
Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming
journal homepage: www.elsevier.com/locate/jlamp

Event structure semantics for multiparty sessions

Ilaria Castellani a,∗,1, Mariangiola Dezani-Ciancaglini b, Paola Giannini c,2

a INRIA, Université Côte d’Azur, France
b Dipartimento di Informatica, Università di Torino, Italy
c DiSSTE, Università del Piemonte Orientale, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 May 2022
Received in revised form 9 October 2022
Accepted 24 November 2022
Available online 30 November 2022

Keywords:
Communication-centric systems
Communication-based programming
Process calculi
Event structures
Multiparty session types

We propose an interpretation of multiparty sessions as Flow Event Structures, which allows
concurrency within sessions to be explicitly represented. We show that this interpretation
is equivalent, when the multiparty sessions can be described by global types, to an
interpretation of such global types as Prime Event Structures.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Session types were proposed in the mid-nineties [54,38], as a tool for specifying and analysing web services and com-
munication protocols. They were first introduced in a variant of the π -calculus to describe binary interactions between
processes. Such binary interactions may often be viewed as client-server protocols. Subsequently, session types were ex-
tended to multiparty sessions [39,40], where several participants may interact with each other. A multiparty session is an
interaction among peers, and there is no need to distinguish one of the participants as representing the server. All one
needs is an abstract specification of the protocol that guides the interaction. This is called the global type of the session.
The global type describes the behaviour of the whole session, as opposed to the local types that describe the behaviours of
single participants. In a multiparty session, local types may be retrieved as projections from the global type.

Typical safety properties ensured by session types are communication safety (absence of communication errors), session
fidelity (agreement with the protocol) and deadlock-freedom [40]. When dealing with multiparty sessions, the type system is
often enhanced so as to guarantee also the liveness property known as progress (no participant gets stuck) [41].
Some simple examples of sessions not satisfying the above properties are: 1) a sender emitting a message while the receiver
expects a different message (communication error); 2) two participants both waiting to receive a message from the other
one (deadlock due to a protocol violation); 3) a three-party session where the first participant waits to receive a message
from the second participant, which keeps interacting forever with the third participant (starvation).

* Corresponding author at: INRIA, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis, France.
E-mail addresses: ilaria.castellani@inria.fr (I. Castellani), dezani@di.unito.it (M. Dezani-Ciancaglini), paola.giannini@uniupo.it (P. Giannini).

1 This work was partially funded by the ANR Certification of IoT Secure Compilation project No. ANR17-CE25-0014-01.
2 This original research has the financial support of the Università del Piemonte Orientale. This work was partially funded by the MIUR project “T-LADIES”

(PRIN 2020TL3X8X).
https://doi.org/10.1016/j.jlamp.2022.100844
2352-2208/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jlamp.2022.100844
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2022.100844&domain=pdf
mailto:ilaria.castellani@inria.fr
mailto:dezani@di.unito.it
mailto:paola.giannini@uniupo.it
https://doi.org/10.1016/j.jlamp.2022.100844

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
What makes session types particularly attractive is that they offer several advantages at once: 1) static safety guarantees,
2) automatic check of protocol implementation correctness, based on local types, and 3) a strong connection with linear
logics [13,55,59,52,14], and with concurrency models such as communicating automata [32], graphical choreographies [44,
56] and message-sequence charts [40].

In this paper we further investigate the relationship between multiparty session types and concurrency models, by
focussing on Event Structures [62]. We consider a standard multiparty session calculus where sessions are described as
networks of sequential processes [33]. Each process implements a participant in the session. We propose an interpretation
of such networks as Flow Event Structures (FESs) [8,10] (a subclass of Winskel’s Stable Event Structures [62]), which allows
concurrency between session communications to be explicitly represented. We then introduce global types for these net-
works, and define an interpretation of them as Prime Event Structures (PESs) [60,49]. Since the syntax of global types does
not allow all the concurrency among communications to be expressed, the events of the associated PES need to be defined
as equivalence classes of communication sequences up to permutation equivalence. We show that when a network is typable
by a global type, the FES semantics of the former is equivalent, in a precise technical sense, to the PES semantics of the
latter. To prove this equivalence, we exploit the bisimilarity of their Labelled Transition Systems, as expressed by the Subject
Reduction and Session Fidelity theorems (Theorem 6.10 and Theorem 6.11). An alternative approach would have been to
compare the two ESs directly, thus conducting the whole reasoning within the denotational model itself. However, while
one side of the comparison (mapping the PES of the type to the FES of the network, which can be viewed as a synthesis
problem) would be very direct, the other side (reconstructing the PES of the type from the FES of the network) would be
more involved, as it would require a structural characterisation of the FESs that represent typable networks, which is far
from obvious and therefore is left for future work. This issue will be discussed at length at the end of Section 7.

Event Structures have been used to give semantics to process calculi ever since their introduction at the beginning of
the eighties [60,49] (see Section 9 for an extensive historical discussion). A specific feature of our proposed FES semantics
for networks is that we impose strong semantic constraints on the construction of the events themselves (like duality of
the histories of their components) in order to reduce the number of events from the very beginning, and to enforce already
at the syntactic level some of the expected semantic properties. This allows us to obtain more compact FESs, with fewer
events, which is an advantage when displaying their graphical representations,3 as well as handling examples and carrying
out proofs.

In a companion paper [16], we investigated a similar Event Structure semantics for a session calculus with asynchronous
communication, which led to a quite different treatment as it made use of a new notion of asynchronous global type. A
detailed comparison with [16] will be given in Section 9.

This paper is an expanded and amended version of [15]. The main novelty is that we use a coinductive definition for
processes and global types, which simplifies several definitions and proofs, and a more stringent definition for network
events. This definition relies on the new notion of causal set, which is crucial for the correctness of our ES semantics.
Finally, the present paper includes the proofs of all results, some of which require ingenuity.

The paper is organised as follows. Section 2 introduces our multiparty session calculus. In Section 3 we recall the defi-
nitions of PESs and FESs, which will be used to interpret processes (Section 4) and networks (Section 5), respectively. PESs
are also used to interpret global types (Section 7), which are defined in Section 6. In Section 8 we prove the equivalence
between the FES semantics of a network and the PES semantics of its global type. Section 9 discusses related work and
sketches directions for future work.

The proofs of all theorems and propositions are given in the main paper, except for those of Subject Reduction (Theo-
rem 6.10) and Session Fidelity (Theorem 6.11), which are standard and thus deferred to Appendix B. The proofs of lemmas,
when not trivial, are collected in Appendices A, B, C, D and E. To help the reader, Appendix F contains a glossary of the
symbols used and a table of the notations with their meaning and a reference to where they are defined.

2. A core calculus for multiparty sessions

We now formally introduce our calculus, where multiparty sessions are represented as networks of processes. We assume
the following base sets: session participants, ranged over by p, q, r, . . . and forming the set Part, and messages, ranged over
by λ, λ′, . . . and forming the set Msg.

Let π ∈ {p!λ, p?λ | p ∈ Part, λ ∈ Msg} denote an action. The action p!λ represents an output of message λ to participant
p, while the action p?λ represents an input of message λ from participant p. The participant of an action, pt(π), is defined by
pt(p!λ) = pt(p?λ) = p.

Definition 2.1 (Processes). Processes are defined by:

P ::=coind ⊕
i∈I p!λi; Pi | �i∈I p?λi; Pi | 0

where I is non-empty and λh �= λk for all h, k ∈ I , h �= k, i.e. messages in choices are all different.
Processes of the shape

⊕
i∈I p!λi; Pi and �i∈I p?λi; Pi are called output and input processes, respectively.

3 Both FESs and PESs enjoy a graphical representation (see Fig. 5 and Fig. 6), as opposed to other kinds of stable ESs.
2

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
p�
⊕

i∈I q!λi; Pi � ‖ q�� j∈ J p?λ j; Q j � ‖ N
pqλk−−→ p� Pk � ‖ q� Q k � ‖ N where k ∈ I∩ J [Com]

Fig. 1. LTS for networks.

The symbol ::=coind , in the definition above and in later definitions, indicates that the productions should be interpreted
coinductively. Namely, they define possibly infinite processes. However, we assume such processes to be regular, that is, with
finitely many distinct subprocesses. In this way, we only obtain processes which are solutions of finite sets of equations,
see [20]. So, when writing processes, we shall use (mutually) recursive equations. When I is a singleton,

⊕
i∈I p!λi; Pi will

be rendered as p!λ; P and �i∈I p?λi; Pi will be rendered as p?λ; P . When I contains only two elements, as it will be the
case in most of our examples, we shall feel free to use the binary choices p!λ1; P1 ⊕ p!λ2; P2 and p!λ1; P1 + p!λ2; P2, where
the branches p!λi; Pi should be viewed as being parenthesised (since the connector ; is not an operator of our calculus, but
an integral part of the guarded sum operators). Trailing 0 processes will be omitted.

Processes may be viewed as trees whose internal nodes are decorated by p! or p?, leaves by 0, and edges by messages
λ.

In a full-fledged calculus, messages would carry values, namely they would be of the form λ(v). For simplicity, we
consider only pure messages here. This will allow us to project global types directly to processes, without having to explicitly
introduce local types, see Section 6.

Definition 2.2 (Networks). Networks are defined by:

N = p� P � | p� P � ‖ N

We assume the standard structural congruence ≡ on networks, stating that parallel composition is associative and com-
mutative and has neutral element p� 0 � for any fresh p. Given the associativity of ‖, we shall feel free to write networks in
the form N = p1� P1 � ‖ · · · ‖ pn� Pn � in the sequel.

If P �= 0 we write p� P � ∈ N as short for N ≡ p� P � ‖ N′ for some N′ . We define the set of participants of N to be
{p | ∃P . p� P � ∈ N}. We say that a network is unary if it has a unique participant4 and binary if it has exactly two par-
ticipants.

To express the operational semantics of networks, we use an LTS whose labels record the message exchanged during
a communication together with its sender and receiver. The set of communications, ranged over by α, α′ , is defined to be
{pqλ | p, q ∈ Part, λ ∈ Msg}, where pqλ represents the transmission of a message λ from participant p to participant q.

The LTS semantics of networks is specified by the unique rule [Com] given in Fig. 1. Notice that rule [Com] is symmetric
with respect to input and output choices. In a well-typed network (see Section 6) it will always be the case that I ⊆ J ,
ensuring that participant p can freely choose an output, since participant q offers all corresponding inputs. Note also that a
unary network has no transitions.

Note that we could have given first the (standard) LTS semantics for processes, and then derived the LTS for networks
from it. However, the syntax of our calculus is so simple that the LTS for networks can be defined directly. Thus we chose
to omit the LTS for processes, which would anyway be of no use in the sequel.

In the following we will make an extensive use of finite (and possibly empty) sequences of communications. As usual
we define them as traces.

Definition 2.3 (Traces). (Finite) traces σ ∈ Traces are defined by:

σ ::= ε | α ·σ
We use | σ | to denote the length of the trace σ .
The set of participants of a trace, notation part(σ), is defined by part(ε) = ∅ and part(pqλ ·σ) = {p, q} ∪ part(σ).

When σ = α1 · . . . ·αn (n ≥ 1) we write N σ−→ N′ as short for N α1−→ N1 · · · αn−→ Nn = N′ .

3. Event structures

We recall now the definitions of Prime Event Structure (PES) from [60,49] and Flow Event Structure (FES) from [8]. The
class of FESs is more general than that of PESs: for a precise comparison of various classes of event structures, we refer the

4 Unary networks will not be typable, and therefore, by Subject Reduction, a typable network will never evolve to a unary network. On the other hand,
this will be possible for non typable networks.
3

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
reader to [9]. As we shall see in Sections 4 and 5, while PESs are sufficient to interpret processes, the greater generality of
FESs is needed to interpret networks.

Definition 3.1 (Prime Event Structure). A prime event structure (PES) is a tuple S = (E, ≤, #) where:

1. E is a denumerable set of events;
2. ≤⊆ (E × E) is a partial order relation, called the causality relation;
3. # ⊆ (E × E) is an irreflexive symmetric relation, called the conflict relation, satisfying the property:

∀e, e′, e′′ ∈ E : e # e′ ≤ e′′ ⇒ e # e′′ (conflict hereditariness).

Definition 3.2 (Flow Event Structure). A flow event structure (FES) is a tuple S = (E, ≺, #) where:

1. E is a denumerable set of events;
2. ≺⊆ (E × E) is an irreflexive relation, called the flow relation;
3. # ⊆ (E × E) is a symmetric relation, called the conflict relation.

Note that the flow relation is not required to be transitive, nor acyclic (its reflexive and transitive closure is just a
preorder, not necessarily a partial order). Intuitively, the flow relation represents a possible direct causality between two
events. Moreover, in a FES the conflict relation is not required to be irreflexive nor hereditary; indeed, FESs may exhibit
self-conflicting events, as well as disjunctive causality (an event may have conflicting causes).

Any PES S = (E, ≤, #) may be regarded as a FES, with ≺ given by < (the strict ordering) or by the covering relation of
≤.

We now recall the definition of configuration for event structures. Intuitively, a configuration is a set of events having
occurred at some stage of the computation. Thus, the semantics of an event structure S is given by its poset of configurations
ordered by set inclusion, where X1 ⊂X2 means that S may evolve from X1 to X2.

Definition 3.3 (PES configuration). Let S = (E, ≤, #) be a prime event structure. A configuration of S is a finite subset X of
E such that:

1. X is downward-closed: e′ ≤ e ∈X ⇒ e′ ∈X;
2. X is conflict-free: ∀e, e′ ∈X, ¬(e # e′).

The definition of configuration for FESs is slightly more elaborated. For a subset X of E , let ≺X be the restriction of the
flow relation to X and ≺∗

X be its transitive and reflexive closure.

Definition 3.4 (FES configuration). Let S = (E, ≺, #) be a flow event structure. A configuration of S is a finite subset X of E
such that:

1. X is downward-closed up to conflicts: e′ ≺ e ∈X, e′ /∈X ⇒ ∃ e′′ ∈X. e′ # e′′ ≺ e;
2. X is conflict-free: ∀e, e′ ∈X, ¬(e # e′);
3. X has no causality cycles: the relation ≺∗

X is a partial order.

Condition (2) is the same as for prime event structures. Condition (1) is adapted to account for the more general – non-
hereditary – conflict relation. It states that any event appears in a configuration with a “complete set of causes”. Condition
(3) ensures that any event in a configuration is actually reachable at some stage of the computation.

If S is a prime or flow event structure, we denote by C(S) its set of configurations. Then, the domain of configurations of
S is defined as follows:

Definition 3.5 (ES configuration domain). Let S be a prime or flow event structure with set of configurations C(S). The domain
of configurations of S is the partially ordered set D(S)=def(C(S),⊆).

We recall from [9] a useful characterisation for configurations of FESs, which is based on the notion of proving sequence,
defined as follows:

Definition 3.6 (Proving sequence). Given a flow event structure S = (E, ≺, #), a proving sequence in S is a sequence e1; · · · ; en

of distinct non-conflicting events (i.e. i �= j ⇒ ei �= e j and ¬(ei # e j) for all i, j) satisfying:

∀i ≤ n ∀e ∈ E : e ≺ ei ⇒ ∃ j < i . either e = e j or e # e j ≺ ei
4

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
Note that any prefix of a proving sequence is itself a proving sequence.

We have the following characterisation of configurations of FESs in terms of proving sequences.

Proposition 3.7 (Representation of FES configurations as proving sequences [9]). Given a flow event structure S = (E, ≺, #), a subset
X of E is a configuration of S if and only if it can be enumerated as a proving sequence e1; · · · ; en.

Since PESs may be viewed as particular FESs, we may use Definition 3.6 and Proposition 3.7 both for the FESs associated
with networks (see Sections 5) and for the PESs associated with global types (see Section 7). Note that for a PES the
condition of Definition 3.6 simplifies to

∀i ≤ n ∀e ∈ E : e < ei ⇒ ∃ j < i . e = e j

To conclude this section, we recall from [17] the definition of downward surjectivity (or downward-onto, as it was called
there), a property that is required for partial functions between two FESs in order to ensure that they preserve configura-
tions. We will make use of this property in Section 5.

Definition 3.8 (Downward surjectivity). Let Si = (Ei, ≺i, # i), be a flow event structure, i = 0, 1. Let ei, e′
i range over Ei ,

i = 0, 1. A partial function f : E0 →∗ E1 is downward surjective if it satisfies the condition:

e1 ≺1 f (e0) =⇒ ∃e′
0 ∈ E0 . e1 = f (e′

0)

4. Event structure semantics of processes

In this section, we define an event structure semantics for processes, and show that the obtained event structures are
PESs. This semantics will be the basis for defining the ES semantics for networks in Section 5. We start by introducing
process events, which are non-empty sequences of actions.

Definition 4.1 (Process event). Process events η, η′ , also called p-events, are defined by:

η ::= π | π ·η π ∈{p!λ,p?λ | p ∈ Part, λ ∈ Msg}
We denote by PE the set of p-events, and by | η | the length of the sequence of actions in the p-event η.

Let ζ denote a (possibly empty) sequence of actions, and � denote the prefix ordering on such sequences. Each p-event
η may be written either in the form η = π · ζ or in the form η = ζ ·π . We shall feel free to use any of these forms. When
a p-event is written as η = ζ ·π , then ζ may be viewed as the causal history of η, namely the sequence of past actions that
must have happened in the process for the last action π to be able to happen.

We define the action of a p-event to be its last action:

act(ζ ·π) = π

Definition 4.2 (Causality and conflict relations on process events). The causality relation ≤ and the conflict relation # on the
set of p-events PE are defined by:

1. η � η′ ⇒ η ≤ η′;
2. π �= π ′ ⇒ ζ ·π · ζ ′ # ζ ·π ′ · ζ ′′ .

Definition 4.3 (Event structure of a process). The event structure of process P is the triple

SP(P) = (PE(P),≤P , # P)

where:

1. PE(P) ⊆ PE is the set of non-empty sequences of labels along the nodes and edges of a path from the root to an edge
in the tree of P ;

2. ≤P is the restriction of ≤ to the set PE(P);
3. # P is the restriction of # to the set PE(P).
5

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
It is easy to see that # P = (PE(P) ×PE(P)) \ (≤P ∪ ≥P). In the following we shall feel free to drop the subscript in ≤P

and # P .

Note that the set PE(P) may be denumerable, as shown by the following example.

Example 4.4. If P = q!λ; P ⊕ q!λ′ , then PE(P) = {q!λ · . . . · q!λ︸ ︷︷ ︸
n

| n ≥ 1} ∪ {q!λ · . . . · q!λ︸ ︷︷ ︸
n

·q!λ′ | n ≥ 0}.

Theorem 4.5. Let P be a process. Then SP(P) is a prime event structure.

Proof. We show that ≤ and # satisfy Properties 2 and 3 of Definition 3.1. Reflexivity, transitivity and antisymmetry of
≤ follow from the corresponding properties of �. As for irreflexivity and symmetry of # , they follow from Clause 2 of
Definition 4.2 and the corresponding properties of inequality. To show conflict hereditariness, suppose that η # η′ ≤ η′′ . From
Clause 2 of Definition 4.2 there are π , π ′ , ζ , ζ ′ and ζ ′′ such that π �= π ′ and η = ζ ·π · ζ ′ and η′ = ζ ·π ′ · ζ ′′ . From η′ ≤ η′′
we derive that η′′ = ζ ·π ′ · ζ ′′ · ζ1 for some ζ1. Therefore η # η′′ , again from Clause 2. �
5. Event structure semantics of networks

In this section we define the ES semantics of networks and show that the resulting ESs, which we call network ESs, are
FESs. We also show that when the network is binary, then the obtained FES is a PES. The formal treatment involves defining
the set of potential events of network ESs, which we call network events, as well as introducing the notion of causal set of a
network event and the notion of narrowing of a set of network events. This will be the subject of Section 5.1.

In Section 5.2, we first prove some properties of the conflict relation in network ESs. Then, we come back to causal sets
and we show that they are always finite and that each configuration includes a unique causal set for each of its network
events. We also discuss the relationship between causal sets and prime configurations, which are specific configurations
that are in 1-1 correspondence with network events in ESs. Finally, we define a notion of projection of network events on
participants, yielding p-events, and prove that this projection (extended to sets of network events) is downward surjective
and preserves configurations.

The proofs omitted in this section can be found in Appendix A.

5.1. Definitions and main properties

We start by defining network events, the potential events of network ESs. Since these events represent communications
between two network participants p and q, they should be pairs of dual p-events, namely, of p-events emanating respectively
from p and q, which have both dual actions and dual causal histories.

Formally, to define network events we need to specify the location of p-events, namely the participant to which they
belong:

Definition 5.1 (Located event). We call located event a p-event η pertaining to a participant p, written p :: η.

As hinted above, network events should be pairs of dual located events p :: ζ · π and q :: ζ ′ · π ′ with matching actions π
and π ′ and matching histories ζ and ζ ′ . To formalise the matching condition, we first define the projections of p-events on
participants, which yield sequences of undirected actions of the form !λ and ?λ, or the empty sequence ε . Then we introduce
a notion of duality between located events, based on a notion of duality between undirected actions.

Let ϑ range over !λ and ?λ, and � range over (possibly empty) sequences of ϑ ’s.

Definition 5.2 (Projection of p-events on participants). The projection of a p-event η on a participant p, written η�p , is defined
by:

q!λ�p =
{

!λ if p = q

ε otherwise
q?λ�p =

{
?λ if p = q

ε otherwise
(π ·η)�p = π �p ·η�p

Definition 5.3 (Duality of undirected action sequences). The duality of undirected action sequences, written � � �′ , is the sym-
metric relation induced by:

ε � ε � � �′ ⇒ !λ ·� � ?λ ·�′

Definition 5.4 (Duality of located events). Two located events p :: η, q :: η′ are dual, written p :: η �̂ q :: η′ , if η�q � η′�p and
pt(act(η)) = q and pt(act(η′)) = p.
6

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
Dual located events may be sequences of actions of different length. For instance p :: q!λ · r!λ′ �̂ r :: p?λ′ and
p :: q!λ �̂ q :: r!λ′ ·p?λ.

Definition 5.5 (Network event). Network events ν, ν ′ , also called n-events, are unordered pairs of dual located events, namely:

ν ::= {p :: η,q :: η′} where p :: η �̂ q :: η′

We denote by NE the set of n-events.

We define the communication of the event ν , notation cm(ν), by cm(ν) = pqλ if ν = {p :: ζ ·q!λ, q :: ζ ′ ·p?λ} and we
say that the n-event ν represents the communication pqλ. We also define the set of locations of an n-event to be
loc({p :: η, q :: η′}) = {p, q}.

