

 Join — joins streams according to defined conditions. 

 Aggregate — aggregates streams data according to defined conditions. 

 Barrier — combines and coordinates data arriving in a stream. 

 Delay — pauses data flow. 

 Punctor — used to specify data values that should be processed together. 

A port is a point where an operator is applied to a stream. Different operators have 

different numbers of input and output ports. A functor, for example, has one input port 

and one output port. A source has no input ports and a sink has no output ports.  A split 

and a join usually use multiple input and output ports (Sakr, 2013). 

Research under this thesis employs Streams for rapid, high-resolution seismic hazard 

estimation (Chapter 2), sensitivity analysis of hazard maps (Chapter 3) and joint data 

processing of physical and social sensors (Chapter 4, 5). In this work seismometers 

placed in areas likely to be shaken (strong motion recorders) are refered as physical 

sensors. Strong motion instruments record those earthquake ground motions capable of 

damaging buildings or of weakening soils.  In order to better understand the associated 
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research, the next section contains a brief explanation of the strong motion data 

processing workflow. 

1.4 Strong Motion Processing Steps 

The steps below have originally been developed as a part of the Caltech EERL project 

and improved by Trifunac and Lee (1978). These steps were described in greater detail 

by Shakal et al. (2003). 

1. Baseline Correction. The goal of this steps is to estimate the raw data zero-mean. For 

that purpose existing data points are interpolated to equal-interval sampling. When 

handling large numbers of records, the most appropriate approach is simple baseline 

correction using a constant or linear trend. In certain cases, additional corrections 

may be performed on some records. If a complex baseline correction is required it 

can be performed with long-period filtering during Step 4, below. The output of 

Step 1 is called Volume (or Phase) and is still considered to be raw data. 

2. Instrument Correction. The values adjusted to baseline in the previous step are 

corrected for instrument response using a simple finite-difference operator. In the 

case of frequency-domain processing the process of dividing existing data spectrum 

by the instrument response spectrum replaces the finite-difference operator. 

3. High Frequency Filtering. High frequency noise is removed by applying a specific 

type of filter, depending on the processing approach. Caltech/USC uses an Ormsby 

filter with corner frequency of 23 Hz and a termination frequency of 25 Hz. CSMIP 

uses a Butterworth filter with corner frequency around 80% of the final sampling 

rate and a 3rd or 4th order decay. Then the resulting data is decimated to adjust the 

sample rate to the distribution frequency.  Again, Caltech/USC uses 50 

points/second while CSMIP is at 100 points/second.  

To improve the high-frequency accuracy in the case of time-domain processing, the 

instrument correction is performed prior to this decimation, rather than after (Shakal 

and Ragsdale, 1984). 
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4. Initial Long Period Filtering. Values with periods longer than 15 seconds are 

removed from decimated data. Recent research shows that keeping longer periods 

for larger earthquakes may be appropriate and Caltech/USC traditionally uses 

higher thresholds. Velocity and displacement are obtained by integrating 

acceleration values and filtering them with the same low-frequency filter. 

5. Maximum-Bandwidth Response Spectrum estimation. Pseudo-velocity (PSV) 

response spectra for 0, 2, 5, 10, and 20% of critical value are calculated using the 

method of Nigam and Jennings (1969). The resulting spectra are plotted for 0.04 to 

15 seconds (the full bandwidth) so that the best filter can be chosen based upon 

comparison. 

6. Long-Period Filter Selection. This is the most difficult processing step.  The 

maximum period with useful data is determined as the intersection of the 

maximum-bandwidth spectrum and the average noise spectrum determined for the 

system. The long period minimum value was obtained in Step 5. A number of long-

period filters with values between minimum and maximum long period are applied 

to the data from Step 3. Filter periods that give signal-to-noise ratio (SNR) higher 

than 2 are the most effective in reducing noise. The final value for the filter is 

chosen after comparing displacement plots to each other as well as to data from 

nearby stations. In case of CSMIP, the choice is made by a team of experts after 

analysis of available information and discussion. 

7. Finally acceleration, velocity and displacement values from the previous step are 

saved as files for distribution. The values may be plotted with tripartite logarithmic 

scaling or the linear scaling depending on the requirements and application. 

1.5 Outline 

This chapter provides a brief overview of existing big data applications in the natural 

hazard field such as hazard monitoring, mapping and disaster response, and provides 

definitions for the streaming paradigm necessary for understanding the primary concepts 

of the work. 
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In the second chapter a detailed explanation of the pipelining implementation of the 

existing EqHaz program suite (Assatourians & Atkinson, 2013) for production of high 

resolution seismic hazard maps is provided based on IBM InfoSphere Streams. The 

results of this work have been published in the Procedia Computer Science at the 

International Conference on Computational Science – Computational Science at the 

Gates of Nature. During the hazard mapping pipelining implementation, two main 

processing operators, the catalog generation operator using Monte Carlo simulations and 

the map generation operator, were identified as bottlenecks. As a result, the workload of 

the hazard mapping workflow has been decomposed and these two operators have been 

split into multiple pipelines for parallel execution. Implementation on the experimental 

environment of a cluster of four machines, each with dual Xeon quad-core 2.4GHz CPU, 

16GB RAM and running Linux,  resulted in mean hazard calculations and mapping 

procedures with a resolution up to 2,500,000 points and a near-real-time processing time 

of approximately 5-6 minutes. The proposed approach has a significant potential for both 

the applications of emergency hazard policy makers and providers, but also for the 

scientific community as a tool for hazard maps sensitivity testing, because it can simplify 

the model selection process and provide insights as to which input factors and parameters 

significantly affect the results and are the main sources of uncertainty. 

In the third chapter, several sensitivity tests were performed for the ground motion 

prediction models proposed by Atkinson and Adams (2013) and used as input to the most 

recent generation of Canadian seismic hazard maps released in 2015 and the basis for 

updated seismic provisions of National Building Code of Canada (NBCC) 2015. The 

results are published in the conference proceedings of 2016 Canadian Society for Civil 

Engineering (CSCE) Annual Conference. The primary outcomes are a series of mean 

hazard maps at predicted pseudo acceleration (PSA) for a 2475 year return period at three 

different periods of 0.2, 1.0 and 2.0 seconds.  These are calculated for three sensitivity 

tests for both the absolute difference and amplification ratio for comparison to each base 

model.  

Chapter 4 presents an approach for the estimation of real-time earthquake intensities 

using streaming data analysis from social and physical sensors. The results are accepted, 
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with minor revisions, to the journal of Pure and Applied Geophysics. In this work, 

Twitter is defined as potentially significant data source for post-disaster response 

systems. Ground motion and Twitter datasets for South Napa earthquake used in this 

study to select and validate the predictive relationships between Modified Mercalli 

Intensity (MMI) and tweets rate in the ten minutes following an earthquake. Regression 

analysis of intensity versus the logarithmic mean of the number of tweets per minute 

identifies four potential predictive equations (linear, two-segment linear, three-segment 

linear and exponential) within a legitimate range of values for each model. In addition, 

the implementation of two streaming applications for processing of data from physical 

and social sensors are presented. Moreover, both applications were linked into one 

application for joint processing from both types of sources. Intensity maps for the Napa 

earthquake are obtained from each application and evaluated for one minute intervals 

after the earthquake. 

In Chapter 5, the validation and calibration of the predictive relationship obtained in the 

previous chapter is performed for California, Japan and Chile. These results have been 

submitted to Seismological Research Letters. Data sets used in the validation and 

calibration processes for each region and challenges associated with social sensors data 

processing are presented in the paper.  Results from the statistical validation of models 

with and an analysis of the residuals are provided, including whisker diagrams for the 

residuals for every model and region and residuals plots versus existing and potential 

predictors. In addition, the calibration procedure is explained as it relates to the most 

important output of this work – spatially calibrated relationships between intensity and 

tweet rates for the California, Japan and Chile regions. The results clearly show the 

importance of complementary data from social sensors and techniques for real-time 

processing for emergency management and response applications. 
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Chapter 2  

2 A Pipelining Implementation for High Resolution 
Seismic Hazard Maps  

The results covered in this chapter are published in conference proceedings of 

International Conference on Computational Science, ICCS 2015 – Computational 

Science at the Gates of Nature. 

Seismic hazard maps are a significant input into emergency hazard management that play 

an important role in saving human lives and reducing the economic effects after 

earthquakes. Despite the fact that a number of software tools have been developed 

(McGuire, 1976, 1978; Bender & Perkins, 1982, 1987; Robinson, et al., 2005, 2006; 

Field, et al., 2003), map resolution is generally low, potentially leading to uncertainty in 

calculations of ground motion level and underestimation of the seismic hazard in a 

region. In order to generate higher resolution maps, the biggest challenge is to handle the 

significantly increased data processing workload. 

In this study, a method for improving seismic hazard map resolution is presented that 

employs a pipelining implementation of the existing EqHaz program suite (Assatourians 

& Atkinson, 2013) based on IBM InfoSphere Streams – an advanced stream computing 

platform. Its architecture is specifically configured for continuous analysis of massive 

volumes of data at high speeds and low latency. Specifically, it treats processing 

workload as data streams. Processing procedures are implemented as operators that are 

connected to form processing pipelines. To handle large processing workload, these 

pipelines are flexible and scalable to be deployed and run in parallel on large-scale HPC 

clusters to meet application performance requirements. As a result, mean hazard 

calculations are possible for maps with resolution up to 2,500,000 points with near-real-

time processing time of approximately 5-6 minutes. 
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2.1 Introduction 

Today, probabilistic seismic hazard analysis (PSHA), based on the total probability 

theorem (Cornell, 1968; McGuire, 2004), is the most widely used method for estimating 

seismic hazard analysis. This is particularly true for hazard map calculations, where the 

probability of a ground motion acceleration value occurring at any given site is estimated 

by integrating conditional probabilities over all possible distance and magnitude values. 

There are a number of methodological considerations in PSHA mapping, and hazard map 

resolution is one of the most important of those technical issues today (Musson & Henni, 

2001). In this context, resolution is defined as the spatial grid resolution that is used to 

produce map or grid density. A coarse grid results in loss of details for smaller source 

zones and, as a result, could underestimate the maximum ground motion level value 

(Musson & Henni, 2001). However, hazard computation with a finer grid requires 

considerably more computational resources, especially with a complex model. For 

instance, calculation for more than 6.5 trillion locations is necessary in order to obtain a 

hazard map for Eastern Canada with a resolution of one dot per meter. Additionally, if a 

Monte Carlo simulation approach is used for the PSHA calculation (Musson, 1999, 

2000), where resolving power improves with the number of simulations used to generate 

synthetic data, then the processing workload is even heavier and also requires additional 

computational power. For example, 100,000 simulations of 100 years duration is 

equivalent to 10,000,000 years of seismicity data. However, significant technological 

breakthroughs in high performance computing (HPC) have taken place over the last few 

decades. For example, a cluster of computers can be connected together with advanced 

networks to provide increased computational power on demand. Complex problems can 

be partitioned into smaller tasks and programmed into pipelines and deployed on these 

computer clusters. Heavy workload can be split and distributed onto those pipelines and 

processed in parallel to meet application performance needs. 

IBM InfoSphere Streams (Streams), an advanced stream computing platform, is designed 

specifically for parallelism and deployment across computing clusters for continuous 

analysis of massive volumes of data with high speeds and low latency. In particular, 

Streams treats processing workload as data streams. Processing procedures are 
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implemented as operators that are connected together to form processing pipelines. To 

handle large processing workload, these pipelines are flexible and scalable.  Here, PSHA 

mapping programs are designed to be deployed and run in parallel on large-scale HPC 

clusters. The result is more efficient real-time seismic hazard analysis through distributed 

computing networks. 

The main goal of this work is to utilize innovative computational algorithms for PSHA 

mapping by integrating different input data sources and existing processing tools into a 

streaming and pipelined computing application. A set of high-resolution maps for 

different frequencies calculated in terms of the probability of exceeding a certain ground 

motion level across Eastern Canada are obtained. The motivation for this study is not the 

estimation of seismic hazard in Eastern Canada, but is to demonstrate that the use of the 

pipelining and streaming techniques provided by Streams that makes possible the 

production of high-resolution hazard maps in near-real time with no limitations on 

resolution. This approach could be used in any region in the world where seismic sources 

and ground motion characteristics are available. The results can also be used as input for 

sensitivity analysis of hazard maps for any input models, something that has not been 

done before, largely because of difficulties with computational implementation. 

2.2 Monte Carlo Approach for PSHA Mapping 

One of the straightforward and flexible PSHA methodologies involves the use of Monte 

Carlo simulations (Musson, 1999). Here seismic source models representing the spatial 

and temporal historical earthquakes occurrence in the region are used as the first stage in 

Monte Carlo simulations for the generation of a synthetic earthquake catalogue. As a 

result, the synthetic catalogue shows a set of probable earthquakes in the region over a 

long time period, on the order of 100 years. In the next stage, this synthetic catalogue is 

used to estimate a distribution of ground motions at a number of sites using selected 

ground motion prediction equations (GMPEs) and/or attenuation parameters (Musson, 

1999). Finally, probabilities of exceeding a certain ground motion level at every point 

across a region are calculated. The maps take into account uncertainties in the earthquake 

location, size and the resulting ground motions that can affect region. 
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Today there is a number of both free and commercial software tools available to perform 

PSHA, including those based on the Monte Carlo simulation approach (EQRISK 

(McGuire, 1976); FRISK  (McGuire, 1978); SeisRisk (Bender & Perkins, 1982, 1987); 

Fortran codes produced by National Seismic Hazard Mapping Project (NHSMP) from the 

U.S. Geological Survey (USGS); CRISIS (Ordaz, et al., 2013); EQRM (Robinson, et al., 

2005, 2006); OpenSHA (Field, et al., 2003)). The Monte Carlo PSHA tool implemented 

here is the EqHaz software suite of open-source FORTRAN programs developed by 

Assatourians and Atkinson (2013). This suite consists of three programs. EqHaz1 creates 

the synthetic earthquake catalogues generated by the user-specified seismicity 

parameters. EqHaz2 produces the ground motion catalogues at a site, mean hazard 

probability curves and mean hazard motions at specified return periods calculated for a 

site or grid of points. EqHaz3 de-aggregates the hazard, producing the relative 

contributions of the different earthquake sources as a function of distance and magnitude. 

The EqHaz suite has a number of limitations which mean that it cannot be applied to 

hazard calculations with more than 1,000,000 records in each synthetic catalog and for 

more than 100,000 grid points. These limits are barriers on the real-time production of 

high-resolution hazard maps. 

