
HAL Id: hal-02081943
https://hal.inria.fr/hal-02081943

Submitted on 27 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Event structure semantics for multiparty sessions
Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini

To cite this version:
Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini. Event structure semantics for mul-
tiparty sessions. [Research Report] RR-9266, INDES. 2019. �hal-02081943�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/195819912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02081943
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
92

66
--

FR
+E

N
G

RESEARCH
REPORT
N° 9266
March 2019

Project-Team INDES

Event structure semantics
for multiparty sessions
Ilaria Castellani , Mariangiola Dezani-Ciancaglini , Paola Giannini

RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Event structure semantics for multiparty sessions

Ilaria Castellani ∗, Mariangiola Dezani-Ciancaglini †, Paola
Giannini ‡

Project-Team INDES

Research Report n° 9266 — March 2019 — 30 pages

Abstract: We propose an interpretation of multiparty sessions as flow event structures, which allows
concurrency between communications within a session to be explicitly represented. We show that
this interpretation is equivalent, when the multiparty sessions can be described by global types, to
an interpretation of global types as prime event structures.

Key-words: event structures, multiparty sessions, session types, global types

∗ INRIA, Université Côte d’Azur, Sophia Antipolis
† Dipartimento di Informatica, Università di Torino, Italy
‡ DiSIT, Università del Piemonte Orientale, Alessandria, Italy

Sémantique par structures d’événements pour les sessions
multi-parties

Résumé : Nous proposons une interprétation des sessions multi-parties en structures
d’événements à flux, permettant une représentation explicite de la concurrence entre les commu-
nications d’une session. Nous montrons que, lorsque les sessions peuvent être décrites par des
types globaux, cette interprétation est équivalente à une interprétation des types globaux comme
structures d’événements premières.

Mots-clés : structures d’événements, sessions multi-parties, types de session, types globaux

Event structure semantics for multiparty sessions 3

Contents

1 Introduction 4

2 A Core Calculus for Multiparty Sessions 5

3 Event Structures 6

4 Event Structure Semantics of Processes and Networks 7

5 Global Types 12

6 Event Structure Semantics of Global Types 14

7 Equivalence of the two Event Structure Semantics 16

8 Related Work and Conclusions 18

A Proofs 24

RR n° 9266

Event structure semantics for multiparty sessions 4

1 Introduction

Session types were proposed in the mid-nineties [42, 28], as a tool for specifying and analysing
web services and communication protocols. They were first introduced in a variant of the
π-calculus to specify binary interactions between processes. Such binary interactions may often
be viewed as a client-server protocol. Subsequently, session types were extended to multiparty
sessions [29, 30], where several participants may interact with each other. A multiparty session
is an interaction among peers, and there is no need to distinguish one of the participants as
representing the server. All one needs is an abstract specification of the protocol that guides the
interaction. This is called the global type of the session. The global type describes the behaviour of
the whole session, as opposed to the local types that describe the behaviours of single participants.
In a multiparty session, local types may be retrieved as projections from the global type.

Typical safety properties ensured by session types are communication safety (absence of
communication errors), session fidelity (agreement with the protocol) and, in the absence of session
interleaving, progress (no participant gets stuck).

Some simple examples of sessions not satisfying the above properties are: 1) a sender
emitting a message while the receiver expects a different message (communication error); 2) two
participants both waiting to receive a message from the other one (deadlock due to a protocol
violation); 3) a three-party session where the first participant waits to receive a message from
the second participant, which keeps interacting forever with the third participant (starvation,
although the session is not deadlocked).

What makes session types particularly attractive is that they offer several advantages at
once: 1) static safety guarantees, 2) automatic check of protocol implementation correctness,
based on local types, and 3) a strong connection with automata [24], graphical models [33] and
logics [12, 43, 46].

In this paper we further investigate the relationship between multiparty session types and
other concurrency models, by focussing on Event Structures [49]. We consider a standard
multiparty session calculus where sessions are described as networks of sequential processes [24].
Each process implements a participant in the session. We propose an interpretation of such
networks as Flow Event Structures (FESs) [7, 9] (a subclass of Winskel’s Stable Event Structures [49]),
which allows concurrency between session communications to be explicitly represented. We then
introduce global types for these networks, and define an interpretation of them as Prime Event
Structures (PESs) [47, 38]. Since the syntax of global types does not allow all the concurrency
among communications to be expressed, the events of the associated PES need to be defined as
equivalence classes of communication sequences up to permutation equivalence. We show that
when a network is typable by a global type, the FES semantics of the former is equivalent, in a
precise technical sense, to the PES semantics of the latter.

The paper is organised as follows. Section 2 introduces our multiparty session calculus. In
Section 3 we recall the definitions of Prime and Flow Event Structures, which will be used in
Section 4 to interpret processes and networks, respectively. Prime Event Structures are also used
in Section 6 to interpret global types, which are defined in Section 5. In Section 7 we prove the
equivalence between the FES semantics of a network and the PES semantics of its global type.
Section 8 discusses related work in some detail and sketches directions for future work.

All the proofs may be found in the Appendix, except that of the main theorem (Theorem 7.10),
which is given in Section 7.

RR n° 9266

Event structure semantics for multiparty sessions 5

p[[
⊕

i∈I q!λi; Pi]] ‖ q[[Σ j∈Jp?λ j; Q j]] ‖ N
pλhq
−−−→ p[[Ph]] ‖ q[[Qh]] ‖ N h ∈ I∩J [Com]

Figure 1: LTS for networks.

2 A Core Calculus for Multiparty Sessions

We now formally introduce our calculus, where multiparty sessions are represented as networks
of processes. We assume the following base sets: session participants, ranged over by p,q, r and
forming the set Part and messages, ranged over by λ, λ′, . . . and forming the set Msg.

Let π ∈ {p?λ,p!λ | p ∈ Part, λ ∈ Msg} denote an atomic action. The action p?λ represents an
input of message λ from participant p, while the action p!λ represents an output of message λ to
participant p.

Definition 2.1 (Processes) Processes are defined by:
P ::= Σi∈Ip?λi; Pi |

⊕
i∈I p!λi; Pi | µX.P | X | 0

External choice (
∑

) and internal choice (
⊕

) are assumed to be associative, commutative, and
non-empty. When I is a singleton, Σi∈Ip?λi; Pi will be rendered as p?λ; P and

⊕
i∈I p!λi; Pi will be

rendered as p!λ; P.
A process prefixed by an atomic action is either an input process or an output process. Note that

in an external choice all summands are input processes receiving from the same sender p, and in
an internal choice all summands are output processes sending to the same receiver p. Trailing 0
processes will be omitted.

Recursion is required to be guarded and processes are treated equi-recursively, i.e. they are
identified with their generated tree [41] (Chapter 21).

In a full-fledged calculus, messages would carry values, namely they would be of the form
λ(v). For simplicity, we consider only pure messages here. This will allow us to project global
types directly to processes, without having to explicitly introduce local types, see Section 5.

Networks are comprised of at least two pairs of the form p[[P]] composed in parallel, each
with a different participant p.

Definition 2.2 (Networks) Networks are defined by:
N = p1[[P1]] ‖ · · · ‖ pn[[Pn]] n ≥ 2, pi , p j for any i, j

We assume the standard structural congruence on networks, stating that parallel composition
is associative and commutative and has neutral element p[[0]] for any fresh p. To express the
operational semantics of networks, we use an LTS whose labels record the message exchanged
during a communication together with its sender and receiver. The set of atomic communications,
ranged over by α, α′, is defined to be {pλq | p,q ∈ Part, λ ∈ Msg}, where pλq represents the
emission of a message λ from participant p to participant q. We write part(pλq) = {p,q}.

The LTS semantics of networks is specified by the unique rule [Com] given in Figure 1. Notice
that rule [Com] is symmetric with respect to external and internal choices. In a well-typed
network (see Section 5) it will always be the case that I ⊆ J, assuring that participant q can
freely choose an output, since participant p offers all corresponding inputs. As usual, we write
N

α1···αn
−−−−→ N

′ as short for N
α1
−→ N1 · · ·Nn−1

αn
−→ N

′.

RR n° 9266

Event structure semantics for multiparty sessions 6

3 Event Structures

We recall now the definitions of Prime Event Structure (PES) from [38] and Flow Event Structure
(FES) from [7]. The class of FESs is more general than that of PESs: for a precise comparison of
various classes of event structures, we refer the reader to [8]. As we shall see in Section 4, while
PESs are sufficient to interpret processes, the generality of FESs is needed to interpret networks.

Definition 3.1 (Prime Event Structure) A prime event structure (PES) is a tuple S = (E,≤, #) where:

1. E is a denumerable set of events;

2. ≤⊆ (E × E) is a partial order relation, called the causality relation;

3. # ⊆ (E × E) is an irreflexive symmetric relation, called the conflict relation, satisfying the property:
∀e, e′, e′′ ∈ E : e # e′ ≤ e′′ ⇒ e # e′′ (conflict hereditariness).

We say that two events are concurrent if they are neither causally related nor in conflict.

Definition 3.2 (Flow Event Structure) A flow event structure (FES) is a tuple S = (E,≺, #) where:

1. E is a denumerable set of events;

2. ≺⊆ (E × E) is an irreflexive relation, called the flow relation;

3. # ⊆ (E × E) is a symmetric relation, called the conflict relation.

Note that the flow relation is not required to be transitive, nor acyclic (its reflexive and transitive
closure is just a preorder, not necessarily a partial order). Intuitively, the flow relation represents
a possible direct causality between two events. Observe also that in a FES the conflict relation is
not required to be irreflexive nor hereditary; indeed, FESs may exhibit self-conflicting events, as
well as disjunctive causality (an event may have conflicting causes).

Any PES S = (E,≤, #) may be regarded as a FES, with ≺ given by < (the strict ordering) or by
the covering relation of ≤.

We now recall the definition of configuration for event structures. Intuitively, a configuration
is a set of events having occurred at some stage of the computation. Thus, the semantics of an
event structure S is given by its poset of configurations ordered by set inclusion, where X1 ⊂ X2
means that S may evolve from X1 to X2.

Definition 3.3 (PES Configuration) Let S = (E,≤, #) be a prime event structure. A configuration of S
is a finite subset X of E such that:

1. X is left-closed: e′ ≤ e ∈ X ⇒ e′ ∈ X;

2. X is conflict-free: ∀e, e′ ∈ X,¬(e#e′).

The definition of configuration for FESs is slightly more elaborated. For a subset X of E, let ≺X be
the restriction of the flow relation to X and ≺∗

X
be its transitive and reflexive closure.

Definition 3.4 (FES Configuration) Let S = (E,≺, #) be a flow event structure. A configuration of S
is a finite subset X of E such that:

1. X is left-closed up to conflicts: e′ ≺ e ∈ X, e′ < X ⇒ ∃ e′′ ∈ X. e′# e′′ ≺ e;

2. X is conflict-free: ∀e, e′ ∈ X,¬(e#e′);

3. X has no causality cycles: the relation ≺∗
X

is a partial order.

RR n° 9266

Event structure semantics for multiparty sessions 7

Condition (2) is the same as for prime event structures. Condition (1) is adapted to account
for the more general – non-hereditary – conflict relation. It states that any event appears in
a configuration with a “complete set of causes”. Condition (3) ensures that any event in a
configuration is actually reachable at some stage of the computation.

If S is a prime or flow event structure, we denote by C(S) its set of finite configurations. Then,
the domain of configurations of S is defined as follows:

Definition 3.5 (ES Configuration Domain) Let S be a prime or flow event structure with set of
configurations C(S). The domain of configurations of S is the partially ordered setD(S)=def(C(S),⊆).

