5,483 research outputs found

    Optimal Exploitation of the Sentinel-2 Spectral Capabilities for Crop Leaf Area Index Mapping

    Get PDF
    The continuously increasing demand of accurate quantitative high quality information on land surface properties will be faced by a new generation of environmental Earth observation (EO) missions. One current example, associated with a high potential to contribute to those demands, is the multi-spectral ESA Sentinel-2 (S2) system. The present study focuses on the evaluation of spectral information content needed for crop leaf area index (LAI) mapping in view of the future sensors. Data from a field campaign were used to determine the optimal spectral sampling from available S2 bands applying inversion of a radiative transfer model (PROSAIL) with look-up table (LUT) and artificial neural network (ANN) approaches. Overall LAI estimation performance of the proposed LUT approach (LUTN₅₀) was comparable in terms of retrieval performances with a tested and approved ANN method. Employing seven- and eight-band combinations, the LUTN₅₀ approach obtained LAI RMSE of 0.53 and normalized LAI RMSE of 0.12, which was comparable to the results of the ANN. However, the LUTN50 method showed a higher robustness and insensitivity to different band settings. Most frequently selected wavebands were located in near infrared and red edge spectral regions. In conclusion, our results emphasize the potential benefits of the Sentinel-2 mission for agricultural applications

    Joint leaf chlorophyll content and leaf area index retrieval from Landsat data using a regularized model inversion system (REGFLEC)

    Get PDF
    Leaf area index (LAI) and leaf chlorophyll content (Chll) represent key biophysical and biochemical controls on water, energy and carbon exchange processes in the terrestrial biosphere. In combination, LAI and Chll provide critical information on vegetation density, vitality and photosynthetic potentials.However, simultaneous retrieval of LAI and Chll fromspace observations is extremely challenging. Regularization strategies are required to increase the robustness and accuracy of retrieved properties and enable more reliable separation of soil, leaf and canopy parameters. To address these challenges, the REGularized canopy reFLECtance model (REGFLEC) inversion system was refined to incorporate enhanced techniques for exploiting ancillary LAI and temporal information derived from multiple satellite scenes. In this current analysis, REGFLEC is applied to a time-series of Landsat data. A novel aspect of the REGFLEC approach is the fact that no site-specific data are required to calibrate the model, which may be run in a largely automated fashion using information extracted entirely from image-based and other widely available datasets. Validation results, based upon in-situ LAI and Chll observations collected over maize and soybean fields in centralNebraska for the period 2001–2005, demonstrate Chll retrievalwith a relative root-mean-square-deviation (RMSD) on the order of 19% (RMSD = 8.42 ÎŒg cm−2). While Chll retrievals were clearly influenced by the version of the leaf optical properties model used (PROSPECT), the application of spatio-temporal regularization constraints was shown to be critical for estimating Chll with sufficient accuracy. REGFLEC also reproduced the dynamics of in-situ measured LAI well (r2 = 0.85), but estimates were biased low, particularly over maize (LAI was underestimated by ~36 %). This disparity may be attributed to differences between effective and true LAI caused by significant foliage clumping not being properly accounted for in the canopy reflectance model (SAIL). Additional advances in the retrieval of canopy biophysical and leaf biochemical constituents will require innovative use of existing remote sensing data within physically realistic canopy reflectancemodels along with the ability to exploit the enhanced spectral and spatial capabilities of upcoming satellite systems

    Gaussian processes retrieval of crop traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data