It is handy to have a notion of occurrence of a located event in a set of network events:

Definition 5.6. A located event p :: η occurs in a set E of n-events, notation p :: η∈∈E , if p :: η ∈ ν and ν ∈ E for some ν .

We define now the flow and conflict relations on network events. While the flow relation is the expected one (a network
event inherits the causality from its constituent processes), the conflict relation is more subtle, as it can arise also between
network events with disjoint sets of locations.

In the following definition we use |�| to denote the length of the sequence �.

Definition 5.7 (Flow and conflict relations on n-events). The flow relation ≺ and the conflict relation # on the set of n-events
NE are defined by:

1. ν ≺ ν ′ if p :: η ∈ ν & p :: η′ ∈ ν ′ & η < η′;
2. ν # ν ′ if

(a) either p :: η ∈ ν & p :: η′ ∈ ν ′ & η # η′;
(b) or p :: η ∈ ν & q :: η′ ∈ ν ′ & p �= q & | η�q | = | η′�p | & ¬(η�q � η′�p).

Two n-events are in conflict if they share a participant with conflicting p-events (Clause (2a)) or if some of their par-
ticipants have communicated with each other in the past in incompatible ways (Clause (2b)), as illustrated by the n-events
ν and ν ′ in Example 5.8 (Point 3). Observe that in Clause (2b) the condition | η�q | = | η′ �p | is needed if we want
to check duality of the two projections. Without this condition we could get unwanted conflicts, for instance between
ν = {p :: q!λ, q :: p?λ} and ν ′ = {p :: q!λ · q!λ′, q :: p?λ · p?λ′}. Removing this condition and checking duality only up to the
length of the shortest projection would yield more conflicting events, as discussed in Example 5.8 (Point 3). Note also that
the two clauses (2a) and (2b) are not exclusive, as shown in Example 5.8 (Point 4).

Example 5.8. This example illustrates the use of Definition 5.7 in various cases. It also shows that the flow and conflict
relations may be overlapping on n-events.

1. Let ν = {p :: q!λ1 · r!λ, r :: p?λ} and ν ′ = {p :: q!λ2, q :: p?λ2}. Then ν # ν ′ by Clause (2a) since q!λ1 · r!λ # q!λ2. Note that
ν # ν ′ can be also deduced by Clause (2b), since (q!λ1 · r!λ) �q =!λ1 and p?λ2 �p =?λ2 and | !λ1 | = | ?λ2 | and
¬(!λ1 �?λ2).

2. Let ν be as in (1) and ν ′ = {p :: q!λ2 · q!λ, q :: p?λ2 · p?λ}. Again, we can deduce ν # ν ′ using Clause (2a), since
q!λ1 · r!λ # q!λ2 · q!λ. On the other hand, Clause (2b) does not apply in this case, since (q!λ1 · r!λ) � q =!λ1 and
(p?λ2 · p?λ) �p =?λ2·?λ and thus | !λ1 | �= | ?λ2·?λ | .

3. Let ν be as in (1) and ν ′ = {q :: p?λ2 · s!λ, s :: q?λ}. Here loc(ν) ∩ loc(ν ′) = ∅, so clearly Clause (2a) does not apply. On
the other hand, ν # ν ′ can be deduced by Clause (2b), since (q!λ1 · r!λ) �q =!λ1 and (p?λ2 · s!λ) �p =?λ2 and | !λ1 | =
| ?λ2 | and ¬(!λ1 �?λ2). Consider now ν ′′ = {q :: p?λ2 · p?λ′ · s!λ, s :: q?λ}. Then we cannot deduce ν # ν ′′ in the same
way because the two projections do not have the same length. However, we can deduce ν # ν ′′′ ≺ ν ′′ , where ν ′′′ =
{p :: q!λ2, q :: p?λ2}. In other words, ν and ν ′′ are in semantic conflict, as Proposition 5.22 shows, but not in the syntactic
conflict # (the fact that semantic conflict is in general larger than syntactic conflict is common to all classes of ESs
except PESs). We could have chosen to make the syntactic conflict larger by replacing Clause (2b) by the following
alternative clause, where �, �′ are as in Definition 5.3 and � is the prefix ordering:

Clause (2b′) or p :: η ∈ ν & q :: η′ ∈ ν ′ & p �= q &
(∃� � η�q ,∃�′ � η′�p . | � | = | �′ | & ¬(� � �′))

With this alternative clause, we could deduce the syntactic conflict ν # ν ′′ . However, in Definition 5.7 we chose to keep
our definition of # stricter in order to have fewer syntactic conflicts to handle in examples and proofs.

4. Let ν be as in (1) and ν ′ = {p :: q!λ2 · r!λ · r!λ′, r :: p?λ · p?λ′}. In this case we have both ν ≺ ν ′ by Clause (1) and ν # ν ′ by
Clause (2a), namely, causality is inherited from participant r and conflict from participant p.
7

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
We introduce now the notion of causal set of an n-event ν in a given set of events E v . Intuitively, a causal set of ν in
E v is a complete set of non-conflicting direct causes of ν which is included in E v .

Definition 5.9 (Causal set). Let ν ∈ E v ⊆NE. A set of n-events E is a causal set of ν in E v if E is a minimal subset of E v
such that

1. E ∪ {ν} is conflict-free and
2. p :: η ∈ ν and η′ < η imply p :: η′ ∈∈E .

Note that in the above definition, the conjunction of minimality and Clause (2) implies that, if ν ′ ∈ E , then ν ′ ≺ ν . Thus
E is a set of direct causes of ν . Moreover, a causal set of an n-event cannot be included in another causal set of the same
n-event, as this would contradict the minimality of the larger set. Hence, Definition 5.9 indeed formalises the idea that
causal sets should be complete sets of compatible direct causes of a given n-event.

Example 5.10. Let ν1 = {p :: q!λ1 · r!λ, r :: p?λ} and ν2 = {p :: q!λ2 · r!λ, r :: p?λ}. Then both {ν1} and {ν2} are causal sets of
ν = {r :: p?λ · s!λ′, s :: r?λ′} in E v = {ν1, ν2, ν}. Note that ν1 # ν2 and that neither ν1 nor ν2 has a causal set in E v .

Let us now consider also ν ′
1 = {p :: q!λ1, q :: p?λ1} and ν ′

2 = {p :: q!λ2, q :: p?λ2}. Then ν still has the same causal sets {ν1}
and {ν2} in E v ′ = {ν ′

1, ν
′
2, ν1, ν2, ν}, while each νi , i = 1, 2, has the unique causal set {ν ′

i } in E v ′ , and each ν ′
i , i = 1, 2, has

the empty causal set in E v ′ .
Finally, ν has infinitely many causal sets in NE. For instance, if for every natural number n we let νn =

{p :: q!λn · r!λ, r :: p?λ}, then each {νn} is a causal set of ν in NE. Symmetrically, a causal set may cause infinitely many
events in NE. For instance, the above causal sets {ν1} and {ν2} of ν could also act as causal sets for any n-event ν ′′

n =
{r :: p?λ · s!λn, s :: r?λn} or, assuming the set of participants to be denumerable, for any event ν ′′′

n = {r :: p?λ · sn!λ′, sn :: r?λ′}.

When defining the set of events of a network ES, we want to prune out all the n-events that do not have a causal set
in the set itself. The reason is that such n-events should not happen in the event structure of a network, although, when
projected on their locations (see Definition 5.25), they would always give rise to p-events occurring in a configuration.5

Example 5.14 should further clarify this point. This pruning is achieved by means of the following narrowing function.

Definition 5.11 (Narrowing of a set of n-events). The narrowing of a set E of n-events, denoted by n(E), is the greatest fixpoint
of the function f E on sets of n-events defined by:

f E(X) = {ν ∈ E | ∃E ′ ⊆ X . E ′is a causal set of ν in X }

Note that we could not have taken n(E) to be the least fixpoint of f E rather than its greatest fixpoint. Indeed, the least
fixpoint of f E would be the empty set.

Example 5.12. The following two examples illustrate the notions of causal set and narrowing. Let

ν1 = {r :: s?λ1, s :: r!λ1} ν2 = {r :: s?λ2, s :: r!λ2}
ν3 = {p :: r?λ1, r :: s?λ1 · p!λ1} ν4 = {q :: s?λ2, s :: r!λ2 · q!λ2}
ν5 = {p :: r?λ1 · q!λ,q :: s?λ2 · p?λ}

Then n({ν1, . . . , ν5}) = {ν1, . . . , ν4}, because a causal set for ν5 would need to contain both ν3 and ν4, but this is not
possible, since ν3 # ν4 by Clause (2b) of Definition 5.7. In fact (s?λ1 · p!λ1) �s =?λ1 and (r!λ2 · q!λ2) �r =!λ2 and | ?λ1 | =
| !λ2 | and ¬(?λ1 �!λ2). Let

ν1 = {r :: s?λ1, s :: r!λ1} ν2 = {r :: s?λ2, s :: r!λ2}
ν3 = {p :: r?λ1, r :: s?λ1 · p!λ1} ν4 = {p :: r?λ1 · s?λ2, s :: r!λ2 · p!λ2}
ν5 = {p :: r?λ1 · s?λ2 · q!λ,q :: p?λ}

Here n({ν1, . . . , ν5}) = {ν1, ν2, ν3}. Indeed, a causal set for ν4 would need to contain both ν2 and ν3, but this is not possible,
since ν2 # ν3 by Clause (2a) of Definition 5.7. In fact s?λ2 # s?λ1 · p!λ1. Then, ν5 will also be pruned by the narrowing, since
any causal set for ν5 should contain ν4.

We can now finally define the event structure associated with a network. The intuition is that the events appearing
in some configuration of the event structure should correspond exactly to the transitions executable in some state of the
network.

5 In fact, every event of a PES occurs in a configuration.
8

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
Definition 5.13 (Event structure of a network). The event structure of network N is the triple

SN (N) = (NE(N),≺N, # N)

where:

1. NE(N) = n(CE(N)) with
CE(N) = {{p :: η,q :: η′} | p� P �∈N,q� Q �∈N, η∈PE(P), η′∈PE(Q),p :: η �̂ q :: η′}

2. ≺N is the restriction of ≺ to the set NE(N);
3. # N is the restriction of # to the set NE(N).

The set of n-events of the ES associated with a network N is the narrowing of its set of candidate n-events, CE(N),
which contains all pairs of dual located events that may be constructed from two different components of N. We give now
a simple example that justifies the use of the narrowing function for building the set of events of a network ES.

Example 5.14. Let N = p� q?λ · r!λ′ � ‖ r� p?λ′ �. Then CE(N) contains the unique n-event ν = {p :: q?λ · r!λ′, r :: p?λ′}. If we did
not apply the narrowing function to CE(N), namely if we took CE(N) as the set of n-events for SN (N), then {ν} would be
a possible configuration of SN (N), which is clearly wrong, since the network N does not have a corresponding transition.
Instead, by applying the narrowing function to CE(N) we obtain NE(N) = n(CE(N)) = ∅, since the n-event ν has no causal
set in CE(N), which is what we expect.

The set of n-events of a network ES can be infinite, as shown by the following example.

Example 5.15. Let P be as in Example 4.4, Q = p?λ; Q + p?λ′ and N = p� P � ‖ q� Q �. Then

NE(N) = {{p :: q!λ · . . . · q!λ︸ ︷︷ ︸
n

,q :: p?λ · . . . · p?λ︸ ︷︷ ︸
n

} | n ≥ 1} ∪ {{p :: q!λ · . . . · q!λ︸ ︷︷ ︸
n

·q!λ′,q :: p?λ · . . . · p?λ︸ ︷︷ ︸
n

·p?λ′} | n ≥ 0}

A simple variation of this example shows that even within the events of a network ES, an n-event ν may have an infinite
number of causal sets. Let ν = {r :: p?λ · s!λ′, s :: r?λ′} be as in Example 5.10. Consider the network N′ = p� P ′ � ‖ q� Q � ‖
r� R � ‖ s� S �, where P ′ = q!λ; P ′ ⊕ q!λ′; r!λ, Q is as above, R = p?λ; s!λ′ and S = r?λ′ . Then ν has an infinite number of
causal sets En = {νn} in NE(N′), where

νn = {p :: q!λ · . . . · q!λ︸ ︷︷ ︸
n

·q!λ′ · r!λ, r :: p?λ}

On the other hand, a causal set may only cause a finite number of events in a network ES, since the number of branches in
any choice is finite, as well as the number of participants in the network.

Theorem 5.16. Let N be a network. Then SN (N) is a flow event structure with an irreflexive conflict relation.

Proof. The relation ≺N is irreflexive since η < η′ implies ν �= ν ′ , where η, η′, ν, ν ′ are as in Definition 5.7(1). As for the
conflict relation, note first that a conflict between an n-event and itself could not be derived by Clause (2b) of Definition 5.7,
since the two located events of an n-event are dual by construction. Lastly, symmetry and irreflexivity of the conflict relation
follow from the corresponding properties of conflict between p-events. �

The fact that the conflict relation is irreflexive in our network FESs means that we do not exploit the possibility of
self-conflicts offered by general FESs. This is due to the way we defined the set of events of our network FESs, using the
narrowing function as discussed previously. We could have chosen an alternative definition, introducing additional self-
conflicting events of a more liberal form6 which would have disappeared when building configurations (together with their
successors having no other possible causes), as it was done for CCS in [10]. However, this would have resulted in much
larger sets of events for network FESs, leading to more cumbersome examples and proofs. Our design choice here was to
reduce the set of events of network FESs by introducing already some semantic constraints on their events (like duality and
the existence of causal sets). It should be stressed, however, that the narrowing function does not exclude all non executable
events, as shown by the FES in Example 5.20, which has three events, each of which has a causal set but none of which is
executable.

6 For instance, we could have allowed events of the form {p :: η, ∗} to represent incomplete communications, and then prevented them from occurring by
putting them in conflict with themselves. In this case, the event ν of Example 5.14 would have also been prevented from occurring because of its unique
self-conflicting cause {p :: q?λ, ∗}, and we would not have needed the narrowing function.
9

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
Although they have an irreflexive conflict relation like PESs, our network FESs exhibit two important features which are not
shared by PESs, namely non-hereditary conflict (as shown by the FES given in Fig. 5, where the two conflicting events ν ′

1
and ν ′

2 have a common successor ν) and causality cycles (as shown by the FES in Example 5.20, where there is a circular
dependency among the three events ν1, ν2 and ν3).

Note that n-events with disjoint sets of locations may be related by the transitive closure of the flow relation, as illus-
trated by the next example, which also shows how n-events inherit the flow relation from the causality relation of their
p-events.

Example 5.17. Let N be the network

p�q!λ1 � ‖ q�p?λ1; r!λ2 � ‖ r�q?λ2; s!λ3 � ‖ s� r?λ3 �

Then SN (N) has three network events

ν1={p :: q!λ1,q :: p?λ1} ν2={q :: p?λ1 · r!λ2, r :: q?λ2} ν3={r :: q?λ2 · s!λ3, s :: r?λ3}
The flow relation obtained by Definition 5.13 is: ν1 ≺ ν2 and ν2 ≺ ν3. These two flows are inherited from the causal-
ity relations within the process ESs associated with participants q and r, respectively. The non-empty configurations are
{ν1}, {ν1, ν2} and {ν1, ν2, ν3}. Note that SN (N) has only one proving sequence per configuration (which is the one given by
the numbering of events).

Clearly, if a network is unary, then the set of events of its FES is empty. If a network is binary, then its FES may be
turned into a PES by replacing ≺ with its reflexive and transitive closure ≺∗ . To prove this result, we first show a property
of n-events of binary networks. We say that an n-event ν is binary if the participants occurring in the p-events of ν are
contained in loc(ν).

Lemma 5.18. Let ν and ν ′ be binary n-events with loc(ν) = loc(ν ′). Then ν # ν ′ iff p :: η ∈ ν and p :: η′ ∈ ν ′ imply η # η′ .

Proposition 5.19. Let N = p1� P1 � ‖ p2� P2 � and SN (N) = (NE(N), ≺N, #). Then n(CE(N)) = CE(N) and the structure SN∗ (N) =def

(NE(N), ≺∗
N, #) is a prime event structure.

Proof. We first show that n(CE(N)) = CE(N). By Definition 5.13(1)

CE(N) = {{p1 :: η1,p2 :: η2} | η1 ∈PE(P1),η2 ∈PE(P2),p1 :: η1 �̂ p2 :: η2}
Let {p1 :: η1, p2 :: η2} ∈ CE(N). Since p1 :: η1 �̂ p2 :: η2 and all the actions in η1 involve p2 and all the actions in η2 involve
p1, we know that η1 and η2 have the same length n ≥ 1 and for each i, 1 ≤ i ≤ n, the prefixes of length i of η1 and η2,
written ηi

1 and ηi
2, must themselves be dual. Then {p1 :: ηi

1, p2 :: ηi
2} ∈ CE(N) for each i, 1 ≤ i ≤ n, hence {p1 :: η1, p2 :: η2}

has a causal set in CE(N).
We prove now that the reflexive and transitive closure ≺∗

N of ≺N is a partial order. Since by definition ≺∗
N is a preorder, we

only need to show that it is antisymmetric. Define the length of an n-event ν = {p1 :: η1, p2 :: η2} to be length(ν)=def | η1 | +
| η2 | (where | η | is the length of η). Let now ν, ν ′ ∈ NE(N), with ν = {p1 :: η1, p2 :: η2} and ν ′ = {p1 :: η′

1, p2 :: η′
2}. By

definition ν ≺N ν ′ implies ηi < η′
i for some i = 1, 2, which in turn implies | ηi | < | η′

i | . As observed above, η1 and η2 must
have the same length, and so must η′

1 and η′
2. This means that if ν ≺N ν ′ then length(ν) = | η1 | + | η2 | < | η′

1 | + | η′
2 | =

length(ν ′). From this we can conclude that if ν ≺∗
N ν ′ and ν ′ ≺∗

N ν , then necessarily ν = ν ′ .
Finally we show that the relation # satisfies the required properties. By Theorem 5.16 we only need to prove that # is
hereditary. Let ν and ν ′ be as above. If ν # ν ′ , then by Lemma 5.18 η1 # η′

1 and η2 # η′
2. Let now ν ′′ = {p1 :: η′′

1, p2 :: η′′
2}. If

ν ′ ≺∗
N ν ′′ , this means that there exist ν1, . . . , νn such that ν ′ ≺N ν1 . . . ≺N νn = ν ′′ . We prove by induction on n that ν # ν ′′ .

For n = 1 we have ν ′ ≺N ν ′′ . Then by Clause (1) of Definition 5.13 we have η′
j < η′′

j for some j ∈ {1, 2}. Since ηi # η′
i for

all i ∈ {1, 2} and # is hereditary on p-events, we deduce η j # η′′
j , which implies ν # ν ′′ . Suppose now n > 1. By induction

ν # νn−1. Since νn−1 ≺N νn = ν ′′ we then obtain ν # ν ′′ by the same argument as in the base case. �
If a network has more than two participants, then the duality requirement on its n-events is not sufficient to ensure the

absence of circular dependencies.7 For instance, in the following ternary network (which may be viewed as representing the
3-philosopher deadlock) the relation ≺∗ is not a partial order.

7 This is a well-known issue in multiparty session types, which motivated the introduction of global types in [39], see Section 6.
10

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
Example 5.20. Let N be the network

p� r?λ;q!λ′ � ‖ q�p?λ′; r!λ′′ � ‖ r�q?λ′′;p!λ �

Then SN (N) has three n-events

ν1 = {p :: r?λ, r :: q?λ′′ ·p!λ} ν2 = {p :: r?λ ·q!λ′,q :: p?λ′} ν3 = {q :: p?λ′ · r!λ′′, r :: q?λ′′}
By Definition 5.13(1) we have ν1 ≺ ν2 ≺ ν3 and ν3 ≺ ν1. The only configuration of SN (N) is the empty configuration, because
the only set of n-events that satisfies downward-closure up to conflicts is X = {ν1, ν2, ν3}, but this is not a configuration
because ≺∗

X is not a partial order (recall that ≺X is the restriction of ≺ to X) and hence the condition (3) of Definition 3.4
is not satisfied.

5.2. Further properties

In this subsection, we first prove two properties of the conflict relation in network ESs: non disjoint n-events are always
in conflict, and conflict induced by Clause (2b) of Definition 5.7 is semantically inherited. We then discuss the relationship
between causal sets and prime configurations and prove two further properties of causal sets, which are shared with prime
configurations8: finiteness, and the existence of a causal set for each event in a configuration. Finally, observing that the
FES of a network may be viewed as the product of the PESs of its processes, we proceed to prove a classical property for
ES products, namely that their projections on their components preserve configurations. To this end, we define a projection
function from n-events to participants, yielding p-events, and we show that configurations of a network ES project down to
configurations of the PESs of its processes.

Let us start with the conflict properties. By definition, two n-events intersect each other if and only if they share a
located event p :: η. Otherwise, the two n-events are disjoint. Note that if p :: η ∈ (ν ∩ ν ′), then loc(ν) = loc(ν ′) = {p, q},
where q = pt(act(η)). The next proposition establishes that two distinct intersecting n-events in NE are in conflict.

Lemma 5.21 (Sharing of located events implies conflict). If ν, ν ′ ∈NE and ν �= ν ′ and (ν ∩ ν ′) �= ∅, then ν # ν ′ .

Although conflict is not hereditary in FESs, we prove that a conflict due to incompatible mutual projections (i.e., a conflict
derived by Clause (2b) of Definition 5.7) is semantically inherited. Let ϑ↘n denote the prefix of length n of ϑ .

Proposition 5.22 (Semantic conflict hereditariness). Let p :: η ∈ ν and q :: η′ ∈ ν ′ with p �= q. Let n = min{|η � q |, |η′ � p |}. If
¬((η�q) ↘n � (η′�p) ↘n), then there exists no configuration X such that ν, ν ′ ∈X.

Proof. Suppose ad absurdum that X is a configuration such that ν, ν ′ ∈ X. If | η�q | = | η′ �p | then ν # ν ′ by Defini-
tion 5.7(2b) and we reach immediately a contradiction. So, assume | η�q | > | η′�p | = n. This means that | η | > 1 and
thus there exists a non-empty causal set Eν of ν such that Eν ⊆ X. Let η0 < η be such that | η0 �q | = | η′ �p | = n. By
definition of causal set, there exists ν0 ∈ Eν such that p :: η0 ∈ ν0. By Definition 5.7(2b) we have then ν0 # ν ′ , contradicting
the fact that X is conflict-free. �

We prove now two further properties of causal sets. For the reader familiar with ESs, the notion of causal set may
be reminiscent of that of prime configuration [60], which similarly consists of a complete set of causes for a given event.9

However, there are some important differences: the first is that a causal set does not include the event it causes, unlike a
prime configuration. The second is that a causal set only contains direct causes of an event, and thus it is not downward-
closed up to conflicts, as opposed to a prime configuration. The last difference is that, while a prime configuration uniquely
identifies its caused event, a causal set may cause different events, as shown in Example 5.10.