We recall from [8] a useful characterisation for configurations of FESs, which is based on the
notion of proving sequence, defined as follows:

Definition 3.6 (Proving Sequences) Given a flow event structure S = (E,≺, #), a proving sequence
in S is a sequence e1; · · · ; en of distinct non-conflicting events (i.e. i , j ⇒ ei , e j and ¬(ei#e j) for all
i, j) satisfying:

∀i ≤ n∀e ∈ E : e ≺ ei ⇒ ∃ j < i . either e = e j or e # e j ≺ ei

Note that any prefix of a proving sequence is itself a proving sequence.

We have the following characterisation of configurations of FESs in terms of proving sequences.

Proposition 3.7 (Representation of configurations as proving sequences [8]) Given a flow event
structure S = (E,≺, #), a subset X of E is a configuration of S if and only if it can be enumerated as a
proving sequence e1; · · · ; en.

Since PESs may be viewed as particular FESs, we may use Definition 3.6 and Proposition 3.7 both
for the FESs associated with networks (see Section 4) and for the PESs associated with global
types (see Section 6). Note that for a PES the condition of Definition 3.6 simplifies to

∀i ≤ n∀e ∈ E : e < ei ⇒ ∃ j < i . e = e j

4 Event Structure Semantics of Processes and Networks

We interpret both processes and networks as event structures. The event structures associated
with processes will be PESs. On the other hand, the event structures associated with networks
will be FESs that are not necessarily prime.

Process events, ranged over by η, η′, are actions π, π′ ∈ {p?λ, p!λ | p ∈ Part, λ ∈ Msg} preceded
by their causal history, which is a sequence of past actions.

Definition 4.1 (Process event) Process events η, η′ are defined by:
η ::= π | π · η

Let ζ denote a (possibly empty) sequence of actions, and v denote the prefix ordering on such
sequences. Each process event ηmay be written either in the form η = ζ ·π or in the form η = π ·ζ.
We shall feel free to use any of these forms.

We define the action of a process event as follows:
act(ζ · π) = π

RR n° 9266

Event structure semantics for multiparty sessions 8

Definition 4.2 (Event Structure of a Process) The event structure of process P is the triple

S
P(P) = (PE(P),≤, #)

where:

1. PE(P) is defined by induction on the structure of P as follows:

(a) PE(Σi∈Ip?λi; Pi) =
⋃

i∈I{p?λi} ∪
⋃

i∈I{p?λi · ηi | ηi ∈ PE(Pi)};

(b) PE(
⊕

i∈I p!λi; Pi) =
⋃

i∈I{p!λi} ∪
⋃

i∈I{p!λi · ηi | ηi ∈ PE(Pi)};

(c) PE(0) = ∅;

(d) PE(µX.P) = PE(P{µX.P/X});

2. the ≤ relation on the set of events PE(P) is given by:

(a) ζ v ζ′ ⇒ π · ζ ≤ π · ζ′;

3. the # relation on the set of events PE(P) is given by:

(a) π , π′ ⇒ π · ζ #π′ · ζ′;

(b) η # η′ ⇒ π · η #π · η′.

Note that, due to Clause 1d of the previous definition, the set PE(P) is denumerable.

Example 4.3 If P = µX.q!λ; X ⊕ q!λ′, then PE(P) = {q!λ · . . . · q!λ︸ ︷︷ ︸
n

·q!λ′ | n ≥ 0}.

Proposition 4.4 Let P be a process. Then SP(P) is a prime event structure with an empty concurrency
relation.

The definition of network events requires some preliminary notions. We start by defining the
projections of process events on participants, which yield sequences of undirected actions of the
form ?λ and !λ, or the empty sequence ε. Let ϑ range over ?λ and !λ, and let Θ range over non
empty sequences of ϑ’s.

Definition 4.5 (Projection of process events)

q?λ�p =

?λ if p = q,
ε otherwise.

q!λ�p =

!λ if p = q,
ε otherwise.

π.η�p =

η�p if π�p = ε,

π�p .η�p otherwise.

Sequences of undirected actions are related by a standard notion of duality.

Definition 4.6 (Duality of projections of process events)

?λ Z !λ ϑ Z ϑ′ and Θ Z Θ′ ⇒ ϑ.Θ Z ϑ′.Θ′

Network events are essentially pairs of matching process events. To formalise the matching
condition, we need to specify the locations of process events, namely the participants to which
they belong.

RR n° 9266

Event structure semantics for multiparty sessions 9

Definition 4.7 (Located event) We call located event a process event η pertaining to a participant p,
written p :: η.

The duality between projections of process events induces a duality between located events.

Definition 4.8 (Duality of located events) Two located events p :: η,q :: η′ are dual, written
p :: η Z q :: η′, if η � q Z η′ � p and either act(η) = q?λ and act(η′) = p!λ or act(η) = q!λ and
act(η′) = p?λ.

Dual located events may be sequences of actions of different length, e.g. p :: q!λ · r!λ′ Z r :: p?λ′

and p :: q!λ Z q :: r!λ′ · p?λ.

Definition 4.9 (Network event) Network events ν, ν′ are unordered pairs of dual located events,
namely:

ν ::= {p :: η,q :: η′} where p :: η Z q :: η′

We can now define the event structure associated with a network.

Definition 4.10 (Event Structure of a Network) The event structure of network

N = p1[[P1]] ‖ · · · ‖ pn[[Pn]]
is the triple

S
N (N) = (NE(N),≺, #)

where:

1. NE(N) =
⋃

1≤i, j≤n{{pi :: ηi,p j :: η j} | ηi ∈ PE(Pi), η j ∈ PE(P j),pi :: ηi Z p j :: η j}

2. the ≺ relation on the set of eventsNE(N) is given by:
η < η′ & p :: η ∈ ν & p :: η′ ∈ ν′ ⇒ ν ≺ ν′;

3. the # relation on the set of eventsNE(N) is given by:
η # η′ & p :: η ∈ ν & p :: η′ ∈ ν′ ⇒ ν # ν′.

We define comm(ν) = pλq if ν = {p :: ζ ·λ!q, q :: ζ′ ·λ?p} and we say that the network event ν represents
the atomic communication pλq.
Two events ν and ν′ are concurrent if part(comm(ν)) ∩ part(comm(ν′)) = ∅.

The set of network events can be infinite as in the following example.

Example 4.11 Let P be as in Example 4.3, Q = µY.p?λ; Y ⊕ p?λ′ and N = p[[P]] ‖ q[[Q]]. Then
NE(N) = {{p :: q!λ · . . . · q!λ︸ ︷︷ ︸

n

·q!λ′,q :: p?λ · . . . · p?λ︸ ︷︷ ︸
n

·p?λ′} | n ≥ 0}

Notably, concurrent events may also be related by the transitive closure of the flow relation,
as shown in Example 4.13.

Proposition 4.12 Let N be a network. Then SN (N) is a flow event structure with an irreflexive conflict
relation.

RR n° 9266

Event structure semantics for multiparty sessions 10

The following example shows how communications inherit the flow relation from the causality
relation of their components.

Example 4.13 Let N be the network

p[[q!λ1]] ‖ q[[p?λ1; r!λ2]] ‖ r[[q?λ2; s!λ3]] ‖ s[[r?λ3]]

Then SN (N) has three network events
ν1 = {p :: q!λ1,q :: p?λ1} ν2 = {q :: p?λ1; r!λ2, r :: q?λ2}

ν3 = {r :: q?λ2; s!λ3, s :: r?λ3}

The flow relation obtained by Definition 4.10 is: ν1 ≺ ν2 and ν2 ≺ ν3. Note that each time the flow relation
is inherited from the causality within a different participant, q in the first case and r in the second case. By
the same definition the events ν1 and ν3 are concurrent. However, since ν1 ≺

∗ ν3, the events ν1 and ν3
cannot occur in any order. Indeed, the nonempty configurations are {ν1}, {ν1, ν2} and {ν1, ν2, ν3}. Note
that SN (N) has only one proving sequence per configuration (which is that given by the numbering of
events in the configuration).

If N is a binary network, then its flow event structure may be turned into a prime event structure
simply by replacing ≺ by ≺∗:

Theorem 4.14 Let N = p1[[P1]] ‖ p2[[P2]] and SN (N) = (NE(N),≺, #). Then the structure
S
N
∗ (N)=def(NE(N),≺∗, #) is a prime event structure.

IfN has more than two participants, then the duality requirement on its events is not sufficient to
ensure the absence of circular dependencies1. For instance, in the following ternary network
(which may be viewed as representing the 3-philosopher deadlock) the relation ≺∗ is not a partial
order.

Example 4.15 Let N be the network

p[[r?λ; q!λ′]] ‖ q[[p?λ′; r!λ′′]] ‖ r[[q?λ′′; p!λ]].

Then SN (N) has three network events
ν1 = {p :: r?λ, r :: q?λ′′; p!λ} ν2 = {p :: r?λ; q!λ′,q :: p?λ′}

ν3 = {q :: p?λ′; r!λ′′, r :: q?λ′′}
By Definition 4.10(2) we have ν1 ≺ ν2 ≺ ν3 and ν3 ≺ ν1. The only configuration of N is the empty
configuration, because the only set of events that satisfies left-closure is X = {ν1, ν2, ν3}, but this is not a
configuration because ≺∗X is not a partial order (recall that ≺X is the restriction of ≺ to X) and hence the
condition (3) of Definition 3.4 is not satisfied.

The next example illustrates Proposition 4.12 and shows that a network event may have both
conflicting and concurrent causes.

Example 4.16 Let N be the network

p[[q!λ; r!λ1 ⊕ q!λ′; r!λ1]]‖ q[[p?λ; s!λ2+p?λ′; s!λ2]]‖
r[[p?λ1; s!λ3]]‖ s[[q?λ2; r?λ3]]

Then SN (N) has seven network events:
1This is a well-known issue in multiparty session types, which motivated the introduction of global types in [29], see

Section 6.

RR n° 9266

Event structure semantics for multiparty sessions 11

ν1
{p :: q!λ,
q :: p?λ}

ν′1
{p :: q!λ′,
q :: p?λ′}

#
ν2

{p :: q!λ; r!λ1,
r :: p?λ1}

ν3
{q :: p?λ; s!λ2,

s :: q?λ2}

ν′2
{p :: q!λ′; r!λ1,

r :: p?λ1}

ν′3
{q :: p?λ′; s!λ2,

s :: q?λ2}

ν4
{r :: p?λ1; s!λ3,
s :: q?λ2; r?λ3}

Figure 2: Flow relation between events of SN (N) in Example 4.16.

ν1 = {p :: q!λ,q :: p?λ} ν′1 = {p :: q!λ′,q :: p?λ′}
ν2 = {p :: q!λ; r!λ1, r :: p?λ1} ν′2 = {p :: q!λ′; r!λ1, r :: p?λ1}

ν3 = {q :: p?λ; s!λ2, s :: q?λ2} ν′3 = {q :: p?λ′; s!λ2, s :: q?λ2}

ν4 = {r :: p?λ1; s!λ3, s :: q?λ2; r?λ3}

We have ν1 ≺ νi for i = 2, 3 and ν j ≺ ν4 for j = 2, 3. Similarly, we have ν′1 ≺ ν
′

i for i = 2, 3 and ν′j ≺ ν4 for
j = 2, 3. The events ν2 and ν′2 share r :: p?λ1, the events ν3 and ν′3 share s :: q?λ2. Moreover νi # ν′j for each
i, j = 1, 2, 3, whereas ν2 and ν3 are concurrent, and so are ν′2 and ν′3. The event ν4 has two conflicting sets
of causes {ν1, ν2, ν3} and {ν′1, ν

′

2, ν
′

3}, and the nonempty configurations are {ν1}, {ν1, ν2}, {ν1, ν3}, {ν1, ν2, ν3}

and {ν1, ν2, ν3, ν4}, as well as {ν′1}, {ν
′

1, ν
′

2}, {ν
′

1, ν
′

3}, {ν
′

1, ν
′

2, ν
′

3} and {ν′1, ν
′

2, ν
′

3, ν4}. Let X = {ν1, ν2, ν3, ν4}

and X′ = {ν′1, ν
′

2, ν
′

3, ν4}. Note that the event ν4 has two concurrent causes in both X and X′. The proving
sequences are::

ν1, ν1; ν2, ν1; ν3, ν1; ν2; ν3, ν1; ν3; ν2, ν1; ν2; ν3; ν4, ν1; ν3; ν2; ν4
ν′1, ν′1; ν′2, ν′1; ν′3, ν′1; ν′2; ν′3, ν′1; ν′3; ν′2, ν′1; ν′2; ν′3; ν4, ν′1; ν′3; ν′2; ν4

Note that there are two proving sequences corresponding to the configuration X (and similarly for X′ and
each of the configurations {ν1, ν2, ν3} and {ν′1, ν

′

2, ν
′

3}).
A graphical representation of SN (N) is given in Figure 2, where the arrows represent the flow relation

≺ and the vertical dotted line for # indicates that all the events on the left of the line are in conflict with all
the events on the right.

