91,805 research outputs found

    Solusi-solusi Periodik Pada Perluasan Fractional Van-der Pol Tak Linear

    Full text link
    In this paper will be studied a Generalized Non Linear Rayleigh Oscillator. It will be shown that the recently developed perturbation method based on integrating factors can be used to approximate first integrals and periodic solutions. Not only approximations of first integrals will be given, but it will also be shown how in a rather efficient way the existence and stability of time-periodic solutions can be obtained from these approximations

    How to understand the cell by breaking it: network analysis of gene perturbation screens

    Get PDF
    Modern high-throughput gene perturbation screens are key technologies at the forefront of genetic research. Combined with rich phenotypic descriptors they enable researchers to observe detailed cellular reactions to experimental perturbations on a genome-wide scale. This review surveys the current state-of-the-art in analyzing perturbation screens from a network point of view. We describe approaches to make the step from the parts list to the wiring diagram by using phenotypes for network inference and integrating them with complementary data sources. The first part of the review describes methods to analyze one- or low-dimensional phenotypes like viability or reporter activity; the second part concentrates on high-dimensional phenotypes showing global changes in cell morphology, transcriptome or proteome.Comment: Review based on ISMB 2009 tutorial; after two rounds of revisio

    Performance optimization of a leagility inspired supply chain model: a CFGTSA algorithm based approach

    Get PDF
    Lean and agile principles have attracted considerable interest in the past few decades. Industrial sectors throughout the world are upgrading to these principles to enhance their performance, since they have been proven to be efficient in handling supply chains. However, the present market trend demands a more robust strategy incorporating the salient features of both lean and agile principles. Inspired by these, the leagility principle has emerged, encapsulating both lean and agile features. The present work proposes a leagile supply chain based model for manufacturing industries. The paper emphasizes the various aspects of leagile supply chain modeling and implementation and proposes a new Hybrid Chaos-based Fast Genetic Tabu Simulated Annealing (CFGTSA) algorithm to solve the complex scheduling problem prevailing in the leagile environment. The proposed CFGTSA algorithm is compared with the GA, SA, TS and Hybrid Tabu SA algorithms to demonstrate its efficacy in handling complex scheduling problems

    Non-linear matter power spectrum from Time Renormalisation Group: efficient computation and comparison with one-loop

    Full text link
    We address the issue of computing the non-linear matter power spectrum on mildly non-linear scales with efficient semi-analytic methods. We implemented M. Pietroni's Time Renormalization Group (TRG) method and its Dynamical 1-Loop (D1L) limit in a numerical module for the new Boltzmann code CLASS. Our publicly released module is valid for LCDM models, and optimized in such a way to run in less than a minute for D1L, or in one hour (divided by number of nodes) for TRG. A careful comparison of the D1L, TRG and Standard 1-Loop approaches reveals that results depend crucially on the assumed initial bispectrum at high redshift. When starting from a common assumption, the three methods give roughly the same results, showing that the partial resumation of diagrams beyond one loop in the TRG method improves one-loop results by a negligible amount. A comparison with highly accurate simulations by M. Sato & T. Matsubara shows that all three methods tend to over-predict non-linear corrections by the same amount on small wavelengths. Percent precision is achieved until k~0.2 h/Mpc for z>2, or until k~0.14 h/Mpc at z=1.Comment: 24 pages, 7 figures, revised title and conclusions, version accepted in JCAP, code available at http://class-code.ne

    Field Theoretic Description of Ultrarelativistic Electron-Positron Plasmas

    Get PDF
    Ultrarelativistic electron-positron plasmas can be produced in high-intensity laser fields and play a role in various astrophysical situations. Their properties can be calculated using QED at finite temperature. Here we will use perturbative QED at finite temperature for calculating various important properties, such as the equation of state, dispersion relations of collective plasma modes of photons and electrons, Debye screening, damping rates, mean free paths, collision times, transport coefficients, and particle production rates, of ultrarelativistic electron-positron plasmas. In particular, we will focus on electron-positron plasmas produced with ultra-strong lasers.Comment: 13 pages, 7 figures, 1 table, published versio

    Field Theory On the World Sheet: Mean Field Expansion And Cutoff Dependence

    Get PDF
    Continuing earlier work, we apply the mean field method to the world sheet representation of a simple field theory. In particular, we study the higher order terms in the mean field expansion, and show that their cutoff dependence can be absorbed into a running coupling constant. The coupling constant runs towards zero in the infrared, and the model tends towards a free string. One cannot fully reach this limit because of infrared problems, however, one can still apply the mean field method to the high energy limit (high mass states) of the string.Comment: 29 Pages, 3 Figure

    New nonlocal effective action

    Get PDF
    We suggest a new method for the calculation of the nonlocal part of the effective action. It is based on resummation of perturbation series for the heat kernel and its functional trace at large values of the proper time parameter. We derive a new, essentially nonperturbative, nonlocal contribution to the effective action in spacetimes with dimensions d>2d>2.Comment: 28 pages, latex, no figures, typos are corrected, presentation improve
    corecore