A common feature of prime configurations and causal sets is that they are both finite. For causal sets, this is implied by
minimality together with Clause (2) of Definition 5.9, as shown by the following proposition.

Proposition 5.23. Let ν ∈ E v ⊆NE. If E is a causal set of ν in E v, then E is finite.

Proof. Suppose ν = {p :: η, q :: η′}. We show that | E | ≤ | η | + | η′ | − 2, where | E | is the cardinality of E . By Condition
(2) of Definition 5.9, for each η0 < η and η′

0 < η′ there must be ν0, ν ′
0 ∈ E such that p :: η0 ∈ ν0 and q :: η′

0 ∈ ν ′
0. Note that

ν0 and ν ′
0 could possibly coincide. Moreover, there cannot be ν ′ ∈ E such that p :: η0 ∈ ν ′ �= ν0 or q :: η′

0 ∈ ν ′ �= ν ′
0, since this

would contradict the minimality of E (and also its conflict-freeness, since by Lemma 5.21 we would have either ν ′ # ν0 or
ν ′ # ν ′

0). Hence the number of events in E is at most (| η | − 1) + (| η′ | − 1). �
8 A prime configuration is a configuration with a unique maximal element, its culminating event.
9 In PESs, the prime configuration associated with an event is unique, while it is not unique in FESs and more generally in Stable ESs, just like a causal

set.
11

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
A key property of causal sets, which is again shared with prime configurations, is that each configuration includes a
unique causal set for each n-event in the configuration.

Lemma 5.24. If X is a configuration of SN (N) and ν ∈X, then there is a unique causal set E of ν such that E ⊆X.

In the remainder of this section we show that projections of n-event configurations give p-event configurations. We start
by formalising the projection function of n-events on participants, which yields p-events, and showing that it is downward
surjective.

Definition 5.25 (Projection of n-events on participants).

projp(ν) =
{
η if p :: η ∈ ν,

undef ined otherwise.

The projection function projp(·) is extended to sets of n-events in the obvious way:

projp(X) = {η | ∃ν ∈ X . projp(ν) = η}

Example 5.26. Let {ν1, ν2, ν3} be the configuration defined in Example 5.17. We get

projq({ν1, ν2, ν3}) = {p?λ1,p?λ1 · r!λ2}

Example 5.27. Let N and ν be as in Example 5.14. As observed there, if we did not apply narrowing the set of events of
SN (N) would be the singleton {ν}, which would also be a configuration of SN (N). However, projp(ν) = {q?λ · r!λ′} would
not be a configuration in SP(P), since it would contain the event q?λ · r!λ′ without its cause q?λ.

Narrowing ensures that each projection of the set of n-events of a network FES on one of its participants is downward
surjective (according to Definition 3.8).

Proposition 5.28 (Downward surjectivity of projections). Let SN(N) = (NE(N), ≺N, # N) and SP(P) = (PE(P), ≤P , # P) and
p� P � ∈ N. Then the partial function projp :NE(N) ⇀PE(P) is downward surjective.

Proof. As mentioned already in Section 3, any PES S = (E, ≤, #) may be viewed as a FES, with ≺ given by < (the strict
ordering underlying ≤). Let η ∈PE(P) and ν ∈NE(N). Then the property we need to show is:

η <P projp(ν) =⇒ ∃ν ′ ∈NE(N) . η = projp(ν
′)

Note that η <P projp(ν) implies projp(ν) = η ·η′ for some η′ . Recall that NE(N) = n(CE(N)), where n(·) is the narrowing
function (Definition 5.11).
By definition of narrowing, p :: η ·η′ ∈∈NE(N) implies that there is E ⊆NE(N) such that E is a causal set of ν in NE(N).
Therefore p :: η ·η′ ∈ ν implies p :: η∈∈E and so p :: η∈∈NE(N), which is what we wanted to show. �
Theorem 5.29 (Projection of n-events preserves configurations). If p� P � ∈ N, then X ∈ C(SN (N)) implies projp(X) ∈ C(SP(P)).

Proof. Clearly, projp(X) is conflict-free. We show that it is also downward-closed. If ν ∈X, by Lemma 5.24 there is a causal
set E of ν such that E ⊆X. If p :: η ∈ ν and η′ < η, by Definition 5.9 there is ν ′ ∈ E such that p :: η′ ∈ ν ′ . We conclude that
ν ′ ∈X, and therefore η′ ∈ projp(X). �

Notice that the reverse of Theorem 5.29 is not true, namely p� P � ∈ N does not imply that each configuration of C(SP(P))

can be obtained by projecting some configuration of C(SN (N)) on p. Consider for instance the network N = p� q?λ �. Then
{q?λ} ∈ C(SP(P)), while C(SN (N)) = ∅.

The reader may wonder why our ES semantics for sessions is not cast in categorical terms, like classical ES semantics
for process calculi [60,17], where process constructions arise as categorical constructions (e.g., parallel composition arises
as a categorical product). In fact, a categorical formulation of our semantics would not be possible, due to our two-level
syntax for processes and networks, which does not allow networks to be further composed in parallel. However, it should
be clear that our construction of a network FES from the process PESs of its components is a form of parallel composition,
and the properties expressed by Proposition 5.28 and Theorem 5.29 give some evidence that this construction satisfies the
conditions usually required for a categorical product of ESs.
12

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
6. Global types

This section is devoted to our type system for multiparty sessions. Global types describe the communication protocols
involving all session participants. Usually, global types are projected into local types and typing rules are used to derive
local types for processes [39,19,40]. The simplicity of our calculus allows us to project directly global types into processes
and to have exactly one typing rule, see Figs. 2 and 3. This section is split in two subsections.
The first subsection presents the projection of global types onto processes, together with the proof of its soundness. More-
over it introduces a boundedness condition on global types, which is crucial for our type system to ensure progress.
The second subsection presents the type system, as well as an LTS for global types. Lastly, the properties of Subject Reduc-
tion, Session Fidelity and Progress are shown. The omitted proofs can be found in Appendix B.

6.1. Well-formed global types

Global types are built from choices among communications.

Definition 6.1 (Global types). Global types G are defined by:

G ::=coind p → q :�i∈Iλi;Gi | End

where I is not empty, λh �= λk for all h, k ∈ I , h �= k, i.e. messages in choices are all different.

As for processes, ::=coind indicates that global types are defined coinductively. Again, we focus on regular terms. Since
also processes are defined coinductively this allows for a simpler definition of projection, see Fig. 2.

G�r = 0 if r /∈ part(G)

(p → q :�i∈I λi;Gi)�r =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�i∈I p?λi;Gi �r if r = q,⊕

i∈I q!λi;Gi �r if r = p,

G1�r if r /∈ {p,q} and r ∈ part(G1) and

Gi �r = G1�r for all i ∈ I

Fig. 2. Projection of global types onto participants.

The type p → q :�i∈Iλi; Gi formalises a protocol which starts with the communication of a message λk from p to q, for
some k ∈ I , and then, depending on which λk was chosen by p, continues as Gk .

When I is a singleton, a choice p → q :�i∈Iλi; Gi will be rendered simply as p λ→ q ; G. When I contains only two
elements, as for processes we will use the binary choice notation p → q : (λ1; G1 � λ2; G2). Trailing End types will be
omitted.

Global types may be viewed as trees whose internal nodes are decorated by pq, leaves by End, and edges by messages λ.
Given a global type, the sequences of decorations of nodes and edges on the path from the root to an edge in the tree of the
global type are traces, in the sense of Definition 2.3. We denote by Tr+(G) the set of traces of G. By definition, Tr+(End) = ∅
and each trace in Tr+(G) is non-empty.

The set of participants of a global type G, part(G), is defined to be the union of the sets of participants of all its traces,
namely

part(G) =
⋃

σ∈Tr+(G)

part(σ)

Note that the regularity assumption ensures that the set of participants is finite.

The projection of a global type onto participants is given in Fig. 2. As usual, projection is defined only when it is defined
on all participants. Because of the simplicity of our calculus, the projection of a global type, when defined, is simply a
process. The definition is coinductive, so a global type with an infinite (regular) tree produces a process with a regular tree.
The projection of a choice type on the sender produces an output process, i.e. a process sending one of its possible messages
to the receiver and then acting according to the projection of the corresponding branch. Similarly for the projection on the
receiver, which produces an input process.

Projection of a choice type on the other participants is defined only if it produces the same process for all the branches
of the choice. This is a standard condition for multiparty session types [39].

Our coinductive definition of global types is more permissive than that based on the standard μ-notation used in [39],
because it allows more global types to be projected, as shown by the following example.
13

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
Example 6.2. The global type G = p → q : (λ1; q
λ3→ r � λ2; G) is projectable and

• G �p = P = q!λ1 ⊕ q!λ2; P
• G �q = Q = p?λ1; r!λ3 + p?λ2; Q
• G �r = q?λ3

On the other hand, the corresponding global type based on the μ-notation

G′ = μt.p → q : (λ1;q
λ3→ r� λ2; t)

is not projectable because G′ �r is not defined.

However, this additional permissiveness will not be exploited in the present paper. Indeed, the global type G of Exam-
ple 6.2 will be ruled out by the condition of boundedness, introduced next, which aims at forbidding starvation. On the
other hand, such permissiveness could be of interest whenever starvation is not a concern.

To achieve progress, we need to ensure that each network participant occurs in every computation, whether finite or
infinite. This means that each type participant must occur in every path of the tree of the type. Projectability already
ensures that each participant of a choice type occurs in all its branches. This implies that if one branch of the choice
gives rise to an infinite path, either the participant occurs at some finite depth in this path, or this path crosses infinitely
many branching points in which the participant occurs in all branches. In the latter case, since the depth of the participant
increases when crossing each branching point, there is no bound on the depth of the participant over all paths of the type.
Hence, to ensure that all type participants occur in all paths, it is enough to require the existence of such bounds. This
motivates the following definition of depth and boundedness.

Definition 6.3 (Depth and boundedness). Let the two functions depth(σ , p) and depth(G, p) be defined by:

depth(σ ,p) =
{

n if σ = σ1 ·α ·σ2 and |σ1 | = n − 1 and p /∈ part(σ1) and p ∈ part(α)

0 otherwise

Then
depth(G, p) = sup{depth(σ , p) | σ ∈ Tr+(G)}

We say that a global type G is bounded if depth(G′, p) is finite for all subtrees G′ of G and for all participants p.

If depth(G, p) is finite, then there are no paths in the tree of G in which p is delayed indefinitely. Note that if depth(G, p)

is finite, G may have subtrees G′ for which depth(G′, p) is infinite as the following example shows.

Example 6.4. Consider G′ = q λ→ r; G where G is as defined in Example 6.2. Then we have:

depth(G′,p) = 2 depth(G′,q) = 1 depth(G′, r) = 1

whereas

depth(G,p) = 1 depth(G,q) = 1 depth(G, r) = ∞
since

Tr+(G) = {pqλ2 · · ·pqλ2︸ ︷︷ ︸
n

·pqλ1 · qrλ3 | n ≥ 0} ∪ {pqλ2 · · ·pqλ2 · · · }

and sup{2, 3, . . .} = ∞.

The depths of the participants in G which are not participants of its root communication decrease in the immediate
subtrees of G. The proof is trivial since, if G = p → q :�i∈Iλi; Gi , then σ ∈ Tr+(G) implies σ = pqλi ·σ ′ and σ ′ ∈ Tr+(Gi)

for some i ∈ I .

Lemma 6.5. If G = p → q :�i∈Iλi; Gi and r ∈ part(G)\{p, q}, then depth(G, r) > depth(Gi, r) for all i ∈ I .

We can now show that the definition of projection given in Fig. 2 is sound for bounded global types.

Lemma 6.6. If G is bounded, then G �r is a partial function for all r.
14

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
Boundedness and projectability single out the global types we want to use in our type system.

Definition 6.7 (Well-formed global types). We say that the global type G is well formed if G is bounded and G �p is defined
for all p.

Clearly it is sufficient to check that G �p is defined for all p ∈ part(G), since otherwise G �p = 0.

6.2. Type system

The definition of well-typed networks is given in Fig. 3. We first define a preorder on processes, P ≤ Q , meaning that
process P can be used where we expect process Q . More precisely, P ≤ Q if either P is equal to Q , or we are in one of two
situations: either both P and Q are output processes with the same receiver and choice of messages, and their continuations
after the send are two processes P ′ and Q ′ such that P ′ ≤ Q ′; or they are both input processes with the same sender and
choice of messages, and P may receive more messages than Q (and thus have more behaviours) but whenever it receives
the same message as Q their continuations are two processes P ′ and Q ′ such that P ′ ≤ Q ′ . The rules are interpreted
coinductively, since the processes may have infinite (regular) trees.

0 ≤ 0 [≤ -0]
Pi ≤ Q i i ∈ I

�i∈I∪ J p?λi; Pi ≤ �i∈I p?λi; Q i

===============================[≤-In]
Pi ≤ Q i i ∈ I⊕

i∈I p!λi; Pi ≤ ⊕
i∈I p!λi; Q i

===========================[≤-Out]

Pi ≤ G�pi i ∈ I part(G) ⊆ {pi | i ∈ I}
� �i∈I pi� Pi � : G

[Net]

Fig. 3. Preorder on processes and network typing rule.

A network is well typed if all its participants have associated processes that behave as specified by the projections
of a global type. In Rule [Net], the condition part(G) ⊆ {pi | i ∈ I} ensures that all participants of the global type appear
in the network. Moreover it permits additional participants that do not appear in the global type, allowing the typing of
sessions containing p� 0 � for a fresh p — a property required to guarantee invariance of types under structural congruence
of networks.

Example 6.8. The first network of Example 5.15 and the network of Example 5.17 can be typed respectively by

G = p → q : (λ;G� λ′)
G′ = p

λ1→ q;q
λ2→ r; r

λ3→ s

It is handy to define the LTS for global types given in Fig. 4. Rule [Icomm] is justified by the fact that in a projectable
global type p → q :�i∈Iλi; Gi , the behaviours of the participants different from p and q are the same in all branches, and
hence they are independent from the choice and may be executed before it. This LTS respects well-formedness of global
types, as shown by Lemma 6.9.

p → q :�i∈I λi;Gi
pqλ j−−→ G j j ∈ I [Ecomm]

Gi
α−→ G′

i for all i ∈ I part(α) ∩ {p,q} = ∅
[Icomm]

p → q :�i∈I λi;Gi
α−→ p → q :�i∈I λi;G′

i

Fig. 4. LTS for global types.

Lemma 6.9. If G is a well-formed global type and G
pqλ−−→ G′ , then G′ is a well-formed global type.

Given this lemma, we will focus on well-formed global types from now on.

We end this section with the expected results of Subject Reduction, Session Fidelity [39,40] and Progress [19,51]. The
proof of Progress relies on Session Fidelity. Both Subject Reduction and Session Fidelity will be used in Section 8 to show
15

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
the isomorphism between the configuration domains of the FES of a typable network and the PES of its global type (Theo-
rem 8.18).

Theorem 6.10 (Subject Reduction). If � N : G and N α−→ N′ , then G α−→ G′ and � N′ : G′ .

Theorem 6.11 (Session Fidelity). If � N : G and G α−→ G′ , then N α−→ N′ and � N′ : G′ .

We are now able to prove that in a typable network, every participant whose process is not terminated may eventually
perform a communication. This property is generally referred to as progress.

Theorem 6.12 (Progress). If � N : G and p� P � ∈ N, then N σ ·α−−→ N′ and p ∈ part(α).

Proof. We prove by induction on d = depth(G, p) that: if � N : G and p� P � ∈ N, then G σ ·α−−→ G′ with p ∈ part(α). This will
imply N σ ·α−−→ N′ by Session Fidelity (Theorem 6.11).

Case d = 1. In this case G = q → r :�i∈Iλi; Gi and p ∈ {q, r} and G
qrλh−−→ Gh for some h ∈ I by Rule [Ecomm].

Case d > 1. In this case G = q → r :�i∈Iλi; Gi and p /∈ {q, r}. By Lemma 6.5 this implies depth(Gi, p) < d for all i ∈ I . Using

Rule [Ecomm] we get G
qrλi−−→ Gi for all i ∈ I . By Session Fidelity, N

qrλi−−→ Ni and � Ni : Gi for all i ∈ I . Moreover, since p /∈ {q, r}
we also have p� P � ∈ Ni for all i ∈ I . By induction Gi

σi ·αi−−−→ G′
i with p ∈ part(αi) for all i ∈ I . We conclude G

qrλi ·σi ·αi−−−−−−→ G′
i for

all i ∈ I . �
The proof of the progress theorem shows that the execution strategy which uses only Rule [EComm] is fair, since there

are no infinite transition sequences where some participant is stuck. This is due to the boundedness condition on global
types.

Example 6.13. The second network of Example 5.15 and the network of Example 5.20 cannot be typed because they do not
enjoy progress. Notice that the candidate global type for the second network of Example 5.15:

G′′ = p → q : (λ;G′′� λ′;p
λ→ r; r

λ′→ s)

is not bounded, given that depth(G′′, r) and depth(G′′, s) are not finite.
Moreover we cannot define a global type whose projections are greater than or equal to the processes associated with the
network of Example 5.20.

7. Event structure semantics of global types

We define now the event structure associated with a global type, whose events are equivalence classes of particular
traces, and we show that it is a PES.

The unique omitted proof can be found in Appendix C.
We recall that a trace σ ∈ Traces is a finite sequence of communications (see Definition 2.3). We will use the following

notational conventions:

• We denote by σ [i] the i-th element of σ , i > 0.
• If i ≤ j, we define σ [i ... j] = σ [i] · · ·σ [j] to be the subtrace of σ consisting of the (j − i + 1) elements starting from the

i-th one and ending with the j-th one. If i > j, we convene σ [i ... j] to be the empty trace ε .

If not otherwise stated we assume that σ has n elements, so σ = σ [1 ... n].

We start by defining an equivalence relation on Traces which allows swapping of communications with disjoint partici-
pants.

Definition 7.1 (Permutation equivalence). The permutation equivalence on Traces is the least equivalence ∼ such that

σ ·α ·α′ ·σ ′ ∼ σ ·α′ ·α ·σ ′ if part(α) ∩ part(α′) = ∅
We denote by [σ]∼ the equivalence class of the trace σ , and by Traces/ ∼ the set of equivalence classes on Traces. Note that
[ε]∼ = {ε} ∈ Traces/ ∼, and [α]∼ = {α} ∈ Traces/ ∼ for any α. Moreover |σ ′| = |σ | for all σ ′ ∈ [σ]∼ .
16

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
The events associated with a global type, called g-events and denoted by γ , γ ′ , are equivalence classes of particular
traces that we call pointed. Intuitively, in a pointed trace all communications but the last one are causes of some subsequent
communication. Formally:

Definition 7.2 (Pointed trace). A trace σ = σ [1 ... n] is said to be pointed if

for all i, 1 ≤ i < n, part(σ [i]) ∩ part(σ [(i + 1) ...n]) �= ∅

Note that the condition of Definition 7.2 must be satisfied only by the σ [i] with i < n, thus it is vacuously satisfied by
any trace of length 1.

Example 7.3. Let α1 = pqλ1, α2 = rsλ2 and α3 = rpλ3. Then σ1 = α1 and σ3 = α1 ·α2 ·α3 are pointed traces, while σ2 =
α1 ·α2 is not a pointed trace.

We use last(σ) to denote the last communication of σ .

Lemma 7.4. Let σ be a pointed trace. If σ ∼ σ ′ , then σ ′ is a pointed trace and last(σ) = last(σ ′).

Definition 7.5 (Global event). Let σ = σ ′ ·α be a pointed trace. Then γ = [σ]∼ is a global event, also called g-event, with
communication α, notation cm(γ) = α.
We denote by GE the set of g-events.

Notice that cm(γ) is well defined due to Lemma 7.4.

We now introduce an operator of prefixing of a g-event γ by a communication α, which acts as follows: if α is a cause
of some communication in the trace of γ , then α is added at the beginning of the trace, otherwise γ is left unchanged. This
ensures that the operator always transforms a g-event into another g-event. We call this operator “retrieval of a g-event
before a communication”, because it yields the g-event obtained from γ if we were to execute the communication α before
γ . This operator is the counterpart of the “residual of a g-event after a communication”, which yields the g-event obtained
from γ after executing the communication α from γ , see Definition 8.9.

Definition 7.6 (Retrieval of g-events before communications).

1. The retrieval operator ◦ applied to a communication and a g-event is defined by:

α ◦ [σ]∼ =
{

[α ·σ]∼ if part(α) ∩ part(σ) �= ∅
[σ]∼ otherwise

2. The operator ◦ naturally extends to traces:

ε ◦ γ = γ (α ·σ) ◦ γ = α ◦ (σ ◦ γ)

Using the retrieval, we can define the mapping ev(·) which, applied to a trace σ , gives the g-event representing the
communication last(σ) prefixed by its causes occurring in σ .

Definition 7.7. The g-event generated by a non-empty trace is defined by:

ev(σ ·α) = σ ◦ [α]∼
Clearly cm(ev(σ)) = last(σ).

Example 7.8. A trace of the global type p λ1→ q; q λ2→ r; s λ3→ p is pqλ1 · qrλ2 · spλ3, and

ev(pqλ1 · qrλ2 · spλ3) = pqλ1 · qrλ2 ◦ {spλ3} = pqλ1 ◦ {spλ3} = {pqλ1 · spλ3}

We proceed now to define the causality and conflict relations on g-events. To define the conflict relation, it is handy
to define the projection of a trace on a participant, which gives the sequence of the participant’s actions in the trace. The
result is a p-event. In this way we can define the conflict between g-events using the conflict between p-events.
17

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
Definition 7.9 (Projection of traces on participants).

1. The projection of α onto r, α@r , is defined by:

pqλ@r =

⎧⎪⎨⎪⎩
q!λ if r = p

p?λ if r = q

ε if r /∈ {p,q}
2. The projection of a trace σ onto r, σ@r , is defined by:

ε@r = ε (α · σ)@r = α@r · σ@r

Definition 7.10 (Causality and conflict relations on g-events). The causality relation ≤ and the conflict relation # on the set of
g-events GE are defined by:

1. γ ≤ γ ′ if γ = [σ]∼ and γ ′ = [σ ·σ ′]∼ for some σ , σ ′;
2. [σ]∼ # [σ ′]∼ if σ@p # σ ′@p for some p.