The next example shows that the relations of flow and conflict on network events are not
necessarily disjoint.

Example 4.17 Let N be the network

p[[q!λ; r!λ1; r!λ2⊕q!λ′; r!λ1; r!λ2]]‖ q[[p?λ+p?λ′]]‖ r[[p?λ1; p?λ2; s!λ3]]‖ s[[r?λ3]].

Then SN (N) has seven network events:
ν1 = {p :: q!λ,q :: p?λ} ν′1 = {p :: q!λ′,q :: p?λ′}
ν2 = {p :: q!λ; r!λ1, r :: p?λ1} ν′2 = {p :: q!λ′; r!λ1, r :: p?λ1}

ν3 = {p :: q!λ; r!λ1; r!λ2, r :: p?λ1; p?λ2} ν′3 = {p :: q!λ′; r!λ1; r!λ2, r :: p?λ1; p?λ2}

ν4 = {r :: p?λ1; p?λ2; s!λ3, s :: r?λ3}

We have ν1 ≺ νi for i = 2, 3 and ν j ≺ ν4 for j = 2, 3. Similarly, we have ν′1 ≺ ν
′

i for i = 2, 3 and ν′j ≺ ν4

for j = 2, 3. Moreover νi # ν′j for each i, j = 1, 2, 3. Finally, we have ν2 ≺ ν3 and ν′2 ≺ ν
′

3, and also the

RR n° 9266

Event structure semantics for multiparty sessions 12

ν1
{p :: q!λ,
q :: p?λ}

ν′1
{p :: q!λ′,
q :: p?λ′}

#
ν2

{p :: q!λ; r!λ1,
r :: p?λ1}

ν′2
{p :: q!λ′; r!λ1,

r :: p?λ1}

ν3
{p :: q!λ; r!λ1; r!λ2,

r :: p?λ1; p?λ2}

ν′3
{p :: q!λ′; r!λ1; r!λ2,

r :: p?λ1; p?λ2}

ν4
{r :: p?λ1; p?λ2; s!λ3, s :: r?λ3}

Figure 3: Flow relation between events of SN (N) in Example 4.17.

cross flows ν2 ≺ ν′3 and ν′2 ≺ ν3. Since we have also ν2 # ν′3 and ν′2 # ν3, this shows that the two relations ≺
and # are not disjoint. The nonempty configurations are {ν1}, {ν1, ν2}{ν1, ν2, ν3} and {ν1, ν2, ν3, ν4}, as
well as {ν′1}, {ν

′

1, ν
′

2}, {ν
′

1, ν
′

2, ν
′

3} and {ν′1, ν
′

2, ν
′

3, ν4}. The proving sequences are:

ν1, ν1; ν2, ν1; ν2; ν3, ν1; ν2; ν3; ν4
ν′1, ν′1; ν′2, ν′1; ν′2; ν′3, ν′1; ν′2; ν′3; ν4

A graphical representation of SN (N) is given in Figure 3, where we use the same conventions as for
Example 4.16.

5 Global Types

Global types are built from choices among atomic communications.

Definition 5.1 (Global types) Global types G are defined by:

G ::= p→ q :�i∈Iλi; Gi | G ‖ G | µt.G | t | End

where λ j , λh for all j, h ∈ I, j , h, i.e. messages in choices are all different.

Sequential composition (;) has higher precedence than choice (�). Recursion must be guarded by
atomic communications and it is treated equi-recursively. While there is no syntactic restriction on
parallel composition of global types, our definition of projection will enforce that the component
types have disjoint sets of participants. When I is a singleton, a choice p→ q :�i∈Iλi; Gi will be

rendered simply as p λ
→ q ; G. In writing global types, we omit the final End.

Participants of global types are defined inductively as follows:
part(p→ q :�i∈Iλi; Gi) = {p,q} ∪

⋃
i∈I part(Gi)

part(µt.G) = part(G) part(t) = part(End) = ∅

The projection of a global type onto participants is given in Figure 4. As usual, projection
is defined only when it is defined on all participants. Because of the simplicity of our calculus,
the projection of a global type, when defined, is simply a process. The projection of a choice
type on the sender produces an output process sending one of its possible messages to the
receiver and then acting according to the projection of the corresponding branch. Similarly for
the projection on the receiver, which produces an input process. Projection of a choice type on

RR n° 9266

Event structure semantics for multiparty sessions 13

the other participants is defined only if it produces the same process for all the branches of the
choice. This is a standard condition for multiparty session types. The projection of a parallel
global type G1 ‖ G2 on a participant p is undefined if p appears in both G1 and G2. Otherwise
there are two possibilities: 1) if p appears in Gi but not in G j, for i , j, then (G1 ‖ G2)�p yields
the projection of Gi on p; 2) if p appears in neither G1 nor G2, then (G1 ‖ G2)�p yields 0.

From now on we will only consider projectable global types.
The definition of well-typed network is given in Figure 5. We first define a preorder on

processes, P ≤ P′, saying when a process P can be used where we expect process P′. In particular,
P ≤ P′, if either P is equal to P′ or they are both input processes receiving messages from the
same participant, P may receive more messages than P′ and after receiving the same message the
process P continues with a process that can be used when we expect the corresponding one in P′.
The double line indicates that the rule is interpreted coinductively [41] (Chapter 21). A network
is well typed with global type G, if all its participants have associated processes that behave as
specified by the projections of a global type. In Rule [Net], the condition part(G) ⊆ {pi | i ∈ I}
ensures that all participants of the global type appear in the network. Moreover it permits
additional participants that do not appear in the global type, allowing the typing of sessions
containing p[[0]] for a fresh p — a property required to guarantee invariance of types under
structural congruence of networks.

Example 5.2 The networks of Examples 4.11, 4.13 and 4.16 can be typed respectively by
G = µt.p→ q : (λ; t� λ′)
G′ = p

λ1
→ q; q

λ2
→ r; r

λ3
→ s

G′′ = p→ q : (λ; p
λ1
→ r; q

λ2
→ s; r

λ3
→ s� λ′; p

λ1
→ r; q

λ2
→ s; r

λ3
→ s)

The network of Example 4.15 instead cannot be typed.

To formalise the classical properties of Subject Reduction and Session Fidelity [29, 30], we use
the standard LTS for global types given in Figure 6. Rule [Icomm] is justified by the fact that in
a projectable global type p→ q :�i∈Iλi; Gi, the behaviours of the participants different from p
and q are the same in all branches, and hence they are independent from the choice and may be
executed before it.

Theorem 5.3 (Subject Reduction) If ` N : G and N α
−→ N

′, then G α
−→ G′ and ` N′ : G′.

Theorem 5.4 (Session Fidelity) If ` N : G and G α
−→ G′, then N α

−→ N
′ and ` N′ : G′.

(p→ q :�i∈Iλi; Gi)� r =


Σi∈Ip?λi; Gi � r if r = q,⊕

i∈I q!λi; Gi � r if r = p,
Gi � r if Gi � r = G j � r for all i, j ∈ I

(G1 ‖ G2)�p = Gi �p if p < part(G j) for {i, j} = {1, 2}

(µt.G)�p =

µXt.G�p if p ∈ part(G)
0 otherwise

t�p = Xt End�p = 0

Figure 4: Projection of global types onto participants.

RR n° 9266

Event structure semantics for multiparty sessions 14

0 ≤ 0 [S-0]
Pi ≤ Qi i ∈ I

Σi∈I∪Jp?λi; Pi ≤Σi∈Ip?λi; Qi

=====================================[S-In]
Pi ≤ Qi i ∈ I⊕

i∈Ip!λi; Pi ≤
⊕

i∈I p!λi; Qi

===================================[S-out]

Pi ≤ G�pi i ∈ I part(G) ⊆ {pi | i ∈ I}

`Πi∈Ipi[[Pi]] : G
[Net]

Figure 5: Preorder on processes and network typing rule.

p→ q :�i∈Iλi; Gi
pλ jq
−−−→ G j j ∈ I [Ecomm]

G1
α
−→ G′1 [Pcomm]

G1 ‖ G2
α
−→ G′1 ‖ G2

Gi
α
−→ G′i i ∈ I part(α) ∩ {p,q} = ∅

[Icomm]
p→ q :�i∈Iλi; Gi

α
−→ p→ q :�i∈Iλi; G′i

Figure 6: LTS for global types.

6 Event Structure Semantics of Global Types

We define now the event structure associated with a global type. The events of this PES will be
equivalence classes of particular sequences of communications.

Let σ denote a finite (and possibly empty) sequence of atomic communications, and Seq
denote the set of these sequences.

Definition 6.1 (Permutation equivalence) The permutation equivalence on Seq is the least equivalence
∼ such that

σ · α1 · α2 · σ′ ∼ σ · α2 · α1 · σ′ if part(α1) ∩ part(α2) = ∅

We denote by [σ]∼ the equivalence class of the sequence σ, and by Seq/∼ the set of equivalence classes
on Seq. Note that [ε]∼ = {ε} ∈ Seq/∼, and [α]∼ = {α} ∈ Seq/∼ for any α. Moreover |σ′| = |σ| for all
σ′ ∈ [σ]∼, where | · | yields the length of the sequence.

The events associated with a global type, called global events and denoted by γ, γ′, are equivalence
classes of particular communication sequences that we call pointed. Intuitively, all communications
in a pointed sequence are causes of some subsequent communication. Formally:

Definition 6.2 (Pointed communication sequence) A communication sequenceσ = α1 · · · αn, n > 0,
is said to be pointed if

for all i, 1 ≤ i < n, part(αi) ∩
⋃

i+1≤ j≤n part(α j) , ∅

Note that the condition of Definition 6.2 must be satisfied only by the αi with i < n, thus it is
vacuously satisfied by any communication sequence of length 1.

Example 6.3 Let α1 = pλ1q, α2 = rλ2s and α3 = rλ3p. Then σ1 = α1 and σ3 = α1 · α2 · α3 are pointed
sequences, while σ2 = α1 · α2 is not a pointed sequence.

Definition 6.4 (Global event) Let σ = σ′ · α be a pointed communication sequence. Then γ = [σ]∼ is
a global event with communication α, notation comm(γ) = α.

RR n° 9266

Event structure semantics for multiparty sessions 15

Notice that comm(·) is well defined due to the following proposition, where last(σ) denotes the
last communication of σ.

Proposition 6.5 Let σ be pointed communication sequence. If σ ∼ σ′, then σ′ is a pointed communication
sequence and last(σ) = last(σ′).

In order to interpret global types as ESs, we define a form of prefixing of a global event by a
communication, in such a way that the result is again a global event.