    Get PDF
    The unprecedented availability of optical satellite data in cloud-based computing platforms, such as Google Earth Engine (GEE), opens new possibilities to develop crop trait retrieval models from the local to the planetary scale. Hybrid retrieval models are of interest to run in these platforms as they combine the advantages of physically-based radiative transfer models (RTM) with the flexibility of machine learning regression algorithms. Previous research with GEE primarily relied on processing bottom-of-atmosphere (BOA) reflectance data, which requires atmospheric correction. In the present study, we implemented hybrid models directly into GEE for processing Sentinel-2 (S2) Level-1C (L1C) top-of-atmosphere (TOA) reflectance data into crop traits. To achieve this, a training dataset was generated using the leaf-canopy RTM PROSAIL in combination with the atmospheric model 6SV. Gaussian process regression (GPR) retrieval models were then established for eight essential crop traits namely leaf chlorophyll content, leaf water content, leaf dry matter content, fractional vegetation cover, leaf area index (LAI), and upscaled leaf variables (i.e., canopy chlorophyll content, canopy water content and canopy dry matter content). An important pre-requisite for implementation into GEE is that the models are sufficiently light in order to facilitate efficient and fast processing. Successful reduction of the training dataset by 78% was achieved using the active learning technique Euclidean distance-based diversity (EBD). With the EBD-GPR models, highly accurate validation results of LAI and upscaled leaf variables were obtained against in situ field data from the validation study site Munich-North-Isar (MNI), with normalized root mean square errors (NRMSE) from 6% to 13%. Using an independent validation dataset of similar crop types (Italian Grosseto test site), the retrieval models showed moderate to good performances for canopy-level variables, with NRMSE ranging from 14% to 50%, but failed for the leaf-level estimates. Obtained maps over the MNI site were further compared against Sentinel-2 Level 2 Prototype Processor (SL2P) vegetation estimates generated from the ESA Sentinels' Application Platform (SNAP) Biophysical Processor, proving high consistency of both retrievals (R2 from 0.80 to 0.94). Finally, thanks to the seamless GEE processing capability, the TOA-based mapping was applied over the entirety of Germany at 20 m spatial resolution including information about prediction uncertainty. The obtained maps provided confidence of the developed EBD-GPR retrieval models for integration in the GEE framework and national scale mapping from S2-L1C imagery. In summary, the proposed retrieval workflow demonstrates the possibility of routine processing of S2 TOA data into crop traits maps at any place on Earth as required for operational agricultural applications

    Automatic retrieval of crop characteristics: an example for hyperspectral AHS data from the AgriSAR campaign.

    Get PDF
    This paper presents the results of automated extraction of crop characteristics from hyperspectral earth observation data. The data was acquired with an airborne AHS imaging spectrometer in the framework of the joint European AgriSAR 2006 campaign. The AgriSAR campaign was directed by the ESA and took place at the DEMMIN test site in northeast Germany, an agricultural area dominated by large monocultures. An important objective of this campaign was to establish to what degree novel radar and optical technologies are able to provide accurate agro-meteorological parameters for precision farming purposes. Parameter retrieval in this study was performed with the CRASh approach, a software module based on the inversion of radiative transfer models. CRASh was developed at DLR as part of an automated operative processing chain for future hyperspectral missions. Validation of the model inversion results was performed with field measurements of leaf area index and leaf chlorophyll content which were carried out for winter wheat, winter barley, winter rape, maize, and sugar beet at two time steps during the 2006 growing season. Although spatial patterns of the model results generally coincide with the trends observed in the field, absolute accuracy of the fully automatically extracted variables appeared insufficient for precision agriculture purposes. The unsatisfying results are ascribed to a combination of causes, including angular anisotropy across the swath-width of the flight lines, the configuration of the applied bands, and the large number of model inversion solutions inherent to an automated environment in which little additional information on the observed canopy is present. Employing the airborne version of CRASh and incorporating a priori information on land cover and variable distributions is expected to drastically increase the retrieval performance

    Unlocking the benefits of spaceborne imaging spectroscopy for sustainable agriculture