If γ = [σ ·α ·σ ′ ·α′]∼ , then the communication α must be done before the communication α′ . This is expressed by the
causality [σ ·α]∼ ≤ γ . An example is [pqλ]∼ ≤ [rsλ′ ·pqλ · sqλ′′]∼ .
As regards conflict, note that if σ ∼ σ ′ then σ@p = σ ′@p for all p, because ∼ does not swap communications which share
some participant. Hence, conflict is well defined, since it does not depend on the trace chosen in the equivalence class.
The condition σ@p # σ ′@p states that participant p does the same actions in both traces up to some point, after which
it performs two different actions in σ and σ ′ . For example [pqλ · rpλ1 ·qpλ′]∼ # [pqλ · rpλ2]∼ , since (pqλ · rpλ1 ·qpλ′)@p =
q!λ · r?λ1 ·q?λ′ # q!λ · r?λ2 = (pqλ · rpλ2)@p .

Definition 7.11 (Event structure of a global type). The event structure of the global type G is the triple

SG(G) = (GE(G),≤G, # G)

where:

1. GE(G) = {ev(σ) | σ ∈ Tr+(G)}
2. ≤G is the restriction of ≤ to the set GE(G);
3. # G is the restriction of # to the set GE(G).

Note that, in case the tree of G is infinite, the set GE(G) is denumerable.

Example 7.12. Let G1 = p λ1→ q; r λ2→ s; r λ3→ p and G2 = r λ2→ s; p λ1→ q; r λ3→ p. Then GE(G1) =GE(G2) = {γ1, γ2, γ3} where

γ1 = {pqλ1} γ2 = {rsλ2} γ3 = {pqλ1 · rsλ2 · rpλ3, rsλ2 ·pqλ1 · rpλ3}
with γ1 ≤ γ3 and γ2 ≤ γ3. The configurations are {γ1}, {γ2}, {γ1, γ2} and {γ1, γ2, γ3}, and the proving sequences are

γ1 γ2 γ1;γ2 γ2;γ1 γ1;γ2;γ3 γ2;γ1;γ3

If G′ is as in Example 6.8, then GE(G′) = {γ1, γ2, γ3} where

γ1 = {pqλ1} γ2 = {pqλ1 ·qrλ2} γ3 = {pqλ1 ·qrλ2 · rsλ3}
with γ1 ≤ γ2 ≤ γ3. The configurations are {γ1}, {γ1, γ2} and {γ1, γ2, γ3}, and there is a unique proving sequence correspond-
ing to each configuration.

Theorem 7.13. Let G be a global type. Then SG(G) is a prime event structure.

Proof. We show that ≤ and # satisfy Properties (2) and (3) of Definition 3.1. Reflexivity and transitivity of ≤ follow from
the properties of concatenation and of permutation equivalence. As for antisymmetry, by Definition 7.10(1) [σ]∼ ≤ [σ ′]∼
implies σ ′ ∼ σ ·σ1 for some σ1 and [σ ′]∼ ≤ [σ]∼ implies σ ∼ σ ′ ·σ2 for some σ2. Hence σ ∼ σ ·σ1 ·σ2, which implies
σ1 = σ2 = ε . Irreflexivity and symmetry of # follow from the corresponding properties of # on p-events.
As for conflict hereditariness, suppose that [σ]∼ # [σ ′]∼ ≤ [σ ′′]∼ . By Definition 7.10(1) and (2) we have respectively that
σ ′ ·σ1 ∼ σ ′′ for some σ1 and σ@p # σ ′@p for some p. Hence also σ@p # (σ ′ ·σ1)@p , whence by Definition 7.10(2) we
conclude that [σ]∼ # [σ ′′]∼ . �
18

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
N = p� q!λ1; r!λ ⊕ q!λ2; r!λ � ‖ q� p?λ1; s!λ′ + p?λ2; s!λ′ � ‖ r� p?λ; s!λ′′ � ‖ s� q?λ′; r?λ′′ �

ν1 = {p :: q!λ1,q :: p?λ1}

ν ′′
1 = {q :: p?λ1 · s!λ′, s :: q?λ′}

ν = {r :: p?λ · s!λ′′, s :: q?λ′ · r?λ′′}

ν2 = {p :: q!λ2,q :: p?λ2}

ν ′′
2 = {q :: p?λ2 · s!λ′, s :: q?λ′}

ν ′
1 = {p :: q!λ1 · r!λ, r :: p?λ} ν ′

2 = {p :: q!λ2·r!λ , r :: p?λ}

#

� �

·············

····························

�
�
�
��

�
�

�
��

�
�

�
�

�
�

���

	
	
	

	
	

	
		

�����
�

Fig. 5. FES of the network N.

G = p → q : (λ1; p λ→ r; q λ′→ s; r λ′′→ s � λ2; p λ→ r; q λ′→ s; r λ′′→ s)

γ1 = [pqλ1]∼

γ ′′
1 = [pqλ1 · qsλ′]∼

γ = [pqλ1 · prλ · qsλ′ · rsλ′′]∼ γ ′ = [pqλ2 · prλ · qsλ′ · rsλ′′]∼

γ2 = [pqλ2]∼

γ ′
1 = [pqλ1 · prλ]∼ γ ′′

2 = [pqλ2 · qsλ′]∼ γ ′
2 = [pqλ2 · prλ]∼

#

	
	
	

		

�
�

�
���

	
	
	
		

�
�

�
���

	
	
	

		

· ·

�
�

�
���

	
	
	

		

�
�

�
���

Fig. 6. PES of the type G.

Observe that, while our interpretation of networks as FESs exactly reflects the concurrency expressed by the syntax of
networks, our interpretation of global types as PESs exhibits more concurrency than that given by the syntax of global types.

We conclude this section with two pictures that summarise the features of our ES semantics and illustrate the difference
between the FES of a network and the PES of its type. In general these two ESs are not isomorphic, unless the FES of the
network is itself a PES.

Consider the network FES pictured in Fig. 5, where the arrows represent the flow relation and all the n-events on the left
of the dotted line are in conflict with all the n-events on the right of the line. In particular, notice that the conflicts between
n-events with a common location are deduced by Clause (2a) of Definition 5.7, while the conflicts between n-events with
disjoint sets of locations, such as ν ′

1 and ν ′′
2 , are deduced by Clause (2b) of Definition 5.7. Observe also that the n-event ν

has two different causal sets in NE(N), namely {ν ′
1, ν

′′
1 } and {ν ′

2, ν
′′
2 }. The reader familiar with ESs will have noticed that

there are also two prime configurations whose maximal element is ν , namely {ν1, ν ′
1, ν

′′
1 , ν} and {ν2, ν ′

2, ν
′′
2 , ν}. It is easy to

see that the network N can be typed with the global type G shown in Fig. 6.
19

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
Consider now the PES of the type G pictured in Fig. 6, where the arrows represent the covering relation of the partial
order of causality and inherited conflicts are not shown. Note that while the FES of N has a unique maximal n-event ν ,
the PES of its type G has two maximal g-events γ and γ ′ . This is because an n-event only records the computations that
occurred at its locations, while a g-event records the global computation and keeps a record of each choice, including those
involving locations that are disjoint from those of its last communication. Indeed, g-events correspond exactly to prime
configurations.

Note that the FES of a network may be easily recovered from the PES of its global type by using the following function
gn(·) that maps g-events to n-events:

gn(γ) = {p :: σ@p ,q :: σ@q } if γ = [σ]∼ with part(cm(γ)) = {p,q}
On the other hand, the inverse construction is not as direct. First of all, an n-event in the network FES may give rise to

several g-events in the type PES, as shown by the n-event ν in Fig. 5, which gives rise to the pair of g-events γ and γ ′ in
Fig. 6. Moreover, the local information contained in an n-event is not sufficient to reconstruct the corresponding g-events:
for each n-event, we need to consider all the prime configurations that culminate with that event, and then map each of
these configurations to a g-event. Hence, we need a function ng(·) that maps n-events to sets of prime configurations of
the FES, and then maps each such configuration to a g-event. We will not explicitly define this function here, since we miss
another important ingredient to compare the FES of a network and the PES of its type, namely a structural characterisation
of the FESs that represent typable networks. Indeed, if we started from the FES of a non typable network, this construction
would not be correct. Consider for instance the network N′ obtained from N by omitting the output r!λ from the second
branch of the process of p. Then the FES of N′ would not contain the n-event ν ′

2 and the event ν would have the unique
causal set {ν ′

1, ν
′′
1 }, and the unique prime configuration culminating with ν would be {ν1, ν ′

1, ν
′′
1 , ν}. Then our construction

would give a PES that differs from that of type G only for the absence of the g-events γ ′
2 and γ ′ . However, the network N′

is not typable and thus we would expect the construction to fail. Note that in the FES of N′ , the n-event ν ′′
2 is a cause of

ν but does not belong to any causal set of ν . Thus a possible well-formedness property to require for FESs to be images of
a typable network would be that each cause of each n-event belong to some causal set of that event. However, this would
still not be enough to exclude the FES of the non typable network N′′ obtained from N′ by omitting the output s!λ′ from
the second branch of the process of q.

To conclude, in the absence of a semantic counterpart for the well-formedness properties of global types, which eludes
us for the time being, we will follow another approach here, namely we will compare the FESs of networks and the PESs of
their types at a more operational level, by looking at their configuration domains and by relating their configurations to the
transition sequences of the underlying networks and types.

8. Equivalence of the two event structure semantics

In this section we establish our main result for typable networks (Theorem 8.18), namely the isomorphism between the
domain of configurations of the FES of a typable network and the domain of configurations of the PES of its global type.
To do so, we first relate the transition sequences of networks and global types to the configurations of their respective
ESs. Then, we exploit our results of Subject Reduction (Theorem 6.10) and Session Fidelity (Theorem 6.11), which relate
the transition sequences of networks and their global types, to derive a similar relation between the configurations of
their respective ESs. The schema of our proof is described by the diagram in Fig. 7. Here, SR stands for Subject Reduction
and SF for Session Fidelity, and ν1; . . . ; νn and γ1; . . . ; γn are proving sequences of SN (N) and SG(G), respectively. Finally,
nec(σ) and gec(σ) denote the proving sequences of n-events and g-events which correspond to the trace σ (as given by
Definition 8.3 and Definition 8.13). Theorem 8.8 says that, if ν1; · · · ; νn is a proving sequence of SN (N), then N σ−→ N′ , where
σ = cm(ν1) · . . . · cm(νn). By Subject Reduction (Theorem 6.10) G σ−→ G′ . This implies that gec(σ) is a proving sequence of
SG(G) by Theorem 8.15. Dually, Theorem 8.16 says that, if γ1; · · · ; γn is a proving sequence of SG(G), then G σ−→ G′ , where

ν1; . . . ;νn = nec(σ)

Th.8.8

N σ = cm(ν1) · . . . · cm(νn)

SR

Th.8.7

N′

G

Th.8.15

σ = cm(γ1) · . . . · cm(γn)

SF

G′

gec(σ) = γ1; . . . ;γn

Th.8.16

Fig. 7. Isomorphism proof in a nutshell.
20

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
σ = cm(γ1) · . . . · cm(γn). By Session Fidelity (Theorem 6.11) N σ−→ N′ . Lastly, nec(σ) is a proving sequence of SN (N) by
Theorem 8.7. The equalities in the top and bottom lines are proved in Lemmas 8.4(1a) and 8.14(1).

This section is divided in two subsections: Section 8.1, which handles the upper part of the above diagram, and Sec-
tion 8.2, which handles the lower part of the diagram and then connects the two parts using both SR and SF within
Theorem 8.18, our closing result. The omitted proofs of Sections 8.1 and 8.2 can be found in Appendices D and E, respec-
tively.

8.1. Relating transition sequences of networks and proving sequences of their ESs

The aim of this subsection is to relate the traces that label the transition sequences of networks with the configurations
of their FESs. We start by showing how network communications affect n-events in the associated FES. To this end we
define two partial operators ♦ and �, which applied to a communication α and an n-event ν yield another n-event ν ′
(when defined), which represents the event ν before the communication α or after the communication α, respectively. We
call “retrieval” the ♦ operator (in agreement with Definition 7.6) and “residual” the � operator.

Formally, the operators ♦ and � are defined as follows.

Definition 8.1 (Retrieval and residual of n-events with respect to communications).

1. The retrieval operator ♦ applied to a communication and a located event returns the located event obtained by prefixing
the p-event by the projection of the communication:

α♦ (p :: η) = p :: (α@p) ·η
2. The residual operator � applied to a communication and a located event returns the located event obtained by erasing

from the p-event the projection of the communication (if possible):

α� (p :: η) = p :: η′ if η = (α@p) ·η′

3. The operators ♦ and � naturally extend to n-events and to traces:

α♦ ({p :: η,q :: η′}) = {α♦ (p :: η),α♦ (q :: η′)}
α� ({p :: η,q :: η′}) = {α� (p :: η),α� (q :: η′)}

ε♦ν = ν (α ·σ)♦ν = α♦ (σ ♦ν)

ε�ν = ν (α ·σ)�ν = σ � (α�ν)

Note that the operator ♦ is always defined. Instead pqλ� r :: η is undefined if r ∈ {p, q} and either η is just one atomic action
or pqλ@r is not the first atomic action of η. For example pqλ� p :: q!λ and pqλ� p :: q!λ′ · η with λ �= λ′ are undefined for
any η.

The retrieval and residual operators are inverse of each other. Moreover they preserve the flow and conflict relations.

Lemma 8.2 (Properties of retrieval and residual for n-events).

1. If α� ν is defined, then α♦ (α�ν) = ν;
2. α� (α♦ν) = ν;
3. If ν ≺ ν ′ , then α♦ ν ≺ α♦ ν ′;
4. If ν ≺ ν ′ and both α� ν and α� ν ′ are defined, then α� ν ≺ α� ν ′;
5. If ν # ν ′ , then α♦ ν # α♦ ν ′;
6. If ν # ν ′ and both α� ν and α� ν ′ are defined, then α� ν # α� ν ′;
7. If α♦ ν # α♦ ν ′ , then ν # ν ′ .

Starting from the trace σ �= ε that labels a transition sequence in a network, one can reconstruct the corresponding
sequence of n-events in its FES. Recall that σ [1 ... i] is the prefix of length i of σ and σ [i ... j] is the empty trace if i > j.

Definition 8.3 (Building sequences of n-events from traces). If σ is a non-empty trace with σ [i] = piqiλi , 1 ≤ i ≤ n, we define
the sequence of n-events corresponding to σ by

nec(σ) = ν1; · · · ;νn

where νi = σ [1 ... i − 1]♦ {pi :: qi !λi,qi :: pi?λi} for 1 ≤ i ≤ n.
21

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
It is immediate to see that, if σ = pqλ, then nec(σ) is the event {p :: q!λ, q :: p?λ}.

We show now that σ can be recovered from nec(σ), and that two n-events occurring in nec(σ) cannot be in conflict.
Moreover, the n-event obtained by applying nec to a communication cannot be in conflict with the n-event obtained by
applying the retrieval to the same communication and an arbitrary n-event.

Lastly, we relate the sequences of n-events generated by two traces one of which is a suffix of the other. Given that the
mapping nec is based on the retrieval operator, this relation is naturally expressed using the retrieval and residual operators.

Lemma 8.4 (Properties of nec(·)).

1. Let nec(σ) = ν1; · · · ; νn. Then

(a) cm(νi) = σ [i] for all i, 1 ≤ i ≤ n;
(b) If 1 ≤ h, k ≤ n, then ¬(νh # νk).

2. ¬(nec(α) # α♦ ν) for all ν .
3. Let σ = α · σ ′ and σ ′ �= ε . If nec(σ) = ν1; · · · ; νn and nec(σ ′) = ν ′

2; · · · ; ν ′
n, then α♦ ν ′

i = νi and α� νi = ν ′
i for all i, 2 ≤ i ≤ n.

Notice that if α� ν is undefined and ν is an n-event of a network with communication α, then either ν = nec(α) or
ν # nec(α).

Lemma 8.5. If N α−→ N′ and ν ∈NE(N), then ν = nec(α) or ν # nec(α) or α� ν is defined.

The following lemma, which is technically quite challenging as it involves reasoning about the fixpoint properties of the
set of n-events of a network FES (as defined by the narrowing function), relates the sets of n-events of two network FESs,
where one network is a one-step derivative of the other, by means of the retrieval and residual operators.

Lemma 8.6. Let N α−→ N′ . Then

1. {nec(α)} ∪ {α♦ ν | ν ∈NE(N′)} ⊆NE(N);
2. {α� ν | ν ∈NE(N) and α� ν defined} ⊆NE(N′).

We may now prove the correspondence between the traces labelling the transition sequences of a network and the
proving sequences of its FES.

Theorem 8.7. If N σ−→ N′ , then nec(σ) is a proving sequence in SN (N).

Proof. The proof is by induction on σ .

Base case. Let σ = α. From N α−→ N′ and Lemma 8.6(1) nec(α) ∈ NE(N). Since nec(α) has no causes, by Definition 3.6 we
conclude that nec(α) is a proving sequence in SN (N).

Inductive case. Let σ = α ·σ ′ . From N σ−→ N′ we get N α−→ N′′ σ ′−→ N′ for some N′′ . Let nec(σ) = ν1; · · · ; νn and nec(σ ′) =
ν ′

2; · · · ; ν ′
n . By induction nec(σ ′) is a proving sequence in SN (N′′).

We show that nec(σ) is a proving sequence in SN (N). By Lemma 8.4(1b) nec(σ ′) is conflict free. By Lemma 8.4(3) νi =
α♦ ν ′

i for all i, 2 ≤ i ≤ n. This implies νi ∈NE(N) for all i, 2 ≤ i ≤ n by Lemma 8.6(1) and ¬(ν1 # ν j) for all i, j, 2 ≤ i, j ≤ n
by Lemma 8.2(7). Finally, since ν1 = nec(α), by Lemma 8.4(2) we obtain ¬(ν1 # νi) for all i, 2 ≤ i ≤ n. We conclude that
nec(σ) is conflict-free and included in NE(N). Let ν ∈ NE(N) and ν ≺ νk for some k, 1 ≤ k ≤ n. This implies k > 1 since
nec(α) has no causes. Hence νk = α♦ ν ′

k . By Lemma 8.5, we know that ν = nec(α) or ν # nec(α) or α� ν is defined. We
consider the three cases. Let part(α) = {p, q}.
Case ν = nec(α). In this case we conclude immediately since nec(α) = ν1 and 1 < k.
Case ν # nec(α). Since nec(α) = ν1, if ν1 ≺ νk we are done. If ν1 ⊀ νk , then loc(νk) ∩ {p, q} = ∅ otherwise ν1 # νk . We
get νk = α♦ ν ′

k = ν ′
k . Since ν ≺ νk , there exists r :: η ∈ ν and r :: η′ ∈ νk = ν ′

k such that η < η′ , where r /∈ {p, q} because
r ∈ loc(νk). Since nec(σ ′) is a proving sequence in SN (N′′), by Lemma 5.24 there is ν ′

h ∈NE(N′′) such that r :: η ∈ ν ′
h . Since

α♦ r :: η = r :: η we get r :: η ∈ νh . This implies νh ≺ νk , where νh # ν by Lemma 5.21.
Case α� ν defined. We get α� ν ≺ ν ′

k by Lemma 8.2(4). Since nec(σ ′) is a proving sequence in SN (N′′), there is h < k such
that either α� ν = ν ′

h or α� ν # ν ′
h ≺ ν ′

k . In the first case ν = α♦ (α�ν) = α♦ ν ′
h = νh by Lemma 8.2(1). In the second case:

• from α� ν # ν ′
h we get (α♦ (α�ν)) # (α♦ ν ′

h) by Lemma 8.2(5), which implies ν # νh by Lemma 8.2(1), and
• from ν ′ ≺ ν ′ we get (α♦ ν ′) ≺ (α♦ ν ′) by Lemma 8.2(3), namely νh ≺ νk . �
h k h k

22

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
Theorem 8.8. If ν1; · · · ; νn is a proving sequence in SN (N), then N σ−→ N′ , where σ = cm(ν1) · · · cm(νn).

Proof. The proof is by induction on n.
Case n = 1. Let ν1 = {p :: ζ · q!λ, q :: ζ ′ · p?λ}. Then cm(ν1) = pqλ. We first show that ζ = ζ ′ = ε . Assume ad absurdum that
ζ �= ε or ζ ′ �= ε . By narrowing, this implies that there is ν ∈ NE(N) such that ν ≺ ν1, contradicting the fact that ν1 is a
proving sequence.
By Definition 5.13(1) we have N = p� P � ‖ q� Q � ‖ N0 with q!λ ∈ PE(P) and p?λ ∈ PE(Q). Whence by Definition 4.3(1) we
get P = ⊕

i∈I q!λi; Pi and Q = � j∈ J p?λ j; Q j where λ = λk for some k ∈ I ∩ J . Therefore

N
pqλ−−→ p� Pk � ‖ q� Q k � ‖ N0

Case n > 1. Let ν1 and N be as in the basic case, N′′ = p� Pk � ‖ q� Q k � ‖ N0 and α = pqλ. Since ν1; · · · ; νn is a proving
sequence, we have ¬(νl # νl′) for all l, l′ such that 1 ≤ l, l′ ≤ n. Moreover, for all l, 2 ≤ l ≤ n we have νl �= ν1 = nec(α), thus
α� νl is defined by Lemma 8.5. Let ν ′

l = α� νl for all l, 2 ≤ l ≤ n, then ν ′
l ∈NE(N′′) by Lemma 8.6(2).

We show that ν ′
2; · · · ; ν ′

n is a proving sequence in SN (N′′). First notice that for all l, 2 ≤ l ≤ n, ¬(νl # νl′) implies ¬(ν ′
l # ν ′

l′)
by Lemma 8.2(5) and (1). Let now ν ≺ ν ′

h for some h, 2 ≤ h ≤ n. By Lemma 8.2(3) and (1) α♦ ν ≺ α♦ (α�νh) = νh . This
implies by Definition 3.6 that there is h′ < h such that either α♦ ν = νh′ or α♦ ν # νh′ ≺ νh . Therefore, since ν ′

l is defined
for all l, 2 ≤ l ≤ n, we get either ν = ν ′

h′ by Lemma 8.2(2) or ν # ν ′
h′ ≺ ν ′

h by Lemma 8.2(6) and (4).

