9 research outputs found

    CCS Dynamic Bisimulation is Progressing

    No full text
    Weak Observational Congruence (woc) defined on CCS agents is not a bisimulation since it does not require two states reached by bisimilar computations of woc agents to be still woc, e.g.\ α.τ.β.nil\alpha.\tau.\beta.nil and α.β.nil\alpha.\beta.nil are woc but τ.β.nil\tau.\beta.nil and β.nil\beta.nil are not. This fact prevents us from characterizing CCS semantics (when τ\tau is considered invisible) as a final algebra, since the semantic function would induce an equivalence over the agents that is both a congruence and a bisimulation. In the paper we introduce a new behavioural equivalence for CCS agents, which is the coarsest among those bisimulations which are also congruences. We call it Dynamic Observational Congruence because it expresses a natural notion of equivalence for concurrent systems required to simulate each other in the presence of dynamic, i.e.\ run time, (re)configurations. We provide an algebraic characterization of Dynamic Congruence in terms of a universal property of finality. Furthermore we introduce Progressing Bisimulation, which forces processes to simulate each other performing explicit steps. We provide an algebraic characterization of it in terms of finality, two characterizations via modal logic in the style of HML, and a complete axiomatization for finite agents. Finally, we prove that Dynamic Congruence and Progressing Bisimulation coincide for CCS agents. Thus the title of the paper

    Measuring concurrency in CCS

    Get PDF
    A research report submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of ScienceThis research report investigates the application of Charron-Bost's measure of currency m to Milner's Calculus of Communicating Systems (CCS). The aim of this is twofold: first to evaluate the measure m in terms of criteria gathered from the literature: and second to determine the feasiblllty of measuring concurrency in CCS and hence provide a new tool for understanding concurrency using CCS. The approach taken is to identify the differences hetween the message-passing formalism in which the measure m is defined, and CCS and to modify this formalism to-enable the mapping of CCS agents to it. A software tool, the Concurrency Measurement Tool, is developed to permit experimentation with chosen CCS agents. These experiments show that the measure m, although intuitively appealing, is defined by an algebraic expression that is ill-behaved. A new measure is defined and it is shown that it matches the evaluation criteria better than m, although it is still not ideal. This work demonstrates that it is feasible to measure concurrency in CCS and that a methodology has been developed for evaluating concurrency measures.Andrew Chakane 201

    Event structure semantics for multiparty sessions

    Get PDF
    We propose an interpretation of multiparty sessions as "Flow Event Structures", which allows concurrency within sessions to be explicitly represented. We show that this interpretation is equivalent, when the multiparty sessions can be described by global types, to an interpretation of such global types as "Prime Event Structures"

    Event structure semantics for multiparty sessions

    Get PDF
    We propose an interpretation of multiparty sessions as flow event structures, which allows concurrency between communications within a session to be explicitly represented. We show that this interpretation is equivalent, when the multiparty sessions can be described by global types, to an interpretation of global types as prime event structures.Nous proposons une interprétation des sessions multi-parties en structures d’événements à flux, permettant une représentation explicite de la concurrence entre les communications d’une session. Nous montrons que, lorsque les sessions peuvent être décrites par des types globaux, cette interprétation est équivalente à une interprétation des types globaux comme structures d’événements premières

    Bisimulations for concurrency

    Get PDF

    Global types and event structure semantics for asynchronous multiparty sessions

    Get PDF
    We propose an interpretation of multiparty sessions with asynchronous communication as Flow Event Structures. We introduce a new notion of global type for asynchronous multiparty sessions, ensuring the expected properties for sessions, including progress. Our global types, which reflect asynchrony more directly than standard global types and are more permissive, are themselves interpreted as Prime Event Structures. The main result is that the Event Structure interpretation of a session is equivalent, when the session is typable, to the Event Structure interpretation of its global type

    A Partial Ordering Semantics for CCS

    No full text
    A new operational semantics for “pure” CCS is proposed that considers the parallel operator as a first class one, and permits a description of the calculus in terms of partial orderings. The new semantics (also for unguarded agents) is given in the SOS style via the partial ordering derivation relation. CCS agents are decomposed into sets of sequential subagents. The new derivations relate sets of subagents, and describe their actions and the casual dependencies among them. The computations obtained by composing partial ordering derivations are “observed” either as interleaving or partial orderings of events. Interleavings coincide with Milner's many step derivations, and “linearizations” of partial orderings are all and only interleavings. Abstract semantics are obtained by introducing two relations of observational equivalence and congruence that preserve concurrency. These relations are finer than Milner's in that they distinguish interleaving of sequential nondeterministic agents from their concurrent execution
    corecore