    Get PDF
    With the Environmental Mapping and Analysis Program (EnMAP) mission, launched on April 1st 2022, new opportunities unfold for precision farming and agricultural monitoring. The recurring acquisition of spectrometric imagery from space, contiguously resolving the electromagnetic spectrum in the optical domain (400—2500 nm) within close narrow bands, provides unprecedented data about the interaction of radiation with biophysical and biochemical crop constituents. These interactions manifest in spectral reflectance, carrying important information about crop status and health. This information may be incorporated in agricultural management systems to support necessary efforts to maximize yields against the backdrop of an increased food demand by a growing world population. At the same time, it enables the effective optimization of fertilization and pest control to minimize environmental impacts of agriculture. Deriving biophysical and biochemical crop traits from hyperspectral reflectance thereby always relies on a model. These models are categorized into (1) parametric, (2) nonparametric, (3) physically-based, and (4) hybrid retrieval schemes. Parametric methods define an explicit parameterized expression, relating a number of spectral bands or derivates thereof with a crop trait of interest. Nonparametric methods comprise linear techniques, such as principal component analysis (PCA) which addresses collinearity issues between adjacent bands and enables compression of full spectral information into dimensionality reduced, maximal informative principal components (PCs). Nonparametric nonlinear methods, i.e., machine learning (ML) algorithms apply nonlinear transformations to imaging spectroscopy data and are therefore capable of capturing nonlinear relationships within the contained spectral features. Physically-based methods represent an umbrella term for radiative transfer models (RTMs) and related retrieval schemes, such as look-up-table (LUT) inversion. A simple, easily invertible and specific RTM is the Beer-Lambert law which may be used to directly infer plant water content. The most widely used general and invertible RTM is the one-dimensional canopy RTM PROSAIL, which is coupling the Leaf Optical Properties Spectra model PROSPECT and the canopy reflectance model 4SAIL: Scattering by Arbitrarily Inclined Leaves. Hybrid methods make use of synthetic data sets created by RTMs to calibrate parametric methods or to train nonparametric ML algorithms. Due to the ill-posed nature of RTM inversion, potentially unrealistic and redundant samples in a LUT need to be removed by either implementing physiological constraints or by applying active learning (AL) heuristics. This cumulative thesis presents three different hybrid approaches, demonstrated within three scientific research papers, to derive agricultural relevant crop traits from spectrometric imagery. In paper I the Beer-Lambert law is applied to directly infer the thickness of the optically active water layer (i.e., EWT) from the liquid water absorption feature at 970 nm. The model is calibrated with 50,000 PROSPECT spectra and validated over in situ data. Due to separate water content measurements of leaves, stalks, and fruits during the Munich-North-Isar (MNI) campaigns, findings indicate that depending on the crop type and its structure, different parts of the canopy are observed with optical sensors. For winter wheat, correlation between measured and modelled water content was most promising for ears and leaves, reaching coefficients of determination (R2) up to 0.72 and relative RMSE (rRMSE) of 26%, and in the case of corn for the leaf fraction only (R2 = 0.86, rRMSE = 23%). These results led to the general recommendation to collect destructive area-based plant organ specific EWT measurements instead of the common practice to upscale leaf-based EWT measurements to canopy water content (CWC) by multiplication of the leaf area index (LAI). The developed and calibrated plant water retrieval (PWR) model proved to be transferable in space and time and is ready to be applied to upcoming EnMAP data and any other hyperspectral imagery. In paper II the parametric concept of spectral integral ratios (SIR) is introduced to retrieve leaf chlorophyll a and b content (Cab), leaf carotenoid content (Ccx) and leaf water content (Cw) simultaneously from imaging spectroscopy data in the wavelength range 460—1100 nm. The SIR concept is based on automatic separation of respective absorption features through local peak and intercept analysis between log-transformed reflectance and convex hulls. The approach was validated over a physiologically constrained PROSAIL simulated database, considering natural Ccx-Cab relations and green peak locations. Validation on airborne spectrometric HyMAP data achieved satisfactory results for Cab (R2 = 0.84; RMSE = 9.06 ”g cm-2) and CWC (R2 = 0.70; RMSE = 0.05 cm). Retrieved Ccx values were reasonable according to Cab-Ccx-dependence plausibility analysis. Mapping of the SIR results as multiband images (3-segment SIR) allows for an intuitive visualization of dominant absorptions with respect to the three considered biochemical variables. Hence, the presented SIR algorithm allows for computationally efficient and RTM supported robust retrievals of the two most important vegetation pigments as well as of water content and is applicable on satellite imaging spectroscopy data. In paper III a hybrid workflow is presented, combining RTM with ML for inferring crop carbon content (Carea) and aboveground dry and fresh biomass (AGBdry, AGBfresh). The concept involves the establishment of a PROSAIL training database, dimensionality reduction using PCA, optimization in the sampling domain using AL against the 4-year MNI campaign dataset, and training of Gaussian process regression (GPR) ML algorithms. Internal validation of the GPR-Carea and GPR-AGB models achieved R2 of 0.80 for Carea, and R2 of 0.80 and 0.71 for AGBdry and AGBfresh, respectively. Validation with an independent dataset, comprising airborne AVIRIS NG imagery (spectrally resampled to EnMAP) and in situ measurements, successfully demonstrated mapping capabilities for both bare and green fields and generated reliable estimates over winter wheat fields at low associated model uncertainties (< 40%). Overall, the proposed carbon and biomass models demonstrate a promising path toward the inference of these crucial variables over cultivated areas from upcoming spaceborne hyperspectral acquisitions, such as from EnMAP. As conclusions, the following important findings arise regarding parametric and nonparametric hybrid methods as well as in view of the importance of in situ data collection. (1) Uncertainties within the RTM PROSAIL should always be considered. A possible reduction of these uncertainties is thereby opposed to the invertibility of the model and its intended simplicity. (2) Both physiological constraints and AL heuristics should be applied to reduce unrealistic parameter combinations in a PROSAIL calibration or training database. (3) State-of-the-art hybrid ML approaches with the ability to provide uncertainty intervals are anticipated as most promising approach for solving inference problems from hyperspectral Earth observation data due to their synergistic use of RTMs and the high flexibility, accuracy and consistency of nonlinear nonparametric methods. (4) Parametric hybrid approaches, due to their algorithmic transparency, enable deeper insights into fundamental physical limitations of optical remote sensing as compared to ML approaches. (5) Integration-based indices that make full use of available hyperspectral information may serve as physics-aware dimensionality reduced input for ML algorithms to either improve estimations or to serve as endmember for crop type discrimination when additional time series information is available. (6) The validation of quantitative model-based estimations is crucial to evaluate and improve their performance in terms of the underlying assumptions, model parameterizations, and input data. (7) In the face of soon-to-be-available EnMAP data, collection of in situ data for validation of retrieval methods should aim at high variability of measured crop types, high temporal variability over the whole growing season, as well as include area- and biomass-based destructive measurements instead of LAI-upscaled leaf measurements. Provided the perfect functionality of the payload instruments, the success of the EnMAP mission and the here presented methods depend critically on a low-noise, accurate atmospherically corrected reflectance product. High-level outputs of the retrieval methods presented in this thesis may be incorporated into agricultural decision support systems for fertilization and irrigation planning, yield estimation, or estimation of the soil carbon sequestration potential to enable a sustainable intensive agriculture in the future.Mit der am 1. April 2022 gestarteten Satellitenmission Environmental Mapping and Analysis Program (EnMAP) eröffnen sich neue Möglichkeiten fĂŒr die PrĂ€zisionslandwirtschaft und das landwirtschaftliche Monitoring. Die wiederkehrende Erfassung spektrometrischer Bilder aus dem Weltraum, welche das elektromagnetische Spektrum im optischen Bereich (400—2500 nm) innerhalb von engen, schmalen BĂ€ndern zusammenhĂ€ngend auflösen, liefert nie dagewesene Daten ĂŒber die Interaktionen von Strahlung und biophysikalischen und biochemischen Pflanzenbestandteilen. Diese Wechselwirkungen manifestieren sich in der spektralen Reflektanz, die wichtige Informationen ĂŒber den Zustand und die Gesundheit der Pflanzen enthĂ€lt. Vor dem Hintergrund einer steigenden Nachfrage nach