By induction N′′ σ ′−→ N′ where σ ′ = cm(ν ′
2) · · · cm(ν ′

n). Since cm(νl) = cm(ν ′
l) for all l, 2 ≤ l ≤ n we get σ = α · σ ′ . Hence

N α−→ N′′ σ ′−→ N′ is the required transition sequence. �
8.2. Relating transition sequences of global types and proving sequences of their ESs

In this subsection, we relate the traces that label the transition sequences of global types with the configurations of their
PESs. As for n-events, we need retrieval and residual operators for g-events. The first operator was already introduced in
Definition 7.6, so we only need to define the second one, which is given next.

Definition 8.9 (Residual of g-events after communications).

1. The residual operator • applied to a communication and a g-event is defined by:

α • [σ]∼ =
{

[σ ′]∼ if σ ∼ α ·σ ′ and σ ′ �= ε

[σ]∼ if part(α) ∩ part(σ) = ∅
2. The operator • naturally extends to traces:

ε • γ = γ (α ·σ) • γ = σ • (α • γ)

The operator •, applied to a communication and a g-event, gives the g-event obtained by erasing the communication,
if it occurs in head position (modulo ∼) in the given g-event, and leaves the g-event unchanged if its participants are
disjoint from those of the communication. Note that the operator α • [σ]∼ is undefined whenever either [σ]∼ = {α} or one
of the participants of α occurs in σ but the first communication of σ is different from α. For example pqλ • [pqλ]∼ and
pqλ • [pqλ′ ·σ]∼ with λ �= λ′ are undefined for any σ .

The following lemma gives some simple properties of the retrieval and residual operators for g-events. The first five
statements correspond to those of Lemma 8.2 for n-events. The last three statements give properties that are relevant only
for the operators ◦ and •.

Lemma 8.10 (Properties of retrieval and residual for g-events).

1. If α • γ is defined, then α ◦ (α • γ) = γ ;
2. α • (α ◦ γ) = γ ;
3. If γ1 < γ2 , then α ◦ γ1 < α ◦ γ2;
4. If γ1 < γ2 and both α • γ1 and α • γ2 are defined, then α • γ1 < α • γ2;
5. If γ1 # γ2 , then α ◦ γ1 # α ◦ γ2;
6. If γ < α ◦ γ ′ , then either γ = [α]∼ or α • γ < γ ′;
7. If part(α1) ∩ part(α2) = ∅, then α1 ◦ (α2 ◦ γ) = α2 ◦ (α1 ◦ γ);
8. If part(α1) ∩ part(α2) = ∅ and both α2 • (α1 ◦ γ), α2 • γ are defined, then α1 ◦ (α2 • γ) = α2 • (α1 ◦ γ).
23

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
The next lemma relates the retrieval and residual operator with the global types in the branches of choices.

Lemma 8.11. The following hold:

1. If γ ∈GE(G), then pqλ ◦ γ ∈GE(p → q :�i∈Iλi; Gi), where λ = λk and G = Gk for some k ∈ I ;
2. If γ ∈GE(p → q :�i∈Iλi; Gi) and pqλk • γ is defined, then pqλk • γ ∈GE(Gk), where k ∈ I .

The following lemma plays the role of Lemma 8.6 for n-events.

Lemma 8.12. Let G α−→ G′ .

1. If γ ∈GE(G′), then α ◦ γ ∈GE(G);
2. If γ ∈GE(G) and α • γ is defined, then α • γ ∈GE(G′).

Each non-empty trace gives rise to a sequence of g-events, compare with Definition 8.3.

Definition 8.13 (Building sequences of g-events from traces). We define the sequence of g-events corresponding to a non-empty trace
σ by

gec(σ) = γ1; · · · ;γn

where γi = ev(σ [1 ... i]) for all i, 1 ≤ i ≤ n.

We show that gec(·) has similar properties as nec(·), see Lemma 8.4(1). The proof is straightforward.

Lemma 8.14. Let gec(σ) = γ1; · · · ; γn.

1. cm(γi) = σ [i] for all i, 1 ≤ i ≤ n.
2. If 1 ≤ h, k ≤ n, then ¬(γh # γk);

We may now prove the correspondence between the traces labelling the transition sequences of a global type and the
proving sequences of its PES. Let us stress the difference between the set of traces Tr+(G) of a global type G as defined at
page 13 and the set of traces that label the transition sequences of G, which is a larger set due to the internal Rule [Icomm]
of the LTS for global types given in Fig. 4.

Theorem 8.15. If G σ−→ G′ , then gec(σ) is a proving sequence in SG(G).

Proof. By induction on σ .

Base case. Let σ = α, then gec(α) = [α]∼ . We use a further induction on the inference of the transition G α−→ G′ .
Let G = p → q :�i∈Iλi; Gi , G′ = Gh and α = pqλh for some h ∈ I . By Definition 7.11(1) [pqλh]∼ ∈GE(G).

Let G = p → q :�i∈Iλi; Gi and G′ = p → q :�i∈Iλi; G′
i and Gi

α−→ G′
i for all i ∈ I and part(α) ∩ {p, q} = ∅. By induction

[α]∼ ∈GE(Gi) for all i ∈ I . By Lemma 8.11(1) pqλi ◦ [α]∼ ∈GE(G) for all i ∈ I . By Definition 7.11(1) pqλi ◦ [α]∼ = [α]∼ , since
part(α)∩{p, q}=∅. We conclude [α]∼ ∈GE(G).

Inductive case. Let σ = α ·σ ′ with σ ′ �= ε . From G σ−→ G′ we get G α−→ G′′ σ ′−→ G′ for some G′′ . Let gec(σ) = γ1; · · · ; γn and
gec(σ ′) = γ ′

2; · · · ; γ ′
n . By induction gec(σ ′) is a proving sequence in SG(G′′). By Definitions 8.13 and 7.6 γi = α ◦ γ ′

i , which
implies α • γi = γ ′

i by Lemma 8.10(2) for all i, 2 ≤ i ≤ n.
We can show that γ1 = [α]∼ ∈GE(G) as in the proof of the base case. By Lemma 8.12(1) γi ∈GE(G) since γ ′

i ∈GE(G′′) and
α • γi = γ ′

i for all i, 2 ≤ i ≤ n. We prove that gec(σ) is a proving sequence in SG(G). Let γ < γk for some k, 1 ≤ k ≤ n.
Note that this implies k > 1. Since γk = α ◦ γ ′

k by Lemma 8.10(6) either γ = [α]∼ or α • γ < γ ′
h . If γ = [α]∼ = γ1 we are

done. Otherwise α • γ ∈GE(G′′) by Lemma 8.11(2). Since gec(σ ′) is a proving sequence in SG(G′′), there is h < k such that
α • γ = γ ′

h and this implies γ = α ◦ (α • γ) = α ◦ γ ′
h = γh by Lemma 8.10(1). �

Theorem 8.16. If γ1; · · · ; γn is a proving sequence in SG(G), then G σ−→ G′ , where σ = cm(γ1) · · · · · cm(γn).

Proof. The proof is by induction on the length n of the proving sequence. Let cm(γ1) = α and {p, q} = part(α).
Case n = 1. Since γ1 is the first event of a proving sequence, we have γ1 = [α]∼ . We show this case by induction on
d = depth(G, p) = depth(G, q).

Case d = 1. Let α = pqλ and G = p → q :�i∈Iλi; Gi and λ = λh for some h ∈ I . Then G α−→ Gh by rule [Ecomm].
24

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
Case d > 1. Let G = r → s : �i∈Iλi; Gi and {r, s} ∩ {p, q} = ∅. By Definition 8.9(1) rsλi • γ1 is defined for all i ∈ I since
{r, s} ∩{p, q} = ∅. This implies rsλi •γ1 ∈GE(Gi) for all i ∈ I by Lemma 8.11(2). By induction hypothesis Gi

α−→ G′
i for all i ∈ I .

Then we can apply rule [Icomm] to derive G α−→ r → s :�i∈Iλi; G′
i .

Case n > 1. Let G α−→ G′′ be the transition as obtained from the base case. We show that α • γ j is defined for all j, 2 ≤ j ≤ n.
If α • γk were undefined for some k, 2 ≤ k ≤ n, then by Definition 8.9(1) either γk = γ1 or γk = [σ]∼ with σ � α ·σ ′ and
part(α) ∩ part(σ) �= ∅. In the second case α @ p # σ @ p or α @ q # σ @ q, which implies γk # γ1. So both cases are impossible.
If α • γ j is defined, by Lemma 8.12(2) we get α • γ j ∈GE(G′′) for all j, 2 ≤ j ≤ n.
We show that γ ′

2; · · · ; γ ′
n is a proving sequence in SG(G′′) where γ ′

j = α • γ j for all j, 2 ≤ j ≤ n. By Lemma 8.10(1)
γ j = α ◦ γ ′

j for all j, 2 ≤ j ≤ n. Then by Lemma 8.10(5) no two events in the sequence γ ′
2; · · · ; γ ′

n can be in conflict. Let
γ ∈ GE(G′′) and γ < γ ′

h for some h, 2 ≤ h ≤ n. By Lemma 8.12(1) α ◦ γ and α ◦ γ ′
h belong to GE(G). By Lemma 8.10(3)

α ◦ γ < α ◦ γ ′
h . By Lemma 8.10(1) α ◦ γ ′

h = γh . Let γ ′ = α ◦ γ . Then γ ′ < γh implies, by Definition 3.6 and the fact that
SG(G) is a PES, that there is k < h such that γ ′ = γk . By Lemma 8.10(1) we get γ = α • γ ′ = α • γk = γ ′

k .

Since γ ′
2; · · · ; γ ′

n is a proving sequence in SG(G′′), by induction G′′ σ ′−→ G′ where σ ′ = cm(γ ′
2) · . . . · cm(γ ′

n). Let σ =
cm(γ1) · . . . · cm(γn). Since cm(γ ′

j) = cm(γ j) for all j, 2 ≤ j ≤ n, we have σ = α ·σ ′ . Hence G α−→ G′′ σ ′−→ G′ is the required
transition sequence. �

The last ingredient required to prove our main theorem is the following separation result from [9] (Lemma 2.8 p. 12):

Lemma 8.17 (Separation [9]). Let S = (E, ≺, #) be a flow event structure and X, X′ ∈ C(S) be such that X ⊂ X′ . Then there exist
e ∈X′\X such that X ∪ {e} ∈ C(S).

We may now finally show the correspondence between the configurations of the FES of a network and the configurations
of the PES of its global type. Let � denote isomorphism on domains of configurations.

Theorem 8.18 (Isomorphism). If � N : G, then D(SN (N)) �D(SG(G)).

Proof. By Theorem 8.8 if ν1; · · · ; νn is a proving sequence of SN (N), then N σ−→ N′ where σ = cm(ν1) · · · cm(νn). By applying
iteratively Subject Reduction (Theorem 6.10) G σ−→ G′ and � N′ : G′ . By Theorem 8.15 gec(σ) is a proving sequence of SG(G).

By Theorem 8.16 if γ1; · · · ; γn is a proving sequence of SG(G), then G σ−→ G′ where σ = cm(γ1) · · · cm(γn). By applying
iteratively Session Fidelity (Theorem 6.11) N σ−→ N′ and � N′ : G′ . By Theorem 8.7 nec(σ) is a proving sequence of SN (N).

Therefore we have a bijection between D(SN (N)) and D(SG(G)), given by nec(σ) ↔ gec(σ) for any σ generated by the
(bisimilar) LTSs of N and G.

We show now that this bijection preserves inclusion of configurations. By Lemma 8.17 it is enough to prove that if
ν1; · · · ; νn ∈ C(SN (N)) is mapped to γ1; · · · ; γn ∈ C(SG(G)), then ν1; · · · ; νn; ν ∈ C(SN (N)) iff γ1; · · · ; γn; γ ∈ C(SG(G)),
where γ1; · · · ; γn; γ is the image of ν1; · · · ; νn; ν under the bijection. I.e. let nec(σ ·α) = ν1; · · · ; νn; ν and gec(σ ·α) =
γ1; · · · ; γn; γ . This implies σ = cm(ν1) · · · cm(νn) = cm(γ1) · · · cm(γn) and α = cm(ν) = cm(γ) by Lemmas 8.4 and 8.14.

By Theorem 8.8, if ν1; · · · ; νn; ν is a proving sequence of SN (N), then N σ−→ N0
α−→ N′ . By applying iteratively Subject

Reduction (Theorem 6.10) G σ−→ G0
α−→ G′ and � N′ : G′ . By Theorem 8.15 gec(σ ·α) is a proving sequence of SG(G).

By Theorem 8.16, if γ1; · · · ; γn; γ is a proving sequence of SG(G), then G σ−→ G0
α−→ G′ . By applying iteratively Session

Fidelity (Theorem 6.11) N σ−→ N0
α−→ N′ and � N′ : G′ . By Theorem 8.7 nec(σ ·α) is a proving sequence of SN (N). �

9. Related work and conclusions

Event Structures (ESs) were introduced in Winskel’s PhD Thesis [60] and in the seminal paper by Nielsen, Plotkin and
Winskel [49], roughly in the same frame of time as Milner’s calculus CCS [47]. It is therefore not surprising that the
relationship between these two approaches for modelling concurrent computations started to be investigated very soon
afterwards. The first interpretation of CCS into ESs was proposed by Winskel in [61]. This interpretation made use of Stable
ESs, because PESs, the simplest form of ESs, appeared not to be flexible enough to account for CCS parallel composition.
Indeed, since CCS parallel composition allows for two concurrent complementary actions to either synchronise or occur
independently in any order, each pair of such actions gives rise to two forking computations: this requires duplication of
the same continuation process for these forking computations in PESs, while the continuation process may be shared by the
forking computations in Stable ESs, which allow for disjunctive causality. Subsequently, ESs (as well as other nonsequential
“denotational models” for concurrency such as Petri Nets) have been used as the touchstone for assessing noninterleaving
operational semantics for CCS: for instance, the pomset semantics for CCS by Boudol and Castellani [7,8] and the semantics
based on “concurrent histories” proposed by Degano, De Nicola and Montanari [29,27,28], were both shown to agree with
25

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
an interpretation of CCS processes into some class of ESs (PESs for [27,28], PESs with non-hereditary conflict for [7], and
FESs for [8]). Among the early interpretations of process calculi into ESs, we should also mention the PES semantics for TCSP
(Theoretical CSP [11,50]), proposed by Goltz and Loogen [46] and later generalised by Baier and Majster-Cederbaum [2], and
the Bundle ES semantics for LOTOS, proposed by Langerak [45] and extended by Katoen [43]. Like FESs, Bundle ESs are
a subclass of Stable ESs. We recall the relationships between the above classes of ESs (the reader is referred to [10] for
separating examples):

Prime E Ss ⊂ Bundle E Ss ⊂ F low E Ss ⊂ Stable E Ss ⊂ General E Ss

More sophisticated ES semantics for CCS, based on FESs and designed to be robust under action refinement [1,26,34],
were subsequently proposed by Goltz and van Glabbeek [57]. Importantly, all the above-mentioned classes of ESs, except
General ESs, give rise to the same prime algebraic domains of configurations, from which one can recover a PES by selecting
the complete prime elements.

More recently, ES semantics have been investigated for the π -calculus by Crafa, Varacca and Yoshida [21,58,22] and by
Cristescu, Krivine and Varacca [23–25]. Previously, other causal models for the π -calculus had already been put forward
by Jategaonkar and Jagadeesan [42], by Montanari and Pistore [48], by Cattani and Sewell [18] and by Bruni, Melgratti
and Montanari [12]. The main new issue, when addressing causality-based semantics for the π -calculus, is the implicit
causality induced by scope extrusion. Two alternative views of such implicit causality had been proposed in early work
on noninterleaving operational semantics for the π -calculus, respectively by Boreale and Sangiorgi [6] and by Degano and
Priami [30]. Essentially, in [6] an extruder (that is, an output of a private name) is considered to cause any action that uses
the extruded name, whether in subject or object position, while in [30] it is considered to cause only the actions that use
the extruded name in subject position. Thus, for instance, in the process P = νa (b〈a〉 | c〈a〉 | a), the two parallel extruders
are considered to be causally dependent in the former approach, and independent in the latter. All the causal models for the
π -calculus mentioned above, including the ES-based ones, take one or the other of these two stands. Note that opting for
the second one leads necessarily to a non-stable ES model, where there may be causal ambiguity within the configurations
themselves: for instance, in the above example the maximal configuration contains three events, the extruders b〈a〉, c〈a〉
and the input on a, and one does not know which of the two extruders enabled the input. Indeed, the paper [22] uses
non-stable ESs. The use of non-stable ESs (General ESs) to express situations where a computational step can merge parts
of the state is advocated for instance by Baldan, Corradini and Gadducci in [3]. These ESs give rise to configuration domains
that are not prime algebraic, hence the classical representation theorems have to be adjusted.

In our simple setting, where we deal only with single sessions and do not consider session interleaving nor delegation,
we can dispense with channels altogether, and therefore the question of parallel extrusion does not arise. In this sense,
our notion of causality is closer to that of CCS than to the more complex one of the π -calculus. However, even in a more
general setting, where participants would be paired with the channel name of the session they pertain to, the issue of
parallel extrusion would not arise: indeed, in the above example b and c should be equal, because participants can only
delegate their own channel, but then they could not be in parallel because of linearity, one of the distinguishing features
enforced by session types. Hence we believe that in a session-based framework the two above views of implicit causality
should collapse into just one.

We now briefly discuss our design choices.

• The calculus considered in the present paper uses synchronous communication - rather than asynchronous, buffered
communication - because this is how communication is classically modelled in ESs, when they are used to give semantics
to process calculi. We should mention however that after first proposing the present study in [15], we also considered
a calculus with asynchronous communication in the companion paper [16]. In that work too, networks are interpreted
as FESs, and their associated global types, which we called asynchronous types as they split communications into outputs
and inputs, are interpreted as PESs. The key result is again an isomorphism between the configuration domain of the FES
of a typed network and that of the PES of its type.

• Concerning the choice operator, we adopted here the basic (and most restrictive) variant for it, as it was originally
proposed for multiparty session calculi in [39]. This is essentially a simplifying assumption, and we do not foresee any
difficulty in extending our results to a more general choice operator, where the projection is rendered more flexible
through the use of a merge operator [31].

• As regards the preorder on processes, which is akin to a subtyping relation, we envisaged to use the standard subtyping,
in which a process with fewer outputs can be used in place of a process with more outputs. However, in that case
Session Fidelity would become weaker, since a transition in the LTS of a global type would only ensure a transition in
the LTS of the corresponding network, but not necessarily with the same labelling communication. The main drawback
would be that Theorem 8.18 would no longer hold: more precisely, the domains of network configurations would only be
embedded in (and not isomorphic to) the domains of their global type configurations. Notably, typability is independent
from the use of our preorder or of the standard one, as proved in [4].

As regards future work, we plan to define an asynchronous transition system (ATS) [5] for our calculus, along the lines
of [10], and show that it provides a noninterleaving operational semantics for networks that is equivalent to their FES
26

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
semantics. This would enable us also to investigate the issue of reversibility, jointly on our networks and on their FES
representations, since the ATS semantics would give us the handle to unwind networks, while the corresponding FESs could
be unrolled following one of the methods proposed in existing work on reversible event structures [53,25,36,37,35].

As mentioned at the end of Section 7, the quest for a semantic counterpart of our well-formedness conditions on global
types – namely, for properties that characterise the FESs obtained from typable networks – is still open. By way of compar-
ison, such semantic well-formedness conditions have been proposed in [56] for graphical choreographies, a truly concurrent
graphical model for global specifications with two kinds of forking nodes, representing respectively choice and parallel com-
position. In [56], those well-formedness conditions, called well-sequencing and well-branchedness, were shown to be sufficient
to ensure projectability on local specifications. In our case, the property corresponding to well-sequencing is automatically
ensured by our ES semantics, and we conjecture that the well-branchedness condition for choice nodes (corresponding to
projectability) could amount in our simpler setting10 to the following semantic condition:

Let ν1, ν2 ∈ NE(N) and p :: ζ · π ∈ ν1 and p :: ζ · π ′ ∈ ν2 with π �= π ′ and q = pt(π) = pt(π ′). If ν1 ≺∗ ν ′
1 for some

ν ′
1 ∈NE(N) such that r ∈ loc(ν ′

1) with r /∈ {p, q}, then ν2 ≺∗ ν ′
2 for some ν ′

2 ∈NE(N) such that r ∈ loc(ν ′
2).

This condition would allow us to rule out the FESs of both networks N′ and N′′ discussed at the end of Section 7. How-
ever, it should be completed with a condition corresponding to boundedness, and the conjunction of these two conditions
might still not be sufficient in general to ensure typability. We plan to further investigate this question in the near future.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgement

We are strongly indebted to the anonymous referees for their constructive remarks, which helped us improve the sub-
mitted version of the paper.

Appendix A. Proofs of Section 5

This section contains the proofs of Lemmas 5.18, 5.21 and 5.24.

Lemma 5.18. Let ν and ν ′ be binary n-events with loc(ν) = loc(ν ′). Then ν # ν ′ iff p :: η ∈ ν and p :: η′ ∈ ν ′ imply η # η′ .

Proof. The “if” direction holds by Definition 5.7(2a). We show the “only-if” direction. First observe that for any n-event
ν = {p :: η1, q :: η2} the condition p :: η1 �̂ q :: η2 of Definition 5.5 implies η1 �q � η2 �p by Definition 5.4, which in turn
implies | η1�q | = | η2�p | by Definition 5.3. If ν is a binary event, we also have | η1 | = | η1�q | and | η2 | = | η2�p | by
Definition 5.2, since all the actions of η1 involve q and all the actions of η2 involve p, and thus the projections do not erase
actions.
Assume now ν ′ = {p :: η′

1, q :: η′
2}. We consider two cases (the others being symmetric):

– ν # ν ′ because η1 # η′
1. Then η1�q � η2�p and η′

1�q � η′
2�p imply η2 # η′

2;
– ν # ν ′ because | η1�q | = | η′

2�p | and ¬(η1�q � η′
2�p). As argued before, we have | η2�p | = | η1�q | and | η′

2�p | =
| η′

1�q | . Then, from | η1�q | = | η′
2�p | and the above remark about binary events, we get | η2 | = | η1 | = | η′

2 | = | η′
1 | .

From ¬(η1�q � η′
2�p) it follows that η1 �= η′

1 and η2 �= η′
2. Then we may conclude, since | ηi | = | η′

i | and ηi �= η′
i imply

ηi # η′
i for i = 1, 2. �

Lemma 5.21. (Sharing of located events implies conflict) If ν, ν ′ ∈NE and ν �= ν ′ and (ν ∩ ν ′) �= ∅, then ν # ν ′ .

