70 research outputs found

    SciTech News [full issue]

    Get PDF

    IoT Applications Computing

    Get PDF
    The evolution of emerging and innovative technologies based on Industry 4.0 concepts are transforming society and industry into a fully digitized and networked globe. Sensing, communications, and computing embedded with ambient intelligence are at the heart of the Internet of Things (IoT), the Industrial Internet of Things (IIoT), and Industry 4.0 technologies with expanding applications in manufacturing, transportation, health, building automation, agriculture, and the environment. It is expected that the emerging technology clusters of ambient intelligence computing will not only transform modern industry but also advance societal health and wellness, as well as and make the environment more sustainable. This book uses an interdisciplinary approach to explain the complex issue of scientific and technological innovations largely based on intelligent computing

    Internet of Things : technologies and applications in healthcare management and manufacturing

    Get PDF
    L'Internet des Objets (ou IoT) s'appuie sur des objets connectés dotés de capteurs et technologies capables d'échanger des données entre eux de manière indépendante. Ces nouvelles technologies offrent aux entreprises et à toutes les organisations des moyens pour l’acquisition et le traitement intelligent de l’information (Industrie 4.0) pour demeurer compétitives. Ce mémoire vise à analyser la contribution de l'IoT dans les soins de santé et production, mettant l'accent sur l'Industrie 4.0 et la maintenance prédictive, particulièrement en maintenance, sur la base d’oeuvres littéraires récentes publiées au cours de la dernière décennie. L’objectif principal de ce mémoire est de comprendre l'IoT, d’exposer ses potentiels et sa stratégie de déploiement dans différents domaines d’applications. Même, le but est de comprendre que l'IoT ne se limite pas à l'application de la maintenance des systèmes de production mais aussi du bien-être des patients, c'est pourquoi j'ai choisi ces deux domaines importants où l'IoT peut être appliqué (santé et production) pour ce travail de recherche. Cette thèse aidera à explorer comment l'IoT transforme le système de santé. J'explique comment l'IoT offre de grandes avancées dans ce système. Je donne quelques exemples où ses concepts souhaiteraient être implémentés pour améliorer la qualité des soins des patients et quelques études récentes. Outre, je clarifie l'impact de l’Industrie 4.0 sur la production, notamment en maintenance, en lien avec la maintenance prédictive rendue possible par l’IoT. Je fournis une vue d'ensemble de l'Industrie 4.0 et de la maintenance prédictive. J’aborde les fonctionnalités de l'Industrie 4.0 et présente ses technologies de pilotage susceptibles d'améliorer les domaines de processus de production, tels que la réduction des temps d'immobilisation, les coûts de service, etc. J'attire l'attention sur les implications de la maintenance prédictive dans l’Industrie 4.0 en décrivant son fonctionnement et comment les fabricants peuvent l'exécuter efficacement, avec des exemples à l'appui.The Internet of Things (or IoT) relies on connected objects embedded with sensors and other technologies capable of exchanging data with each other independently. These new technologies provide businesses and all organizations with the means to acquire and intelligently process information (Industry 4.0) to remain competitive. This thesis aims to analyze the contribution of IoT in healthcare and manufacturing, with a focus on Industry 4.0 and Predictive Maintenance, specifically in maintenance, based on recent literary works published over the last decade. The main purpose of this thesis is to understand what IoT is, to highlight its potentials and its deployment strategy in various areas of application. Similarly, the goal is to understand that IoT is not limited to the application of the maintenance of production systems but also of patients’ wellbeing which is the reason why I selected these two important areas where IoT can be applied (healthcare and manufacturing) for this research work. This thesis will help explore how IoT is transforming the healthcare system. I explain how IoT offers great advances in the healthcare system. I give some examples of where its concepts would like to be implemented to improve the quality of care of patients and some recent studies. In addition, I clarify the impact of Industry 4.0 in manufacturing especially in maintenance, in connection with predictive maintenance made possible by IoT. I provide an overview of Industry 4.0 and predictive maintenance. I discuss the capabilities of Industry 4.0 and present its driving technologies that can improve all areas of production processes such as reducing downtime, service costs , etc. Moreover, I draw attention to the implications of predictive maintenance in Industry 4.0 by describing how it works and how manufacturers can run it effectively, with supporting examples