Nahrungsmitteln durch eine wachsende Weltbevölkerung können diese Informationen in landwirtschaftliche Managementsysteme einfließen, um eine notwendige Ertragsmaximierung zu unterstĂŒtzen. Gleichzeitig können sie eine effiziente Optimierung der DĂŒngung und SchĂ€dlingsbekĂ€mpfung ermöglichen, um die Umweltauswirkungen der Landwirtschaft zu minimieren. Die Ableitung biophysikalischer und biochemischer Pflanzeneigenschaften aus hyperspektralen Reflektanzdaten ist dabei immer von einem Modell abhĂ€ngig. Diese Modelle werden in (1) parametrische, (2) nichtparametrische, (3) physikalisch basierte und (4) hybride Ableitungsmethoden kategorisiert. Parametrische Methoden definieren einen expliziten parametrisierten Ausdruck, der eine Reihe von SpektralkanĂ€len oder deren Ableitungen mit einem Pflanzenmerkmal von Interesse in Beziehung setzt. Nichtparametrische Methoden umfassen lineare Techniken wie die Hauptkomponentenanalyse (PCA). Diese adressieren KollinearitĂ€tsprobleme zwischen benachbarten KanĂ€len und komprimieren die gesamte Spektralinformation in dimensionsreduzierte, maximal informative Hauptkomponenten (PCs). Nichtparametrische nichtlineare Methoden, d. h. Algorithmen des maschinellen Lernens (ML), wenden nichtlineare Transformationen auf bildgebende Spektroskopiedaten an und sind daher in der Lage, nichtlineare Beziehungen innerhalb der enthaltenen spektralen Merkmale zu erfassen. Physikalisch basierte Methoden sind ein Oberbegriff fĂŒr Strahlungstransfermodelle (RTM) und damit verbundene Ableitungsschemata, d. h. Invertierungsverfahren wie z. B. die Invertierung mittels Look-up-Table (LUT). Ein einfaches, leicht invertierbares und spezifisches RTM stellt das Lambert-Beer'sche Gesetz dar, das zur direkten Ableitung des Wassergehalts von Pflanzen verwendet werden kann. Das am weitesten verbreitete, allgemeine und invertierbare RTM ist das eindimensionale Bestandsmodell PROSAIL, eine Kopplung des Blattmodells Leaf Optical Properties Spectra (PROSPECT) mit dem Bestandsreflexionsmodell 4SAIL (Scattering by Arbitrarily Inclined Leaves). Bei hybriden Methoden werden von RTMs generierte, synthetische Datenbanken entweder zur Kalibrierung parametrischer Methoden oder zum Training nichtparametrischer ML-Algorithmen verwendet. Aufgrund der ÄquifinalitĂ€tsproblematik bei der RTM-Invertierung, mĂŒssen potenziell unrealistische und redundante Simulationen in einer solchen Datenbank durch die Implementierung natĂŒrlicher physiologischer BeschrĂ€nkungen oder durch die Anwendung von Active Learning (AL) Heuristiken entfernt werden. In dieser kumulativen Dissertation werden drei verschiedene hybride AnsĂ€tze zur Ableitung landwirtschaftlich relevanter Pflanzenmerkmale aus spektrometrischen Bilddaten vorgestellt, die anhand von drei wissenschaftlichen Publikationen demonstriert werden. In Paper I wird das Lambert-Beer'sche Gesetz angewandt, um die Dicke der optisch aktiven Wasserschicht (bzw. EWT) direkt aus dem Absorptionsmerkmal von flĂŒssigem Wasser bei 970 nm abzuleiten. Das Modell wird mit 50.000 PROSPECT-Spektren kalibriert und anhand von In-situ-Daten validiert. Aufgrund separater Messungen des Wassergehalts von BlĂ€ttern, StĂ€ngeln und FrĂŒchten wĂ€hrend der MĂŒnchen-Nord-Isar (MNI)-Kampagnen, zeigen die Ergebnisse, dass je nach Kulturart und -struktur, unterschiedliche Teile des Bestandes mit optischen Sensoren beobachtet werden können. Bei Winterweizen wurde die höchste Korrelation zwischen gemessenem und modelliertem Wassergehalt fĂŒr Ähren und BlĂ€tter erzielt und sie erreichte Bestimmtheitsmaße (R2) von bis zu 0,72 bei einem relativen RMSE (rRMSE) von 26%, bei Mais entsprechend nur fĂŒr die Blattfraktion (R2 = 0,86, rRMSE = 23%). Diese Ergebnisse fĂŒhrten zu der allgemeinen Empfehlung, Kompartiment-spezifische EWT-Bestandsmessungen zu erheben, anstatt der ĂŒblichen Praxis, blattbasierte EWT-Messungen durch Multiplikation mit dem BlattflĂ€chenindex (LAI) auf den Bestandswassergehalt (CWC) hochzurechnen. Das entwickelte und kalibrierte Modell zur Ableitung des Pflanzenwassergehalts (PWR) erwies sich als rĂ€umlich und zeitlich ĂŒbertragbar und kann auf bald verfĂŒgbare EnMAP-Daten und andere hyperspektrale Bilddaten angewendet werden. In Paper II wird das parametrische Konzept der spektralen Integralratios (SIR) eingefĂŒhrt, um den Chlorophyll a- und b-Gehalt (Cab), den Karotinoidgehalt (Ccx) und den Wassergehalt (Cw) simultan aus bildgebenden Spektroskopiedaten im WellenlĂ€ngenbereich 460-1100 nm zu ermitteln. Das SIR-Konzept basiert auf der automatischen Separierung der jeweiligen Absorptionsmerkmale durch lokale Maxima- und Schnittpunkt-Analyse zwischen log-transformierter Reflektanz und konvexen HĂŒllen. Der Ansatz wurde anhand einer physiologisch eingeschrĂ€nkten PROSAIL-Datenbank unter BerĂŒcksichtigung natĂŒrlicher Ccx-Cab-Beziehungen und Positionen der Maxima im grĂŒnen