Proof. Let p :: η ∈ (ν ∩ ν ′) and loc(ν) = loc(ν ′) = {p, q}. Then there must exist η0, η′
0 such that q :: η0 ∈ ν and q :: η′

0 ∈ ν ′ .
From p :: η �̂ q :: η0 and p :: η �̂ q :: η′

0 it follows that η0 �p = η′
0�p . This, in conjunction with the fact that pt(act(η0)) =

pt(act(η′
0)) = p, implies that neither η0 < η′

0 nor η′
0 < η0. Thus η0 # η′

0 and therefore ν # ν ′ by Definition 5.7. �
Lemma 5.24. If X is a configuration of SN (N) and ν ∈X, then there is a unique causal set E of ν such that E ⊆X.

10 Our choice operator for global types is less general than that of [56].
27

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
Proof. By Definition 5.11, if ν ∈NE(N), then ν has at least one causal set included in NE(N). Let E ′ = {ν ′ ∈X | ν ′ ≺ ν}. By
Definition 3.4, E ′ ∪ {ν} is conflict-free. Moreover, if p :: η ∈ ν and η′ < η, then by Lemma 5.21 there is at most one ν ′′ ∈ E ′
such that p :: η′ ∈ ν ′′ . Therefore, E ′ ⊆ E for some causal set E of ν by Definition 5.9. We show that E ⊆ E ′ . Assume ad
absurdum that ν0 ∈ E\E ′. By definition of causal set, ν0 ≺ ν . By definition of E ′ , ν0 /∈ E ′ implies ν0 /∈ X. By Definition 3.4
this implies ν0 # ν1 ≺ ν for some ν1 ∈ X. Then ν1 ∈ E ′ by definition of E ′ , and thus ν1 ∈ E . Hence ν0, ν1 ∈ E and ν0 # ν1,
contradicting Definition 5.9. �
Appendix B. Proofs of Section 6

This section contains the proofs of Lemmas 6.6, 6.9, Theorems 6.10, 6.11 and of the auxiliary Lemmas B.1, B.2, B.3.

Lemma 6.6. If G is bounded, then G �r is a partial function for all r.

Proof. We redefine the projection ↓r as the largest relation between global types and processes such that (G, P) ∈↓r im-
plies:

i) if r /∈ part(G), then P = 0;
ii) if G = r → p :�i∈Iλi; Gi , then P = ⊕

i∈I q!λi; Pi and (Gi, Pi) ∈↓r for all i ∈ I;
iii) if G = p → r :�i∈Iλi; Gi , then P = �i∈I p?λi; Pi and (Gi, Pi) ∈↓r for all i ∈ I;
iv) if G = p → q :�i∈Iλi; Gi and r /∈ {p, q} and r ∈ part(Gi), then (Gi, P) ∈↓r for all i ∈ I .

The equality E of processes is the largest symmetric binary relation R on processes such that (P , Q) ∈ R implies:

(a) if P = ⊕
i∈I p!λi; Pi , then Q = ⊕

i∈I p!λi; Q i and (Pi, Q i) ∈ R for all i ∈ I;
(b) if P = �i∈I p?λi; Pi , then Q = �i∈I p?λi; Q i and (Pi, Q i) ∈ R for all i ∈ I .

It is then enough to show that the relation

Rr = {(P , Q) | ∃G . (G, P) ∈↓r and (G, Q) ∈↓r}
satisfies Clauses (a) and (b) (with R replaced by Rr), since this will imply Rr ⊆ E. Note first that (0, 0) ∈ Rr because
(End, 0) ∈↓r , and that (0, 0) ∈ E because Clauses (a) and (b) are vacuously satisfied by the pair (0, 0). The proof is by
induction on d = depth(G, r). We only consider Clause (b), the proof for Clause (a) being similar. So, assume (P , Q) ∈ Rr and
P = �i∈I p?λi; Pi .

Case d = 1. In this case G = p → r :�i∈Iλi; Gi and P = �i∈I p?λi; Pi and (Gi, Pi) ∈↓r for all i ∈ I . From (G, Q) ∈↓r we get
Q = �i∈I p?λi; Q i and (Gi, Q i) ∈↓r for all i ∈ I . Hence Q has the required form and (Pi, Q i) ∈ Rr for all i ∈ I .
Case d > 1. In this case G = p → q : � j∈ J λ

′
j; G j and r /∈ {p, q} and (G j, P) ∈↓r for all j ∈ J . From (G, Q) ∈↓r we get

(G j, Q) ∈↓r for all j ∈ J . Then (P , Q) ∈ Rr . �
We need a lemma relating the projections of a well-formed global type with its transitions.

Lemma B.1. Let G be a well-formed global type.

1. If G �p = ⊕
i∈I q!λi; Pi and G �q = � j∈ J p?λ′

j; Q j , then I = J , λi = λ′
i , G

pqλi−−→ Gi , Gi �p = Pi and Gi �q = Q i for all i ∈ I .

2. If G
pqλ−−→ G′ , then G �p = ⊕

i∈I q!λi; Pi , G �q = �i∈I p?λi; Q i , where λk = λ for some k ∈ I , and G′�r = G �r for all r /∈ {p, q}.

Proof. (1). The proof is by induction on d = depth(G, p).
If d = 1, then by definition of projection (see Fig. 2) G �p = ⊕

i∈I q!λi; Pi implies G = p → q :�i∈Iλi; Gi with Gi �p = Pi .

By the same definition G �q = � j∈ J p?λ′
j; Q j implies J = I and λ′

j = λ j and Q j = G j �q for all j ∈ J . Moreover G
pqλi−−→ Gi by

Rule [Ecomm] for all i ∈ I .
If d > 1, then G = r → s :�h∈Hλ′′

h; G′
h with {p, q} ∩ {r, s} = ∅. By definition of projection G �p = G′

h �p and G �q = G′
h �q for

all h ∈ H . By Lemma 6.5 depth(G, p) > depth(G′
h, p) for all h ∈ H . Then by induction I = J , λi = λ′

i , G
′
h

pqλi−−→ Gi
h , Gi

h �p = Pi

and Gi
h �q = Q i for all i ∈ I and all h ∈ H . Let Gi = r → s :�h∈Hλ′′

h; Gi
h . By Rule [Icomm] G

pqλi−−→ Gi for all i ∈ I . By definition
of projection Gi �p = Pi and Gi �q = Q i for all i ∈ I .
(2). The proof is by induction on the transition rules of Fig. 4.

The interesting case is:
Gh

pqλ−−→ G′
h h ∈ H {p,q} ∩ {s, t} = ∅

[Icomm]
s → t :� λ′ ;G

pqλ−−→ s → t :� λ′ ;G′

h∈H h h h∈H h h

28

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
with G = s → t : �h∈Hλ′
h; Gh and G′ = s → t : �h∈Hλ′

h; G′
h . By induction Gh �p = ⊕

i∈I q!λi; Pi , Gh �q = �i∈I p?λi; Q i ,
λ = λk for some k ∈ I and G′

h � r = Gh � r for all r /∈ {p, q} and all h ∈ H . By definition of projection G �p = Gh �p and
G �q = Gh �q for all h ∈ H . For r /∈ {p, q, s, t} we get G′ � r = G′

h � r = Gh � r = G � r . Moreover G′ �s = ⊕
h∈H t!λ′

h; G′
h �s =⊕

h∈H t!λ′
h; Gh �s = G �s and G′ �t = �h∈H t?λ′

h; G′
h �t = �h∈H s?λ′

h; Gh �s = G �t . �
Lemma 6.9. If G is a well-formed global type and G

pqλ−−→ G′ , then G′ is a well-formed global type.

Proof. If G
pqλ−−→ G′ , by Lemma B.1(1) and (2) G′ � r is defined for all r. The proof that depth(G′′, r) is finite for all r and G′′

subtree of G′ is easy by induction on the transition rules of Fig. 4. �
The proofs of Subject Reduction and Session Fidelity rely on the Inversion and Canonical Form lemmas whose proofs are

immediate.

Lemma B.2 (Inversion). If � N : G, then P ≤ G �p for all p� P � ∈ N.

Lemma B.3 (Canonical Form). If � N : G and p ∈ part(G), then p� P � ∈ N and P ≤ G �p .

Theorem 6.10. (Subject Reduction) If � N : G and N α−→ N′ , then G α−→ G′ and � N′ : G′ .

Proof. Let α = pqλ. By Rule [Com] of Fig. 1, N ≡ p� P � ‖ q� Q � ‖ N′′ where P = ⊕
i∈I q!λi; Pi and Q = � j∈ J p?λ j; Q j and

N′ ≡ p� Ph � ‖ q� Q h � ‖ N′′ and λ = λh for some h ∈ I ∩ J . From Lemma B.2 we get

1. G �p = ⊕
i∈I q!λi; P ′

i with Pi ≤ P ′
i for all i ∈ I , from Rule [≤ -Out] of Fig. 3, and

2. G �q = � j∈ J ′ p?λ j; Q ′
j with Q j ≤ Q ′

j for all j ∈ J ′ ⊆ J , from Rule [≤ -In] of Fig. 3, and
3. R ≤ G �r for all r� R � ∈ N′′ .

By Lemma B.1(1) G
pqλh−−→ Gh and Gh �p = P ′

h and Gh �q = Q ′
h . By Lemma B.1(2) Gh � r = G � r for all r /∈ {p, q}. We can then

choose G′ = Gh . �
Theorem 6.11. (Session Fidelity) If � N : G and G α−→ G′ , then N α−→ N′ and � N′ : G′ .

Proof. Let α = pqλ. By Lemma B.1(2) G � p = ⊕
i∈I p!λi; Pi and G � q = �i∈I p?λi; Q i and λ = λi for some i ∈ I and

G′ � r = G � r for all r /∈ {p, q}. By Lemma B.1(1) G′ � p = Pi and G′ � q = Q i . From Lemma B.3 and Lemma B.2 we get
N ≡ p� P � ‖ q� Q � ‖ N′′ and

1. P = ⊕
i∈I q!λi; P ′

i with P ′
i ≤ Pi for i ∈ I , from Rule [≤ -Out] of Fig. 3, and

2. Q = � j∈ J p?λ j; Q ′
j with Q ′

j ≤ Q j for j ∈ I ⊆ J , from Rule [≤ -In] of Fig. 3, and
3. R ≤ G �r for all r� R � ∈ N′′ .

We can then choose N′ = p� P ′
i � ‖ q� Q ′

i � ‖ N′′ . �
Appendix C. Proofs of Section 7

Lemma 7.4. Let σ be a pointed trace. If σ ∼ σ ′ , then σ ′ is a pointed trace and last(σ) = last(σ ′).

Proof. Let σ ∼ σ ′ . By Definition 7.1 σ ′ is obtained from σ by m swaps of adjacent communications. The proof is by
induction on such a number m.
If m = 0 the result is obvious.
If m > 0, then there exists σ0 obtained from σ by m − 1 swaps of adjacent communications and there are σ1, σ2, α and α′
such that

σ0 = σ1 ·α ·α′ ·σ2 ∼ σ1 ·α′ ·α ·σ2 = σ ′ and part(α) ∩ part(α′) = ∅
By induction hypothesis σ0 is a pointed trace and last(σ) = last(σ0). Therefore σ2 �= ε since otherwise α′ would be the last
communication of σ0 and it cannot be part(α) ∩ part(α′) = ∅. This implies last(σ) = last(σ ′).
To show that σ ′ is pointed, since all the communications in σ1 and σ2 have the same successors in σ0 and σ ′ , all we have
to prove is that the required property holds for the two swapped communications α′ and α in σ ′ , namely:
29

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
part(α′) ∩ (part(α) ∪ part(σ2)) �= ∅
part(α) ∩ part(σ2) �= ∅

Since part(α) ∩ part(α′) = ∅, these two statements are respectively equivalent to:

part(α′) ∩ part(σ2) �= ∅
part(α) ∩ (part(α′) ∪ part(σ2)) �= ∅

The last two statements are known to hold since σ0 is pointed by induction hypothesis. �
Appendix D. Proofs of Subsection 8.1

This section contains the proofs of Lemmas 8.2, 8.4, 8.5 and 8.6.

Lemma 8.2. (Properties of retrieval and residual for n-events).

1. If α� ν is defined, then α♦ (α�ν) = ν;
2. α� (α♦ν) = ν;
3. If ν ≺ ν ′ , then α♦ ν ≺ α♦ ν ′;
4. If ν ≺ ν ′ and both α� ν and α� ν ′ are defined, then α� ν ≺ α� ν ′;
5. If ν # ν ′ , then α♦ ν # α♦ ν ′;
6. If ν # ν ′ and both α� ν and α� ν ′ are defined, then α� ν # α� ν ′;
7. If α♦ ν # α♦ ν ′ , then ν # ν ′ .

Proof. For (1) and (2) it is enough to show the corresponding properties for located events.
(1) Since α� (p :: η) is defined, we have η = (α@p) ·η′ and α� (p :: η) = p :: η′ for some η′ . Then α♦ (α� (p :: η)) =

α♦ (p :: η′) = p :: (α@p) ·η′ = p :: η.
(2) Since α♦ (p :: η) = p :: (α@p) ·η is always defined, we immediately get α� (α♦ (p :: η)) = α� (p :: (α@p) ·η) = p :: η.
(3) Let ν ≺ ν ′ . By Definition 5.7(1), there are p :: η ∈ ν and p :: η′ ∈ ν ′ such that η < η′ . Then α♦ (p :: η) = p :: (α@p) ·η ∈

α♦ ν and α♦ (p :: η′) = p :: (α@p) ·η′ ∈ α♦ ν ′ . Since η < η′ implies (α@p) ·η < (α@p) ·η′ , we conclude that α♦ ν ≺ α♦ ν ′ .
(4) As in the previous case, there are p :: η ∈ ν and p :: η′ ∈ ν ′ such that η < η′ . Since both α� ν and α� ν ′ are defined,

there exist η0 and η′
0 such that η = (α@p) ·η0 and η′ = (α@p) ·η′

0 and α� (p :: η) = p :: η0 and α� (p :: η′) = p :: η′
0. Since

η < η′ implies η0 < η′
0, we conclude that α� ν ≺ α� ν ′ .

(5) Let ν # ν ′ . If Clause (2a) of Definition 5.7 applies, then there are p :: η ∈ ν and p :: η′ ∈ ν ′ such that η # η′ . From
α♦ (p :: η) = p :: (α@p) ·η and α♦ (p :: η′) = p :: (α@p) ·η′ we get (α@p) ·η # (α@p) ·η′ . If Clause (2b) of Definition 5.7
applies, then there are p :: η ∈ ν and q :: η′ ∈ ν ′ with p �= q such that | η �q | = | η′ �p | and ¬(η �q � η′ �p). Let η0 =
(α@p) ·η and η′

0 = (α@q) ·η′ . If part(α) �= {p, q}, then (α@p) �q = ε = (α@q) �p and thus η0 �q = η�q and η′
0 �p = η′ �p . If

part(α) = {p, q}, say α = pqλ, then η0 = q!λ ·η and η′
0 = p?λ ·η′ , which implies |η0 �q | = |η�q | +1 = |η′�p | +1 = |η′

0�p |
and ¬(η0 �q � η′

0 �p). In both cases we conclude that α♦ ν # α♦ ν ′ .
(6) The proof is similar to that of Point (5), considering that α� ν and α� ν ′ are defined.
(7) Let α♦ ν # α♦ ν ′ . If Clause (2a) of Definition 5.7 applies, then there are p :: η ∈ ν and p :: η′ ∈ ν ′ such that

(α@p) ·η # (α@p) ·η′ . Therefore η # η′ and thus ν # ν ′ . If Clause (2b) of Definition 5.7 applies, then there are p :: η0 =
α♦ (p :: η) ∈ α♦ ν and q :: η′

0 = α♦ (q :: η′) ∈ α♦ ν ′ with p �= q such that | η0 �q | = | η′
0 �p | and ¬(η0 �q � η′

0 �p). It follows
that η0 = (α@p) ·η and η′

0 = (α@q) ·η′ and p :: η ∈ ν and q :: η′ ∈ ν ′ . If part(α) �= {p, q}, then (α@p) �q = ε = (α@q) �p
and thus η �q = η0 �q and η′ �p = η′

0 �p . If part(α) = {p, q}, say α = pqλ, then η0 = q!λ · η and η′
0 = p?λ · η′ , and thus

| η�q | = | η0 �q | − 1 = | η′
0 �p | − 1 = | η′�p | and ¬(η�q � η′ �p). In both cases we conclude that ν # ν ′ . �

Lemma 8.4. (Properties of nec(·))

1. Let nec(σ) = ν1; · · · ; νn. Then

(a) cm(νi) = σ [i] for all i, 1 ≤ i ≤ n;
(b) If 1 ≤ h, k ≤ n, then ¬(νh # νk).

2. ¬(nec(α) # α♦ ν) for all ν .
3. Let σ = α · σ ′ and σ ′ �= ε . If nec(σ) = ν1; · · · ; νn and nec(σ ′) = ν ′

2; · · · ; ν ′
n, then α♦ ν ′

i = νi and α� νi = ν ′
i for all i, 2 ≤ i ≤ n.

Proof. (1a) Immediate from Definition 8.3, since cm(σ ♦ ν) = cm(ν) for any event ν .
(1b) We show that neither Clause (2a) nor Clause (2b) of Definition 5.7 can be used to derive νh # νk . Notice that

νi = {pi :: σ [1 ... i]@pi , qi :: σ [1 ... i]@qi }. So if p :: η ∈ νh and p :: η′ ∈ νk with h < k, then either η < η′ or η = η′ . Therefore
30

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
Clause (2a) does not apply. If p :: η ∈ νh and q :: η′ ∈ νk and p �= q and | η �q | = | η′ �p | , then it must be η �q =
(σ [1 ... h]@p) �q � (σ [1 ... k]@q) �p = η′ �p . Therefore Clause (2b) cannot be used.

(2) We show that neither Clause (2a) nor Clause (2b) of Definition 5.7 can be used to derive nec(α) # α♦ ν . Let part(α) =
{p, q}. Then nec(α) = {p :: α@p , q :: α@q }. Note that p :: η ∈ α♦ ν iff η = (α@p) ·η′ and p :: η′ ∈ ν . Since α@p < (α@p) ·η′ ,
Clause (2a) of Definition 5.7 cannot be used. Now suppose r :: η ∈ α♦ ν for some r /∈ {p, q}. In this case (α@p) � r =
(α@q) �r = ε . Therefore, since ε � ε , Clause (2b) of Definition 5.7 does not apply.

(3) Notice that σ [i] = σ ′[i − 1] for all i, 2 ≤ i ≤ n. Then, by Definition 8.3

νi = σ [1 ... i − 1]♦nec(σ [i]) = α♦ (σ [2 ... i − 1]♦nec(σ [i])) = α♦ (σ ′[1 ... i − 2]♦nec(σ ′[i − 1])) = α♦ν ′
i

for all i, 2 ≤ i ≤ n.
By Lemma 8.2(2) α♦ ν ′

i = νi implies α� νi = ν ′
i for all i, 2 ≤ i ≤ n. �

Lemma 8.5. If N α−→ N′ and ν ∈NE(N), then ν = nec(α) or ν # nec(α) or α� ν is defined.

Proof. Let nec(α) = {p :: α@p , q :: α@q } and ν = {r :: η, s :: η′}. By Definition 8.1(3) α� ν is defined iff η = (α@r) ·η0 and
η′ = (α@s) ·η′

0 for some η0, η′
0.

There are 2 possibilities:

• {r, s} ∩ {p, q} = ∅. Then α@r = α@s = ε and α� ν = ν;
• {r, s} ∩ {p, q} �= ∅. Suppose r = p. There are three possible subcases:

1. η = π · ζ with π �= α@p . Then r :: η # p :: α@p and thus ν # nec(α);
2. η = α@p . Then either η′ = α@q and ν = nec(α), or η′ �= α@q and ν # nec(α) by Lemma 5.21;
3. η = (α@p) ·η0. Then α� p :: η = p :: η0. Now, if s �= q we have α� s :: η′ = s :: η′ , and thus α� ν = {p :: η0, s :: η′}.

Otherwise, ν = {p :: (α@p) ·η0, q :: η′}. By Definition 5.5 p :: (α@p) ·η0 �̂ q :: η′ , which implies η′ = (α@q) ·η′
0 for

some η′
0. �

Lemma 8.6. Let N α−→ N′ . Then

1. {nec(α)} ∪ {α♦ ν | ν ∈NE(N′)} ⊆NE(N);
2. {α� ν | ν ∈NE(N) and α� ν defined} ⊆NE(N′).

Proof. Let α = pqλ. From N α−→ N′ we get

N = p�
⊕

i∈I q!λi; P � ‖ q�� j∈ J p?λ j; Q j � ‖ N0

where for some k ∈ (I ∩ J) we have λk = λ and

N′ = p� Pk � ‖ q� Q k � ‖ N0

(1) Let RT = {nec(α)} ∪ {α♦ ν | ν ∈NE(N′)}. We first show that RT ⊆ CE(N). By Definition 5.13(1) nec(α) ∈ CE(N). Let
ν = {r :: η, s :: η′} ∈NE(N′). We want to prove that α♦ ν ∈ CE(N). By Definition 5.13(1) there are R, S such that r� R � ∈ N′
and s� S � ∈ N′ and η ∈PE(R) and η′ ∈PE(S). There are two possible cases:

• {r, s} ∩ {p, q} = ∅. Then r� R � ∈ N and s� S � ∈ N and thus α♦ ν = ν ∈ CE(N);
• {r, s} ∩ {p, q} �= ∅. Suppose r = p. Then η ∈ PE(Pk) and p :: q!λk · η ∈ α♦ν and q!λk · η ∈ PE(⊕i∈I q!λi; Pi). There are two

subcases:

– s = q. Then η′ ∈ PE(Q k) and q :: p?λk · η′ ∈ α♦ν and q!λk · η′ ∈ PE(� j∈ J p?λ j; Q j). We have α♦ ν =
{p :: q!λk · η, q :: p?λk · η′} ∈ CE(N);

– s �= q. Then α♦ s :: η′ = s :: η′ , and thus α♦ ν = {p :: q!λk · η, s :: η′} ∈ CE(N).

Therefore in all cases RT ⊆ CE(N). We want now to show that RT ⊆NE(N).
Recall from Section 5 that NE(N) is the greatest fixed point of the function

fCE(N)(X) = {ν0 ∈ CE(N) | ∃E0 ⊆ X . E0 is a causal set of ν0 in X}
Then NE(N) is also the greatest post-fixed point of fCE(N)(X), namely the greatest X such that X ⊆ fCE(N)(X). Therefore, to
show that RT ⊆NE(N), it is enough to show that RT is also a post-fixed point of fCE(N)(X), namely that RT ⊆ fCE(N)(RT).