2.3 Pipelining Implementation in Streams 

IBM has been actively involved in streaming concept development, resulting in the IBM 

InfoSphere Streams product (Streams) (IBM, 2014). Streams is a software package that 

provides a runtime platform, programming model, and toolkits. Stream Processing 

Language (SPL) is the programming language used in Streams for building applications 

in stream processing – a data-centric programming model. 

The building blocks of a SPL application are data streams and operators. Data streams 

consist of data packets (i.e. tuples) structured for user defined schema. Operators define 

the operations on data streams. Operators and streams are assembled together for each 

application as a data-flow graph which defines the connections among data sources 

(inputs), operators, and data sinks (outputs).  
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The deployment of a Streams application is supported by the underlying runtime system. 

The Streams runtime model consists of distributed processes. Single or multiple operators 

form a processing element (PE). The Streams compiler and runtime services make it easy 

determine where to best deploy those PEs, either on a single machine or across a cluster 

in order to meet the resource requirements (Bauer, et al., 2010).  

The advantage of using these techniques is that it allows for the use of multiple 

computational units without the need to manage allocation, synchronization or 

communication among them. In addition, Streams Studio is an integrated development 

environment based on Eclipse with a Streams plug-in. The Streams programming 

interface has a set of toolkits of built-in operators (IBM, 2014) that can be used directly 

to speed up the development work. A subset of Streams built-in operators used in the 

current implementation is listed in Table 1Error! Reference source not found., in order 

to better understand the implementation procedure. 

In the implementation for PSHA mapping in Streams, the EqHaz1 and EqHaz2 Fortran 

source codes have been modified slightly and compiled into shared system object 

libraries and linked into Streams applications. Streams allows for the creation of new 

primitive operators in a more traditional native language, such as Java™ or C++ (IBM, 

2014), that can directly call those PSHA procedures from the shared libraries in the 

streaming environment. In this application, two primitive operators have been 

implemented. One is the Catalog operator, which encapsulates EqHaz1 procedures for the 

catalogue generation. The other is the Map operator, which encapsulates EqHaz2 

procedures for the map generation. The pipelined implementation is showed on Figure 1 

captured from Streams Studio. In order to clearly display the entire pipeline it is divided 

into two stages in the figure. The connection between these stages is shown by circles 

filled with the same color. The first stage shows the process of input parameters 

gathering. The second one contains PEs performing PSHA procedures and outputting 

results. Algorithm 1 in Appendix A presents all the associated steps. 

All models considered as input streams are located on the Internet at the site 

www.seismotoolbox.ca. In Algorithm 1, the developed application waits for a new user-
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request for map generation or for an indication of any updates in the models such that the 

maps must be updated (Step 1).  

Table 1: Built-in stream operators used in the implementation (IBM, 2014) 

Name Base explanation Purpose in the implementation 

InetSource 

Periodically checks listed remote (Internet or 
intranet network) data sources, acquires 
data and generates a stream from them 

To gain all input model 
parameters needed for analysis, 
including seismic zones model, 
ground motion prediction 
equations (GMPEs) and 
attenuation parameters 

Custom 

Receive and send any number of streams to 
perform user-specified analysis on stream 

To normalize all input seismic 
sources and GMPE models from 
different sources to the same 
formats 

Functor 

Transforms input tuples into output ones and 
filter if needed 

To filter user-defined parameters 
for two different stages: catalog 
generation and ground motion 
estimation 

Barrier 
Synchronizes tuples from several streams To synchronize all input 

parameters before analysis begins  

Split 

Under a user specified condition splits a 
stream into several output streams 

To partition the workload of 
Monte Carlo simulations of large 
synthetic catalogs and ground 
motion estimation on many sites 

TCPSink 
Writes data tuples to a TCP socket Configured as a TCP server to sink 

outputs in JSON format  

 

Figure 1: PSHA mapping pipelined application graph 



33 

 

As soon as this occurs, it generates an input stream for the synthetic catalog generation 

procedure (Step 2). Afterwards, the stream goes to the catalogue generation primitive 

operator developed from the EqHaz1 program (Step 3). Next, the generated synthetic 

catalog, GMPEs from F4 and other user parameters from F3 are combined to form an 

input stream for the maps generation module, based on the EqHaz2 program (Steps 4-6). 

Subsequently, the output stream is converted to JavaScript Object Notation (JSON) 

format, which is an open standard used to transmit data objects consisting of attribute-

value pairs (Step 7). The JSON map file contains grid point coordinates represented by 

two attributes: "lat" for latitude and "lon" for longitude. The calculated value is 

represented by spectral acceleration (in our case pseudo acceleration (PSA)) for a given 

period of time at some level of probability (in this example, 2% in a 50 year return 

period) at each point of the grid. Spectral acceleration is a common measure of ground 

motion intensity in building engineering. It represents the maximum acceleration that a 

ground motion will cause in a linear oscillator for specified natural period and damping 

level. This is denoted as the "count" attribute. The total output with the set of map 

coordinates and values sinks to a TCP port (Step 8), where it is taken by a specifically 

designed JAVA script to be displayed on the webpage. The dynamic gmaps-heatmap.js 

JavaScript library is used for visualization purposes (Wied, 2014). 

As introduced previously, the catalog generation operator has the greatest processing 

workload because it contains Monte Carlo simulations. The map generation operator also 

involves a heavy workload if the calculations are required on a dense grid. Therefore, 

either or both are the bottlenecks of the entire processing scheme for generating high 

resolution PSHA maps. To overcome EqHaz limitations and to reduce the application 

execution time, the workload has been decomposed and these two components have been 

split into multiple pipelines and the executions are parallelized. The complete application 

graph of the implementation is shown on Figure 2 and Figure 3. 

The pipelined procedure is shown in Algorithm 2 in the Appendix A. As a result, each 

single operator executes on a single core. The whole process is divided into four stages. 

The first stage is exactly the same as that shown in Figure 1, because the process of 

getting input parameters remains the same as before. The second stage (Figure 2) shows 
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the decomposition and parallel implementation of Monte Carlo simulations for the 

synthetic catalogue. The third stage (Figure 3) presents the PEs performing spatial grid 

decomposition. Stage 4 of Figure 3 shows the final output. The connections between 

stages are shown with solid circles of the same color.  

 

Figure 2: PSHA mapping pipelined with the workload splitting application graph 

(Stage 2) 

That implementation provides an increase in the number of records in the synthetic 

catalog to as many as 10,000,000 records and the number of sites for each hazard map is 

stepped-up to 2,500,000 sites, allowing for the production of high resolution maps and 

significantly decreasing the execution time, as detailed below. 

In Algorithm 2, the input stream for synthetic catalogue generation operator is divided 

into several streams in order to account for the EqHaz1 limit - the requested number of 

records in each catalogue has to be under 1,000,000 (Step 3). After the workload split is 
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performed in (Step 3), each feeds into the catalogue generators to be processed in parallel 

(Steps 4-13) in order to optimize execution.  

 

Figure 3: PSHA mapping pipelined with the workload splitting application graph 

(Stages 3 and 4) 

To satisfy the EqHaz1 limitations, the total number of records in the catalogue requested 

by the user should be less than the maximum number of records in each subcatalog 

multiplied by the number of parallel pipelines (10 in this example). When all subcatalogs 

are generated, the total synthetic catalog will be formed (Steps 14-15). 
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In order to overcome the EqHaz2 limit for the number of grid points, the input stream to 

the Map operator is split so that there are no more than 100,000 grid points for each Map 

operator (Step 18). In our case the entire grid is divided into 25 subgrids, where every 

subgrid contains less than 100,000 points. The EqHaz2 calculations for the ground 

motion acceleration parameters are performed on (Steps 19-43) and each output stream is 

converted to JSON format (Steps 44-69). Subsequently, results of all streams are merged 

together and sent to output port to be visualized. 

2.4 Experimentation 

The experimental environment in this work consists of a cluster of four machines, each 

with dual Xeon quad-core 2.4GHz CPU, 16GB RAM and running Linux. The 

computation power of the cluster is provided by the total of 32 cores. From the 

application point of view, at least 32 processes can be run in parallel on the cluster for 

handling heavy workload. InfoSphere Streams Version 3.2 has been configured and 

installed on the cluster. Files with input models (F1 and F2 contain GSC 2011 composite 

model of 39 Eastern Canada zones, F4 contain ground motion databases for Eastern 

Canada (Atkinson & Adams, 2013)) are available online from the official website of the 

engineering seismotoolbox (www.seismotoolbox.ca). To demonstrate the performance 

improvement by running multiple pipelines in parallel for PSHA mapping, the execution 

time has been measured for both implementations with the same processing workload. 

Figure 1 is for sequential processing (Seq.) without the workload splitting, while Figure 2 

and Figure 3 are for running multiple pipelines in parallel (Paral.) on the cluster with the 

workload splitting. For the parallel experiment, 10 pipelines were employed at the 

catalogues generation stage and compiled into 10 PEs, and 25 pipelines were 

implemented at the map generation stage and compiled into 25 PEs. For the processing 

workload used in the experiment, the number of records in every synthetic catalog is 

1,000,000 and the number of grid points is 100,000, because these are maximum limits 

for the sequential programs. To measure performance time, two additional operators were 

written to measure the execution time and output the results into a file: the first operator 

estimates the execution time of total synthetic catalog generation (Catalog); the second 

assesses the ground motion calculation performance time (Map). Timing results for 
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Catalog and Map, in addition to the total execution time and the speedup (SF) factor, are 

summarized in the Table 2. 

Table 2: Timing and speed results 

Catalog 
(number of records = 

1,000,000) 

Map 
(number of grid points = 

100,000) 
Total 

Seq.  
(s) 

Para.  
(s) 

SF 
(Seq./Para.) 

Seq. 
(s) 

Para. 
(s) 

SF 
(Seq./Para.) 

Seq. 
(s) 

Para. 
(s) 

SF 
(Seq./Para.) 

5.68 0.43 13.2 3780.3 138.2 27.4 3785.98 138.63 27.3 

The total speedup factor obtained is 27.3 and is the performance improvement with the 

pipelining implementation and paralleled executions. It should be noted that the 

performance increase is obtained not by the improvement of every primitive operator 

execution, but simply by subdivision of input streams and primitive operators pipelining. 

An example of a final output map is shown in Figure 4. Red lines demonstrate a spatial 

decomposition of map grid. Each red rectangle contains 100,000 points and the total 

number of points is 2,500,000 for a map resolution equal to one value per kilometer. 

 

Figure 4: Mean hazard map for a 2475 year return period for pseudo acceleration at 

a T=0.1 sec period 

The total procedure execution time is 5.6 minutes. This example demonstrates a 

significant improvement in PSHA mapping procedure. For comparison, Assatourians and 

Atkinson (2013) produced hazard maps with a resolution of 3326 points created by the 



38 

 

EqHaz suite. The PSHA procedure execution time for that case was approximately 90 

minutes (Assatourians & Atkinson, 2013) with the experimental environment consists of 

one machine with dual quad-core 2.4 GHz CPU, 8 Gb RAM and running Windows 7 

Professional 64-bit (personal communications, K. Assatourians).  

2.5 Conclusions 

Seismic hazard maps have many practical and important applications and are widely used 

by policymakers to assign earthquake-resistant construction standards, by insurance 

companies to set insurance rates, by civil engineers to estimate structural stability and by 

emergency hazard agencies to estimate hazard potential and the associated response. 

Therefore, the results of this work are important for emergency hazard providers, 

demonstrating that the use of the Streams platform make it possible to produce high 

resolution hazard maps in near-real time. Here we have provided an example for Eastern 

Canada, but the method can be applied to any region where PSHA input parameters are 

available. The pipelining implementation is flexible and scalable for extension and 

deployment onto a larger cluster. As a result, it is possible to obtain even higher 

resolution with better performance time. 

In the future, this work could be extended to achieve increased performance from 

additional decomposition on two levels: synthetic catalogs and map generation stages, 

with even greater cluster support. Additional performance tests should be done to 

determine the optimum number of parallel pipelines. In the long term, this work could be 

used as a basis for a universal PSHA streams toolkit development. 
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Chapter 3  

3 Impact of the Ground Motion Prediction Equation 
Changes on Eastern Canada Hazard Maps 

The material covered in this chapter has been published in the conference proceeding of 

2016 Canadian Society for Civil Engineering Annual Conference, London, Ontario, 

Canada.  

Accurate seismic hazard assessment is one of the most important steps on the way to 

reduce seismic risk. Probabilistic Seismic Hazard Assessment (PSHA) (Cornell, 1968; 

McGuire, 2004, 2008) is most common method used today in national seismic codes, 

including the National Building Code of Canada (NBCC) and National Building Code of 

United States of America. The new generation of Canadian seismic hazard maps was 

released in 2015 as a basis for updated seismic provisions of NBCC 2015. Its application 

implemented a new set of representative ground-motion prediction equations proposed by 

Atkinson and Adams, 2013, in which a set of three alternative weighted ground motion 

prediction equations (GMPE) are used to describe epistemic uncertainty using a logic 

trees approach to quantify the distribution of all outcomes. A logic tree aproach weights 

each potential outcome in order to incorporate the epistemic uncertainty related to the 

inputs of PSHA and thus enable estimation of the resulting hazard uncertainty. Here 

sensitivity tests have been performed with the aim to compare the proposed GMPE model 

with different weights in the probabilistic logic tree (±25-75% weight change applied) 

and to examine the total amplitude range of ground motion data represented on hazard 

maps at 0.5, 1.0 and 5.0 Hz frequency. The results of this study show the importance of a 

correct epistemic uncertainty estimation in PSHA in general and for the Eastern Canada 

region in particular. Weight changes in each node of the GMPE logic tree for Eastern 

Canada leads to the significant changes in ground motion values on the hazard maps. In 

particular, at 5.0 Hz frequency, the difference from the initial base model varies between 

14.73% to 64.6% and 19.44% to 100% at 1.0 Hz frequency.  At 0.5 Hz frequency the 

results are even more sensitive and show a 25.71% to 142.85% difference in ground 

motion estimation. 
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3.1 Introduction 

Seismic hazard maps are a series of maps in different frequency bands calculated in terms 

of probability of exceeding a certain ground motion level at many points across a region. 

The maps are probabilistic because they take into consideration the uncertainties in the 

earthquake magnitude, location and the resulting ground motions that can affect a set of 

sites. There are many practical applications of hazard maps, the most important among 

them are the production of earthquake resistant construction standards, insurance rate 

calculation, structural stability estimation, potential hazard and the associated response 

assessment. The national seismic hazard maps for Canada are under continuous 

improvement by the Geological Survey of Canada (GSC). As a result, several seismic 

hazard models have been proposed and five generations of seismic hazard maps have 

been created (NRCC, 1953, 1970, 1985, 2005, 2010).  