Definition 6.6 (Causal prefixing of a global event by communications) The causal prefixing of a
global event by a nonempty sequence of communications is defined as follows:

1. The causal prefixing of a global event by a communication is defined by

pλq ◦ γ =

[pλq · σ]∼ if γ = [σ]∼ and pλq · σ is a pointed sequence
γ otherwise

2. The mapping ◦ naturally extends to communication sequences
(α · σ) ◦ γ = α ◦ (σ ◦ γ) σ , ε

Definition 6.7 (Event Structure of a Global Type) The event structure of global type is G the
triple

S
G(G) = (GE(G),≤, #)

where:

1. GE(G) is defined by induction on the structure of G as follows:

(a) GE(p→ q :�i∈Iλi; Gi) =
⋃

i∈I{{pλiq}} ∪
⋃

i∈I{pλiq ◦ γi | γi ∈ GE(Gi)};

(b) GE(G1 ‖ G2) = GE(G1) ∪ GE(G2);

(c) GE(End) = GE(t) = ∅;

(d) GE(µt.G) = GE(G{µt.G/t});

2. the ≤ relation on the set of events GE(G) is given by:
[σ]∼ ≤ [σ′]∼ if σ · σ′′ ∼ σ′ for some σ′′;

3. the # relation on the set of events GE(G) is given by:
[σ]∼ # [σ′]∼ if σ ∼ σ1 · pλq · σ2 and σ′ ∼ σ1 · pλ′q · σ′2 for some σ1, σ2, σ′2, p, q, λ, λ

′ such that
λ , λ′.

Note that, due to Clause 1d of Definition 6.7, the set GE(G) is denumerable.

Example 6.8 Let G1 = p
λ1
→ q; r

λ2
→ s; r

λ3
→ p and G2 = r

λ2
→ s; p

λ1
→ q; r

λ3
→ p. Then GE(G1) = GE(G2) =

{γ1, γ2, γ3} where
γ1 = {pλ1q} γ2 = {rλ2s} γ3 = {pλ1q · rλ2s · rλ3p, rλ2s · pλ1q · rλ3p}

with γ1 ≤ γ3 and γ2 ≤ γ3. The configurations are {γ1}, {γ2} and {γ1, γ2, γ3} and the proving sequences
are

γ1 γ2 γ1;γ2 γ2;γ1 γ1;γ2;γ3 γ2;γ1;γ3

If G′ is as in Example 5.2, then GE(G′) = {γ1, γ2, γ3} where
γ1 = {pλ1q} γ2 = {pλ1q · qλ2r} γ3 = {pλ1q · qλ2r · rλ3s}

with γ1 ≤ γ2 ≤ γ3. The configurations are {γ1}, {γ1, γ2} and {γ1, γ2, γ3}. There is a proving sequence
corresponding to each configuration. Notice that G′ types the network of Example 4.13.

RR n° 9266

Event structure semantics for multiparty sessions 16

γ1

{pλq}
γ′1
{pλ′q}

#
γ2
{pλq ·pλ1r}

γ3
{pλq ·qλ2s}

γ′2
{pλ′q ·pλ1r}

γ′3
{pλ′q ·qλ2s}

γ4
{pλq ·pλ1r·qλ2s · rλ3s,
pλq·qλ2s ·pλ1r · rλ3s}

γ′4
{pλ′q ·pλ1r·qλ2s · rλ3s,
pλ′q·qλ2s ·pλ1r · rλ3s}

Figure 7: Relation between events of SG(G′′) in Example 6.8.

If G′′ is as in Example 5.2, then GE(G′′) = {γ1, γ′1, γ2, γ′2, γ3, γ′3, γ4, γ′4} where

γ1 = {pλq} γ′1 = {pλ′q} γ2 = {pλq · pλ1r} γ′2 = {pλ′q · pλ1r}
γ3 = {pλq · qλ2s} γ′3 = {pλ′q · qλ2s}

γ4 = {pλq · pλ1r · qλ2s · rλ3s,pλq · qλ2s · pλ1r · rλ3s}
γ′4 = {pλ′q · pλ1r · qλ2s · rλ3s,pλ′q · qλ2s · pλ1r · rλ3s}

with γ1 ≤ γ2 ≤ γ4, γ1 ≤ γ3 ≤ γ4 and γ′1 ≤ γ
′

2 ≤ γ
′

4, γ′1 ≤ γ
′

3 ≤ γ
′

4.
The configurations are {γ1}, {γ′1}, {γ1, γ2}, {γ′1, γ

′

2}, {γ1, γ3}, {γ′1, γ
′

3}, {γ1, γ2, γ3}, {γ′1, γ
′

2, γ
′

3}, and
{γ1, γ2, γ3, γ4}, {γ′1, γ

′

2, γ
′

3, γ
′

4}. The configurations with less than three elements correspond to only one
proving sequence, while the others correspond to two proving sequences each. Notice that G′′ types the
network of Example 4.16. A graphical representation of SG(G′′) is given in Figure 7, where the arrows
represent the covering relation of ≤.

Note that the event structure is prime and thus conflict is hereditary. Indeed, since the events maintain
their complete history the events γ4 and γ′4 are in conflict.

Proposition 6.9 Let G be a global type. Then SG(G) is a prime event structure.

Observe that while our interpretation of networks as FESs exactly reflects the concurrency
expressed by the syntax of networks, our interpretation of global types as PESs exhibits more
concurrency than that given by the syntax of global types. This is because the parallel composition
of global types is only defined when its arguments have disjoint participants, and thus it cannot be
used to specify concurrency between two forking paths that may join again, e.g., two concurrent
events that are both causes of a third event, as γ1 and γ2 in GE(G1) = GE(G2) in the above
Example 6.8.

7 Equivalence of the two Event Structure Semantics

We establish now our main result for typed networks, namely the isomorphism between the
domain of configurations of the FES of the network and the domain of configurations of the PES
of its global type. We start by stating the correspondence between the communication sequences
of networks and the proving sequences of their event structures. To this end, we introduce some
auxiliary definitions.

Definition 7.1 (Truncation of a communication sequence) Let σ = α1 · · · αn be a communication
sequence with n > 0. For each i = 1, . . . ,n + 1, we define σci =def α1 · · · αi−1 to be the ith truncation of σ,
where by convention α1 · · · αi−1 = ε if i = 1. Note that σcn+1 = σ.

RR n° 9266

Event structure semantics for multiparty sessions 17

Definition 7.2 (Projection) The projection of the communication sequence σ on participant p,
notation σ# p , is the process event defined by:

1. (pλq · σ)# p = q!λ · σ# p ;

2. (qλp · σ)# p = q?λ · σ# p ;

3. (rλs · σ)# p = σ# p if p , r, s;

4. ε# p = ε.

It is easy to verify that if part(α1) ∩ part(α2) = ∅, then (α1 · α2)# p = (α2 · α1)# p for all p.
Therefore σ ∼ σ′ implies σ# p = σ′# p .

Definition 7.3 (Network events from communications) If σ = α1 · · · αn is a communication se-
quence with part(αi) = {pi,qi}, we define the sequence of network events corresponding to σ by

nec(σ) = ν1; · · · ; νn
where νi = {pi :: σci+1# pi ,qi :: σci+1# qi } for 1 ≤ i ≤ n.

It is immediate to see that, if σ = pλq, then nec(σ) is the event {p :: q!λ,q :: p?λ}.

Lemma 7.4 Let N σ
−→ N

′.

1. If {r :: η, s :: η′} ∈ NE(N′), then {r :: σ# r · η, s :: σ# s · η′} ∈ NE(N);

2. nec(σ) is a proving sequence in SN (N).

Lemma 7.5 If ν1; · · · ; νn is a proving sequence inSN (N), thenN σ
−→ N

′whereσ = comm(ν1) · · · comm(νn).

Similar relations hold between reductions of global types and their events.

Definition 7.6 (Global events from communications) If σ = α1 · · · αn is a communication se-
quence, we define the global proving sequence corresponding to σ by

gec(σ) = γ1; · · · ;γn
where γi = σci ◦ [αi]∼ for 1 ≤ i ≤ n.

Lemma 7.7 Let G σ
−→ G′.

1. If γ ∈ GE(G′), then σ ◦ γ ∈ GE(G);

2. gec(σ) is a proving sequence in SG(G).

Lemma 7.8 Ifγ1; · · · ;γn is a proving sequence inSG(G), then G σ
−→ G′ andσ = comm(γ1) · · · comm(γn).

Using the above definitions and characterisations, we may now show the correspondence
between the configurations of the flow event structure of a network and the configurations of the
prime event structure of its global type.

To prove our main theorem we will also use the following separation result from [8] (Lemma
2.8 p. 12):

Lemma 7.9 (Separation [8]) Let S = (E,≺, #) be a flow event structure and X,X′ ∈ C(S) be such that
X ⊂ X′. Then there exist e ∈ X′\X such that X ∪ {e} ∈ C(S).

Let ' denote isomorphism on domains of configurations.

RR n° 9266

Event structure semantics for multiparty sessions 18

Theorem 7.10 If ` N : G, thenD(SN (N)) ' D(SG(G)).

Proof By Lemma 7.5 if ν1; · · · ; νn is a proving sequence of SN (N), then N
σ
−→ N

′ where
σ = comm(ν1) · · · comm(νn). By applying iteratively Subject Reduction (Theorem 5.3) G σ

−→ G′

and ` N′ : G′. By Lemma 7.7(2) gec(σ) is a proving sequence of SG(G).
By Lemma 7.8 if γ1 ; · · · ; γn is a proving sequence of SG(G), then G σ

−→ G′ where
σ = comm(γ1) · · · comm(γn). By applying iteratively Session Fidelity (Theorem 5.4) N σ

−→ N
′

and ` N′ : G′. By Lemma 7.4(2) nec(σ) is a proving sequence of SN (N).
Therefore we have a bijection betweenD(SN (N)) andD(SG(G)), given by nec(σ)↔ gec(σ)

for any σ generated by the (bisimilar) LTSs of N and G.
We show now that this bijection preserves inclusion of configurations. By Lemma 7.9 it

is enough to prove that if ν1; · · · ; νn ∈ C(SN (N)) is mapped to γ1; · · · ;γn ∈ C(SG(G)), then
ν1; · · · ; νn; ν ∈ C(SN (N)) if and only if γ1; · · · ;γn;γ ∈ C(SG(G)), where γ1; · · · ;γn;γ is the image
of ν1; · · · ; νn; ν under the bijection.

Suppose σ = comm(ν1) · · · comm(νn) = comm(γ1) · · · comm(γn).
Let comm(ν) = α. By Lemma 7.5, if ν1; · · · ; νn; ν is a proving sequence of SN (N), then

N
σ
−→ N0

α
−→ N

′. Then we get ν = {p :: σ · α# p , q :: σ · α# q } by Lemma 7.4(1). By Definition 7.3
nec(σ · α) = ν1; · · · ; νn; ν. By applying iteratively Subject Reduction (Theorem 5.3) G σ

−→ G0
α
−→ G′

and ` N′ : G′. By Definition 7.6 gec(σ · α) = γ1; · · · ;γn;γ. By Lemma 7.7(2) gec(σ · α) is a proving
sequence of SG(G).

Let now comm(γ) = α. By Lemma 7.8, if γ1; · · · ;γn;γ is a proving sequence of SG(G), then
G σ
−→ G0

α
−→ G′. By Lemma 7.7(1) we have γ = [σ ◦ α]∼. By Definition 7.6 gec(σ · α) = γ1; · · · ;γn;γ.

By applying iteratively Session Fidelity (Theorem 5.4) N σ
−→ N0

α
−→ N

′ and ` N′ : G′. By
Definition 7.3 nec(σ · α) = ν1; · · · ; νn; ν. By Lemma 7.4(2) nec(σ · α) is a proving sequence of
S
N (N).