Consider first the event nec(α). Since the only causal set of nec(α) in any set is ∅, it is immediate that nec(α) ∈
fCE(N)(RT). Consider now α♦ ν ∈ RT for some ν ∈NE(N′) with loc(ν) = {r, s}. Define
31

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
pre(α, E, ν) =
{

� if {r, s} ∩ {p,q} = ∅
{nec(α)} ∪ � otherwise

where � = {α♦ ν ′ | ν ′ ∈ E and E is a causal set of ν in NE(N′)}.
We show that pre(α, E, ν) is a causal set of α♦ ν in RT , namely that it is a minimal subset of RT satisfying Conditions

(1) and (2) of Definition 5.9.
Condition (1) If nec(α) ∈ pre(α, E, ν), then {r, s} ∩ {p, q} �= ∅. A conflict between nec(α) and any other event of pre(α, E, ν) ∪
{α♦ ν} can only be derived by Clause (2a) of Definition 5.7, since nec(α) = {p :: q!λ, q :: p?λ} and (α@p) � t = (α@q) � t = ε
for all t /∈ {p, q}. Suppose r = p. Then p :: q!λ ·η ∈ α♦ ν . Since q!λ < q!λ ·η, Clause (2a) cannot be used to derive a conflict
nec(α) # α♦ ν . Similarly, if α♦ ν1 ∈ pre(α, E, ν) and p :: η1 ∈ ν1, then p :: q!λ ·η1 ∈ α♦ ν1. Then q!λ < q!λ ·η1, hence Clause
(2a) cannot be used to derive nec(α) # α♦ ν1.
Suppose now α♦ ν1 ∈ pre(α, E, ν) and α♦ ν2 ∈ pre(α, E, ν). Since E is a causal set, we have ¬(ν1 # ν2). Thus
¬(α♦ ν1 # α♦ ν2) by Lemma 8.2(7).
Condition (2) Let ν = {r :: η, s :: η′}, we have α♦ ν = {r :: (α@r) ·η, s :: (α@s) ·η′}. We show that if η0 < (α@r) ·η, then
r :: η0 ∈ ν0 for some ν0 ∈ pre(α, E, ν). From η0 < (α@r) ·η we derive η0 = (α@r) · ζ for some ζ such that ζ < η. If ζ �= ε ,
then ζ = η′

0 < η. Since E is a causal set, η′
0 < η0 implies r :: η′

0 ∈∈ E . Hence r :: η0 ∈∈pre(α, E, ν). If instead ζ = ε , then it
must be η0 = α@r �= ε and thus r ∈ {p, q}. In this case {nec(α)} ∈ pre(α, E, ν) and thus r :: η0∈∈pre(α, E, ν).
As for minimality, we first show that ν ′ ≺ α♦ ν for all ν ′ ∈ pre(α, E, ν). If nec(α) ∈ pre(α, E, ν), then {r, s} ∩ {p, q} �= ∅.
Then nec(α) ≺ α♦ ν . If ν1 ∈ pre(α, E, ν) and ν1 �= nec(α), then there exists ν ′

1 ∈ E such that ν1 = α♦ ν ′
1. Since E is a

causal set for ν , we have ν ′
1 ≺ ν . Therefore ν1 = α♦ ν ′

1 ≺ α♦ ν by Lemma 8.2(3). Assume now that pre(α, E, ν) is not
minimal. Then there is E ′ ⊂ pre(α, E, ν) that verifies Condition (2) of Definition 5.9 for α♦ ν . Let ν ′ ∈ pre(α, E, ν) \ E ′ .
Then ν ′ ≺ α♦ ν = {r :: ηr, s :: ηs}. Assume that r :: η′

r ∈ ν ′ with η′
r < ηr (the proof is similar for s). By Condition (2), there is

ν ′′ ∈ E ′ such that r :: η′
r ∈ ν ′′ . But then ν ′ # ν ′′ by Lemma 5.21, contradicting the fact that pre(α, E, ν) verifies Condition (1).

Therefore pre(α, E, ν) is minimal.
(2) Let RS = {α� ν | ν ∈NE(N) and α� ν defined}. We first show that RS ⊆ CE(N′). Let ν = {r :: η, s :: η′} ∈NE(N) be

such that α� ν is defined. We want to prove that α� ν ∈ CE(N′). By Definition 5.13(1) there are R, S such that r� R � ∈ N
and s� S � ∈ N and η ∈PE(R) and η′ ∈PE(S). There are two possible cases:

• {r, s} ∩ {p, q} = ∅. Then r� R � ∈ N′ and s� S � ∈ N′ and thus α� ν = ν ∈ CE(N′);
• {r, s} ∩ {p, q} �= ∅. Suppose r = p. Then η ∈ PE(⊕i∈I q!λi; Pi) and since α� ν is defined we have that η = q!λk · ηk where

ηk ∈PE(Pk). There are two subcases:

– s = q. Then η′ ∈PE(� j∈ J p?λ j; Q j) and since α� ν is defined η′ = p?λk · η′
k where η′

k ∈PE(Q k). In this case we have
α� ν = {p :: ηk, q :: η′

k} ∈ CE(N′);
– s �= q. Then α� s :: η′ = s :: η′ , and thus α� ν = {p :: ηk, s :: η′} ∈ CE(N′).

Therefore in all cases RS ⊆ CE(N′). We want now to show that RS ⊆NE(N′).
We proceed as in the proof of Statement (1). We know that NE(N′) is the greatest post-fixed point of the function

fCE(N′)(X) = {ν0 ∈ CE(N′) | ∃E0 ⊆ X . E0 is a causal set of ν0 in X}
Then, in order to obtain RS ⊆NE(N′) it is enough to show that RS is a post-fixed point of fCE(N′)(X), namely that RS ⊆
fCE(N′)(RS).

Let α� ν ∈ RS for some ν ∈NE(N). Define

post(α, E, ν) = {α�ν ′ | ν ′ ∈ E and E is a causal set of ν inNE(N)}
We show that post(α, E, ν) is a causal set of α� ν in RS , namely that it is a minimal subset of RS satisfying Conditions (1)
and (2) of Definition 5.9.
Condition (1) Suppose α� ν1 ∈ post(α, E, ν) and α� ν2 ∈ post(α, E, ν). Since E is a causal set and ν1, ν2 ∈ E , we have
¬(ν1 # ν2). Thus ¬(α� ν1 # α� ν2) by Lemma 8.2(5) and (1).
Condition (2) Since ν = {r :: η, s :: η′} and α� ν is defined, we have η = (α@r) ·ηr and η′ = (α@s) ·ηs and α� ν =
{r :: ηr, s :: ηs}. Let η0 < ηr . Then (α@r) ·η0 < (α@r) ·ηr = η. Since E is a causal set for ν in NE(N), this implies
r :: (α@r) ·η0∈∈E . Hence r :: η0∈∈post(α, E, ν).
As for minimality, we first show that ν ′ ≺ α� ν for all ν ′ ∈ post(α, E, ν). If ν1 ∈ post(α, E, ν), then there exists ν ′

1 ∈ E such
that ν1 = α� ν ′

1. Since E is a causal set for ν , we have ν ′
1 ≺ ν . Therefore ν1 = α♦ ν ′

1 ≺ α♦ ν by Lemma 8.2(3). Assume now
that post(α, E, ν) is not minimal. Then there is E ′ ⊂ post(α, E, ν) that verifies Condition (2) of Definition 5.9 for α� ν . Let
ν ′ ∈ post(α, E, ν) \ E ′ . Then ν ′ ≺ α� ν = {r :: ηr, s :: ηs}. Assume that r :: η′

r ∈ ν ′ with η′
r < ηr (the proof is similar for s). By

Condition (2), there is ν ′′ ∈ E ′ such that r :: η′
r ∈ ν ′′ . But then ν ′ # ν ′′ by Lemma 5.21, contradicting the fact that post(α, E, ν)

verifies Condition (1). Therefore post(α, E, ν) is minimal. �

32

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
Appendix E. Proofs of Subsection 8.2

This section contains the proofs of Lemmas 8.10, 8.11 and 8.12.

Lemma 8.10. (Properties of retrieval and residual for g-events).

1. If α • γ is defined, then α ◦ (α • γ) = γ ;
2. α • (α ◦ γ) = γ ;
3. If γ1 < γ2 , then α ◦ γ1 < α ◦ γ2;
4. If γ1 < γ2 and both α • γ1 and α • γ2 are defined, then α • γ1 < α • γ2;
5. If γ1 # γ2 , then α ◦ γ1 # α ◦ γ2;
6. If γ < α ◦ γ ′ , then either γ = [α]∼ or α • γ < γ ′;
7. If part(α1) ∩ part(α2) = ∅, then α1 ◦ (α2 ◦ γ) = α2 ◦ (α1 ◦ γ);
8. If part(α1) ∩ part(α2) = ∅ and both α2 • (α1 ◦ γ), α2 • γ are defined, then α1 ◦ (α2 • γ) = α2 • (α1 ◦ γ).

Proof. (1) If α • [σ]∼ is defined, then in case part(α) ∩ part(σ) = ∅ we get α • [σ]∼ = [σ]∼ and also α ◦ [σ]∼ = [σ]∼ , so
α ◦ (α • [σ]∼) = [σ]∼ . Instead if part(α) ∩ part(σ) �= ∅, then α • [σ]∼ = [σ ′]∼ where σ ∼ α ·σ ′ and σ ′ �= ε . From part(α) ∩
part(σ) �= ∅ we get α ◦ [σ ′]∼ = [α ·σ ′]∼ by Definition 7.6. This implies α ◦ (α • [σ]∼) = [σ]∼ .

(2) By Definition 7.6 either α◦[σ]∼ = [α ·σ]∼ if part(α) ∩part(σ) �= ∅, or α◦σ = [σ]∼ . In the first case α•[α ·σ]∼ = [σ]∼
and in the second α • [σ]∼ = [σ]∼ , which proves the result.

(3) Let γ1 = [σ]∼ and γ2 = [σ ·σ ′]∼ . If part(α) ∩ part(σ) �= ∅, then part(α) ∩ part(σ ·σ ′) �= ∅, and we have α ◦ γ1 =
[α ·σ]∼ and α ◦ γ2 = [α ·σ ·σ ′]∼ . Whence α ◦ γ1 ≤ α ◦ γ2. Suppose now part(α) ∩ part(σ) = ∅. Then α ◦ γ1 = [σ]∼ = γ1.
If also part(α) ∩ part(σ ′) = ∅, then α ◦ γ2 = [σ ·σ]∼ = γ2 and we are done. If instead part(α) ∩ part(σ ′) �= ∅, then α ◦ γ2 =
[α ·σ ·σ ′]∼ = [σ ·α ·σ ′]∼ , whence γ1 ≤ α ◦ γ2.

(4) Let γ1 = [σ]∼ and γ2 = [σ ·σ ′]∼ . If part(α) ∩ part(σ) = part(α) ∩ part(σ ·σ ′) = ∅, then α • γ1 = γ1 and α • γ2 = γ2.
If part(α) ∩ part(σ) �= ∅, then σ ∼ α ·σ0, which implies α • γ1 = [σ0]∼ and α • γ2 = [σ0 ·σ ′]∼ . If part(α) ∩ part(σ) = ∅ and
part(α) ∩ part(σ ·σ ′) �= ∅, then α • γ1 = [σ]∼ and σ ′ ∼ α ·σ0, which implies α • γ2 = [σ ·σ0]∼ .

(5) Let γ1 = [σ]∼ and γ2 = [σ ′]∼ and σ @ p # σ ′ @ p for some p. The only interesting case is part(α) ∩ part(σ) = ∅ and
part(α) ∩part(σ ′) �= ∅. This implies α ◦γ1 = [σ]∼ and α ◦γ2 = [α ·σ ′]∼ . We get (α ·σ ′) @ p = σ ′ @ p since part(α) ∩part(σ) =
∅ implies p /∈ part(α). We conclude α ◦ γ1 # α ◦ γ2.

(6) The case γ = [α]∼ is immediate. If α • γ is defined, we get α • γ < α • (α ◦ γ ′) by Point 4 and α • (α ◦ γ ′) = γ ′ by
Point 2. Otherwise let γ = [σ]∼ and α ◦ γ ′ = [σ ·σ ′]∼ . From α • γ undefined we get part(α) ∩ part(σ) �= ∅ and σ � α ·σ0.
Since part(α) ∩ part(σ) �= ∅ implies part(α) ∩ part(σ ·σ ′) �= ∅ we get σ ·σ ′ ∼ α ·σ1 for some σ1 by Definition 7.6(1). Then
this case is impossible.

(7) Let γ = [σ]∼ . By Definition 7.6(1) we have four cases:

(a) α1 ◦ (α2 ◦ σ) = [α1 · (α2 ·σ)]∼ = [α2 · (α1 ·σ)]∼ = α2 ◦ (α1 ◦ σ) if part(α1) ∩part(σ) �= ∅ and part(α2) ∩part(σ) �= ∅, since
part(α1) ∩ part(α2) = ∅;

(b) α1 ◦ (α2 ◦ σ) = [α1 ·σ]∼ = α2 ◦ (α1 ◦ σ) if part(α1) ∩ part(σ) �= ∅ and part(α2) ∩ part(σ) = ∅;
(c) α1 ◦ (α2 ◦ σ) = [α2 ·σ]∼ = α2 ◦ (α1 ◦ σ) if part(α1) ∩ part(σ) = ∅ and part(α2) ∩ part(σ) �= ∅;
(d) α1 ◦ (α2 ◦ σ) = [σ]∼ = α2 ◦ (α1 ◦ σ) if part(α1) ∩ part(σ) = ∅ and part(α2) ∩ part(σ) = ∅.

(8) Let γ = [σ]∼ . By Definitions 7.6(1) and 8.9(1) we have four cases:

(a) α1 ◦ (α2 • σ) = [α1 ·σ ′]∼ = α2 • (α1 ◦ σ) if part(α1) ∩ part(σ) �= ∅ and σ ∼ α2 ·σ ′;
(b) α1 ◦ (α2 • σ) = [α1 ·σ]∼ = α2 • (α1 ◦ σ) if part(α1) ∩ part(σ) �= ∅ and part(α2) ∩ part(σ) = ∅;
(c) α1 ◦ (α2 • σ) = [σ ′]∼ = α2 • (α1 ◦ σ) if part(α1) ∩ part(σ) = ∅ and σ ∼ α2 ·σ ′;
(d) α1 ◦ (α2 • σ) = [σ]∼ = α2 • (α1 ◦ σ) if part(α1) ∩ part(σ) = ∅ and part(α2) ∩ part(σ) = ∅. �

Lemma 8.11. The following hold:

1. If γ ∈GE(G), then pqλ ◦ γ ∈GE(p → q :�i∈Iλi; Gi), where λ = λk and G = Gk for some k ∈ I ;
2. If γ ∈GE(p → q :�i∈Iλi; Gi) and pqλk • γ is defined, then pqλk • γ ∈GE(Gk), where k ∈ I .

Proof. (1) By Definition 7.11(1) γ ∈ GE(G) implies γ = ev(σ) for some σ ∈ Tr+(G). Since pqλ ◦ γ = ev(pqλ ·σ) by Defini-
tions 7.6, 7.7 and pqλ ·σ ∈ Tr+(p → q :�i∈Iλi; Gi) we conclude pqλ ◦ γ ∈GE(p → q :�i∈Iλi; Gi) by Definition 7.11(1).

(2) By Definition 7.11(1) γ ∈ GE(p → q :�i∈Iλi; Gi) implies γ = ev(σ) for some σ ∈ Tr+(p → q :�i∈Iλi; Gi). We get
σ = pqλh ·σ ′ with σ ′ ∈ Tr+(Gh) or σ ′ = ε for some h ∈ I . The hypothesis pqλk •γ defined implies either h = k and σ ′ �= ε or
part(σ ′) ∩{p, q} = ∅ and pqλk •γ = ev(σ ′) by Definition 8.9(1). In the first case σ ′ ∈ Tr+(Gk). In the second case σ ′′ ∈ Tr+(Gk)

for some σ ′′ ∼ σ ′ by definition of projection, which prescribes the same behaviours to all participants different from p, q,
see Fig. 2. We conclude pqλk • γ ∈GE(Gk) by Definition 7.11(1). �
33

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
Lemma 8.12. Let G α−→ G′ .

1. If γ ∈GE(G′), then α ◦ γ ∈GE(G);
2. If γ ∈GE(G) and α • γ is defined, then α • γ ∈GE(G′).

Proof. Both proofs are by induction on the inference of the transition G α−→ G′ , see Fig. 4.
(1) For rule [Ecomm] we get G = p → q :�i∈Iλi; Gi and G′ = Gk and α = pqλk for some k ∈ I . We conclude α ◦ γ ∈

GE(G) by Lemma 8.11(1).

For rule [Icomm] we get G = p → q :�i∈Iλi; Gi and G′ = p → q :�i∈Iλi; G′
i and Gi

α−→ G′
i for all i ∈ I and part(α) ∩ {p, q} =

∅. By Definition 7.11(1) γ ∈ GE(G′) implies γ = ev(σ) for some σ ∈ Tr+(G′). This implies σ = pqλk ·σ ′ and γ = [σ0]∼ with
either σ0 ∼ pqλk ·σ ′

0 for some k ∈ I or part(σ0) ∩ {p, q} = ∅ by Definition 7.6. Then pqλk • γ is defined unless σ0 = pqλk by
Definition 8.9(1). We consider two cases.
If σ0 = pqλk , then α ◦γ = [pqλk]∼ since part(α) ∩ {p, q} = ∅. We conclude α ◦γ ∈GE(G) by Definition 7.11(1). Otherwise let
γ ′ = pqλk • γ . By Lemma 8.11(2) γ ′ ∈GE(G′

k). By induction α ◦ γ ′ ∈GE(Gk). By Lemma 8.11(1) pqλk ◦ (α ◦ γ ′) ∈GE(G). We
now show that pqλk ◦ (α ◦ γ ′) = α ◦ γ . By Lemma 8.10(7) and part(α) ∩ {p, q} = ∅ we get pqλk ◦ (α ◦ γ ′) = α ◦ (pqλk ◦ γ ′)
and by Lemma 8.10(1) we have pqλk ◦ γ ′ = pqλk ◦ (pqλk • γ) = γ . Therefore pqλk ◦ (α ◦ γ ′) = α ◦ γ ∈GE(G).

(2) For rule [Ecomm] we get G = p → q :�i∈Iλi; Gi and G′ = Gk and α = pqλk for some k ∈ I . We conclude α • γ ∈
GE(G′) by Lemma 8.11(2).

For rule [Icomm] we get G = p → q :�i∈Iλi; Gi and G = p → q :�i∈Iλi; G′
i and Gi

α−→ G′
i for all i ∈ I and part(α) ∩ {p, q} =

∅. By Definition 7.11(1) γ ∈ GE(G) implies γ = ev(σ) for some σ ∈ Tr+(G). This implies σ = pqλk ·σ ′ and γ = [σ0]∼ with
either σ0 ∼ pqλk ·σ ′

0 for some k ∈ I or part(σ0) ∩ {p, q} = ∅ by Definition 7.6. Then pqλk • γ is defined unless σ0 = pqλk by
Definition 8.9(1). We consider two cases.
If σ0 = pqλk , then α • γ = [pqλk]∼ since part(α) ∩ {p, q} = ∅. We conclude α • γ ∈ GE(G′) by Definition 7.11(1). Otherwise
let γ ′ = pqλk •γ . By Lemma 8.11(2) γ ′ ∈GE(Gk). We first show that α •γ ′ is defined. Since α •γ and pqλk •γ are defined,
by Definition 8.9(1) we have four cases:

(a) σ0 ∼ α ·σ1 for some σ1 and σ0 ∼ pqλk ·σ ′
0;

(b) σ0 ∼ α ·σ1 and part(σ0) ∩ {p, q} = ∅;
(c) part(α) ∩ part(σ0) = ∅ and σ0 ∼ pqλk ·σ ′

0;
(d) part(α) ∩ part(σ0) = ∅ and part(σ0) ∩ {p, q} = ∅.

In case (a) σ0 ∼ α ·pqλk ·σ ′
1 ∼ pqλk ·α ·σ ′

1 for some σ ′
1 since part(α) ∩ {p, q} = ∅. Notice that σ ′

1 �= ε since σ0 is pointed and
part(α) ∩ {p, q} = ∅. We get γ ′ = pqλk • γ = [α ·σ ′

1]∼ and α • γ ′ = [σ ′
1]∼ .