Canada has a vast territory and a variety of tectonic regimes. As a result, the production 

of seismic hazard maps takes into account the country divided into eastern, western and 

stable (central) regions (Adams and Atkinson, 2003). Each region has its own particular 

qualities, principles and approaches of hazard mapping. This study describes models, 

approaches and results only for Eastern Canada, which is known as a region of moderate 

seismicity. Despite the fact that detailed source characteristics and wave propagation 

properties of particular active fault sources are generally unavailable in this region, 

several generations of the source zone models, earthquake occurrence patterns and 

ground motion relations have been developed to quantify seismic hazard characteristics 

in the region. The variety of proposed models increases the resulting level of uncertainty 

and results in potential error in the decision making process, related policies and 

standards. As a result, there is a strong interest in the sensitivity analysis of hazard maps 

as they relate to the main input model parameters.  

Aside from the site effects (soil and amplification characteristics) the most important 

input models for hazard map production are the seismic source zone model and the 

GMPE model. The seismic source zone model contains detailed seismicity specifications 

for a region, allowing for uncertainty, while a GMPE model is a statistical model 

developed for different tectonics regions to predict ground shaking at any site in a region. 
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Previously, Atkinson and Goda (2011) investigated the effect of seismicity models and a 

new GMPE on seismic hazard assessment for four Canadian cities (Ottawa, Montreal, 

Quebec City, Vancouver) and concluded that the selection of correct GMPE model has an 

important effect on the resulting hazard assessment. Atkinson and Adams (2013) 

proposed a new set of GMPE for the 2015 National Seismic Hazard Maps. The main 

difference between the newly proposed GMPE model and other traditional models is in 

the means of quantifying epistemic uncertainty. In the past, the existing peer-reviewed 

GMPE models used different assigned weights representing that uncertainty and the 

relative confidence in each model (Atkinson, 1995). The updated method proposes using 

of existing peer-reviewed GMPEs to construct a set of three weighted equations (central, 

upper and lower) for each region and event type. The central GMPE is a representative 

GMPE and the upper and lower bounding equations quantify the uncertainty in the 

central GMPE. All three sets of GMPEs have different weights assigned to the logic tree 

used in PSHA. Each of these approaches has advantages and disadvantages (Atkinson, 

2011). The first approach is more traditional and widely used than the representative 

model. However, in Canada the representative approach has been approved to the 2015 

seismic hazard map production process (Atkinson and Adams, 2013). 

Our motivation in this study is to expand the boundaries of the sensitivity analysis of 

hazard maps to the new GMPE model. The sensitivity tests performed in this study 

compared the complex effect of changes to GMPE models not for one particular site, as 

has been done before, but on a number of sites (hazard map). For high-resolution hazard 

map production calculations must be carried out on a large number of sites, and this 

requires powerful computational resources. Kropivnitskaya et al. (2015) demonstrated 

that these steps in the hazard mapping process, such as Monte Carlo simulations and 

resolution mapping, can be split and distributed into pipelines in parallel. Near real-time 

and low-latency parallel computing of hazard maps have been achieved by using 

streaming and pipelining computing paradigms through IBM InfoSphere Streams 

platform (IBM, 2015) which reads input data and models from external sources (in our 

case www.seismotoolbox.ca), executes hazard calculations in parallel on a number of 

sites and visualize resulting hazard map (Kropivnitskaya et al., 2015). 
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3.2 Hazard Maps Production Methodology 

Seismic hazard analysis provides an estimate of the effects from natural earthquakes on 

the man-made structures at a given site of interest. There are two widely used seismic 

hazard analysis approaches: deterministic and probabilistic. In the deterministic 

methodology, hazard is estimated for a specific magnitude at a fixed source-to-site 

distance (Reiter, 1990; Anderson, 1997; Krinitzsky, 2002). The probabilistic approach 

quantifies the probability of exceeding various ground-motion levels at a site or a map of 

sites given by all possible earthquakes in a region (Cornell, 1968; McGuire, 1977). PSHA 

is a powerful tool for seismic hazard map production (Adams and Atkinson, 2003; 

Trifunac, 1990). The classic probabilistic hazard calculation is relatively simple when all 

input parameters and models are specified. Given that the seismic hazard source model 

and attenuation relationships are known or assumed, PSHA is performed in the following 

steps: 

1. Determine the seismic hazard source model that provides N earthquake scenarios En 

for magnitude (mn), location (Ln), and rate (rn); 

2.Determine the distance Dn to the site of interest;  

3.Calculate the distribution of possible ground-motion levels for the scenario (1): 
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where  

 lnPGA is a natural logarithm of peak-ground acceleration; 

 g(mn,Dn) is the mean of lnPGA given by attenuation relationship; 

 σn is the standard deviation of lnPGA given by the attenuation relationship. 

4.Find the probability of exceeding each lnPGA by integration (2): 
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5.Obtain the annual rate at which each lnPGA is exceeded Rn due to the scenario (3): 
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6.Calculate the total annual rate of exceeding each lnPGA (4): 
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7.Compute the probability of exceeding each ground-motion level in the next T years of 

this annual rate using the Poisson distribution (5): 
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   (5) 

An alternative procedure to perform PSHA proposed by Musson (1999) uses Monte 

Carlo simulations, where in the first stage a long-time synthetic earthquake occurrence 

catalogue is simulated. This synthetic catalogue is used to estimate a distribution of 

ground motions at any site from selected GMPE. Today there are a number of free and 

commercial software tools available to perform PSHA including Monte Carlo simulation 

approach (EQRISK, FRISK (McGuire, 1978), SeisRisk (Bender and Perkins, 1987), 

Fortran codes produced by National Seismic-Hazard Mapping Project by the USGS, 

CRISIS (Ordaz et al., 2013), EQRM (Robinson et al., 2005, 2006), OpenSHA (Field et 

al., 2003). One such tool is the EqHaz software suite of open-source FORTRAN 

programs developed by Assatourians and Atkinson (2013). This suite consists of three 

programs. EqHaz1 creates the synthetic earthquake catalogues generated by the user-

specified seismicity parameters. EqHaz2 produces the ground motion catalogues and 

mean hazard probability curves at a site, as well as mean hazard motions at specified 

return periods calculated for a grid of points. These modules have some calculation limits 

that do not allow their use these modules for PSHA mapping purposes. In particular, the 

number of records in the each synthetic catalog is limited to 1,000,000 and hazard map 

produced by EqHaz2 could have no more than 100,000 points that for Eastern Canada 
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means the maximum hazard map resolution that can be obtained is about one value per 

25 kilometers. EqHaz3 de-aggregates the hazard, estimating the relative contributions of 

the earthquake sources in terms of distance and magnitude. Kropivnitskaya et al. (2015) 

took the EqHaz1 and EqHaz2 Fortran source code, compiled them into system object 

libraries and implemented the base PSHA procedures and functions in the streaming 

environment IBM InfoSphere Streams. As a result, pipelining and parallel execution on 

the experimental environment of a cluster of four machines, each with dual Xeon quad-

core 2.4 GHz CPU, 16 GB RAM and running Linux overcame the EqHaz limitations 

mentioned above. In particular, the number of sites for hazard maps are stepped-up to 

2,500,000 sites that gives a hazard map with resolution about one value per kilometer. 

The number of records in the synthetic catalog has been increased in 10 times up to 

10,000,000 records (Kropivnitskaya et al., 2015). These achievements allowed the 

creation of hazard maps for a sensitivity testing in near-real time for the entire territory of 

Eastern Canada with relatively high resolution. 

3.2.1 Seismic Source Zone Model 

Eastern Canada has a relatively low rate of earthquake activity, the result of its location in 

a stable continental region within the North American Plate. Approximately 450 

earthquakes occur in this region every year. On average, four of those are M > 4 and 

thirty of M > 3 per year, three events of M > 5 every decade.  Approximately twenty-five 

are reported as felt events. In most cases an M > 3 event is strong enough to be felt while 

an M > 5 event is the threshold for damage in this region. The GSC manages a 

seismograph network that can detect all events in Eastern Canada of M > 3 as well as all 

events with M > 2.5 or more in areas with a high density population (Halchuk, 2000). As 

of today, there is no solid understanding of what causes earthquakes in Eastern Canada. 

This region is the part of the stable interior of the North American Plate which extends 

across the western Atlantic Ocean to the mid-ocean ridge. Seismic activity in these areas 

is related to regional stress fields, with earthquakes concentrated in regions of crustal 

weakness. Therefore, there is no correlation between plate interaction and the seismic 

activity rate and magnitude in this region (Halchuk, 2000). 
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The seismicity zoning and occurrence model used in this work as input for synthetic data 

generation are a composite model of thirty-nine Eastern Canada zones provided by GSC 

(Adams an Halchuk, 2003, 2004; Halchuk and Adams, 2008) shown in Figure 5. The 

model includes regional geological and seismological features and consists of two 

alternative source zone models: the H model, which is based on historical seismicity, and 

the R model, which is based on regional tectonic structure. 

 

Figure 5: Eastern Canada Seismic Zones Composite Model: small clusters of 

seismicity are represented by H model; large zones compose R model 

3.2.2 GMPE Model 

A GMPE represents the shaking amplitude as a function of earthquake magnitude, 

distance from the source, site conditions, and other variables and are calculated for peak 

ground acceleration and velocity. The selection of the correct GMPE model is a critical 

step in PSHA containing two types of uncertainty. The first is aleatory uncertainty, 

random variability of amplitudes about a median prediction equation. This type of GMPE 

uncertainty is handled by integrating over the distribution of ground-motion amplitudes 

about the median. The second type is epistemic uncertainty, which affects the correct 

value of the median, and in most cases is handled by considering alternative GMPEs in a 

logic tree format (e.g., Bommer and Scherbaum, 2008). The logic tree model is based on 

branches with alternative models and then weights assigned to each of those. As a result, 
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the branches and their weights are intended to represent the underlying continuous 

distribution of possible ground motions. There are two alternative approaches for 

epistemic uncertainty estimation in GMPEs by using logic trees. One of them uses 

multiple existing peer-reviewed GMPEs, with weights assigned to each GMPE based on 

the judgment of the analyst concerning their relative merits or applicability. Another 

method uses existing peer-reviewed GMPEs, data analysis, and judgment to define a 

representative suite of models to capture the uncertainty, including one or more central 

model along with high and low alternatives. Atkinson (2011) argued that the 

development of a representative suite is a superior approach to building ground-motion 

characterization logic trees, in comparison with the more widely practiced use of multiple 

GMPEs drawn from the literature. 

Three sets of representative GMPE (central, low and high) have been developed in 

Eastern Canada based on five peer-reviewed equations Pezeshk, Zhandieh and Tavakoli 

(2011), Atkinson and Boore (2006), Atkinson (2008), Silva, Gredor and Daragh (2002) 

with single corner (variable stress), Gredor and Daragh, (2002) with double corner (with 

saturation). In Figure 6 examples of several GMPE equations are shown with pseudo 

spectral acceleration at different period of time for event with different magnitude. 

Spectral acceleration is the most commonly used measure of ground motion intensity in 

building engineering practice. For specified natural period and damping level, spectral 

acceleration represents the maximum acceleration that a ground motion will cause in a 

linear oscillator. In other words, pseudo spectral acceleration (PSA) is equal to spectral 

displacement times the square of the natural frequency (Baker et. al, 2006).  The 

representative central equation developed shows the geometric mean ground motions of 

the five alternatives. It can be used as input for ground motion estimation for all site 

classes B, C conditions (the average shear-wave velocity in the top 30 m Vs30=760 m/s) 

in Canada. Atkinson (2011) demonstrated that the representative equation method is 

comparable to the alternative equations approach, but the weights of each GMPE in the 

logic tree for PSHA calculations must be selected in a consistent manner.  

For Eastern Canada the proper logic tree weights proposed are 0.5, 0.25, and 0.25 for the 

central, low and high equations weight, respectively. This weights schema is used and 
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designated as the base model in this study. To obtain the relative performance of the 

models and to study the representation of epistemic uncertainty, three sensitivity 

exercises were performed here. In particular, a set of hazard maps were created 

considering different weights in the PSHA logic tree for central, low and high equations 

in the representative set. In each case the weight difference in the each node of the logic 

tree comparing with basic model equals ±25%-75%. During the first test the weights of 

low and central equations in the logic tree have been decreased up to 25% and 50% 

relatively to teach 0 and high equation weight has been increased by 75% and reached the 

maximum weight equals 1. During the second test the maximum weight has been 

assigned to the central equation when at the same time for low and high equations 0 

weight has been assigned. The third test represent the case in which the low equation 

received the maximum weight and high and central equation have not been taken into 

account. Logic tree weights used in this study are the end members for GMPE logic tree 

sensitivity analysis and future work should include looking at the whole range of weight 

values from 0 to 1 with some certain (for example, 0.05) step. 

 

Figure 6: PSA values at 0.1Hz, 2Hz and10 Hz for Eastern North America GMPE 

versus epicentral distance 
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3.3 Results 

The mean hazard maps of predicted PSA with 2475 year return period were calculated 

based on the input parameters explained above. 2475 year return period represents 2% 

exceedance probability in 50 years. This return period is commonly used in building 

design because of its ability to capture the effects of rare but large earthquakes. The 

hazard maps produced with input base model are shown on Figure 7, representing PSA at 

three different periods equal 0.2 sec, 1.0 sec and 2.0 sec.  

Three sensitivity tests have been performed for different GMPE models. The effects of 

modification in the GMPE model are significant at every vibration period in all three 

sensitivity tests. Test 1, presented in Figure 8, compared predicted spectral acceleration 

calculated for the base model with predicted spectral acceleration calculated for the 

model with maximum weight assigned to the high-bound GMPE of the representative set. 

As expected, the difference of the estimated level of ground motion with the high-bound 

model is generally positive in all cases and varies in the range from 1.81 to 58.47 cm/sec2 

at 0.5 Hz frequency, from 3.6 to 128.53 cm/sec2 at 1.0 Hz frequency, from 4.76 to 398.89 

cm/sec2 at 5.0 Hz frequency. 

During the second test (Figure 9), maximum weight was assigned to the central GMPE of 

the representative set. The results obtained in this case are also significantly different 

when compared to the base model results.  The estimated difference varies from 0.00063 

to 17.92 cm/sec2 at 0.5 Hz frequency, from – 0.00059 to 36.37 cm/sec2 at 1.0 Hz 

frequency, and from 0.0011 to 142.95 cm/sec2 at 5.0 Hz frequency. 