8 Related Work and Conclusions

Event Structures (ESs) were introduced in Winskel’s PhD Thesis [47] and in the seminal paper
by Nielsen, Plotkin and Winskel [38], roughly in the same frame of time as Milner’s calculus
CCS [36]. It is therefore not surprising that the relationship between these two approaches for
modelling concurrent computations started to be investigated very soon afterwards. The first
interpretation of CCS into ESs was proposed by Winskel in [48]. This interpretation made use of
Stable ESs, because PESs, the simplest form of ESs, appeared not to be flexible enough to account
for CCS parallel composition. Indeed, since CCS parallel composition allows for two concurrent
complementary actions to either synchronise or occur independently in any order, each pair
of such actions gives rise to two forking computations: this requires duplication of the same
continuation process for each computation in PESs, while the continuation process may be shared
by the forking computations in Stable ESs, which allow for disjunctive causality. Subsequently,
ESs (as well as other nonsequential “denotational models” for concurrency such as Petri Nets)
have been used as the touchstone for assessing noninterleaving operational semantics for CCS:
for instance, the pomset semantics for CCS by Boudol and Castellani [6, 7] and the semantics
based on “concurrent histories” proposed by Degano, De Nicola and Montanari [22, 20, 21],
were both shown to agree with an interpretation of CCS processes into some class of ESs
(PESs for [20, 21], PESs with non-hereditary conflict for [6] and FESs for [7]). Among the early
interpretations of process calculi into ESs, we should also mention the PES semantics for TCSP
(Theoretical CSP [10, 39]), proposed by Goltz and Loogen [35] and generalised by Baier and

RR n° 9266

Event structure semantics for multiparty sessions 19

Majster-Cederbaum [2], and the Bundle ES semantics for LOTOS, proposed by Langerak [34]
and extended by Katoen [32]. Like FESs, Bundle ESs are a subclass of Stable ESs. We recall
the relationships between the above classes of ESs (the reader is referred to [9] for separating
examples):

Prime ESs ⊂ Bundle ESs ⊂ Flow ESs ⊂ Stable ESs ⊂ General ESs
More sophisticated ES semantics for CCS, based on FESs and designed to be robust under action
refinement [1, 19, 25], were later proposed by Goltz and van Glabbeek [44]. Importantly, all the
above-mentioned classes of ESs, except General ESs, give rise to the same prime algebraic domains
of configurations, from which one can recover a PES by selecting the complete prime elements.

More recently, ES semantics have been investigated for the π-calculus by Crafa, Varacca and
Yoshida [14, 45, 15] and by Cristescu, Krivine and Varacca [16, 17, 18]. Other causal models for
the π-calculus had already been put forward by Jategaonkar and Jagadeesan [31], by Montanari
and Pistore [37], by Cattani and Sewell [13] and by Bruni, Melgratti and Montanari [11]. The main
new issue, when addressing causality-based semantics for the π-calculus, is the implicit causality
induced by scope extrusion. Two alternative views of such implicit causality had been proposed
in previous work on noninterleaving operational semantics for the π-calculus, respectively by
Boreale and Sangiorgi [5] and by Degano and Priami [23]. Essentially, in [5] an extruder (that
is, an output of a private name) is considered to cause any action that uses the extruded name,
whether in subject or object position, while in [23] it is considered to cause only the actions that
use the extruded name in subject position. Thus, for instance, in the process P = νa (b〈a〉 | c〈a〉 | a),
the two parallel extruders are considered to be causally dependent in the former approach, and
independent in the latter. All the causal models for the π-calculus mentioned above, including
the ES-based ones, take one or the other of these two stands. Note that opting for the second
one leads necessarily to a non-stable ES model, where there may be causal ambiguity within
the configurations themselves: for instance, in the above example the maximal configuration
contains three events, the extruders b〈a〉, c〈a〉 and the input on a, and one does not know which
of the two extruders enabled the input. Indeed, the paper [15] uses non-stable ESs. The use of
non-stable ESs (General ESs) to express situations where a computational step can merge parts of
the state is advocated for instance by Baldan, Corradini and Gadducci in [3]. These ESs give
rise to configuration domains that are not prime algebraic, hence the classical representation
theorems have to be adjusted.

In our simple setting, where we deal only with single sessions and do not consider session
interleaving nor delegation, we can dispense with channels altogether, and therefore the question
of parallel extrusion does not arise. In this sense, our notion of causality is closer to that of CCS
than to the more complex one of the π-calculus. However, even in a more general setting, where
participants would be paired with the channel name of the session they pertain to, the issue of
parallel extrusion would not arise: indeed, in the above example b and c should be equal, because
participants can only delegate their own channel, but then they could not be in parallel because
of linearity, one of the distinguishing features enforced by session types. Hence we believe that
in a session-based framework the two above views of implicit causality should collapse into just
one.

We now briefly discuss our design choices. Our calculus uses synchronous communication
- rather than asynchronous, buffered communication - because this is how communication is
modelled in ESs, when they are used to give semantics to process calculi. Two ESs are typically
composed in parallel using a synchronisation algebra to produce a communication event out of two
events of the component ESs. We are not aware of variants of ESs with buffered communication.
Concerning the choice operator, we adopted here the basic (and most restrictive) variant for it, as
it was originally proposed for multiparty session calculi in [29]. This is essentially a simplifying

RR n° 9266

Event structure semantics for multiparty sessions 20

assumption, and we do not foresee any difficulty in extending our results to a more general
choice operator allowing for different receivers, where the projection is more flexible thanks
to a merge operator [30]. Finally, concerning subtyping, we envisaged to use the standard
preorder on processes, in which a process with fewer outputs is smaller than a process with more
outputs. The drawback is that Theorem 7.10 would no longer hold, and the domains of network
configurations would only be embedded in the domains of their global type configurations.

As regards future work, we plan to define an asynchronous transition system (ATS) [4] for
our calculus, along the lines of [9], and show that it provides a noninterleaving operational
semantics for networks that is equivalent to their FES semantics. This would enable us also to
investigate the issue of reversibility, jointly on our networks and on their FES representations,
since the ATS semantics would give us the handle to unwind networks, while the corresponding
FESs could be unrolled following one of the methods proposed in existing work on reversible
event structures [40, 18, 26, 27].

RR n° 9266

Event structure semantics for multiparty sessions 21

References

[1] L. Aceto and M. Hennessy. Towards action-refinement in process algebras. In A. R. Meyer,
editor, LICS, pages 138–145, Washington, 1989. IEEE Computer Society Press.

[2] C. Baier and M. E. Majster-Cederbaum. The connection between an event structure semantics
and an operational semantics for TCSP. Acta Informatica, 31(1):81–104, 1994.

[3] P. Baldan, A. Corradini, and F. Gadducci. Domains and event structures for fusions. In
J. Ouaknine, editor, LICS, pages 1–12, Washington, 2017. IEEE Computer Society Press.

[4] M. Bednarczyk. Categories of Asynchronous Systems. PhD thesis, University of Sussex, 1988.

[5] M. Boreale and D. Sangiorgi. A fully abstract semantics for causality in the π-calculus. Acta
Informatica, 35(5):353–400, 1998.

[6] G. Boudol and I. Castellani. On the semantics of concurrency: partial orders and transition
systems. In H. Ehrig, R. A. Kowalski, G. Levi, and U. Montanari, editors, TAPSOFT, volume
249 of LNCS, pages 123–137, Heidelberg, 1987. Springer.

[7] G. Boudol and I. Castellani. Permutation of transitions: an event structure semantics for
CCS and SCCS. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, REX: Linear
Time, Branching Time and Partial Order in Logics and Models for Concurrency, volume 354 of
LNCS, pages 411–427, Heidelberg, 1988. Springer.

[8] G. Boudol and I. Castellani. Flow models of distributed computations: event structures and
nets. Research Report 1482, INRIA, 1991.

[9] G. Boudol and I. Castellani. Flow models of distributed computations: three equivalent
semantics for CCS. Information and Computation, 114(2):247–314, 1994.

[10] S. Brookes, C. Hoare, and A. Roscoe. A theory of communicating sequential processes.
Journal of ACM, 31(3):560–599, 1984.

[11] R. Bruni, H. C. Melgratti, and U. Montanari. Event structure semantics for nominal calculi.
In C. Baier and H. Hermanns, editors, CONCUR, volume 4137 of LNCS, pages 295–309,
Heidelberg, 2006. Springer.

[12] L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In P. Gastin
and F. Laroussinie, editors, CONCUR, volume 6269 of LNCS, pages 222–236, Heidelberg,
2010. Springer.

[13] G. L. Cattani and P. Sewell. Models for name-passing processes: interleaving and causal.
Information and Computation, 190(2):136–178, 2004.

[14] S. Crafa, D. Varacca, and N. Yoshida. Compositional event structure semantics for the
internal π-calculus. In L. Caires and V. T. Vasconcelos, editors, CONCUR, volume 4703 of
LNCS, pages 317–332, Heidelberg, 2007. Springer.

[15] S. Crafa, D. Varacca, and N. Yoshida. Event structure semantics of parallel extrusion in
the π-calculus. In L. Birkedal, editor, FOSSACS, volume 7213 of LNCS, pages 225–239,
Heidelberg, 2012. Springer.

[16] I. Cristescu. Operational and denotational semantics for the reversible π-calculus. PhD thesis,
University Paris Diderot - Paris 7, 2015.

RR n° 9266

Event structure semantics for multiparty sessions 22

[17] I. Cristescu, J. Krivine, and D. Varacca. Rigid families for CCS and the π-calculus. In
M. Leucker, C. Rueda, and F. D. Valencia, editors, ICTAC, volume 9399 of LNCS, pages
223–240, Heidelberg, 2015. Springer.

[18] I. Cristescu, J. Krivine, and D. Varacca. Rigid families for the reversible π-calculus. In S. J.
Devitt and I. Lanese, editors, Reversible Computation, volume 9720 of LNCS, pages 3–19,
Heidelberg, 2016. Springer.

[19] P. Darondeau and P. Degano. Refinement of actions in event structures and causal trees.
Theoretical Computer Science, 118(1):21–48, 1993.

[20] P. Degano, R. De Nicola, and U. Montanari. On the consistency of truly concurrent
operational and denotational semantics. In A. K. Chandra, editor, LICS, Washington, 1988.
IEEE Computer Society Press Press.

[21] P. Degano, R. De Nicola, and U. Montanari. A partial ordering semantics for CCS. Theoretical
Computer Science, 75(3):223–262, 1990.

[22] P. Degano and U. Montanari. Concurrent histories: A basis for observing distributed
systems. Journal of Computer and System Sciences, 34(2/3):422–461, 1987.

[23] P. Degano and C. Priami. Non-interleaving semantics for mobile processes. Theoretical
Computer Science, 216(1-2):237–270, 1999.

[24] P. Deniélou and N. Yoshida. Multiparty session types meet communicating automata. In
H. Seidl, editor, ESOP, volume 7211 of LNCS, pages 194–213, Heidelberg, 2012. Springer.

[25] U. Goltz, R. Gorrieri, and A. Rensink. Comparing syntactic and semantic action refinement.
Information and Computation, 125(2):118–143, 1996.

[26] E. Graversen, I. Phillips, and N. Yoshida. Towards a categorical representation of reversible
event structures. In V. T. Vasconcelos and P. Haller, editors, PLACES, volume 246 of EPTCS,
pages 49–60, Waterloo, 2017. Open Publishing Association.

[27] E. Graversen, I. Phillips, and N. Yoshida. Event structure semantics of (controlled) reversible
CCS. In J. Kari and I. Ulidowski, editors, Reversible Computation, volume 11106 of LNCS,
pages 122–102, Heidelberg, 2018. Springer.

[28] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type discipline for
structured communication-based programming. In C. Hankin, editor, ESOP, volume 1381
of LNCS, pages 122–138, Heidelberg, 1998. Springer.

[29] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In G. C.
Necula and P. Wadler, editors, POPL, pages 273–284, New York, 2008. ACM Press.

[30] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. Journal of
ACM, 63(1):9:1–9:67, 2016.