    Cognitive Hyperconnected Digital Transformation

    Get PDF
    Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business

    Revised reference model

    Get PDF
    This document contains an update of the HIDENETS Reference Model, whose preliminary version was introduced in D1.1. The Reference Model contains the overall approach to development and assessment of end-to-end resilience solutions. As such, it presents a framework, which due to its abstraction level is not only restricted to the HIDENETS car-to-car and car-to-infrastructure applications and use-cases. Starting from a condensed summary of the used dependability terminology, the network architecture containing the ad hoc and infrastructure domain and the definition of the main networking elements together with the software architecture of the mobile nodes is presented. The concept of architectural hybridization and its inclusion in HIDENETS-like dependability solutions is described subsequently. A set of communication and middleware level services following the architecture hybridization concept and motivated by the dependability and resilience challenges raised by HIDENETS-like scenarios is then described. Besides architecture solutions, the reference model addresses the assessment of dependability solutions in HIDENETS-like scenarios using quantitative evaluations, realized by a combination of top-down and bottom-up modelling, as well as verification via test scenarios. In order to allow for fault prevention in the software development phase of HIDENETS-like applications, generic UML-based modelling approaches with focus on dependability related aspects are described. The HIDENETS reference model provides the framework in which the detailed solution in the HIDENETS project are being developed, while at the same time facilitating the same task for non-vehicular scenarios and application

    Cognitive Hyperconnected Digital Transformation

    Get PDF
    Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business

    A framework for cloud computing adoption in small and medium-sized enterprises : a case of the Accra - Tema metropolis in Ghana

    Get PDF
    Cloud computing adoption and usage is important to achieving business competition. This is done by making it a competitive tool for firms. The adoption of cloud computing enables firms to achieve greater business competency, improve performance, and allows them to maintain their competitive advantage. Since its emergence, there has been a surge in the adoption of cloud computing with research into its adoption primarily concentrated on bigger firms. However, a major characteristic of cloud computing is the anticipated possibilities it holds for small and medium-sized enterprises (SMEs). SMEs typically operate differently from larger firms and are not limited by resource constraints. For SMEs, the reduction in the financial burden normally associated with the adoption of new technologies is a significant benefit of cloud computing due to their financial constraints. In Ghana, SMEs mostly use obsolete technologies and have a slow response towards new technologies. Thus, they are unable to harness the numerous opportunities technology presents to them to stay competitive. Cloud computing is still regarded as a new technology in the business world, therefore research that focuses on its adoption by SMEs to help them stay competitive is minimal. Available research on cloud computing in Ghana does not provide clear guidelines for ensuring a successful adoption process and the continued use of cloud computing services. This study seeks to investigate how a framework can assist SMEs in their use of cloud computing in the Accra-Tema metropolis of Ghana. A knowledge of the factors associated with adoption decisions and those that significantly influence the decision are required to ensure a successful adoption process. The empirical data was gathered using a questionnaire and face-to-face interviews developed from literature and administered to users and potential users of cloud computing. The questionnaire and interviews primarily investigate key adoption factors and the findings are reported in this research study. The findings reveal interesting insights into understanding issues that affect the overall decision to adopt and use cloud computing services by SMEs. The findings show that the adoption of cloud computing can improve information management practices within SMEs. The findings also reveal that several factors need to be considered in the overall decision to adopt and use cloud computing to ensure a successful adoption process. An initial cloud computing adoption model was proposed based on the empirical findings. Key adoption factors of the initial adoption model include adoption benefits and drivers, concerns and barriers, adoption interventions, and information management in the cloud. computing adoption framework. The proposed adoption framework aims to assist SMEs to adopt and use cloud computing services and make them relevant in the global market