In the third test (Figure 10) the maximum weight has been assigned to the low-bound 

GMPE and results have been compared with the results of the base model. This test 

results in a negative difference that is in the range of -49.3 to -1.79 cm/sec2 at 0.5 Hz 

frequency, from -100.06 to -4.08 cm/sec2 at 1.0 Hz frequency, from -756.84 to -11.67 

cm/sec2 at 5 Hz frequency.  
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Figure 7: 2475 year return period mean hazard maps (with base GMPE model) 
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Figure 8: Sensitivity test of 2475 year return period mean hazard maps with high-

bound GMPE 
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Figure 9: Sensitivity test of 2475 year return period mean hazard maps with 

medium GMPE 
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Figure 10: Sensitivity test of 2475 year return period mean hazard maps with low-

bound GMPE 

The mean changes on every vibration period for each test performed also were analyzed. 

The maximum change occurs in Test 1, in which 100% weight in the GMPE logic tree 

has been assigned to the high-bound equation of the representative GMPE set. The 

minimum mean difference appeared in the Test 2 case in which the medium equation of 
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the representative GMPE set was applied. In general, the predicted spectral acceleration 

is more sensitive to the applied changes at low frequencies and close distances than at 

high frequencies and far distances. That means the areas close to the seismic zones with 

higher hazard are more sensitive to the changes in probabilistic logic tree. 

3.4 Conclusions 

Hazard maps have important significance in the seismic risk mitigation programs. Both 

overestimation and underestimation of the true seismic hazard and risk may significantly 

increase economic and human losses. Attention should be paid to the development and 

sensitivity analysis of key input models for PSHA. GMPE models play an important role 

in ground-motion characterization and seismic hazard map production. In particular, the 

correct representation of epistemic uncertainty through weights assigned in the 

representative set of GMPE logic tree has a significant impact on the seismic hazard 

assessment and, as a result, is one of the most important factors in PSHA and should be 

handled carefully according to the experts’ recommendations.  
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Chapter 4  

4 Real-Time Earthquake Intensity Estimation Using 
Streaming Data Analysis of Social and Physical 
Sensors 

The material covered in this chapter is accepted for publication with minor revisions to 

the journal of Pure and Applied Geophysics on 06/07/2016. 

Earthquake intensity is one of the key components of the decision-making process for 

disaster response and emergency services. Accurate and rapid intensity calculations can 

help to reduce total loss and the number of casualties after an earthquake. Modern 

intensity assessment procedures handle a variety of information sources, which can be 

divided into two main categories. The first type of data is that derived from physical 

sensors, such as seismographs and accelerometers, while the second type consists of data 

obtained from social sensors, such as witness observations of the consequences of the 

earthquake itself. Estimation approaches using additional data sources or that combine 

sources from both data types tend to increase intensity uncertainty due to human factors 

and inadequate procedures for temporal and spatial estimation, resulting in precision 

errors in both time and space. Here we present a processing approach for the real-time 

analysis of streams of data from both source types. The physical sensor data is acquired 

from the U.S. Geological Survey (USGS) seismic network in California and the social 

sensor data is based on Twitter user observations. First, empirical relationships between 

tweet rate and observed Modified Mercalli Intensity (MMI) are developed by using data 

from the M6.0 South Napa, CA earthquake that occurred on August 24, 2014. Second, 

the streams of both data types are analyzed together in simulated real-time to produce one 

intensity map. The second implementation is based on IBM InfoSphere Streams, a cloud 

platform for real-time analytics of big data. To handle large processing workloads for 

data from various sources, it is deployed and run on a cloud-based cluster of virtual 

machines. We compare the quality and evolution of intensity maps from different data 

sources over 10-minute time intervals immediately following the earthquake. Results 
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from the joint analysis show that it provides more complete coverage, with better 

accuracy and higher resolution over a larger area than either data source alone. 

4.1 Introduction 

Earthquakes are a natural phenomenon that regularly produces significant damage and 

loss of life. According to the USGS (2015a), every year several million earthquakes 

occur worldwide. Most are not dangerous due to either their small magnitude or remote 

location. But others can cause significant economic loss and casualties. For example, the 

M7.8 Nepal earthquake that occurred on April 25, 2015 killed more than 9,000 people, 

injured more than 23,000 people and destroyed 436,344 houses (NDRRP, 2015). Even in 

well-studied regions with modern building codes such as California, estimated rates of 

potentially dangerous seismic activity in the north San Francisco Bay area have changed 

with time. While during the second half of the 19th century, occurrence rates were 

estimated at one M≥6.0 earthquake every four years, after the 1906 earthquake, the 

seismic activity rates significantly decreased until the M6.9 Loma Prieta earthquake in 

1989. Today, scientists expect larger and more frequent earthquakes on the basis of 

increasing regional stresses (USGS, 2015c).  

Despite the fact that the joint efforts of the scientific and engineering communities have 

significantly reduced the impact of earthquakes as a result of practical actions and 

procedures that help to minimize losses after an earthquake, their causes, properties and 

impacts on human society are still an important topic of scientific research. While 

engineers are able to build earthquake-resistant buildings, bridges and other infrastructure 

elements and emergency response services continuously improve population 

preparedness and risk mitigation, the scientific community continues its studies and 

simulations of the earthquake source, including the size and extent of the resulting ground 

motion. Today, continuous analysis of massive volumes of real-time seismic data can be 

streamed and processed at high speeds and low latency. This technological advantage can 

be incorporated into post-disaster emergency response systems.  

One of the most important measures of damage in emergency response systems is the 

earthquake intensity. Earthquake intensity quantifies the severity of ground shaking at a 
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given distance from the epicentre and provides a direct measure of the likely damage. 

Intensity maps are the most common method for spatial representation of intensity levels 

across a given region. Public and private organizations use intensity maps for both 

disaster planning and post-earthquake response (Wald et al., 2003). The MMI scale is the 

primary intensity measure used in North America. MMI is a twelve step scale, numbered 

from I to XII. The numbers represent shaking levels from slight shaking to total 

destruction (Wood and Neumann, 1931; Richter, 1958).  

There are two general approaches for the estimation of intensity levels. The first approach 

is designated instrumental intensity level and is based on a regression of kinematic 

parameters recorded at individual seismic stations. During an earthquake, energy travels 

in the form of waves from the epicentre and causes ground movement. The two most 

common measures of ground motion are peak ground acceleration (PGA) and peak 

ground velocity (PGV), measured in the east-west (EW) direction, north-south (NS) and 

vertical (UP) directions. In this case, the intensity level is most accurate for locations 

adjacent to the seismic stations and less accurate at those location where the ground 

shaking is obtained through interpolation (Wald et al., 2006b).  

The second approach for intensity calculations is based on the shared information from 

people who experience an earthquake. The current state-of-art is the “Did You Feel It?” 

program for Community Internet Intensity Maps (CIIM) developed by the USGS. Here, 

individuals fill in a simple online questionnaire in order to share information about their 

earthquake experiences and observations. A CIIM processes the completed 

questionnaires and assigns average intensity level to each ZIP code. The CIIM is updated 

in time as additional data are received (Wald et al., 2006a). 

The fact that people share their experience and observations in social networks can be 

extended to improve the CIIM results. In particular, any related observations posted 

online that can be linked to their geographical location can be incorporated into CIIM 

analyses. The micro-blogging service Twitter is one potentially significant data source, as 

it has 255 million active users around the world and connects them to the Internet through 

both their phones and computers (Campagne et al., 2012). In addition, one of the most 
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important features of Twitter messages (tweets) that makes them useful for improving 

earthquake response is their real-time nature (Sakaki, 2010). Sakaki (2010) first proposed 

using Twitter users as earthquake sensors and designated them ‘social sensors’. To date, 

several studies have demonstrated the application of Twitter data in post-disaster 

response systems (Earle et al., 2010, 2011). Earle et al., (2010, 2011) demonstrated how 

instrument-based event detection and estimation of earthquake location and magnitude 

could be supplemented by Twitter data. Sakaki (2010, 2013) constructed earthquake 

monitoring, detection and early warning system in Japan based on tweet data. That 

system sends emails to registered users based on seismic events detected with 96% 

probability, using a special tweets classifier based on the tweet keywords, context and the 

number of words.  System notification is delivered much faster when compared to the 

warnings issued by the Japan Meteorological Agency. Crooks (2012) analyzed the spatial 

and temporal characteristics of Twitter activity during the M5.8 earthquake that occurred 

on the east coast of the United States,  August 23, 2011 and concluded that Twitter data 

can complement other sources of data and enhance situational awareness among people. 

Burks et al. (2014) created a regression model using tweets in the 10 minutes following 

an earthquake and integrated it with earthquake characteristics such as moment 

magnitude, source-to-site distance and shear-wave  velocity  in the  top  thirty  meters. 

The main contribution of that work was the demonstration of Tweeter potential as a near-

real-time complementary data source for earthquake intensity estimation.  

In this paper, we take another step forward and present a streaming implementation of  an 

approach for  earthquake intensity estimation that integrates data from both social and 

physical sensors. Results are shown for the M6.0 South Napa, CA earthquake that 

occurred on August 24, 2014 at 3:20 a.m. local time. The North San Francisco Bay Area 

portion of the San Andreas Fault system is a complex network of primarily right-lateral 

strike-slip faults accommodating motion between the North American and Pacific plates. 

This network of faults is approximately 80 kilometers wide and trends north-northwest in 

the area of the West Napa Fault. The West Napa Fault transfers slip between a group of 

related faults (the Contra Costa Shear Zone) which has a maximum slip rate of one 

millimeter per year.  
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The epicenter of the South Napa earthquake was located to the south of the city of Napa 

and to the northwest of American Canyon on the West Napa Fault (Figure 11). Fifteen 

thousand people experienced severe shaking, 106,000 people felt very strong shaking, 

176,000 felt strong shaking, and 738,000 felt moderate shaking. The duration of shaking 

lasted from 10 to 20 seconds, depending on location. One person was killed, 

approximately 200 people were injured and over $400 million in damage occurred as a 

result of this event (USGS, 2014). 

 

Figure 11: Topography map of the region (based on ETOPO1 dataset (Amante and 

Eakins, 2009)). 

Here we assume that the rate of tweets that directly reference earthquake shaking is 

correlated with the intensity of shaking.  The goal is to calculate the number of tweets per 

minute that directly identify each particular earthquake intensity level, based on a set of 

terms typically used in MMI calculations (Wald et al., 2003).  
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4.2 Selection and Validation of Predictive Relationship 
between MMI and Tweets Rate 

In order to develop an empirical relationship between seismic intensity and tweets rate 

we used two data sets. The first database is provided by the Northern California 

Earthquake Data Center (NCEDC) and consists of all aggregated reported intensity 

estimations from instrumental ground motion recordings and represents the most accurate 

intensity levels after the earthquake. Each value reflects the average estimation of the 

ground shaking experienced by the public or an assessment of damage level. Figure 12 

shows the MMI map with main cities in the region, epicenter of earthquake and seismic 

stations in the region (NCEDC, 2014).   

 

Figure 12: USGS Intensity Map (created from NCEDC data (2014)). 

The second dataset is the archive of Twitter records from August 24, 2014 (downloaded 

from https://archive.org/details/twitterstream). Tweets related to the earthquake (positive 

tweets) are identified using keywords listed in Table 3.  
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Table 3: Keywords used for positive tweets filtering 

Word Language 

Σεισμός Greek 

地震 Chinese 

أرضية هزة ,زلزال  Arabic 

terremoto, seísmo, sismo, temblor, temblor de 
tierra 

Spanish 

Землетрясение Russian 

Aardbeving Dutch 

tremor de terra, terremoto Portugeese 

Deprem Turkish 

Terremoto Italian 

tremblement de terre, séisme French 

Erdbeben German 

地震 Japanese 

אדמה רעידת  Hebrew 

지진 Korean 

Jordbävning Swedish 

earthquake, quake English 

There are several well-known challenges associated with using Twitter data for analytical 

purposes. One of them is the precise geolocation detection of tweets. Some tweets are 

geotagged, meaning that they contain the current user location indicator at the time of 

tweeting. However, the geotagging feature is rarely used by users. For instance, Graham 

et.al (2014) observed only 0.7% geotagged tweets among 19.6 million tweets. For tweets 

containing specific cities, the percentage of geotagging was between 2% and 5% (Severo 

et. al, 2015). The location of a Twitter user can also be obtained from a field in the user 

account description. Of user accounts with tweets containing some location information, 

7.5% contained latitude and longitude values, 57% included a named location, 20.4% 

referenced information that helped to identify a country, while 15.1% provided humorous 

or non-spatial information (Takhteyev et. al, 2012). In this study we began with 

geotagged tweets and for tweets with a location assigned in the user profile we assigned 

that as the location of the current tweet. Finally, for tweets with no georeference 

parameters we used a text-based geolocation algorithm. That algorithm analyzes the 

tweets’ content and assigns location coordinates according to a coordinates list of major 

California cities, towns, their shortcuts and keywords. For example, we assigned “SF Bay 
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Area”, “SF” and “Bay Area” to San Francisco city coordinates and “South Napa”, “SW 

Napa” and “napa” as city of Napa coordinates.  

The Twitter dataset used here was gathered on August 24, 2014, with a total volume of 

1.8 gigabytes. The streaming approach provides low-latency high-volume access to 

tweets. The stream of positive tweets on August 24, 2014 is shown in Figure 13.  

 

Figure 13: Number of positive tweets in the Napa region on the day of the 

earthquake. 

We limited our analysis to the ten minute period following the earthquake. There were 

747 positive tweets during that time interval: 348 were geotagged or contained a user 

location, 399 were assigned a geolocation based on the above algorithm. Figure 14 shows 

a map of the spatial distribution of the number of tweets in this analysis. Figure 15 

presents a map of population density for northern California. We anticipated that the 

number of tweets would correlate with population density or, more specifically, the 

amount of twitter users should correlate with population density. However, comparison 

of Figures 14 and 15 suggests that population density in this particular case is not as 

closely correlated with the spatial pattern of the number of tweets in the first ten minutes 

after an event.  
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Figure 14: Number of positive tweets ten minutes after the earthquake. 

There are three likely explanations for this phenomena. The first reason is related to the 

local time of the event. The earthquake occurred at 03:20:44 Pacific Daylight Time, when 

the majority of the population was likely asleep and not actively use cell phones or 

laptops to the extent that they would during the daytime. The second reason is associated 

with the time interval of interest. As observed in Figure 14, people tweeted more 

immediately after the earthquake in those regions close to the epicentre and with high 

intensity levels. In those areas with high population density that are further from the 

event we did not observe high tweet numbers during the first ten minutes. The third 

reason may be associated with the geolocation technique.  The majority of non-geotagged 

tweets mention the word “Napa” and their location had been assigned to the Napa city 

coordinates in our analysis. However, at some time after earthquake occurrence, many 

observers already know what happened and may mention Napa Valley in their tweets, 

even if they were not actually in the city of Napa. Clearly, with these challenges in 
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current geolocation algorithms there is a significant level of uncertainty in an analysis 

using data only from social sensors.  