[31] L. J. Jagadeesan and R. Jagadeesan. Causality and true concurrency: A data-flow analysis of
the π-calculus (extended abstract). In V. S. Alagar and M. Nivat, editors, AMAST, volume
936 of LNCS, pages 277–291, Heidelberg, 1995. Springer.

[32] J. Katoen. Quantitative and qualitative extensions of event structures. PhD thesis, University of
Twente, 1996.

RR n° 9266

Event structure semantics for multiparty sessions 23

[33] J. Lange, E. Tuosto, and N. Yoshida. From communicating machines to graphical chore-
ographies. In S. K. Rajamani and D. Walker, editors, POPL, pages 221–232, New York, 2015.
ACM Press.

[34] R. Langerak. Bundle event structures: a non-interleaving semantics for LOTOS. In M. Diaz
and R. Groz, editors, Formal Description Techniques for Distributed Systems and Communication
Protocols, pages 331–346, Amsterdam, 1993. North-Holland.

[35] R. Loogen and U. Goltz. Modelling nondeterministic concurrent processes with event
structures. Fundamenta Informaticae, 14(1):39–74, 1991.

[36] R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer, Heidelberg,
1980.

[37] U. Montanari and M. Pistore. Concurrent semantics for the π-calculus. In S. Brookes,
M. Main, A. Melton, and M. Mislove, editors, MFPS, volume 1 of ENTCS, pages 411–429,
Oxford, 1995. Elsevier.

[38] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures and domains, part I.
Theoretical Computer Science, 13(1):85–108, 1981.

[39] E. Olderog. TCSP: theory of communicating sequential processes. In W. Brauer, W. Reisig,
and G. Rozenberg, editors, Advances in Petri Nets, volume 255 of LNCS, pages 441–465,
Heidelberg, 1986. Springer.

[40] I. Phillips and I. Ulidowski. Reversibility and asymmetric conflict in event structures. Journal
of Logical and Algebraic Methods in Programming, 84(6):781 – 805, 2015.

[41] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[42] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its typing system.
In C. Hankin, editor, PARLE, volume 817 of LNCS, pages 122–138, Heidelberg, 1994. Springer.

[43] B. Toninho, L. Caires, and F. Pfenning. Dependent session types via intuitionistic linear type
theory. In P. Schneider-Kamp and M. Hanus, editors, PPDP, pages 161–172, New York, 2011.
ACM Press.

[44] R. J. van Glabbeek and U. Goltz. Well-behaved flow event structures for parallel composition
and action refinement. Theoretical Computer Science, 311(1-3):463–478, 2004.

[45] D. Varacca and N. Yoshida. Typed event structures and the linear π-calculus. Theoretical
Computer Science, 411(19):1949–1973, 2010.

[46] P. Wadler. Propositions as sessions. Journal of Functional Programming, 24(2-3):384–418, 2014.

[47] G. Winskel. Events in Computation. PhD thesis, University of Edinburgh, 1980.

[48] G. Winskel. Event structure semantics for CCS and related languages. In M. Nielsen and
E. M. Schmidt, editors, ICALP, volume 140 of LNCS, pages 561–576, Heidelberg, 1982.
Springer.

[49] G. Winskel. An introduction to event structures. In J. W. de Bakker, W. P. de Roever, and
G. Rozenberg, editors, REX: Linear Time, Branching Time and Partial Order in Logics and Models
for Concurrency, volume 354 of LNCS, pages 364–397, Heidelberg, 1988. Springer.

RR n° 9266

Event structure semantics for multiparty sessions 24

A Proofs

Proposition 4.4. Let P be a process. Then SP(P) is a prime event structure with an empty concurrency
relation.

Proof We show that ≤ and # satisfy Properties 2 and 3 of Definition 3.1. Reflexivity, transitivity
and antisymmetry of ≤ follow from the corresponding properties of v. As for irreflexivity,
symmetry and hereditariness of #, they may be shown by a simple induction on the definition of #.
If η # η′ is deduced by Clause 3a, then irreflexivity and symmetry follow from the corresponding
properties of inequality, and if η # η′ is deduced by Clause 3b, they follow by straightforward
induction. To show conflict hereditariness, suppose that η # η′ ≤ η′′. If η # η′ is deduced by Clause
3a, then η = π · ζ and η′ = π′ · ζ′ for some ζ, ζ′. Hence η′′ = π′ · ζ′ · ζ′′ for some ζ′′, and thus η # η′′

by Clause 3a again. If η # η′ is deduced by Clause 3b, then η = π · η1, η′ = π · η′1 and η1 # η′1. Then
η′′ = π · η′1 · ζ for some ζ. By induction, η1 # η′1 · ζ, hence η # η′′ by Clause 3b again.
It is easy to show by induction on the definition of SP(P) that η, η′ ∈ SP(P) implies η ≤ η′ or
η′ ≤ η or η # η′.

Proposition 4.12. Let N be a network. Then SN (N) is a flow event structure with an irreflexive conflict
relation.

Proof The relation ≺ is irreflexive since η < η′ implies ν , ν′, where η, η′, ν, ν′ are as in
Definition 4.10(2) . Symmetry and irreflexivity of the conflict relation between net events follow
from the corresponding properties of conflict between process events.

Theorem 4.14. Let N = p1[[P1]] ‖ p2[[P2]] and SN (N) = (NE(N),≺, #). Then the structure
S
N
∗ (N)=def(NE(N),≺∗, #) is a prime event structure.

Proof We first show that the reflexive and transitive closure ≺∗ of ≺ is a partial order. Since by
definition ≺∗ is a preorder, we only need to show that it is antisymmetric. By definition

NE(N) = {{p1 :: η1,p2 :: η2} | η1 ∈ PE(P1), η2 ∈ PE(P2),p1 :: η1 Z p2 :: η2}.
For ν = {p1 :: η1,p2 :: η2} ∈ NE(N), define length(ν)=deflength(η1) + length(η2) (where length(η)
is defined in the obvious way for a process event η). Let now ν = {p1 :: η1,p2 :: η2} and
ν′ = {p1 :: η′1,p2 :: η′2}. By definition ν ≺ ν′ implies ηi < η′i for some i = 1, 2, which in turn
implies length(ηi) < length(η′i). Observe now that in a pair {p1 :: η1,p2 :: η2} ∈ NE(N) the event
η1 only contains communications with p2 and the event η2 only contains communications with
p1. Then by duality η1 and η2 must have the same length. This means that if ν ≺ ν′ then
length(ν) = 2 × length(ηi) < 2 × length(η′i) = length(ν′). From this we can conclude that if ν ≺∗ ν′

and ν′ ≺∗ ν, then necessarily ν = ν′.
We show now that the relation # satisfies the required properties. By Proposition 4.12 we
only need to prove that # is hereditary. Let ν and ν′ be as above. If ν # ν′, then by Clause 3 of
Definition 4.10 we have ηi # η′i for some i ∈ {1, 2}. Let now ν′′ = {p1 :: η′′1 , p2 :: η′′2 }. If ν′ ≺∗ ν′′, this
means that there exist ν1, . . . , νn such that ν′ ≺ ν1 . . . ≺ νn = ν′′. We prove by induction on n that
ν # ν′′. For n = 1 we have ν′ ≺ ν′′. Then by Clause 2 of Definition 4.10 we have η′j < η

′′

j , for some
j ∈ {1, 2}. If i = j, then ηi # η′′i since # is hereditary on process events, and this implies ν # ν′′. If
i , j, by duality ηi # η′i implies η j # η′j, and we conclude as in the previous case. Suppose now
n > 1. By induction ν # νn−1. Since νn−1 ≺ νn = ν′′ we then obtain ν # ν′′ by the same argument as
in the base case.

Proposition A.1 Let ν, ν′ ∈ NE(N). If ν , ν′ and p :: η ∈ ν ∩ ν′, then ν # ν′.

Proof Let η = ζ · q!λ (the case where η = ζ · q?λ is similar). Then it must be ν = {p :: η, q :: η′} and
ν′ = {p :: η,q :: η′′}, where η′ = ζ′ · p?λ and η′′ = ζ′′ · p?λ for some ζ′ and ζ′′. Since η�q Z η′ �p

RR n° 9266

Event structure semantics for multiparty sessions 25

and η�q Z η′′ �p , the process events η′ and η′′ must have exactly the same number of actions
involving p. Then it cannot be η′ < η′′, because η′′ terminates with p?λ and thus η′ would have
fewer actions involving p than η′′. Similarly, it cannot be η′′ < η′. Then, since η′, η′′ ∈ PE(Q)
for some prime event structure SP(Q) by Proposition 4.4 we may conclude that η′ # η′′, which
implies ν # ν′.

Proposition 6.5. Let σ be pointed communication sequence. If σ ∼ σ′, then σ′ is a pointed communication
sequence and last(σ) = last(σ′).

Proof Let σ ∼ σ′, by Definition 6.1 σ′ is obtained from σ by n swaps of adjacent communications.
The proof is by induction on such a number.
If n = 0 the result is obvious.
If n > 0, then there exists σ1 obtained from σ by n − 1 swaps of adjacent communications and
there are σ′1, σ′′1 , α and α′ such that

σ1 = σ′1 · α · α
′
· σ′′1 ∼ σ′1 · α

′
· α · σ′′1 = σ′ and part(α) ∩ part(α′) = ∅.

By induction hypothesis σ1 is a pointed communication sequence and last(σ) = last(σ1). Therefore
σ′′1 , ε since otherwise α′ would be the last communication of σ1 and it cannot be that
part(α) ∩ part(α′) = ∅. Therefore last(σ) = last(σ′).
To show that σ′ is pointed, since all the communications in σ′1 and σ′′1 have the same successors
in σ1 and σ′, all we have to prove is:

part(α) ∩ (part(α′) ∪ part(σ′′1)) , ∅ ⇔ part(α) ∩ part(σ′′1) , ∅
part(α′) ∩ part(σ′′1) , ∅ ⇔ part(α′) ∩ (part(α) ∪ part(σ′′1)) , ∅

Both statements follow immediately from the fact that part(α) ∩ part(α′) = ∅.

Proposition 6.9. Let G be a global type. Then SG(G) is a prime event structure.

Proof We show that ≤ and # satisfy Properties 2 and 3 of Definition 3.1. Reflexivity and transitiv-
ity ≤ follow easily from the properties of concatenation and ∼. As for antisymmetry note that,
by Clause 2 of Definition 6.7, if [σ]∼ ≤ [σ′]∼ and [σ′]∼ ≤ [σ]∼, then σ · σ1 ∼ σ′ and σ′ · σ′1 ∼ σ for
some σ1 and σ′1. However, σ · σ1 ∼ σ′ implies that all the communications in σ must be in σ′ and
σ′ ·σ′1 ∼ σ implies that all the communications in σ′ must be in σ. Therefore σ1 = σ′1 = ε. Moreover
communications with non disjoint participants must be in the same order and so σ ∼ σ′.
As for the properties of # consider first irreflexivity. Assume that [σ]∼ # [σ]∼, from Clause 3 of
Definition 6.7 σ ∼ σ1 · pλq · σ2 and σ ∼ σ1 · pλ′q · σ′2 with λ , λ′. Therefore pλq · σ2 ∼ pλ′q · σ′2.
However, this is impossible since no permutation of communications with non disjoint partici-
pants can trasform pλq · σ2 in pλ′q · σ′2.
Symmetry derives from symmetry of ∼.
To show conflict hereditariness, suppose that [σ]∼ # [σ′]∼ ≤ [σ′′]∼. Then σ ∼ σ1 · pλq · σ2 and
σ′ ∼ σ1 · pλ′q · σ′2 with λ , λ′. If [σ′]∼ ≤ [σ′′]∼, then σ′ · σ3 ∼ σ′′ for some σ3. Therefore
σ′ · σ3 ∼ σ1 · pλ′q · σ′2 · σ3 ∼ σ′′ which proves that [σ]∼ # [σ′′]∼.