In case (b) γ ′ = γ and α • γ ′ = [σ1]∼ .
In case (c) γ ′ = [σ ′

0]∼ and α • γ ′ = [σ ′
0]∼ , since part(α) ∩ part(σ0) = ∅ implies part(α) ∩ part(σ ′

0) = ∅.
In case (d) γ ′ = γ and α • γ ′ = γ .
By induction α • γ ′ ∈GE(G′

k). By Lemma 8.11(1) pqλk ◦ (α • γ ′) ∈GE(G′).
We now show that pqλk ◦ (α • γ ′) = α • γ . From γ ′ = pqλk • γ and Lemma 8.10(1) pqλk ◦ γ ′ = γ . Therefore from α • γ

defined we have α • (pqλk ◦ γ ′) defined. Since α • γ ′ is also defined and part(α) ∩ {p, q} = ∅, by Lemma 8.10(8) we get
pqλk ◦ (α • γ ′) = α • (pqλk ◦ γ ′). Therefore pqλk ◦ (α • γ ′) = α • γ ∈GE(G′). �
Appendix F. Glossary of symbols and table of notations

Symbol Meaning

π input/output action: p!λ, p?λ

α communication pqλ

σ trace, finite sequence of communications
S event structure
X configuration of an event structure
η p-event, non-empty finite sequence of input/output actions
PE set of p-events
ζ (possibly empty) finite sequence of input/output actions
ϑ undirected action: !λ, ?λ

� (possibly empty) finite sequence of undirected actions
ν n-event, unordered pair of dual located p-events
NE set of n-events
γ g-event, equivalence class [σ]∼ with σ pointed
GE set of g-events
34

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
Notation Meaning Where defined

pt(π) participant of action π before Definition 2.1
part(σ) participants of trace σ Definition 2.3
D(S) domain of configurations of ES S Definition 3.5
act(η) action of p-event η after Definition 4.1
SP(P) event structure of process P Definition 4.3
PE(P) set of p-events of SP(P) Definition 4.3
p :: η located event, p-event η located at participant p Definition 5.1
η�p projection of p-event η on participant p Definition 5.2
� � �′ duality of undirected action sequences � and �′ Definition 5.3
p :: η �̂ q :: η′ duality of located events p :: η and q :: η′ Definition 5.4
cm(ν) communication of n-event ν after Definition 5.5
loc(ν) set of locations of n-event ν after Definition 5.5
p :: η∈∈E occurrence of located event p :: η in some n-event of E Definition 5.6
n(E) narrowing of the n-event set E Definition 5.11
SN (N) event structure of network N Definition 5.13
CE(N) set of candidate n-events of SN (N) Definition 5.13
NE(N) set of n-events of SN (N) Definition 5.13
ϑ↘n prefix of length n of ϑ before Proposition 5.22
projp(ν) projection of n-event ν on participant p Definition 5.25
part(G) participants of global type G after Definition 6.1
G�p projection of global type G on participant p Fig. 2
σ [i] i-th element of trace σ before Definition 7.1
σ [i ... j] subtrace σ [i] · · ·σ [j] of trace σ before Definition 7.1
σ ∼ σ ′ permutation equivalence of traces Definition 7.1
[σ]∼ equivalence class of trace σ w.r.t. ∼ Definition 7.1
last(σ) last communication of trace σ before Lemma 7.4
cm(γ) communication of g-event γ Definition 7.5
σ ◦ γ retrieval of g-event γ before trace σ Definition 7.6(1) and (2)
ev(σ) g-event generated by trace σ Definition 7.7
σ@p projection of trace σ on participant p Definition 7.9(1) and (2)
SG(G) event structure of global type G Definition 7.11
GE(G) set of g-events of SG(G) Definition 7.11
σ ♦ν retrieval of n-event ν before trace σ Definition 8.1(1) and (3)
σ �ν residual of n-event ν after trace σ Definition 8.1(2) and (3)
nec(σ) sequence of n-events corresponding to trace σ Definition 8.3
σ • γ residual of g-event γ after trace σ Definition 8.9(1) and (2)
gec(σ) sequence of g-events corresponding to trace σ Definition 8.13

References

[1] Luca Aceto, Matthew Hennessy, Towards action-refinement in process algebras, in: Albert R. Meyer (Ed.), LICS, IEEE Computer Society Press, Washington,
1989, pp. 138–145.

[2] Christel Baier, Mila E. Majster-Cederbaum, The connection between an event structure semantics and an operational semantics for TCSP, Acta Inform.
31 (1) (1994) 81–104.

[3] Paolo Baldan, Andrea Corradini, Fabio Gadducci, Domains and event structures for fusions, in: Joel Ouaknine (Ed.), LICS, IEEE Computer Society Press,
Washington, 2017, pp. 1–12.

[4] Franco Barbanera, Mariangiola Dezani-Ciancaglini, Ivan Lanese, Emilio Tuosto, Composition and decomposition of multiparty sessions, J. Log. Algebraic
Methods Program. 119 (2021) 100620.

[5] Marek Bednarczyk, Categories of Asynchronous Systems, PhD thesis, University of Sussex, 1988.
[6] Michele Boreale, Davide Sangiorgi, A fully abstract semantics for causality in the π -calculus, Acta Inform. 35 (5) (1998) 353–400.
[7] Gérard Boudol, Ilaria Castellani, On the semantics of concurrency: partial orders and transition systems, in: Hartmut Ehrig, Robert A. Kowalski, Giorgio

Levi, Ugo Montanari (Eds.), TAPSOFT, in: LNCS, vol. 249, Springer, Heidelberg, 1987, pp. 123–137.
[8] Gérard Boudol, Ilaria Castellani, Permutation of transitions: an event structure semantics for CCS and SCCS, in: Jaco W. de Bakker, Willem P. de Roever,

Grzegorz Rozenberg (Eds.), REX: Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency, in: LNCS, vol. 354, Springer,
Heidelberg, 1988, pp. 411–427.

[9] Gérard Boudol, Ilaria Castellani, Flow models of distributed computations: event structures and nets, Research Report 1482, INRIA, 1991.
[10] Gérard Boudol, Ilaria Castellani, Flow models of distributed computations: three equivalent semantics for CCS, Inf. Comput. 114 (2) (1994) 247–314.
[11] Stephen Brookes, Charles A.R. Hoare, Andrew Roscoe, A theory of communicating sequential processes, J. ACM 31 (3) (1984) 560–599.
[12] Roberto Bruni, Hernán C. Melgratti, Ugo Montanari, Event structure semantics for nominal calculi, in: Christel Baier, Holger Hermanns (Eds.), CONCUR,

in: LNCS, vol. 4137, Springer, Heidelberg, 2006, pp. 295–309.
[13] Luís Caires, Frank Pfenning, Session types as intuitionistic linear propositions, in: Paul Gastin, François Laroussinie (Eds.), CONCUR, in: LNCS, vol. 6269,

Springer, Heidelberg, 2010, pp. 222–236.
[14] Luís Caires, Frank Pfenning, Bernardo Toninho, Linear logic propositions as session types, Math. Struct. Comput. Sci. 26 (3) (2016) 367–423.
35

http://refhub.elsevier.com/S2352-2208(22)00097-9/bib18D330E4AEF5890CED3BF5345DC70BEDs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib18D330E4AEF5890CED3BF5345DC70BEDs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib0FFB23A43B994D52C2DC39DC12E9E34Ds1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib0FFB23A43B994D52C2DC39DC12E9E34Ds1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibBE19008A145A553AEE880556F88098ABs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibBE19008A145A553AEE880556F88098ABs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib46A14C13710A1CF74C72F1BE82BB2B0Es1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib46A14C13710A1CF74C72F1BE82BB2B0Es1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibC1328B1B7757308A0ECD8FADA7B0B71As1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib8EA2AD128CC6F2D2D2BD1C52DCFB2A8Ds1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib3408604630982B2747F3D65F1EE75935s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib3408604630982B2747F3D65F1EE75935s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib03EA5D8599EA0D2826CEC872058153FAs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib03EA5D8599EA0D2826CEC872058153FAs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib03EA5D8599EA0D2826CEC872058153FAs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibEE2C67C39161C311107F7BF04F41A1C8s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibD29442BFA8ECD4E7F4DB0806A11B17A8s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib5E532AC8BBADDCBB68372395F16AC8D6s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibEEBA042A0115248AA9432C6E11566163s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibEEBA042A0115248AA9432C6E11566163s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib5A40553B8466B0941BB89D27D347DCE8s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib5A40553B8466B0941BB89D27D347DCE8s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib2F11887B503EF946637EE290AA97708As1

I. Castellani, M. Dezani-Ciancaglini and P. Giannini Journal of Logical and Algebraic Methods in Programming 131 (2023) 100844
[15] Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini, Event structure semantics for multiparty sessions, in: Michele Boreale, Flavio Corradini,
Michele Loreti, Rosario Pugliese (Eds.), Models, Languages, and Tools for Concurrent and Distributed Programming - Essays Dedicated to Rocco De
Nicola on the Occasion of His 65th Birthday, in: LNCS, vol. 11665, Springer, Heidelberg, 2019, pp. 340–363.

[16] Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini, Global types and event structure semantics for asynchronous multiparty sessions,
CoRR, arXiv:2102 .00865 [abs], 2021.

[17] Ilaria Castellani, Guo Qiang Zhang, Parallel product of event structures, Theor. Comput. Sci. 179 (1–2) (1997) 203–215.
[18] Gian Luca Cattani, Peter Sewell, Models for name-passing processes: interleaving and causal, Inf. Comput. 190 (2) (2004) 136–178.
[19] Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, Luca Padovani, Global progress for dynamically interleaved multiparty sessions, Math.

Struct. Comput. Sci. 26 (2) (2016) 238–302.
[20] Bruno Courcelle, Fundamental properties of infinite trees, Theor. Comput. Sci. 25 (1983) 95–169.
[21] Silvia Crafa, Daniele Varacca, Nobuko Yoshida, Compositional event structure semantics for the internal π -calculus, in: Luís Caires, Vasco T. Vasconcelos

(Eds.), CONCUR, in: LNCS, vol. 4703, Springer, Heidelberg, 2007, pp. 317–332.
[22] Silvia Crafa, Daniele Varacca, Nobuko Yoshida, Event structure semantics of parallel extrusion in the π -calculus, in: Lars Birkedal (Ed.), FOSSACS, in:

LNCS, vol. 7213, Springer, Heidelberg, 2012, pp. 225–239.
[23] Ioana Cristescu, Operational and denotational semantics for the reversible π -calculus, PhD thesis, University Paris Diderot - Paris 7, 2015.
[24] Ioana Cristescu, Jean Krivine, Daniele Varacca, Rigid families for CCS and the π -calculus, in: Martin Leucker, Camilo Rueda, Frank D. Valencia (Eds.),

ICTAC, in: LNCS, vol. 9399, Springer, Heidelberg, 2015, pp. 223–240.
[25] Ioana Cristescu, Jean Krivine, Daniele Varacca, Rigid families for the reversible π -calculus, in: Simon J. Devitt, Ivan Lanese (Eds.), Reversible Computa-

tion, in: LNCS, vol. 9720, Springer, Heidelberg, 2016, pp. 3–19.
[26] Philippe Darondeau, Pierpaolo Degano, Refinement of actions in event structures and causal trees, Theor. Comput. Sci. 118 (1) (1993) 21–48.
[27] Pierpaolo Degano, Rocco De Nicola, Ugo Montanari, On the consistency of truly concurrent operational and denotational semantics, in: Ashok K.

Chandra (Ed.), LICS, IEEE Computer Society Press, Washington, 1988.
[28] Pierpaolo Degano, Rocco De Nicola, Ugo Montanari, A partial ordering semantics for CCS, Theor. Comput. Sci. 75 (3) (1990) 223–262.
[29] Pierpaolo Degano, Ugo Montanari, Concurrent histories: a basis for observing distributed systems, J. Comput. Syst. Sci. 34 (2/3) (1987) 422–461.
[30] Pierpaolo Degano, Corrado Priami, Non-interleaving semantics for mobile processes, Theor. Comput. Sci. 216 (1–2) (1999) 237–270.
[31] Pierre-Malo Deniélou, Nobuko Yoshida, Dynamic multirole session types, in: Mooly Sagiv (Ed.), POPL, ACM Press, New York, 2011, pp. 435–446.
[32] Pierre-Malo Deniélou, Nobuko Yoshida, Multiparty session types meet communicating automata, in: Helmut Seidl (Ed.), ESOP, in: LNCS, vol. 7211,

Springer, Heidelberg, 2012, pp. 194–213.
[33] Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, Nobuko Yoshida, Precise subtyping for synchronous multiparty ses-

sions, in: PLACES, in: EPTCS, vol. 203, Open Publishing Association, Waterloo, 2016, pp. 29–44.
[34] Ursula Goltz, Roberto Gorrieri, Arend Rensink, Comparing syntactic and semantic action refinement, Inf. Comput. 125 (2) (1996) 118–143.
[35] Eva Graversen, Event Structure Semantics of Reversible Process Calculi, PhD thesis, Imperial College London, 2021.
[36] Eva Graversen, Iain Phillips, Nobuko Yoshida, Towards a categorical representation of reversible event structures, J. Log. Algebraic Methods Program.

104 (2019) 16–59.
[37] Eva Graversen, Iain C.C. Phillips, Nobuko Yoshida, Event structure semantics of (controlled) reversible CCS, J. Log. Algebraic Methods Program. 121

(2021) 100686.
[38] Kohei Honda, Vasco T. Vasconcelos, Makoto Kubo, Language primitives and type discipline for structured communication-based programming, in: Chris

Hankin (Ed.), ESOP, in: LNCS, vol. 1381, Springer, Heidelberg, 1998, pp. 122–138.
[39] Kohei Honda, Nobuko Yoshida, Marco Carbone, Multiparty asynchronous session types, in: George C. Necula, Philip Wadler (Eds.), POPL, ACM Press,

New York, 2008, pp. 273–284.
[40] Kohei Honda, Nobuko Yoshida, Marco Carbone, Multiparty asynchronous session types, J. ACM 63 (1) (2016) 9.
[41] Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara,

Emilio Tuosto, Hugo Torres Vieira, Gianluigi Zavattaro, Foundations of session types and behavioural contracts, ACM Comput. Surv. 49 (1) (2016) 3.
[42] Lalita Jategaonkar Jagadeesan, Radha Jagadeesan, Causality and true concurrency: a data-flow analysis of the π -calculus (extended abstract), in: Van-

galur S. Alagar, Maurice Nivat (Eds.), AMAST, in: LNCS, vol. 936, Springer, Heidelberg, 1995, pp. 277–291.
[43] Joost-Pieter Katoen, Quantitative and qualitative extensions of event structures, PhD thesis, University of Twente, 1996.
[44] Julien Lange, Emilio Tuosto, Nobuko Yoshida, From communicating machines to graphical choreographies, in: Sriram K. Rajamani, David Walker (Eds.),

POPL, ACM Press, New York, 2015, pp. 221–232.
[45] Rom Langerak, Bundle event structures: a non-interleaving semantics for LOTOS, in: Michael Diaz, Roland Groz (Eds.), Formal Description Techniques

for Distributed Systems and Communication Protocols, North-Holland, Amsterdam, 1993, pp. 331–346.
[46] Rita Loogen, Ursula Goltz, Modelling nondeterministic concurrent processes with event structures, Fundam. Inform. 14 (1) (1991) 39–74.
[47] Robin Milner, A Calculus of Communicating Systems, LNCS, vol. 92, Springer, Heidelberg, 1980.
[48] Ugo Montanari, Marco Pistore, Concurrent semantics for the π -calculus, in: Stephen Brookes, Michael Main, Austin Melton, Michael Mislove (Eds.),

MFPS, in: ENTCS, vol. 1, Elsevier, Oxford, 1995, pp. 411–429.
[49] Mogens Nielsen, Gordon Plotkin, Glynn Winskel, Petri nets, event structures and domains, part I, Theor. Comput. Sci. 13 (1) (1981) 85–108.
[50] Ernst-Rüdiger Olderog, TCSP: theory of communicating sequential processes, in: Wilfried Brauer, Wolfgang Reisig, Grzegorz Rozenberg (Eds.), Advances

in Petri Nets, in: LNCS, vol. 255, Springer, Heidelberg, 1986, pp. 441–465.
[51] Luca Padovani, Type reconstruction for the linear π -calculus with composite regular types, Log. Methods Comput. Sci. 11 (4) (2015).
[52] Jorge A. Pérez, Luís Caires, Frank Pfenning, Bernardo Toninho, Linear logical relations and observational equivalences for session-based concurrency, Inf.

Comput. 239 (2014) 254–302.
[53] Iain Phillips, Irek Ulidowski, Reversibility and asymmetric conflict in event structures, J. Log. Algebraic Methods Program. 84 (6) (2015) 781–805.
[54] Kaku Takeuchi, Kohei Honda, Makoto Kubo, An interaction-based language and its typing system, in: Chris Hankin (Ed.), PARLE, in: LNCS, vol. 817,

Springer, Heidelberg, 1994, pp. 122–138.
[55] Bernardo Toninho, Luís Caires, Frank Pfenning, Dependent session types via intuitionistic linear type theory, in: Peter Schneider-Kamp, Michael Hanus

(Eds.), PPDP, ACM Press, New York, 2011, pp. 161–172.
[56] Emilio Tuosto, Roberto Guanciale, Semantics of global view of choreographies, J. Log. Algebraic Methods Program. 95 (2018) 17–40.
[57] Rob J. van Glabbeek, Ursula Goltz, Well-behaved flow event structures for parallel composition and action refinement, Theor. Comput. Sci. 311 (1–3)

(2004) 463–478.
[58] Daniele Varacca, Nobuko Yoshida, Typed event structures and the linear π -calculus, Theor. Comput. Sci. 411 (19) (2010) 1949–1973.
[59] Philip Wadler, Propositions as sessions, J. Funct. Program. 24 (2–3) (2014) 384–418.
[60] Glynn Winskel, Events in Computation, PhD thesis, University of Edinburgh, 1980.
[61] Glynn Winskel, Event structure semantics for CCS and related languages, in: Mogens Nielsen, Erik Meineche Schmidt (Eds.), ICALP, in: LNCS, vol. 140,

Springer, Heidelberg, 1982, pp. 561–576.
[62] Glynn Winskel, An introduction to event structures, in: Jaco W. de Bakker, Willem P. de Roever, Grzegorz Rozenberg (Eds.), REX: Linear Time, Branching

Time and Partial Order in Logics and Models for Concurrency, in: LNCS, vol. 354, Springer, Heidelberg, 1988, pp. 364–397.
36

http://refhub.elsevier.com/S2352-2208(22)00097-9/bib66429FA6374CB1656C0BD4CEE130ACEFs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib66429FA6374CB1656C0BD4CEE130ACEFs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib66429FA6374CB1656C0BD4CEE130ACEFs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibB7AF776BE9DB7E91B46C80642B944D28s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibB7AF776BE9DB7E91B46C80642B944D28s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib9AE718A4551FF291354F89E4B334D444s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibFBAF749E6A085DCBBE41FF5C030EBF98s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib3C416410E27519CA9F2927C0474718ADs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib3C416410E27519CA9F2927C0474718ADs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibF54B8D29A5282B1160541B60970CB05As1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib0A30B44C42AC106FD84FF7F3FF6C8BA0s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib0A30B44C42AC106FD84FF7F3FF6C8BA0s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibB27E8BC03B0B988413871409F255ED58s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibB27E8BC03B0B988413871409F255ED58s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib1CBB0E40C10A1AAF8C05D2225D8BC4AFs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib15CE0BAC6687DAAFD212DB1182EA5EBAs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib15CE0BAC6687DAAFD212DB1182EA5EBAs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib67567E765DB1FBED8F08D21CEB3DF2A8s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib67567E765DB1FBED8F08D21CEB3DF2A8s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib53E50FD4C9D85EC0EEFC2C6301A6FE79s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib58D9A3E3CA3F47C51F07DAE5FC8BEE2Bs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib58D9A3E3CA3F47C51F07DAE5FC8BEE2Bs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibA32AE250499EBEBEB352EE349DCC1F28s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibF550EA83EB39D81F08A03C8234EBC124s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibCB25F0E25B35C64E0C65ADF2C7553F2Fs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib06CEC1CF5AE8CE20E3B18BC9127FF078s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib6A06582C82A667A2E5D19BCBB5F5F023s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib6A06582C82A667A2E5D19BCBB5F5F023s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib7BD0F4376123D4DF6E16003FD6833E40s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib7BD0F4376123D4DF6E16003FD6833E40s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib537BB999BD80BB477809043DD30375E0s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib1DB74061C3C5E94B083D4E22BF4564E6s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib7AE01D62B3953B0C77CFC1DA66AB1C60s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib7AE01D62B3953B0C77CFC1DA66AB1C60s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib1EDD4789ADB729746057D018A7DC48A6s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib1EDD4789ADB729746057D018A7DC48A6s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib61727E64B5D70FCB81B1FEC82D0E2CFAs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib61727E64B5D70FCB81B1FEC82D0E2CFAs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib37B44180DA2265310180DA0E06A1DC57s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib37B44180DA2265310180DA0E06A1DC57s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibE6D4FA304AC19F6863FA58A26899A748s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibA81BBA8CB2249558FC428CB026826FBEs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibA81BBA8CB2249558FC428CB026826FBEs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib395377860BF3324D7BF7EEA7B062FA2Es1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib395377860BF3324D7BF7EEA7B062FA2Es1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibA64FBC2DFC8EC86B96869F32BDE4BD67s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibC626B6DDFF510F1B39288F98E7049B01s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibC626B6DDFF510F1B39288F98E7049B01s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib2168875F70DA745BA3658D6FBBAAAF46s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib2168875F70DA745BA3658D6FBBAAAF46s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib79BA601117FA2499927D27010F0920C7s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib6E97AD69DD549DBC4FA9FD36578918CBs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibD323931ADBAD578A9A049A2A62F93C40s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibD323931ADBAD578A9A049A2A62F93C40s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibBC6DFADDEDA6A9F1F1846C204A5654BCs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib803D330791A63E2884858BACB42BAB91s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib803D330791A63E2884858BACB42BAB91s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib5194631EC448574F95765B9AC698D010s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibB6BAFEE44EF320207B45F3FFCC325556s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibB6BAFEE44EF320207B45F3FFCC325556s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib3360A71F14DC36C863176A216AE2D045s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibE37806335FF9506FA152ED6562A091CBs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibE37806335FF9506FA152ED6562A091CBs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibFA9E2E06DD2B39A678FB5A0E99B84CD1s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibFA9E2E06DD2B39A678FB5A0E99B84CD1s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibFE07E2E877849EA4C53B3BB9C80F44E4s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibE84F4804EDDF8FE61E8CEDBDAB7FE127s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibE84F4804EDDF8FE61E8CEDBDAB7FE127s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib332A8ABC0A16556FFC8FA5FAADE4ECD8s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib89DAF0D40A9654459BE6E4A2B6CDF1D0s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bibC7563AAFA30ADB5E96385AF34C3BACAEs1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib88437FD9FFEBBB117D637922A10DE1C9s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib88437FD9FFEBBB117D637922A10DE1C9s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib67EE6D05186C0B6368068886E4C55F29s1
http://refhub.elsevier.com/S2352-2208(22)00097-9/bib67EE6D05186C0B6368068886E4C55F29s1

	Event structure semantics for multiparty sessions
	1 Introduction
	2 A core calculus for multiparty sessions
	3 Event structures
	4 Event structure semantics of processes
	5 Event structure semantics of networks
	5.1 Definitions and main properties
	5.2 Further properties

	6 Global types
	6.1 Well-formed global types
	6.2 Type system

	7 Event structure semantics of global types
	8 Equivalence of the two event structure semantics
	8.1 Relating transition sequences of networks and proving sequences of their ESs
	8.2 Relating transition sequences of global types and proving sequences of their ESs

	9 Related work and conclusions
	Declaration of competing interest
	Data availability
	Acknowledgement
	Appendix A Proofs of Section 5
	Appendix B Proofs of Section 6
	Appendix C Proofs of Section 7
	Appendix D Proofs of Subsection 8.1
	Appendix E Proofs of Subsection 8.2
	Appendix F Glossary of symbols and table of notations
	References