WellenlĂ€ngenbereich validiert. Die Validierung mit flugzeuggestĂŒtzten spektrometrischen HyMAP-Daten ergab zufriedenstellende Ergebnisse fĂŒr Cab (R2 = 0,84; RMSE = 9,06 ”g cm-2) und CWC (R2 = 0,70; RMSE = 0,05 cm). Die ermittelten Ccx-Werte wurden anhand einer PlausibilitĂ€tsanalyse entsprechend der Cab-Ccx-AbhĂ€ngigkeit als sinnvoll bewertet. Die Darstellung der SIR-Ergebnisse als mehrkanalige Bilder (3 segment SIR) ermöglicht zudem eine auf die drei betrachteten biochemischen Variablen bezogene, intuitive Visualisierung der dominanten Absorptionen. Der vorgestellte SIR-Algorithmus ermöglicht somit wenig rechenintensive und RTM-gestĂŒtzte robuste Ableitungen der beiden wichtigsten Pigmente sowie des Wassergehalts und kann in auf jegliche zukĂŒnftig verfĂŒgbare Hyperspektraldaten angewendet werden. In Paper III wird ein hybrider Ansatz vorgestellt, der RTM mit ML kombiniert, um den Kohlenstoffgehalt (Carea) sowie die oberirdische trockene und frische Biomasse (AGBdry, AGBfresh) abzuschĂ€tzen. Das Konzept umfasst die Erstellung einer PROSAIL-Trainingsdatenbank, die Dimensionsreduzierung mittels PCA, die Reduzierung der Stichprobenanzahl mittels AL anhand des vier Jahre umspannenden MNI-Kampagnendatensatzes und das Training von Gaussian Process Regression (GPR) ML-Algorithmen. Die interne Validierung der GPR-Carea und GPR-AGB-Modelle ergab einen R2 von 0,80 fĂŒr Carea und einen R2 von 0,80 bzw. 0,71 fĂŒr AGBdry und AGBfresh. Die Validierung auf einem unabhĂ€ngigen Datensatz, der flugzeuggestĂŒtzte AVIRIS-NG-Bilder (spektral auf EnMAP umgerechnet) und In-situ-Messungen umfasste, zeigte erfolgreich die KartierungsfĂ€higkeiten sowohl fĂŒr offene Böden als auch fĂŒr grĂŒne Felder und fĂŒhrte zu zuverlĂ€ssigen SchĂ€tzungen auf Winterweizenfeldern bei geringen Modellunsicherheiten (< 40%). Insgesamt zeigen die vorgeschlagenen Kohlenstoff- und Biomassemodelle einen vielversprechenden Ansatz auf, der zur Ableitung dieser wichtigen Variablen ĂŒber AnbauflĂ€chen aus kĂŒnftigen weltraumgestĂŒtzten Hyperspektralaufnahmen wie jenen von EnMAP genutzt werden kann. Als Schlussfolgerungen ergeben sich die folgenden wichtigen Erkenntnisse in Bezug auf parametrische und nichtparametrische Hybridmethoden sowie bezogen auf die Bedeutung der In-situ-Datenerfassung. (1) Unsicherheiten innerhalb des RTM PROSAIL sollten immer berĂŒcksichtigt werden. Eine mögliche Verringerung dieser Unsicherheiten steht dabei der Invertierbarkeit des Modells und dessen beabsichtigter Einfachheit entgegen. (2) Sowohl physiologische EinschrĂ€nkungen als auch AL-Heuristiken sollten angewendet werden, um unrealistische Parameterkombinationen in einer PROSAIL-Kalibrierungs- oder Trainingsdatenbank zu reduzieren. (3) Modernste ML-AnsĂ€tze mit der FĂ€higkeit, Unsicherheitsintervalle bereitzustellen, werden als vielversprechendster Ansatz fĂŒr die Lösung von Inferenzproblemen aus hyperspektralen Erdbeobachtungsdaten aufgrund ihrer synergetischen Nutzung von RTMs und der hohen FlexibilitĂ€t, Genauigkeit und Konsistenz nichtlinearer nichtparametrischer Methoden angesehen. (4) Parametrische hybride AnsĂ€tze ermöglichen aufgrund ihrer algorithmischen Transparenz im Vergleich zu ML-AnsĂ€tzen tiefere Einblicke in die grundlegenden physikalischen Grenzen der optischen Fernerkundung. (5) Integralbasierte Indizes, die die verfĂŒgbare hyperspektrale Information voll ausschöpfen, können als physikalisch-basierte dimensionsreduzierte Inputs fĂŒr ML-Algorithmen dienen, um entweder SchĂ€tzungen zu verbessern oder um als Eingangsdaten die verbesserte Unterscheidung von Kulturpflanzen zu ermöglichen, sobald zusĂ€tzliche Zeitreiheninformationen verfĂŒgbar sind. (6) Die Validierung quantitativer modellbasierter SchĂ€tzungen ist von entscheidender Bedeutung fĂŒr die Bewertung und Verbesserung ihrer LeistungsfĂ€higkeit in Bezug auf die zugrunde liegenden Annahmen, Modellparametrisierungen und Eingabedaten. (7) Angesichts der bald verfĂŒgbaren EnMAP-Daten sollte die Erhebung von In-situ-Daten zur Validierung von Ableitungsmethoden auf eine hohe VariabilitĂ€t der gemessenen Pflanzentypen und eine hohe zeitliche VariabilitĂ€t ĂŒber die gesamte Vegetationsperiode abzielen sowie flĂ€chen- und biomassebasierte destruktive Messungen anstelle von LAI-skalierten Blattmessungen umfassen. Unter der Voraussetzung, dass die Messinstrumente perfekt funktionieren, hĂ€ngt der Erfolg der EnMAP-Mission und der hier vorgestellten Methoden entscheidend von einem rauscharmen, prĂ€zise atmosphĂ€risch korrigierten Reflektanzprodukt ab. Die Ergebnisse der in dieser Arbeit vorgestellten Methoden können in landwirtschaftliche EntscheidungsunterstĂŒtzungssysteme fĂŒr die DĂŒnge- oder BewĂ€sserungsplanung, die ErtragsabschĂ€tzung oder die SchĂ€tzung des Potenzials der Kohlenstoffbindung im Boden integriert werden, um eine nachhaltige Intensivlandwirtschaft in der Zukunft zu ermöglichen