Definition A.2 1. The mapping ♦ applied to a located event and a communication returns the located
event obtained by prefixing the process event by the projection of the communication:

α♦ (p :: η) = p :: α# p · η

2. The mapping � applied to a located event and a communication returns the located event obtained
by erasing from the process event the projection of the communication (if possible):

pλq� (r :: η) =

r :: η′ if r = p and η = q!λ · η′ or r = q and η = p?λ · η′

r :: η if r < {p,q}

RR n° 9266

Event structure semantics for multiparty sessions 26

3. The mappings ♦ and � naturally extend to network events and to communication sequences:
α♦ ({p :: η,q :: η′}) = {α♦ (p :: η), α♦ (q :: η′)}
α� ({p :: η,q :: η′}) = {α� (p :: η), α� (q :: η′)}

(α · σ)♦ ν = α♦ (σ♦ ν) (α · σ)� ν = σ� (α� ν) σ , ε

Note that the mapping ♦ is always defined. Instead pλq� r :: η is undefined if r ∈ {p, q} and either
η is just one atomic action or the projection of pλq on r is not the first atomic action of η .

Proposition A.3 1. If α� ν is defined, then α♦ (α� ν) = ν;

2. α� (α♦ ν) = ν;

3. If ν ≺ ν′, then α♦ ν ≺ α♦ ν′;

4. If ν ≺ ν′ and both α� ν and α� ν′ are defined, then α� ν ≺ α� ν′;

5. If ν # ν′, then α♦ ν #α♦ ν′;

6. If ν # ν′ and both α� ν and α� ν′ are defined, then α� ν #α� ν′;

7. If ν ≺ α♦ ν′, then ν = nec(α) or ν # nec(α) or α� ν ≺ ν′.

Proof Let α = pλq.
(1) It is enough to show that if α� (r :: η) is defined, then α♦ (α� (r :: η)) = r :: η. The proof is by
cases on r.
If r < {p,q}, then α� (r :: η) = r :: η and since pλq # r = ε also α♦ (r :: η) = r :: η, so
α♦ (α� (r :: η)) = r :: η.
If r = p, since α� (p :: η) is defined, we get η = q!λ · η′ for some η′. Therefore α� (p :: η) = p :: η′.
Since pλq# p = q!λ we get α♦ (p :: η′) = p :: q!λ · η′. We conclude α♦ (α� (r :: η)) = r :: η. The
proof for r = q is similar.
(2) It is enough to show that α� (α♦ (r :: η)) = r :: η. By cases on r.
If r < {p, q}, thenα♦ (r :: η) = r :: η since pλq# r = ε andα� (r :: η) = r :: η, soα� (α♦ (r :: η)) = r :: η.
If r = p, then α♦ (p :: η) = p :: q!λ · η and α� (p :: q!λ · η) = p :: η so α� (α♦ (p :: η)) = p :: η. The
proof for r = q is similar.
(3) If ν ≺ ν′, then there are r :: η ∈ ν and r :: η′ ∈ ν such that η < η′. By Definition A.2(1) and
(3) r :: α# r · η ∈ α♦ ν and r :: α# r · η′ ∈ α♦ ν′. Since η < η′ implies α# r · η < α# r · η′ we
conclude α♦ ν ≺ α♦ ν′.
(4) If ν ≺ ν′, then there are r :: η ∈ ν and r :: η′ ∈ ν such that η < η′. If r < {p,q}, then r :: η ∈ α� ν
and r :: η′ ∈ α� ν′. If r = p and α� ν, α� ν′ are defined, then η = q!λ · η1 and η′ = q!λ · η2 and
r :: η1 ∈ α� ν and r :: η2 ∈ α� ν′. Since η < η′ implies η1 < η2 we conclude α� ν ≺ α� ν′. The proof
for r = q is similar.
(5) The proof is similar to the proof of Point 3.
(6) The proof is similar to the proof of Point 4.
(7) If α� ν is defined by Point 4 α� ν ≺ α� (α♦ ν′) and by Point 2 α� (α♦ ν′) = ν′. Otherwise
r :: η ∈ ν and r ∈ {p, q} and either η is just one atomic action or the projection of pλq on r is not the
first atomic action of η. Let r = p. If ν ≺ α♦ ν′ since p :: η′ ∈ α♦ ν′ and η < η′, then by definition
η′ = q!λ · η′′, which implies η = q!λ. Therefore in this case ν = nec(α). Otherwise ν ≺ α♦ ν′ since
s :: η1 ∈ ν and s :: η2 ∈ α♦ ν′ and η1 < η2, where s , p. If s = q then by definition η2 = p?λ · η3,
which implies η = q!λ. Therefore also in this case ν = nec(α). Instead if s , q, then η must
contain a communication with s, so it cannot be just one atomic action. Since α� ν is undefined,
then the projection of pλq on p is not the first atomic action of η. In this case we get ν#nec(α).
The proof for r = q is similar.

RR n° 9266

Event structure semantics for multiparty sessions 27

Lemma 7.4. Let N σ
−→ N

′.

1. If ν ∈ NE(N′), then σ♦ ν ∈ NE(N);

2. nec(σ) is a proving sequence in SN (N).

Proof Both points are proved by induction on σ.
(1) Let ν = {r :: η, s :: η′}, then σ♦ ν = {r :: σ# r · η, s :: σ# s · η′}.
Base case. Let σ = α where α = pλkq. From N

α
−→ N

′ we get
N = p[[

⊕
i∈I q!λi; Pi]] ‖ q[[Σ j∈Jp?λ j; Q j]] ‖ N0

where k ∈ I ∩ J and N′ = p[[Pk]] ‖ q[[Qk]] ‖ N0.
If {r :: η, s :: η′} ∈ NE(N′), then by Definition 4.10(1) N′ = r[[R]] ‖ s[[S]] ‖ N1 where η ∈ PE(R)
and η′ ∈ PE(S). If r , p,q then N = r[[R]] ‖ N2 and α# r = ε. If r = p, then R = Pk and
N = p[[

⊕
i∈I q!λi; Pi]] ‖ N3 and α# r = q!λk and q!λk · η ∈ PE(

⊕
i∈I q!λi; Pi). If r = q, then R = Qk

and N = q[[Σ j∈Jp?λ j; Q j]] ‖ N4 and α# r = p?λk and p?λk · η ∈ PE(Σ j∈Jp?λ j; Q j). A similar
reasoning holds for s. This shows that in all cases {r :: α# r · η, s :: α# s · η′} = α♦ ν ∈ NE(N).

Inductive case. Let σ = α · σ′. Then N σ
−→ N

′ implies N α
−→ N

′′ σ′
−→ N

′ for some N′′. By induction
hypothesis on σ′, if ν ∈ NE(N′), then σ′ ♦ ν ∈ NE(N′′). Again by induction α♦ (σ′ ♦ ν) ∈ NE(N).
Since α♦ (σ′ ♦ ν) = (α · σ′)♦ ν by Definition A.2(3) we have σ♦ ν ∈ NE(N).

(2) Base case. Let σ = α where α = pλkq. From N
α
−→ N

′ we get
N = p[[

⊕
i∈I q!λi; Pi]] ‖ q[[Σ j∈Jp?λ j; Q j]] ‖ N0

where k ∈ I ∩ J and N′ = p[[Pk]] ‖ q[[Qk]] ‖ N0.
By Definition 4.2(1a) q!λk ∈ PE(

⊕
i∈I q!λi; Pi) and p?λk ∈ PE(Σ j∈Jp?λ j; Q j). By Definition 4.10(1)

{p :: q!λk, q :: p?λk} ∈ NE(N). By Definition 3.6 we conclude that nec(α) = {p :: q!λk, q :: p?λk} is a
proving sequence in SN (N).
Inductive case. Let σ = α1 · σ′ where σ′ = α2 · · · αn and part(νi) = {pi,qi} for 1 ≤ i ≤ n and n > 1.
FromN

σ
−→ N

′ we getN
α1
−→ N0

σ′
−→ N

′ for someN0. Let nec(σ) = ν1; · · · ; νn and nec(σ′) = ν′2; · · · ; ν′n.
By induction nec(σ′) is a proving sequence inNE(N0). We show that nec(σ) is a proving sequence
inNE(N). It is easy to verify that α1 � νi = ν′i and α1 ♦ ν′i = νi for all i, 2 ≤ i ≤ n.
Let ν ∈ NE(N) and ν ≺ ν j, for some j, 1 ≤ j ≤ n. Note that this implies j > 1. Since ν j = α1 ♦ ν′j by
Proposition A.3(7) ν = nec(α1) or ν#nec(α1) or α1 � ν ≺ ν′j.
If ν = nec(α1) or ν#nec(α1) = ν1, then we are done. Otherwise since nec(σ′) is a proving
sequence in NE(N0), there is h < j such that either α1 � ν = ν′h or α1 � ν # ν′h ≺ ν

′

j. In the first
case ν = α1 ♦ (α1 � ν) = α1 ♦ ν′h = νh by Proposition A.3(1). In the second case from α1 � ν # ν′h by
Proposition A.3(5) we get ν = α1 ♦ (α1 � ν) #α1 ♦ ν′h = νh and from ν′h ≺ ν

′

j by Proposition A.3(3)
we derive νh = α1 ♦ ν′h ≺ α1 ♦ ν′j = ν j.

Lemma 7.5. If ν1; · · · ; νn is a proving sequence inSN (N), thenN σ
−→ N

′whereσ = comm(ν1) · · · comm(νn).

Proof Let comm(ν1) = α where α = pλq, we first prove that
(∗) N

α
−→ N

′ and α� ν2; · · · ;α� νn is a proving sequence in SN (N′).
Let ν1 = {p :: ζ · q!λk, q :: ζ′ · p?λk}. Since ν1 is the first event of a proving sequence, there cannot
be ν ∈ NE(N) such that ν ≺ ν1. Hence it must be ζ = ζ′ = ε and ν1 = {p :: q!λk, q :: p?λk}. Then by
Definition 4.10(1) we have N = p[[P]] ‖ q[[Q]] ‖ N0 with q!λk ∈ PE(P) and p?λk ∈ PE(Q). Whence
by Definition 4.2(1a) and Definition 4.2(1b) we get P =

⊕
i∈I q!λi; Pi and Q = Σ j∈Jp?λ j; Q j and

k ∈ I ∩ J. Therefore
N

α
−→ p[[Pk]] ‖ q[[Qk]] ‖ N0 = N′.

We now show that, pλq� νl is defined and pλq� νl ∈ NE(N′) for all l, 2 ≤ l ≤ n. In case

RR n° 9266

Event structure semantics for multiparty sessions 28

part(comm(νl)) ∩ {p,q} = ∅, we have α� νl = νl and νl ∈ NE(N′), since the processes of the
participants different from p,q are not modified by the reduction N α

−→ N
′. If p :: η ∈ νl, then

it must be η = q!λk · ηk for some ηk ∈ PE(Pk), since by hypothesis it cannot be ν1 # νl. By
Definition A.2(2), α� η = ηk and p :: ηk ∈ α� νl. Similarly we can show that if q :: η′ ∈ νl, then
η′ = p?λk · η′k and η′k ∈ PE(Qk) and q :: η′k ∈ α� νl. We conclude that pλq� νl is defined and
α� νl ∈ NE(N′) for all l, 2 ≤ l ≤ n.
To show that α� ν2; · · · ;α� νn is a proving sequence in SN (N′), let ν ≺ α� νl for some l, 2 ≤ l ≤ n.
By Proposition A.3(3) and (1) α♦ ν ≺ α♦ (α� νl) = νl. This implies by Definition 3.6 that there
is h < l such that either α♦ ν = νh or α♦ ν#νh ≺ νl. Therefore, since α� νk is defined for all k,
2 ≤ k ≤ n, by Proposition A.3(2), (4) and (6), we get ν = α� νh or ν#α� νh ≺ α� νl. This concludes
the proof of (∗).
We prove now the lemma by induction on n. Let ν1; · · · ; νn be a proving sequence in SN (N) and
let σ = α1 · σ′ where σ′ = α2 · · ·αn and αi = comm(νi) for all i, 2 ≤ i ≤ n. By (∗) N

α1
−→ N0 and

α� ν2; · · · ;α� νn is a proving sequence in SN (N0). By induction N0
σ′
−→ N

′. Therefore N σ
−→ N

′.