 

Figure 15: Population density in the region (data from GPWv3 (CIESIN, 2005)). 

In order to employ tweet rate as an additional earthquake sensor, i.e. to predict MMI of 

an actual earthquake, we generated a tweet-frequency time series using a sliding time 

window of one minute over time steps of five seconds, normalized to the number of 

tweets per minute. A logarithmic transformation is used here in order to reduce the 

positive skewness in the data. Figure 16 presents the relationship between MMI values 

and the logarithmic rate of positive tweets obtained in this study. For each intensity point 

corresponding to the same latitude and longitude location from the first data set we 

automatically assigned a value of observed tweet rate,  calculated as tweets per minute at 

the tenth minute after the earthquake.  The selection of a ten minutes time interval is 

based on the analysis that showed that the number of positive tweets is constantly 

increasing over a longer period of time and reaches its maximum value approximately 

eleven minutes after the earthquake. In addition, because we are interested in emergency 
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applications of intensity maps, here we consider only a ten minute interval following the 

earthquake. We regress MMI against the logarithmic mean of the number of tweets per 

minute to obtain predictive equations within a legitimate range of values for each model 

(see Table 4). We regress the average ground-motion values for specified MMI levels in 

order to approximately follow the appropriate trend instead of producing a relationship 

overly influenced by the greater statistical volume of data at lower intensities. We applied 

a least squares solution with 95% confidence bounds for four models: linear, exponential, 

two-segment linear, three-segment linear. The selection of appropriate model is based on 

the fact that a relatively precise and unbiased model is a simplest model that produces 

random residuals.  The three-segment model demonstrates the best fit to the data with the 

highest coefficient of determination (R-squared) of 0.53 and the lowest root-mean-square 

(RMS) error of 0.65 MMI units. However, because R-squared and RMS error cannot 

determine whether the model estimates and predictions are biased, we also assessed the 

residual plots. The residuals between predicted and observed data shown in Figure 17 for 

each model demonstrate normality in every case.  

 

Figure 16: Combined tweet rate dataset (i.e. colored circles at each MMI level) used 

to derive average log(Tweets/min) (diamonds) for each MMI level (II - blue circles, 

III – light green circles, IV – green circles, V –light yellow circles, VI – yellow 
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circles, VII - light orange circles, VIII – orange circles, IX – red circles). The lines 

show different regression results. 

Table 4: Equations to predict MMI from tweets rate 

Model 
Name 

Equation 

Coeffici-
ent of 

determi-
nation, 

R2 

RMS 
error 

Valid range of 
values 

Ntweets/min 

Linear 𝑀𝑀𝐼 = 11.73 𝑙𝑜𝑔(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) − 13.47 0.32 0.79 [14.08; 148.4] 

Exponential 𝑀𝑀𝐼 = 0.0168 ∗ 𝑒3.67∗𝑙𝑜𝑔(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) 0.26 0.82 (0; 61.7] 

Two-
segment 
linear 

𝑀𝑀𝐼 = 16.13 log(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) − 19.65 

log(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) < 1.52 

 

𝑀𝑀𝐼 = 33.75 log(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) − 46.42 

1.52 < log(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) < 1.61 

0.49 0.69 [16.53; 53.8] 

Three-
segment 
linear 

𝑀𝑀𝐼 = 16.13 log(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) − 19.65 

log(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) < 1.52 

 

𝑀𝑀𝐼 = 33.75 log(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) − 46.42 

1.52 < log(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) < 1.61 

 

𝑀𝑀𝐼 = 8.55 log(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) − 5.86 

1.61 < log(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) < 1.74 

 
 

0.53 0.65 [16.53; 122.7] 

Several important observations can be made from Figure 16. First, both two and three-

segment models show the positive tweets rate increases slowly up to MMI less than V. 

The three-segment model also has a greater slope as MMI increases to VIII. At low MMI 

levels shaking is light and often goes unnoticed (USGS, 2015b). Starting at MMI V it 

becomes moderate and is felt by nearly everyone, explaining the increase in slope after 

MMI V. At severe levels of shaking (greater than VIII), even specially designed 

structures are slightly damaged, potentially affecting communication infrastructure and 

decreasing the number of devices with internet access and decreasing the rate of positive 

tweets.  

Twitter data is a simple proxy for MMI level estimation. However, due to the high level 

of over and underestimation resulting from the use of Twitter data alone, we propose that 
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it should be implemented jointly with instrumental intensity. In that case, two completely 

different data sources are analyzed in real-time using a streaming environment and 

methodology. 

 

 

Figure 17: Residuals between predicted and observed data for each model. 

4.3 Streaming Methodology and Environment 

Both input data types, whether from seismic stations or from Twitter, have a time-

dependent nature and can be classified as data streams. A data stream is a sequence of 

tuples (data packets) received at a sequence of positive real time intervals. In this case it 

is not possible to process the arriving data as a traditional database. Traditional databases 

are not designed to be used for continuous data loading and continuous queries (Terry et 

al., 1992). A Twitter data stream represents a massive volume of data with an average of 

5,700 tweets per second and requires streaming approaches to be processed with low 

latency.  

Linear Model Exponential Model 

Two-Segment Model Three-Segment Model 
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IBM created InfoSphere Streams (Streams), a product which provides a runtime platform, 

a datacentric programming model and a Stream Processing Language (SPL) specifically 

for complex streaming data analysis. Although there are other software packages for 

streaming data applications, we chose Streams for this application because it is flexible in 

accommodating different data sources. In Streams, an application is scalable for 

deployment on a larger HPC cluster in order to meet the application needs, and it is easy 

to implement with the support from various specialized toolkits. 

For a Streams application, each processing procedure generally is implemented as an 

operator, and these operators subsequently are connected to form processing pipelines. 

The processing performance is the critical component of the streaming data application in 

terms of meeting certain real-time or near real-time requirements important to this work. 

In order to promptly and efficiently handle processing workload by making use of the 

computational resources of a HPC cluster, Streams provides toolkit operators that can 

easily split an operator’s workload into multiple data streams.  In the meantime, a 

processing pipeline also can be duplicated into multiple pipelines in order to digest those 

data streams, which makes an application scalable. The Streams runtime platform makes 

it easy to deploy those pipelines on a large-scale HPC cluster without the need to 

manually manage allocation, synchronization or communication among the operators. 

The Streams runtime model consists of distributed processes. Single or multiple operators 

form a processing element (PE). The Streams compiler and runtime services determine 

where best to deploy those PEs, either on a single machine or across a cluster, in order to 

meet the resource requirements and application performance needs (IBM, 2014).  

Streams come with a standard toolkit for application development. For example, the 

toolkit provides different types of data source adapters that can be used to monitor 

different data sources and pull data from multiple sources at the same time. Various data 

sources could be a local or remote file directory, a TCP or UDP port, or any web URI. 

Because data from different sources can be of different types and arrive at a different 

pace, the toolkit also provides utility operators for synchronizing and/or merging multiple 

data streams. There also are several specialized toolkits available to speed-up the 

development work for various applications. For example, here we process Twitter data 
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which is in JSON format (detailed in Section 4), and a specialized JSON toolkit for 

Streams is used to parse and filter out the information needed from those tweet messages. 

Detailed implementation of this work is presented in the next section. 

The experimental environment in this work consists of a cluster of four virtual machines 

(VMs), each configured with 8-core 2.4GHz CPU, 16GB RAM. InfoSphere Streams 

Version 3.2 has been configured and installed on the VM cluster. The cluster was 

available through the Southern Ontario Smart Computing Innovation Platform (SOSCIP) 

cloud, the first research-dedicated analytics cloud in Canada. The SOSCIP cloud also 

provides access to a broad range of software tools for application development and data 

analytics, which can be combined with user-specific software configurations to create 

customized VMs to meet project demands.  

4.4 Implementation and Results 

Two separate applications were developed for implementation of intensity level mapping 

in Streams. The first is for streaming and processing of data from physical sensors and 

the second from social sensors. Subsequently, both applications were linked into one 

application for joint processing from both sources.  

The pipelined implementation to analyze datasets from seismic stations is shown on 

Figure 18 (details are provided in Algorithm 1, Appendix B).  

Here, the input data are strong motion records from seismic network of USGS/NSMP 

(USGS National Strong-Motion Project) obtained from the Center for Engineering Strong 

Motion Data (CESMD, 2014), which provides raw and processed data for earthquake 

engineering applications in cooperation with the USGS and the California Geological 

Survey (CGS). The USGS/NSMP network contains 33 stations in the area of interest 

(mapped as triangles on Figure 19).  

The duration of strong shaking during the earthquake was generally 10 to 15 seconds or 

less, recorded in time steps of 20 milliseconds. The minimum duration of the strong 

motion seismic time series was approximately 20 seconds while the maximum duration 

was approximately 80 seconds. 
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Figure 18: Pipelined application graph for intensity mapping based on seismic data 

(captured from Streams Studio). 

The strong-motion velocity time series are processed and reviewed by USGS/NSMP 

(noise filtering, baseline or sensor offset corrections performed). However, the 

corresponding raw, unprocessed data also is available and could be processed here in a 

preprocessing step using the streaming paradigm. In order to simulate the real-time nature 

of the data processing as it would occur in an actual earthquake, we arranged the data 

input so that the start of each time series corresponded to the actual time recording began 

after the earthquake occurrence. The initiation of each time series was at different times, 

although they did overlap. The total duration of shaking in the streaming input was 

approximately four minutes.   

The seismic data is in SMC format, which uses ASCII character codes and consists of 

text headers, integer headers, real headers, and time-series coordinates and values. The 

header includes information about the earthquake and the recording physical sensor. Each 

file also contains either a single time series of acceleration, velocity or displacement or a 

set of response spectra or Fourier amplitude spectra of corrected acceleration calculated 

from a single time series. Analog strong-motion records contain traces corresponding to 

three orthogonal components of motion that are located in three separate SMC-format 

files to represent the record (USGS, 2010). 
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Figure 19: MMI based on physical sensors data (calculated using PGV values and 

empirical relationship from Atkinson and Kaka, 2007) estimated at one minute 

intervals after the Napa Valley earthquake. Red star represents the epicenter 

location. Triangles represent the location of seismic stations 

Here the horizontal components (EW, NS) of velocity time series are used in the standard 

empirical relationship for PGV and MMI. From Atkinson and Kaka, 2007, the 

relationship between PGV and observed MMI can be represented by equations (1) and 

(2), as follows: 

MMI = 4.37 + 1.32*(logPGV), logPGV ≤ 0.48   (1) 

MMI = 3.54 + 3.03*(logPGV), logPGV ≥ 0.48   (2) 

In our case these files have the following naming convention:  
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{StID.NComp.NP.--_v}.smc 

where StID is the station identificator and Ncomp is the component name, which has 

one of three values: HNN is the north direction component, HNE is the east direction 

component, HNZ is the vertical component of record. 

Two DirectoryScan operators control the streaming of the input data source into the 

horizontal components of the velocity time series, shown as PE 1 and PE 2 on Figure 18.  

In real situations, the implementation of these Streams source adaptors could be deployed 

to directly monitor the data collected at each seismic station, instead of pulling data from 

a data center, for real-time streaming processing. The first operator monitors the NS 

component files and the second monitors the EW component files. Subsequently, data 

from the input files is transformed to two streams by FileSource operators, shown as PE 3 

and PE 4 on Figure 18. The next two operators, PE 5 and PE 6, are responsible for input 

stream parsing and extraction of station coordinates, time of records and north and east 

components of the velocity values. The PE 7 is used to synchronize the two streams 

coming from PE 5 and PE 6. In PE 8, PGV is estimated as the maximum horizontal 

component over a five seconds time interval. Next, the intensity calculation custom 

operator PE 9 calculates the MMI intensity level based on equations (1) and (2). 

After the intensity level is derived at station locations, it is interpolated over a grid with 

spacing of three seconds in the latitude and longitude direction over the entire area, as 

limited by station endpoints (Figure 19). The interpolation operator PE 10 performs 

Delaunay triangulation for a set of points on a plane (Delaunay, 1934). This interpolation 

approach is chosen here in order to decrease the roughness of interpolated surface due to 

the very small number of data points. Finally, the sink operator PE 11 writes the results to 

the output file in csv format. The output file is refreshed as more data arrives, which can 

be plugged into a visualization tool to dynamically display MMIs in the area on-the-fly.  

Figure 19 shows the output from Streams as the evolution of intensity estimates based on 

the seismic data, starting one minute after the Napa Valley earthquake and at one minute 

time intervals. However, as expected from the limited amount of data points available 

from the seismic stations (33 stations), the accuracy is low.  Approximately one quarter 
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of the total area is covered by instrumental intensity results and the interpolated values 

are not smooth, with discontinuities not typically found in final intensity maps. 

The pipelined implementation of application of Twitter data processing is shown on 

Figure 20 (details are provided in Algorithm 2, Appendix B).  

 

Figure 20: Pipelined application graph of intensity mapping based on Twitter data 

(captured from Streams Studio). 

Twitter data has four main objects: Tweets, Users, Entities, and Places. The anatomy of 

these objects is complicated and has a number of attributes. The attributes needed for our 

implementation and for Twitter input data schema are: 

a) coordinates – Tweet object attribute in geoJSON format that contains the 

geographic location of this Tweet reported by the user; 

b) location – User object attribute, a string data type that contains the location for the 

account’s user-defined profile; 

c) created_at - Tweet object attribute, a string format that contains the UTC creation 

for each tweet; 

d) text – Tweet object string attribute, which is the actual UTF-8 text of the status 

update (Twitter, 2015). 

Each tweet in the archive has a creation time attribute with one second accuracy, 

allowing for the creation of a time series with one second time steps. This time series was 

fed into Streams, starting at the time of earthquake occurrence, again in order to simulate 

real-time processing of the information. 
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Input Twitter data coming from the source is monitored by DirectoryScan operator PE 1 

(Figure 20) and initially read in JavaScript Object Notation (JSON) format PE 2, an open 

standard format used to transmit data objects consisting of attribute–value pairs. The data 

is transformed from JSON to defined Streams tuples in PE 3. The streaming tuples are 

filtered for positive tweets when passing through operator PE 4. Not all of the positive 

tweets have a coordinates attribute.  For those positive tweets without a specified 

location, the location parsing operator PE 5 assigns coordinates according to the 

geolocation algorithm presented in Section 2. In this case, the tweet coordinates obtained 

are approximate. Subsequently, these positive tweets are filtered PE 6 again in order to 

exclude tweets from other regions. The logarithmic number of positive tweets per minute 

is calculated every five seconds PE 7, which is achieved in Streams by applying a 

“sliding time window” to data streams when passing through an operator, i.e. the time 

window is in size of 1 minute and the sliding step is 5 seconds. In step PE 8, the 

logarithmic number of tweets at every location is interpolated over a spatial grid of ten 

minutes in the latitude and longitude direction for the entire area, using the gridding 

algorithm with continuous splines in tension of Smith and Wessel (1990). Finally, sink 

operator PE 9 outputs the results in csv format, which can be plugged into a visualization 

tool to display. 