    European Perspectives on the Information Society: Annual Monitoring Synthesis and Emerging Trend Updates

    Get PDF
    This report is one of the outcomes of the EPIS06 Project ¿ European Perspectives on the Information Society ¿ carried out by the ETEPS (European Techno-Economic Policy Support) network in cooperation with the Joint Research Centre Institute for Prospective Technological Studies (JRC IPTS) with the aim of providing strategic intelligence to policy makers by taking a prospective view on the evolution of ICT. This report combines the Annual Monitoring Synthesis (AMS) Report and five Emerging Trend Updates (ETU). It forms one of the main building blocks of the project, establishing an observatory of trends in technology and business evolutions of ICT. More particularly, the Annual Monitoring Synthesis Report (AMS Report) aims to identify new ICT-related developments likely to have a significant impact on the future of the Information Society, both in terms of growth and jobs for Europe and R&D policy prioritisation. By scanning and monitoring recent major foresight exercises and industrial technology roadmaps, as well as other future-oriented analysis and policy papers, the AMS attempts to detect early signals and possible disruptive forces so as to enable timely policy responses and anticipate potential challenges for policy makers. The AMS is structured along six main themes which emerged as a result of the analysis: - Convergence of infrastructures, - Human-computer convergence ¿ technologies for direct human computer interaction, - Pervasive or ubiquitous computing and ambient intelligence, - The future of the Internet, - Citizens¿ concerns, - Working life. A structured overview with a summary of each of the foresights, roadmaps and other sources studied is presented in the AMS report annex. In addition, five Emerging Trends Updates (ETU) present the results of focused briefs on emerging themes of interest for policy making, covering the following topics: - ETU1 on the state-of-the-art of the creative content sector, - ETU2 on ICT and the offshoring of services, - ETU3 on ICT and the role of ICTs as enablers for energy efficiency, - ETU4 on ICT tools and services in intelligent domestic and personal environments, - ETU5 on ICT and privacy in the Knowledge Society ¿ the case of search engines.JRC.J.4-Information Societ

    Cyber-Physical Threat Intelligence for Critical Infrastructures Security

    Get PDF
    Modern critical infrastructures comprise of many interconnected cyber and physical assets, and as such are large scale cyber-physical systems. Hence, the conventional approach of securing these infrastructures by addressing cyber security and physical security separately is no longer effective. Rather more integrated approaches that address the security of cyber and physical assets at the same time are required. This book presents integrated (i.e. cyber and physical) security approaches and technologies for the critical infrastructures that underpin our societies. Specifically, it introduces advanced techniques for threat detection, risk assessment and security information sharing, based on leading edge technologies like machine learning, security knowledge modelling, IoT security and distributed ledger infrastructures. Likewise, it presets how established security technologies like Security Information and Event Management (SIEM), pen-testing, vulnerability assessment and security data analytics can be used in the context of integrated Critical Infrastructure Protection. The novel methods and techniques of the book are exemplified in case studies involving critical infrastructures in four industrial sectors, namely finance, healthcare, energy and communications. The peculiarities of critical infrastructure protection in each one of these sectors is discussed and addressed based on sector-specific solutions. The advent of the fourth industrial revolution (Industry 4.0) is expected to increase the cyber-physical nature of critical infrastructures as well as their interconnection in the scope of sectorial and cross-sector value chains. Therefore, the demand for solutions that foster the interplay between cyber and physical security, and enable Cyber-Physical Threat Intelligence is likely to explode. In this book, we have shed light on the structure of such integrated security systems, as well as on the technologies that will underpin their operation. We hope that Security and Critical Infrastructure Protection stakeholders will find the book useful when planning their future security strategies
    • …
    corecore