    Vegetation Earth System Data Record (VESDR)

    Full text link
    https://eosweb.larc.nasa.gov/project/dscovr/DSCOVR_VESDR_SDRG.pdfFirst author draftFirst author draf

    The retrieval of plant functional traits from canopy spectra through RTM-inversions and statistical models are both critically affected by plant phenology

    Get PDF
    Plant functional traits play a key role in the assessment of ecosystem processes and properties. Optical remote sensing is ascribed a high potential in capturing those traits and their spatiotemporal patterns. In vegetation remote sensing, reflectance-based retrieval methods are either statistical (relying on empirical observations) or physically-based (based on inversions of a radiative transfer model, RTM). Both trait retrieval approaches remain poorly investigated regarding phenology. However, within the phenology of a plant, its leaf constituents, canopy structure, and the presence of phenology-related organs (i.e., flowers or inflorescence) vary considerably – and so does its reflectance. We, therefore, addressed the question of how plant phenology affects the predictive performance of both statistical and RTM-based methods and how this effect differs between traits. For a complete growing season, we weekly measured traits of 45 herbaceous plant species together with hyperspectral canopy reflectance (ASD FieldSpec III). Plants were grown in an experimental setup. The investigated traits comprised Leaf Area Index (LAI) and the leaf traits chlorophyll, anthocyanins, carotenoids, equivalent water thickness, and leaf mass per area. We compared the predictive performances of PLSR models and three variants of PROSAIL inversions based on (1) all observations and based on (2) a phenological subset where flowering plants were excluded and only those observations most suitable for modeling were kept. Our results show that both statistical and RTM-based trait retrievals were largely affected by phenology. For carotenoids for example, R2^{2} decreased from 0.58 at non-flowering canopies to 0.25 at 100% flowering canopies. Temporal trends were diverse. LAI and equivalent water thickness were best estimated earlier in the growing season; chlorophyll and carotenoids towards senescence. PLSR models showed generally higher bias than the PROSAIL-based retrieval approaches. Lookup-table inversion of PROSAIL in combination with a continuous wavelet transformation of reflectance showed highest accuracies. We found RTM-based retrieval not to be as accurate and transferable as previously indicated. Our results suggest that phenology is essential for accurate retrieval of plant functional traits and varies depending on the studied species and functional traits, respectively
    • 

    corecore