Figure 21 shows the results obtained from Streams as the logarithmic number of tweets 

per minute starting from one minute after the earthquake at one minute intervals. For 

instrumental intensity (Figure 19), the maximum MMI for the entire area occurs at the 

seventh minute. Figure 21 shows that the logarithmic number of tweets per minute 

increased by a factor of four over the ten minute time interval of interest. Also, unlike 

instrumental intensity, the values are more completely distributed in space (comparing 

Figures 19 and 21). 

The pipelined implementation of joint processing is shown on Figure 22 (details are 

provided in Algorithm 3, Appendix B). Both data sets and all the operators from the 

above two applications explained above are employed in this analysis. However, because 

that data is arriving continuously from both sources at the same time, calculations occur 

at smaller spatial and temporal discretization. Again, the logarithm of the number of 



77 

 

tweets per minute are assumed to be correlated with MMI. The correlation analysis PE 17 

was performed using the three-segment linear prediction equation (Table 4), the 

predictive model that resulted from the study presented in Section 2. MMI was estimated 

at every location in the joint streaming analysis of PE 17. In step PE 18, the resulting 

values of MMI are interpolated on a grid spacing of three seconds in the latitude and 

longitude directions (Smith and Wessel, 1990).  

 

Figure 21: Logarithmical number of tweets at one minute intervals after the Napa 

Valley earthquake. The red star represents the epicenter location. 

The maps represent the MMI level starting from one minute after earthquake up to ten 

minutes, at one minute intervals. To quantify the improvement between maps generated 

based on data just from physical sensors (Figure 19) and those obtained from joint 

processing from physical and social sensors (Figure 23) we calculated the RMS error 

between those maps obtained at the final minute for physical sensors data (six minutes 

after the earthquake) and the USGS instrumental intensity map provided in Figure 12. 

Note that the RMS error calculated here is different from that used to select the best 

model (Table 4).  
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Figure 22: Pipelined application graph of intensity mapping based on joint data 

(captured from Streams Studio). 

The RMS error for the maps using only instrumental intensity is 2.8 MMI units. In 

contrast, for the RMS for the jointly processed intensity map is 0.58 MMI units. The 

lower RMS, and the improvement in resolution, for the joint processing case is a result of 

the increased number of data points used on the final interpolation step compared to those 

of the maps shown in Figure 19. Results from the joint intensity calculation for this case 

study are shown in Figure 23.  

To measure performance characteristics we used the maximum values of the InfoSphere 

Streams built-in metric for resource utilization monitoring for every host node on the 

cluster (see Table 5).  
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Figure 23: MMI after joint data processing from physical and social sensors at one 

minute intervals after the Napa Valley earthquake. Red star represents the 

epicenter location. Triangles represent the seismic station locations. 

CPU in milliseconds (ms) represents the time that was used by all PEs on a node. The 

memory consumption metric shows the amount used by the all PEs on a node, in 

kilobytes (kB). Load average is a common metric on Linux systems that measures the 

average CPU load over a period of time. A higher metric represents a system that is 

increasingly overloaded. InfoSphere Streams multiplies the raw load average from Linux 

by 100, and normalizes it by the number of processors on each cluster in that instant. In 

our case all four hosts were loaded to a level that was less than moderate, providing 

evidence that the processing workload involved in this particular case could be handled 

by  fewer computational resources for the same performance level.  

Table 5: Performance metrics over 10 minute time interval 

Node name on 
the cluster 

CPU (ms) Memory consumption (kB) Load average 

Cluster-parent 9,542 1,682,004 4 

Cluster-child1 10,880 2,654,176 1 

Cluster-child2 9,530 1,197,148 26 

Cluster-child3 7,800 1,196,550 1 

The purpose of this Streams implementation and the execution experiment here is to 

demonstrate its viability and potential real-time performance. In addition, it allows data to 
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be processed continuously on-the-fly while it being collected from multiple sources, 

which is different from the traditional data processing implementation.    

4.5 Conclusion 

This work presents the successful application and potential for emergency management 

purposes using the analytics cloud. The streaming concept is applied using the IBM 

InfoSphere Streams product using multiple data sources from an actual earthquake in 

order to demonstrate its application in real-time hazard mapping. 

Joint streaming processing using tweets and seismic records that were recorded within the 

ten minutes following the Napa Valley earthquake (2014) was used to estimate MMI at 

particular sites in California. We demonstrate that the logarithmic number of tweets can 

be used as a proxy for shaking intensity and can be used as a supplementary data source, 

in conjunction with existing networks of physical sensors, such as seismic stations, in 

order to improve intensity estimates in real-time. Results from the joint analysis show 

that it provides more complete coverage, with better accuracy and higher resolution over 

a larger area than either data source alone. Future studies will examine the extent to 

which the twitter regression relation is applicable in other seismic areas, both in 

California and worldwide, and how potential errors in geolocation affect the accuracy in 

space and time.  

In many areas, the importance of this additional data source could be very significant, due 

to the complete or partial lack of traditional data sources as a result of the high cost of 

their installation and ongoing operation. This work demonstrates that Twitter data could 

be used as independent data source of MMI estimation. In particular, it has significant 

potential for regions that may not have an extensive seismic network. Finally, 

implementation of this approach is not event or location dependent, so this approach 

could be applied to other regions and types of hazard. For example, it could be employed 

in areas where access is restricted due to flood inundation. Incorporation of social sensor 

data with traditional data sources using advanced computational processing methods can 

provide more complete and accurate coverage for rapid hazard response. 
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Chapter 5  

5 The Predictive Relationship between Earthquake 
Intensity and Tweets Rate for Real-Time Ground Motion 
Estimation  

The material covered in this chapter is submitted to the Seismological Research Letters 

journal on July 19th 2016. 

The standard measure for evaluation of immediate effect of an earthquake on Earth's 

surface, people, and man-made structures is intensity.  Intensity estimates are widely used 

for emergency response, loss estimation and distribution of public information after 

earthquake occurrence. Intensity measures are designed to standardize the measurements 

of seismic effect and their subsequent evaluation and response (Wald et al., 2003). 

Modern intensity assessment procedures process a variety of information sources. Those 

sources are primarily from two main categories: physical sensors (seismographs and 

accelerometers) and social sensors (witness observations of the earthquake 

consequences). Acquiring new data sources in the second category can help to speed up 

the existing procedures of the intensity calculation and improve the accuracy of those 

assessments in a more timely fashion. One potentially important data source in this 

category is the widespread micro-blogging platform Twitter, ranked number nine 

worldwide as of January 2016 by number of active users, ~320 million (Twitter, 2016). 

In our previous studies, empirical relationships between positive tweets rate and observed 

Modified Mercalli Intensity (MMI) were developed using data from the M6.0 South 

Napa, CA earthquake (Napa earthquake) that occurred on August 24, 2014 

(Kropivnitskaya et al., 2016). These relationships allow us to stream data from social 

sensors, supplementing data from physical sensors in order to produce real-time intensity 

maps. The streaming application implementation is based on IBM InfoSphere Streams, a 

cloud platform for real-time analytics on big data. These relationships could potentially 

decrease latency in the intensity calculations for future earthquakes in California and in 

other places around the world. However, there is a strong need for their validation and 

calibration in regions other than California. In this study, we validate empirical 
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relationships between tweets rate and observed MMI using new data set from earthquakes 

that occurred in California, Japan and Chile during the period March-April 2014. The 

statistical complexity of the validation test and calibration process is complicated by the 

fact that the Twitter data stream is limited for open public access, reducing the number of 

available tweets. In addition, in this analysis only spatially limited positive tweets 

(marked as a tweet about earthquake) are incorporated into the analysis, further limiting 

the data set and restricting our study to a historical data set. In this work, the predictive 

relationships for California is recalibrated slightly and a new set of relationships is 

estimated for Japan and Chile. 

5.1 Introduction 

Earthquake intensity is a location-specific characteristic of the post-seismic damage 

effect that depends not only on the magnitude of the earthquake, but also on the distance 

from the earthquake epicenter to the site of interest and the geological features of the 

surrounding area (USGS, 2015). The traditional understanding the earthquake intensity is 

based on estimates of the infrastructure damage at the specific site of interest estimated 

from the subjective perception of professional observers and/or volunteers who witnessed 

the earthquake and its consequences (USGS, 2013). For this purpose, specially designed 

questionnaire are used to be filled out and summarized at certain locations. A successful 

example of the modern implementation of this approach is the Did You Feel It? program 

created by United States Geological Survey (USGS) that collects information from 

people who experience an earthquake and volunteer to share their observations online to 

create Community Internet Intensity Maps (CIIM) with observations and extent of 

damage (Wald et al., 2006).  

In addition to the intensity evaluation method based on human observations, another 

approach is to determine intensity from the peak ground motion, either velocities or 

accelerations, at a station nearby the site of interest. Empirical relationships are then 

employed to calculate intensity level (Wald et al., 1999). Results can be obtained much 

faster by comparing the observation-based analysis and the instrumental intensity level. A 

successful realization of this method is the ShakeMap application, also developed by the 

USGS (Wald et al., 1999). 
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The intensity evaluation approaches can be divided into two main categories, according 

to the input information source type, above.  The first evaluation category employs social 

sensor data from people who witness the consequences of the earthquake. The second 

utilizes data from physical sensors, such as seismometers and accelerometers to estimate 

intensity. Although the first method historically estimated intensity at a much slower rate 

than that of physical sensors, today electronic questionnaires and observers’ reports can 

be supplemented with auxiliary online data sources from social networks, where people 

also share their observations after the earthquakes. In our case, we access data from the 

online social networking service Twitter. Twitter enables users to send and read short 

140-character messages called "tweets". Registered users can read and post tweets while 

unregistered users can only read those tweets. Users can access Twitter through the 

website interface, SMS or a mobile device application that is the true source of the real-

time nature of tweets (Twitter, 2016). Twitter data is immediately available in a data 

stream, which can be mined using stream mining techniques (Schonfeld, 2009). In this 

study we work with data following the stream model. In this model, data arrive at high 

speed and data mining algorithms must be able to predict intensity level in real-time and 

under strict constraints of space and time (Bifet et al., 2010). 

Previously, studies have shown Twitter data potential for earthquake detection (Earle et  

al., 2010, 2011; Sakaki, 2010; Crooks, 2012; Burks et al., 2014) and intensity estimation 

(Kropivnitskaya et  al., 2016). Kropivnitskaya et al. (2016) created four empirical 

predictive relationships (linear, two-segment linear, three-segment linear, exponential) 

that link the positive tweet rates in the first ten minutes following the earthquake with the 

instrumental intensity level in MMI scale units using regression analysis of data from 

physical and social sensors during the Napa earthquake. Figure 24 shows the ratio 

between the combined data (instrumental and Twitter data) and the MMI intensity values 

records reported by the USGS intensity levels in the Napa region. Despite the fact that the 

ratio between estimated and actual intensity is relatively low  for this particular 

earthquake and that this joint processing of social and physical data demonstrates 

significant high potential of proposed models forin the near real-time predictive 

streaming applications, the empirical relationships between earthquake intensity and 
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tweet rates models still needs to be validated for all of California and other seismically 

active regions of the world in the world and spatially calibrated if necessary.  

a). b).  

c). d).  

Figure 24: Ratio between combined intensity level (from physical and social sensors) 

and instrumental intensity level (triangles – seismic stations) after the Napa 

earthquake (red star - epicenter). a) Linear model, b) exponential model, c) two-

segment model and d) three-segment model. 
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The statistical complexity of validating and calibrating the model is complicated by the 

fact that Twitter data stream is limited for open public access. The basic levels allow only 

up to 1% of the total tweets volume to be streamed (Twitter, 2016). For our purposes only 

spatially limited positive tweets (tweets about earthquake) are used, so the rate limitations 

are critical and historical data are used in our application instead of a real data stream. 

The relationships are validated and calibrated for three regions: California, Chile and 

Japan. The degree of social media engagement across these countries is relatively high. 

The proportion of each country’s population that has a Twitter account is 36% in the 

USA, 24% in Japan and 33% in Chile (Dawson, 2012). Therefore, potential for the 

success of Twitter streaming applications in these regions is high. 

5.2 Data preparation 

In order to validate whether the numerical results quantifying hypothesized relationships 

between logarithmic tweet rates following ten minutes after an earthquake and 

earthquake intensity on MMI scale, obtained from Kropivnitskaya et al. (2016), can be 

used in other regions and for other earthquakes in California, we selected independent 

events for testing purposes (Table 6).  

Table 6: List of earthquakes used in validation and calibration processes 

Date and Time Magnitude Depth (km) Epicenter Location 

2014-03-02 20:11 6.5 119 111km NNW of Nago, Japan 

2014-03-10 5:18 6.8 16.6 78km WNW of Ferndale, California 

2014-03-13 17:06 6.3 79 15km NNE of Kunisaki-shi, Japan 

2014-03-16 21:16 6.7 20 64km WNW of Iquique, Chile 

2014-03-17 5:11 6.4 21 80km WNW of Iquique, Chile 

2014-03-22 12:59 6.2 20 91km WNW of Iquique, Chile 

2014-03-29 4:09 5.1 5.1 2km E of La Habra, California 

2014-04-01 23:46 8.2 25 94km NW of Iquique, Chile 

Note that the magnitude scale used in this study is moment magnitude based on the 

seismic moment of the earthquake, which is equal to the rigidity of the Earth multiplied 

by the average amount of slip on the fault and the size of the area that slipped (USGS, 

2016). Those events listed in the Table 6 are shown in Figure 25 (California), Chile 
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(Figure 26) (Chile) and Japan (Figure 27) (Japan).  Note that none of these events were 

included in the original analysis (Kropivnitskaya et al., 2016).  

 

Figure 25: California population density map with earthquake epicenters used in 

the validation and calibration process (1 – Ferndale earthquake, 2 – Napa Valley 

earthquake, 3 – La Habra earthquake) and areas covered for analysis (circles). 