Definition A.4 1. The mapping • applied to a global event and a communication gives the global
event obtained by erasing the communication (if possible):

pλq • [σ]∼ =

[σ′]∼ if σ ∼ pλq · σ′ and σ′ , ε
[σ]∼ if p and q do not occur in σ

2. The mapping • naturally extends to sequences of communications:
(α · σ) • γ = σ • (α • γ) σ , ε

Note that the mapping pλq • [σ]∼ is undefined whenever either [σ]∼ = {pλq} or one of p, q occurs
in σ, but pλq is not their first communication.

Proposition A.5 1. If α • γ is defined, then α ◦ (α • γ) = γ;

2. α • (α ◦ γ) = γ;

3. If γ1 < γ2, then α ◦ γ1 < α ◦ γ2;

4. If γ1 < γ2 and both α • γ1 and α • γ2 are defined, then α • γ1 < α • γ2;

5. If part(α2) ∩ part(α1) = ∅, then α1 ◦ (α2 ◦ γ) = α2 ◦ (α1 ◦ γ);

6. If γ < α ◦ γ′, then either γ = [α]∼ or α • γ < γ′.

Proof Let α = pλq and γ = [σ]∼.
(1) If α • [σ]∼ is defined, then in case p and q do not occur in σ we get α • [σ]∼ = [σ]∼ and also
α ◦ [σ]∼ = [σ]∼, so α ◦ (α • [σ]∼) = [σ]∼. If either p or q occur in σ, then α • [σ]∼ = [σ′]∼ where
σ ∼ pλq · σ′ and σ′ , ε. By Definition 6.4 σ is a pointed sequence, so {p,q} ∩ part(σ′) , ∅. By
Definition 6.6 pλq ◦ [σ′]∼ = [pλq · σ′]∼, which implies α ◦ (α • [σ]∼) = [σ]∼.
(2) By Definition 6.6 either pλq ◦ [σ]∼ = [pλq · σ]∼ if {p, q} ∩ part(σ) , ∅, or pλq ◦ σ = [σ]∼. In the
first case pλq • [pλq · σ]∼ = σ and in the second pλq • [σ]∼ = [σ]∼, which proves the result.
(3) and (4) The proofs easily follow from Definitions 6.6 and A.4.
(5) From the fact that in any communication sequence α1 and α2 can be swapped.
(6) If α • γ is defined by Point 4 α • γ < α • (α ◦ γ′) and by Point 2 α • (α ◦ γ′) = γ′. Otherwise
either γ = [α]∼, in which case we are done, or one of p, q occurs in σ, but α is not their first
communication. We show that this last case is impossible. In fact if one of p, q occurs in σ, then
one of p, q occurs in α ◦ γ′, where their first communication is just α by Definition 6.6(1). Then α
is also the first communication involving p,q in σ.

RR n° 9266

Event structure semantics for multiparty sessions 29

Lemma 7.7. Let G σ
−→ G′.

1. If γ ∈ GE(G′), then σ ◦ γ ∈ GE(G);

2. gec(σ) is a proving sequence in SG(G).

Proof Both points are proved by induction on σ.
(1) Base case. Let σ = α and part(α) = {p,q}. We use a further induction on the inference of the
transition G α

−→ G′.
Let G = p→ q :�i∈Iλi; Gi and G

pλ jq
−−−→ G j for some j ∈ I. By Definition 6.7(1a) if γ ∈ GE(G j), then

pλ jq ◦ γ ∈ GE(G).

Let G = r → s : �i∈Iλi; Gi with {r, s} ∩ {p,q} = ∅ and let G
pλq
−−→ G′ be deduced from Gi

pλq
−−→ G′i

for all i ∈ I and G′ = r→ s :�i∈Iλi; G′i . By Definition 6.7(1a) if γ ∈ GE(G′), then γ = rλis ◦ γi for
γi ∈ GE(G′i). By induction pλq ◦ γi ∈ GE(Gi). By Definition 6.7(1a) pλq ◦ (rλis ◦ γi) ∈ GE(G). By
Proposition A.5(5) and {r, s} ∩ {p,q} = ∅ we get pλq ◦ (rλis ◦ γi) = rλis ◦ (pλq ◦ γi). Therefore
γ = rλis ◦ γi ∈ GE(G′) implies pλq ◦ γ ∈ GE(G).

Let G = G1 ‖ G2 and G1
pλq
−−→ G′1 and G′ = G′1 ‖ G2. From part(G1) ∩ part(G2) = ∅ we have that

part(G′1) ∩ part(G2) = ∅. Let γ ∈ GE(G′). Then either γ ∈ GE(G′1) or γ ∈ GE(G2). In the first case,
by induction hypothesis pλq ◦ γ ∈ GE(G1) and by Definition 6.7(1b) pλq ◦ γ ∈ GE(G). In the
second case pλq ◦ γ = γ and so from γ ∈ GE(G2) we get that pλq ◦ γ ∈ GE(G).

Inductive case. Let σ = α · σ′ and G α
−→ G0

σ′
−→ G′. If γ ∈ GE(G′), then by induction σ′ ◦ γ ∈ GE(G0).

Again by induction α ◦ σ′ ◦ γ = α · σ′ ◦ γ ∈ GE(G).

(2) Base case. Let σ = α. We use a further induction on the inference of the transition G α
−→ G′.

Let p→ q :�i∈Iλi; Gi
pλ jq
−−−→ G j for some j ∈ I. By Definition 6.7(1a) [pλ jq]∼ ∈ GE(G).

Let G = r → s : �i∈Iλi; Gi and G′ = r → s : �i∈Iλi; G′i and Gi
pλq
−−→ G′i for all i ∈ I and

{r, s} ∩ {p,q} = ∅. By induction [pλq]∼ ∈ GE(Gi). By Definition 6.7(1a) [pλq]∼ ◦ rλis = [pλq]∼ and
[pλq]∼ ∈ GE(G), where the equality is justified by {r, s}∩{p,q}=∅.
The proof in the case G = G1 ‖ G2 is similar and simpler.

Inductive case. Let σ = α1 · σ′ where σ′ = α2 · · · αn and n > 1. From G σ
−→ G′ we get G

α1
−→ G0

σ′
−→ G′

for some G0. Let gec(σ) = γ1; · · · ;γn and gec(σ′) = γ′2; · · · ;γ′n. By induction gec(σ′) is a proving
sequence in SG(G0). It is easy to see that α1 ◦ γ′i = γi and α1 • γi = γ′i for all i, 2 ≤ i ≤ n.
We show that gec(σ) is a proving sequence in SG(G). Let γ < γ j for some j, 1 ≤ j ≤ n. Note that
this implies j > 1. Since γ j = α1 ◦ γ′j by Proposition A.5(6) either γ = {α1} or α1 • γ < γ′j.
If γ = {α1} = γ1 we are done. Otherwise, by Proposition A.5(3) α1 ◦ γ < α1 ◦ γ j = γ′j. Since
gec(σ′) is a proving sequence in SG(G0), there is h < j such that α1 ◦ γ = γ′h and this implies
γ = α1 • (α1 ◦ γ) = α1 • γ′h = γh by Proposition A.5(3).

Lemma 7.8. Ifγ1; · · · ;γn is a proving sequence inSG(G), then G σ
−→ G′ andσ = comm(γ1) · · · comm(γn).

Proof Let comm(γ1) = α. We first prove that
(∗) G α

−→ G′ and α • γ2; · · · ;α • γn is a proving sequence in SG(G′).
Since γ1 is the first event of a proving sequence, we have γ1 = [α]∼. Let α = pλq. If [pλq]∼ ∈ GE(G),
by Definition 6.7(1a) we are in one of the following cases:

1. G = p→ q :�i∈Iλi; Gi and λ = λ j for some j ∈ I;

2. G = r→ s :�i∈Iλi; Gi and {r, s} ∩ {p,q} = ∅ and [pλq]∼ ∈ GE(Gi) for all i ∈ I;

RR n° 9266

Event structure semantics for multiparty sessions 30

3. G = G1 ‖ G2 and [pλq]∼ ∈ GE(Gi) for either i = 1 or i = 2;

where in the second case [pλq]∼ ∈ GE(Gi) for all i ∈ I holds by definition of projection, see Figure 4.
It is then easy to check that in all cases G α

−→ G′.
We first show that α • γ j is defined for all j, 2 ≤ j ≤ n.
If γ j = [σ j]∼ for some j, 2 ≤ j ≤ n, and p or q occur in σ j, let α′ be the first communication
in σ j such that part(α′) ∩ {p,q} , ∅. Since γ1; · · · ;γn is a proving sequence in SG(G) α′ = pλq.
Otherwise if α′ , pλq there should be h such that γh = [α′]∼ but γh #γ1. So for all j, 2 ≤ j ≤ n, if
γ j = [σ j]∼, then either p and q do not occur in σ j or σ j ∼ pλq · σ′j with σ′j , ε, so α • γ j is defined.
We now show that α•γ j ∈ GE(G′) for all j, 2 ≤ j ≤ n by induction on the inference of the transition

G
pλq
−−→ G′.

Let G = p → q : �i∈Iλi; Gi and λ = λ j for some j ∈ I, and G′ = G j. By Definition 6.7(1a) if
[pλ jq · σ]∼ ∈ GE(G), then [σ]∼ ∈ GE(G j).
Let G = r→ s :�i∈Iλi; Gi and {r, s}∩{p, q} = ∅ and Gi

α
−→ G′i for all i ∈ I and G′ = r→ s :�i∈Iλi; G′i .

By Definition 6.7(1a) if [pλq · σ]∼ ∈ GE(G), then [pλq · σ]∼ ∈ GE(Gh) for some h ∈ I. By induction
[σ]∼ ∈ GE(G′h) and this implies [σ]∼ ∈ GE(G′).
Let G = G1 ‖ G2 and G′ = G′1 ‖ G2. By Definition 6.7(1b) if [pλq · σ]∼ ∈ GE(G), then
[pλq · σ]∼ ∈ GE(G1), since the participants of G1 and G2 are disjoint. By induction [σ]∼ ∈ GE(G′1)
and this implies [σ]∼ ∈ GE(G′).
To show that α • γ2; · · · ;α • γn is a proving sequence in SG(G′), let γ < α • γl for some l, 2 ≤ l ≤ n.
By Proposition A.5(3) and (1) α ◦ γ < α ◦ α • γl = γl. This implies, by Definition 3.6 and the fact
that GE(G) is a PES, that there is h, h < l, such that α ◦ γ = γh. Therefore, since α • γk is defined
for all k, 2 ≤ k ≤ n, by Proposition A.5(4) we get γ = α • γh. This concludes the proof of (∗).
We prove now the lemma by induction on n. Let γ1; · · · ;γn be a proving sequence in SG(G) and
let σ = α1 · σ′ where σ′ = α2 · · ·αn and comm(γi) = αi for all i, 2 ≤ i ≤ n. By (∗), G

α1
−→ G0 and

α • γ2; · · · ;α • γn is a proving sequence in SG(G0). By induction G0
σ′
−→ G′. Therefore G σ

−→ G′.

RR n° 9266

RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	A Core Calculus for Multiparty Sessions
	Event Structures
	Event Structure Semantics of Processes and Networks
	Global Types
	Event Structure Semantics of Global Types
	Equivalence of the two Event Structure Semantics
	Related Work and Conclusions
	Proofs