The selection of seismic events used in validation is dictated by two constraints. The first 

is to the result of the limited number of freely available, Twitter data sets of unlimited 

volume. Gathering information from social media feeds is, in essence, a web-mining 

process (Kosala and Blockeel 2000, Sakaki et al., 2010, Russell 2011). It entails three 

operations: extracting data from the data providers (in this case Twitter) via application 

programming interfaces (APIs); parsing, integrating, and storing these data in a resident 

database; and then analyzing these data to extract information of interest. However, 

currently available Twitter tools offer limited capabilities for information gathering 

procedures (Twitter, 2016). As a result we used archived historical dataset of Twitter 
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records from March-April 2014 (downloaded from 

https://archive.org/details/twitterstream). 

 

Figure 26: Chile population density map with earthquake epicenters used in the 

validation and calibration process (1 - 64km WNW of Iquique, 2 - 80km WNW of 

Iquique, 3 - 91km WNW of Iquique, 4 - 94km NW of Iquique) and areas covered for 

analysis (circles). 

The second limitation is related to the lack of geotagged data within available Twitter 

data sets. We selected seismic events that both showed a spike in the amount of positive 

tweets within ten minutes following the earthquake and where at least fourteen of those 

tweets were geotagged (the minimum of valid range of values in the models used 

(Kropivnitskaya et al., 2016)). The geotagged tweets contain the current user location 

indicator at the time of tweeting and can be directly used in the location-specific intensity 

estimation algorithms. However, Graham et al. (2014) showed that only 0.7% tweets are 

geotagged among 19.6 million tweets. In this case, other tweets that do not have a direct 

specific location reference, but contain a link to specific cities can be used. 
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Figure 27: Japan population density map with earthquake epicenters used in the 

validation and calibration process (1 – Nago earthquake, 2 - Kunisaki-shi) and areas 

covered for analysis (circles). 

The percentage of geotagging in this case is between 2% and 5% (Severo et al., 2015). 

The geotag also can be obtained from a field in the user account description (7.5% of 

profiles contain latitude and longitude values, 57% include a named location, 20.4% 

referenced information that can be used to identify a country, while 15.1% provided 

humorous or non-spatial information (Takhteyev et al., 2012)). In the approach used by 

Kropivnitskaya et al. (2016), all three types of geotagged technics were used and the 

same logic has been implemented here. A text-based geolocation algorithm has been 

improved by employing a location database extension for California, Japan and Chile. In 

location database updating, the complete, shortened or abbreviated names are included 

for any settlements with a population of more than five thousand people in a 200 km 

radius of the epicenter of the earthquakes listed in Table 6 (see Figures 25 through 27).  
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After building a tweets data set for each event that is limited in time and space, we 

generated a tweet-frequency time series with one second windows time bins and 

normalized to number of tweets per minute. For each point from the Twitter data set we 

automatically assigned an MMI intensity value from the instrumental intensity database 

of the USGS National Earthquake Information Center corresponding to the same (closest) 

latitude-longitude location. For California we selected the M6.8 Ferndale, CA earthquake 

( March 10, 2014) and the M5.1 La Habra, CA earthquake (March 29, 2014) (Figure 25).  

The four prediction models (Kropivnitskaya et al., 2016) shown on Figure 28. 

 

Figure 28: Observed California earthquake data (black dots – Ferndale earthquake, 

grey circles – La Habra earthquake) with prediction models obtained for Napa 

earthquake (red – linear, black - exponential, green – two-segment linear, blue – 

three-segment). 

5.3 Validation of Relationship  

The validation process analyzes the goodness of fit of the regression for Napa earthquake, 

determining whether the regression residuals are random, and checking whether the 

model's predictive performance deteriorates substantially when applied to data for the 
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Ferndale and La Habra earthquakes not used in the original model estimation. Both 

events are not large enough to validate empirical relationships at intensity levels higher 

than VI. The Ferndale earthquake is an offshore event that occurred near areas of 

relatively low population. The La Habra event had a relatively small magnitude and 

occurred in areas of generally well-mitigated urban seismic risk. As a result, the three-

segment model is excluded from the validation test. 

An important observation can be made from Figure 28. Both earthquakes’ datasets show 

that the positive tweets rate increases slower than predicted by the empirical relationships 

for the Napa earthquake derived in Kropivnitskaya et al. (2016). 

The residuals for both events are shown with whisker diagrams for different models in 

Figures 29 and 30, and display the distribution of the residuals based on the five number 

summary: minimum, first quartile, median, third quartile, and maximum.  

 

Figure 29: Whisker diagram for the Ferndale earthquake residuals (red – median, 

blue square – mean, error bars – standard deviation). 
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Figure 30: Whisker diagram for the La Habra earthquake residuals (red – median, 

blue square – mean, error bars – standard deviation). 

The quartiles of the present data values are the three points that divide the data set into 

four equal groups, each group comprising a quarter of the data. The first quartile is 

defined as the middle number between the smallest number and the median of the data 

set. The median of the data is a second quartile. The third quartile is the middle value 

between the median and the highest value of the data set. The Interquartile Range (IQR) 

is used here to characterize outliers that skew the data.  

Despite the fact that the La Habra data (Figure 30) contains significantly more outliers in 

the residuals than the Ferndale data (Figure 29). The mean residuals for every model for 

the La Habra event are much closer to zero (the linear model mean residual is 0.37 MMI 

units; the exponential model mean residual is -0.25 MMI units; the two-segment model 

mean residual is 0.28 MMI units) than for Ferndale event (the linear model mean residual 

is 1.28 MMI units; the exponential model mean residual is 0.98 MMI units; the two-

segment model mean residual is 1.57 MMI units).  

A visual examination of the residuals has an advantage over numerical model validation 

methods because it illustrates the complex aspects of the relationship between the model 
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and the new data. Figures 31-36 show the residuals from the fitted models, providing 

information on the different features of the model.  

 

Figure 31: Residuals vs. epicentral distance for the exponential model (grey squares 

– La Habra earthquake, black circles – Ferndale earthquake). 

 

Figure 32: Residuals vs. time for the exponential model (grey squares – La Habra 

earthquake, black circles – Ferndale earthquake). 

The residuals are not randomly distributed around zero, indicating that the linear 

assumption may be not reasonable (Figure 32). However, even for the exponential model 

case (Figure 31), the residuals are not distributed normally around zero. In this case, the 

variances of the error terms at each MMI level are not equal due to the different number 
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of twitter responses at each level. Moreover, some of the residuals stand out from the 

basic pattern, confirming there are outliers in the data as indicated by whisker diagrams 

(Figures 29 and 30). These data points have to be excluded from the calibration 

procedure detailed below. 

 

Figure 33: Residuals vs. epicentral distance for the linear model (grey squares – 

LaHabra earthquake, black circles – Ferndale earthquake). 

 

Figure 34: Residuals vs. time for the linear model (grey squares – La Habra 

earthquake, black circles – Ferndale earthquake). 

Intensity attenuates with distance from the epicentre of an earthquake and intensity 

prediction equations usually rely on some distance metric. For example, some models use 
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epicentral distance (Bakun and Wentworth, 1997), or closest distance to rupture, or some 

variant that considers extended fault sources, such as Joyner-Boore distance (Joyner and 

Boore, 1993). For small magnitude earthquakes, where an earthquake can be 

approximated by a point source, the difference between point and extended source 

distance metrics can be minimal. 

 

Figure 35: Residuals vs. epicentral distance for the two-segment linear model (grey 

squares – La Habra earthquake, black circles – Ferndale earthquake). 

 

Figure 36: Residuals vs. time for the two-segment linear model (grey squares – La 

Habra earthquake, black circles – Ferndale earthquake). 
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However, at larger magnitudes where source finiteness can be significant, prediction 

equations which use point source distance metrics are not likely to be applicable (Cua et 

al., 2010).  In this evaluation, we consider the point source distance metric epicentral 

distance as a potential predictor for the equations of Kropivnitskaya et al. (2016).  The 

expected distance metric influence on the predictive equations is based on the assumption 

that number of positive tweets and tweet rates are expected to attenuate with distance 

from the epicenter. The reason is in different components of ground motion that may vary 

with epicentral distance and cause a variation in the type of structural damage. Plots of 

the residuals versus potential predictor calculated variable epicentral distance as  

potential predictor (Figures 31, 33, and 35) do not exhibit a systematic structure and 

confirm that the form of the function cannot be improved using that predictor. To check 

non-constant temporal variation in the data, the residuals also are plotted versus time 

(Figures 32, 34, and 36). Intensity level is aggregated over time and we are not able to 

use time attribute for that dataset. In other words every minute intensity map is updated 

according to new values that have been received during the last minute. But at the same 

time all values obtained before are remaining on the map and participating in the overall 

intensity representation.  The residuals plotted versus time do not show any drift in the 

errors and appear to behave randomly. Both sets of residual plots demonstrate that the 

delay from zero distance and zero time for Ferndale earthquake, the offshore event 

occurred 78 kilometers off the coastline. The cumulative error over the ten minute 

interval is shown on Figure 37. The maximum error for Ferndale earthquake registered at 

the third minute, the minimum error occurred at the tenth minute. For the La Habra event, 

the maximum error registered at the first and seventh minutes while the minimum error 

occurred at the fifth and tenth minute. The model could fit the validation dataset in a 

better way and calibration process for all models for California  region is needed.  

Figures 38 and 39 show the data for Chile and Japan earthquakes from Table 6 plotted 

with the prediction models (Kropivnitskaya et al. 2016). The data distribution follows the 

same pattern as the models, but it is clear that the models have to be calibrated and 

shifted to the left to represent the data relationships better. One of the Chile earthquakes 

has a significantly higher amount of tweets after an earthquake (Figure 38, upward 

triangles). 
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Figure 37: Cumulative average error over ten minutes (grey – Ferndale earthquake, 

black – La Habra earthquake, solid  line – linear model, dashed line – exponential 

model, dotted line – two-segment linear model). 

 

Figure 38: Observed Chile earthquake data (circles - 64km WNW of Iquique, 

upward triangles - 80km WNW of Iquique, downward triangles - 91km WNW of 

Iquique, dots - 94km NW of Iquique) with prediction models obtained for Napa 

earthquake (red line – linear, black line  - exponential, green line – two-segment 

linear, blue line – three segment). 
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Figure 39: Observed Japan earthquake data (circles – Nago earthquake, dots - 

Kunisaki-shi earthquake) with prediction models (red line – linear, black line  - 

exponential, green line – two-segment linear, blue line – three segment). 

Taking into consideration the fact that all earthquakes have common characteristics, the 

possible reason could be related to the fact that the earthquake happened the day after the 

M6.7 event that occurred 64 km WNW of Iquique on March 16, 2014.  People were 

likely alert and their reaction was stronger. The data from Japan does not allow for 

validation of the empirical relationships at an intensity level higher than V. As a result, 

the three-segment and two-segment models are excluded from the calibration. Observed 

data for the Chile region represent the intensity levels up to VI, therefore three-segment 

model is not taken into consideration. 

5.4 Calibration of Existing Relationships 

The forward problem that describes the relation between the logarithmic tweets rate and 

intensity predictions may be represented with an equation in the following form: 

MMI=f(θ)+e,     (1) 

where MMI is the aggregated instrumental intensity level observed, θ is the vector of 

tweet rates observations, f is the forward equation representing each mathematical model 
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(linear, exponential, 2-segment, 3-segment), and e is the residuals vector which describes 

the deviation between the measured and predicted values of intensity (2). Here 

e=eo+ em,     (2) 

where eo accounts for measurement error in the observations, and em  is the model error.  

The calibration here is an inverse procedure.  An inverse estimator C that connects the 

observations MMI to “good” estimates g of the parameters of interest: 

g=C[f(θ)+e]=min∑[MMI-f(θ)]^2   (3) 

We used known data in the observed relationship between the dependent variable MMI 

and independent variable logarithmic tweets rate to estimate values for regions other than 

Napa Valley using new observations from the earthquakes listed in Table 6. Linear 

regression is used to produce new regression coefficients for each region. We regress 

instrumental MMI against the logarithmic mean of the number of tweets per minute to 

obtain new predictive equations (Figure 40) within a legitimate range of values for each 

model (see Table 7).  

 

Figure 40: Calibrated models (red line – linear, black line - exponential, green line – 

two-segment linear, blue line – three segment) for California (solid lines), Japan 

(dotted lines), Chile (dashed lines). 
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Table 7: Calibrated Predictive Relationships 

Model Name Equation 
RMS error, 
MMI units 

Valid range of 
values 

(Ntweets/min) 

California 

Linear 
𝑀𝑀𝐼 = 19.11 𝑙𝑜𝑔(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) − 23.72 

 
0.0033 [17.43; 58.15] 

Exponential 
𝑀𝑀𝐼 = 0.04636 ∗ 𝑒3.086∗𝑙𝑜𝑔(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) 

 
0.0035 (0; 55.1] 

Two-segment 
linear 

𝑀𝑀𝐼 = 15.41 log(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) − 18.63 

log(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) < 1.52 

 

𝑀𝑀𝐼 = 35.47 log(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) − 49.19 

1.52 < log(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) < 1.61 

 

0.0029 [24.4; 46.63] 

Japan 

Linear 
𝑀𝑀𝐼 = 1.56 𝑙𝑜𝑔(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) + 2.2 

 
0.0207 [0.04; 105] 

Exponential 
𝑀𝑀𝐼 = 2.584 ∗ 𝑒0.3653∗𝑙𝑜𝑔(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) 

 
0.0186 (0; 5064] 

Chile 

Linear 
𝑀𝑀𝐼 = 1.58 𝑙𝑜𝑔(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) + 3.241 

 
0.0143 [0.009; 18 960] 

Exponential 
𝑀𝑀𝐼 = 3.4 ∗ 𝑒0.339∗𝑙𝑜𝑔(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) 

 
0.0145 (0; 1517.6] 

Two-segment 
linear 

𝑀𝑀𝐼 = 16.06 log(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) − 3.5338 

log(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) < 0.47 

 

𝑀𝑀𝐼 = 3.59 log(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) + 2.32 

0.47 < log(𝑁𝑡𝑤𝑒𝑒𝑡𝑠/𝑚𝑖𝑛) < 0.86 

 

0.0358 [1.66; 137.8] 

We regress the average ground-motion values for specified MMI levels in order to 

approximately follow the appropriate trend instead of producing a relationship that is 

overly influenced by the greater statistical volume of data at lower intensities. We applied 

a least squares solution with 95% confidence bounds for each model.  

For California region the lowest root-mean-square (RMS) of 0.0029 MMI units is 

observed for the two-segment model. For the Napa earthquake the lowest error has been 

received with three segment model, that is excluded for validation here. The exponential 

model demonstrates the lowest RMS error of 0.0035 MMI units.  For the Japanese data 
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the difference between the RMS error for the linear and exponential models is also not 

significant (0.0207 vs. 0.0186).  That could be explained by the using the low-mid-valued 

intensity data in the regression (III - V).  For higher lower levels (I-III) the difference will 

be more significant and for the intensity levels higher than V is less significant (see 

Figure 39). For the Chile earthquakes, the lowest RMS error of 0.0143 MMI units is 

observed for the linear model, which is 0.0002 units lower than for exponential model. 

Because the RMS error cannot determine whether the model estimates and predictions 

are biased, we also assessed the residual plots (Figures 41-43).  

 

Figure 41: Residuals between calibrated models and observed California data. 
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Figure 42: Residuals between calibrated models and observed Chile data. 

 

Figure 43: Residuals between calibrated models and observed Japan data. 

The residuals between the predicted and observed data shown in Figure 41 for each 

model in the California region demonstrate normality in every case. The residual 

distribution for Japan also is nearly normal for both calibrated models. The distribution of 
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the Chile data residuals is skewed to the left for the two-segment model and skewed to 

the right for the linear and exponential models. The condition that the error terms are 

normally distributed is not met in that case. 

5.5 Conclusions 

Incorporation of social sensor data with traditional data sources using advanced 

computational processing methods can provide more complete and accurate coverage of 

damage and loss for rapid hazard response. The prediction equations obtained in this 

work could be used for real-time seismic hazard mapping and emergency management 

purposes in California, Japan and Chile using real-time data streaming concept of Twitter 

data. However, because our previous work had shown because of the the higher level of 

uncertainty resulting from the use of Twitter data alone  comparing to the results, we 

show here that better results are obtained when it is streamed jointly with instrumental 

intensity, we propose to use imperical equation together with the data from physical 

sensors (implementation approach is explained in Kropivnitskaya et al, 2016).  

The twitter stream processing here uses data recorded within the ten minutes following an 

earthquakes (2014). We confirm our earlier hypothesis that the logarithmic number of 

tweets can be used as a proxy for shaking intensity not just in the California region, but 

also in other regions with large numbers of Twitter users. In many areas, the importance 

of this additional data source could be very significant, due to the complete or partial lack 

of traditional, instrumental data sources as a result of the high cost of their installation 

and ongoing operation.  
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Chapter 6  

6 General Discussion and Conclusions 

Technological breakthroughs in computing that have taken place over the last few 

decades have made it possible to achieve emergency management objectives that focus 

on saving human lives and reduce the associated economic effects. In particular, 

integrating new information sources from social media, not only with each other, but also 

with other, existing sources from physical sensors has enabled a vast range of new, real-

time applications in the areas of disaster monitoring, hazard mapping and emergency 

response. Physical sensors such as mobile phones with accelerometers, compasses, and 

cameras, weather observation stations, location tracking systems with GPS and radio-

frequency identification (RFID) and building management systems are continuously 

producing an enormous amount of information in the form of complex multidimensional 

data streams. Social services like Twitter and Facebook deliver unstructured streams of 

real-time data with various observations from human beings (social sensors). Due to the 

heterogeneous nature of such diverse sources, the analysis of that data is still a difficult 

task and currently requires special techniques, such as computational streaming 

techniques. The goal of this work is to demonstrate the efficiency and efficacy of real-

time streaming processing of time-dependent data from physical and social sensors for 

the application in the natural hazards field. To achieve the goal two streaming 

applications have been developed: one is for near real-time hazard maps production and 

the other is for joint processing of data from social sensors (Twitter) and physical sensors 

(strong motion records) for near real-time earthquake intensity calculations. Both tools 

developed in this work have many practical important applications and could be widely 

used by policy makers, by insurance companies, by civil engineers and by emergency 

hazard personnel to assess and plan for areas of maximum loss and death. 

6.1  Advantages 

1. The parallel streaming implementation of seismic hazard map production proposed 

in this study addresses the potential for improvement in spatial and temporal 
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resolution. Computing bottlenecks are removed through parallel decomposition of 

bottlenecks into sub-tasks. These tasks are separated and solved simultaneously and 

then combine the results from each set of solutions (Sakr, 2013). The low execution 

time and high resolution are the biggest advantages of proposed parallel 

decomposition. Other types of analysis techniques in the geosciences which face 

similar issues can be improved by using parallel streaming algorithms via platforms 

such as IBM Streams.   

2. Probabilistic seismic analysis involves two main outputs: A seismic source model 

and empirical ground motion relationships, which are represented by various studies 

that intrinsically assume that every next generation of models and relationships 

improves on the previous results. However, there are not enough sensitivity studies 

showing how the uncertainty in the output of a system can be apportioned to 

different sources in developed models and how relationships are conducted due to 

the computational resources needs and lack of appropriate software tools. The 

eastern Canada hazard maps case study demonstrates how the high-resolution 

mapping technique developed here can be used for various sensitivity tests of 

probabilistic seismic hazard outputs for different regions based on the different input 

parameters of probabilistic seismic hazard analysis. 

3. The useof social media data for effective assessment and quantification of the 

ongoing effects of natural disasters has shown significant potential to date.  

However, realistic practical applications need additional research, including into the 

relationship between the properties and parameters of social media data (in our case, 

tweet rates) and the physical quantities used for hazard and risk measurements (in 

our case, MMI). From that perspective, the empirical relationships developed 

between tweet rates and MMI in this study not only can be used in the streaming 

techniques presented here, but in other hazard applications such as preliminary 

insurance claim calculations or the planning of resources redistributions.  

4. All software tools developed in this study are scalable and perform under an 

increased or expanding workload through Streams. Moreover, they are extensible to 



109 

 

other types of hazard, such as flood, fire, windor other areas with high level of 

hazard. 

6.2 Disadvantages  

1. The rate limitations of  Twitter’s data stream are restrictive for natural hazard 

applications. To satisfy such requirements, Twitter Firehose provides access to 100% 

of the public tweets on Twitter at a price. Firehose data can be purchased through 

third-party resellers of Twitter data (Kumar et al., 2013). As a result, this study was 

limited by the public data access restrictions and the developed implementations were 

used here strictly for demonstration purposes.  Although in reality it would require 

additional effort to implement access to the real Twitter APIs, the resulting potential 

of near real-time intensity maps for regions with sparse or nonexistent seismic 

networks is very promising.  

2. Previous studies have shown that less than one percent of tweets contain location 

metadata. The absence of geotagged Twitter data is one of the weakest aspects of this 

approach. Moreover, the geolocation algorithm used in this study requires manual 

location references (city names, abbreviations, short names) database extension that is 

not efficient. These references also may be lost in informal, ungrammatical, and 

multilingual data, and are therefore non-trivial to identify, affecting the ability to 

properly exploit user geolocation.  

3.  Historical Twitter dataset used in this study can have a completeness issue and the 

model parameters obtained here could only represent the corresponding relationships 

for specific earthquakes picked for analysis. 

4. Another area for improvement is related to this particular streaming. The continuous 

queries employed here need to be optimized adaptively in order to cope with arbitrary 

changes in the real stream characteristics and system conditions. The finite list of 

earthquake and location keywords maybe not sufficient enough to get minimum 

amount of tweets in reality. 
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5. Privacy concerns with social networking services. The nature of social media may 

provide information about a single individual to third parties and that raises privacy 

concerns, even in the cases of monitoring of social media to better detect or 

understand catastrope events.  

6.3 Future work 

The outline of future work can be subdivided into a few categories: 

1.  All techniques proposed and developed in this study can be applied to other high 

hazard regions and the associated perils as more physical and social data sources 

become available. In particular, social sensor data from not only Twitter, but also 

Facebook, Instagram can help to complement traditional data sources using advanced 

computational processing methods in the regions with low instrumental coverage. 

2. To increase performance, additional decomposition levels could be added to both 

implementations; e.g. both seismic hazard maps production and intensity calculations.  

3. Additional performance tests should be done to define the optimum number of 

parallel pipelines and minimum/optimum amount of computational resources for the 

real-time execution.  

4. This work could be used as a basis for a universal streams toolkit development 

(PSHA toolkit and Twitter data processing toolkit). 

5. The process for calibrating empirical relationships between tweet rates and MMI 

could be improved for more precise estimations. Considering each territory has 

widely diverse features that can be quantified, e.g. the earthquake rates and the size of 

tweet communities in the area, an automated on-the-fly calibration process based on 

the live streaming should be developed for implementation into operational methods. 

6. As noted above, for the seismic hazard implementation, the current list of earthquake 

and location keywords maybe not sufficient to get the correct set of tweets.  This 

requires additional study for both various regions to ensure optimal implementation, 
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in conjunction with efforts to assign more accurate geolocation information.  The 

latter would benefit similar efforts in other hazard areas as well. 

7. The text-based geolocation technique and semantic analysis of tweets used in this 

work could be significantly improved by modern machine and deep learning 

algorithms. 
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Appendices 

Appendix  A: List of algorithms for seismic hazard maps production 

Input :  File F1 with the description of seismic source zone model from 

www.seismotoolbox.ca, file F2 with a list of zones (polygon coordinates and seismicity re-

occurrence parameters from the Geological Survey of Canada (GSC)), file F3 with other PSHA 

parameters specified by user, file F4 contains GMPE model  
Output: File J encoding map in JSON format, containing ground motion estimation for a 

specified number of sites 
1 N1  Barrier(F1,F2,F3); 

2 I1  CatalogInputs(N1); 

3 G  Catalog(I1); 

4 N2  Barrier(F3, G, F4); 

5 I2  MapInputs(N2); 

6 O  Map(I2); 

7 J  JSONGen(O); 

8 TCPSink(J); 

Algorithm 1: Production of hazard map 

Input :  File F1 with the description of seismic source zone model from 

www.seismotoolbox.ca, file F2 with a list of zones (polygon coordinates and seismicity re-

occurrence parameters from the GSC), file F3 with other PSHA parameters specified by user, 

file F4 contains the GMPE model  
Output: File JS encoding map in JSON format containing a ground motion estimation for a 

specified number of sites 
1 N1  Barrier(F1,F2,F3); 

2 I1  CatalogInputs(N1); 

3 C1, C2, ..., C10  Split(I1); 

4 G1  Catalog(C1); 

5 G2  Catalog(C2); 

 ... 

13 G10  Catalog(C10); 

14 T  Barrier(G1, G2, ..., G10); 

15 U  TotalCatalog(T); 

16 N2  Barrier(F3, U, F4); 

17 I2  MapInputs(N2); 

18 M1, M2, ..., M25  Split(I2); 

19 O1  Map(M1); 

20 O2  Map(M2); 

 ... 

43 O25  Map(M25); 

44 J1  JSONGen(O1); 

45 J2  JSONGen(O2); 

 ... 

68 J25  JSONGen(O25); 

69 TJ  Barrier(J1, J2, ..., J25); 

70 JS  TotalJSON(TJ); 

71 TCPSink(JS); 

Algorithm 2: Production of hazard map with parallel execution  
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Appendix B: List of algorithms for MMI maps production 

Input :  Files FE, FN in SMC format with the time-series of PGV horizontal (east and north) 

components at each station 
Output: File J encoding map in xyz format, containing MMI estimation in the region 

1 FLE  DirectoryScan(FE);// To monitor new data files FE   

2 FLN  DirectoryScan(FN);// To monitor new data files FN 

3 FLE_R  FileSource(FLE);// To transform data files FLE into 

stream FLE_R 

4 FLN_R  FileSource(FLN);// To transform data files FLN into 

stream FLN_R 

5 PE  Custom(FLE_R);     // To parse stream FLE_R into stream 

PE 

6 PN  Custom(FLN_R);     // To parse stream FLN_R into stream 

PN 

7 P  Barrier(PE,PN);     // To synchronize streams PE and PN 

8 PGV  Custom(P);        // To calculate PGV stream 

9 MMI  Custom(PGV);      // To calculate MMI stream 

10 MMI_I  Custom(MMI);    // To interpolate MMI stream 

11 FileSink(MMI_I);     // To output results from the MMI_I 

stream into file 

Algorithm 1: Production of instrumental MMI map 

Input :  File F contains tweets dataset in JSON format 
Output: File J encoding map in xyz format, containing tweets rate estimation in the region 

1 FL  DirectoryScan(F); // To monitor new data files F 

2 FLC  FileSource(FL); // To transform data files FL into 

stream FLC 

3 JT  JSONToTuple(FLC); // To parse stream FLC into stream JT 

4 PT  Filter(JT);       // To filter positive tweets into 

stream PT 

5 GeoPT  Custom(PT);    // To parse the location for positive 

tweets 

6 GeoPTF  Filter(GeoPT); // To filter geotagged positive 

tweets 

7 TwN  Custom(GeoPTF);   // To calculate tweets rate 

8 TwNI  Custom(TwN);    // To interpolate tweets rate 

9 FileSink(TwIN);        //To output results from TwIN stream 

into file  

Algorithm 2: Production of tweets rate map 

Input :  Files FE, FN in SMC format with the time-series of PGV horizontal (east and north) 

components  at each station, file F contains tweets dataset in JSON format 
Output: File J encoding map in xyz format, containing combined MMI estimation in the region 

1 FLE  DirectoryScan(FE); // To monitor new data files FE 

2 FLN  DirectoryScan(FN); // To monitor new data files FN 

3 FL  DirectoryScan(F);   // To monitor new data files F 

4 FLE_R  FileSource(FLE);// To transform data files FLE into 

stream FLE_R 

5 FLN_R  FileSource(FLN);// To transform data files FLN into 
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stream FLN_R 

6 FLC  FileSource(FL); // To transform data files FL into 

stream FLC 

7 JT  JSONToTuple(FLC); // To parse stream FLC into stream JT 

8 PT  Filter(JT); // To filter positive tweets into stream PT 

9 PE  Custom(FLE_R); // To parse stream FLE_R into stream PE 

10 PN  Custom(FLN_R); // To parse stream FLN_R into stream PN 

11 GeoPT  Custom(PT); // To parse the location for positive 

tweets 

12 P  Barrier(PE,PN); // To synchronize streams PE and PN 

13 PGV  Custom(P); // To calculate PGV stream 

14 MMI  Custom(PGV); // To calculate MMI stream based on PGV 

15 GeoPTF  Filter(GeoPT); // To filter geotagged positive 

tweets 

16 TwN  Custom(GeoPTF); // To calculate tweets rate 

17 TwMMI  Custom(TwN); // To calculate MMI stream based on TwN 

stream 

18 MMIC  Custom(TwMMI,MMI); // To calculate joint MMI stream 

19 FileSink(MMIC); //To output results from MMIC stream into 

file 

Algorithm 3: Production of combined MMI map 
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