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is equivalent, when the multiparty sessions can be described by global types, to an 
interpretation of such global types as Prime Event Structures.
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1. Introduction

Session types were proposed in the mid-nineties [54,38], as a tool for specifying and analysing web services and com-
munication protocols. They were first introduced in a variant of the π -calculus to describe binary interactions between 
processes. Such binary interactions may often be viewed as client-server protocols. Subsequently, session types were ex-
tended to multiparty sessions [39,40], where several participants may interact with each other. A multiparty session is an 
interaction among peers, and there is no need to distinguish one of the participants as representing the server. All one 
needs is an abstract specification of the protocol that guides the interaction. This is called the global type of the session. 
The global type describes the behaviour of the whole session, as opposed to the local types that describe the behaviours of 
single participants. In a multiparty session, local types may be retrieved as projections from the global type.

Typical safety properties ensured by session types are communication safety (absence of communication errors), session 
fidelity (agreement with the protocol) and deadlock-freedom [40]. When dealing with multiparty sessions, the type system is 
often enhanced so as to guarantee also the liveness property known as progress (no participant gets stuck) [41].
Some simple examples of sessions not satisfying the above properties are: 1) a sender emitting a message while the receiver 
expects a different message (communication error); 2) two participants both waiting to receive a message from the other 
one (deadlock due to a protocol violation); 3) a three-party session where the first participant waits to receive a message 
from the second participant, which keeps interacting forever with the third participant (starvation).
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What makes session types particularly attractive is that they offer several advantages at once: 1) static safety guarantees, 
2) automatic check of protocol implementation correctness, based on local types, and 3) a strong connection with linear 
logics [13,55,59,52,14], and with concurrency models such as communicating automata [32], graphical choreographies [44,
56] and message-sequence charts [40].

In this paper we further investigate the relationship between multiparty session types and concurrency models, by 
focussing on Event Structures [62]. We consider a standard multiparty session calculus where sessions are described as 
networks of sequential processes [33]. Each process implements a participant in the session. We propose an interpretation 
of such networks as Flow Event Structures (FESs) [8,10] (a subclass of Winskel’s Stable Event Structures [62]), which allows 
concurrency between session communications to be explicitly represented. We then introduce global types for these net-
works, and define an interpretation of them as Prime Event Structures (PESs) [60,49]. Since the syntax of global types does 
not allow all the concurrency among communications to be expressed, the events of the associated PES need to be defined 
as equivalence classes of communication sequences up to permutation equivalence. We show that when a network is typable 
by a global type, the FES semantics of the former is equivalent, in a precise technical sense, to the PES semantics of the 
latter. To prove this equivalence, we exploit the bisimilarity of their Labelled Transition Systems, as expressed by the Subject 
Reduction and Session Fidelity theorems (Theorem 6.10 and Theorem 6.11). An alternative approach would have been to 
compare the two ESs directly, thus conducting the whole reasoning within the denotational model itself. However, while 
one side of the comparison (mapping the PES of the type to the FES of the network, which can be viewed as a synthesis 
problem) would be very direct, the other side (reconstructing the PES of the type from the FES of the network) would be 
more involved, as it would require a structural characterisation of the FESs that represent typable networks, which is far 
from obvious and therefore is left for future work. This issue will be discussed at length at the end of Section 7.

Event Structures have been used to give semantics to process calculi ever since their introduction at the beginning of 
the eighties [60,49] (see Section 9 for an extensive historical discussion). A specific feature of our proposed FES semantics 
for networks is that we impose strong semantic constraints on the construction of the events themselves (like duality of 
the histories of their components) in order to reduce the number of events from the very beginning, and to enforce already 
at the syntactic level some of the expected semantic properties. This allows us to obtain more compact FESs, with fewer 
events, which is an advantage when displaying their graphical representations,3 as well as handling examples and carrying 
out proofs.

In a companion paper [16], we investigated a similar Event Structure semantics for a session calculus with asynchronous 
communication, which led to a quite different treatment as it made use of a new notion of asynchronous global type. A 
detailed comparison with [16] will be given in Section 9.

This paper is an expanded and amended version of [15]. The main novelty is that we use a coinductive definition for 
processes and global types, which simplifies several definitions and proofs, and a more stringent definition for network 
events. This definition relies on the new notion of causal set, which is crucial for the correctness of our ES semantics. 
Finally, the present paper includes the proofs of all results, some of which require ingenuity.

The paper is organised as follows. Section 2 introduces our multiparty session calculus. In Section 3 we recall the defi-
nitions of PESs and FESs, which will be used to interpret processes (Section 4) and networks (Section 5), respectively. PESs 
are also used to interpret global types (Section 7), which are defined in Section 6. In Section 8 we prove the equivalence 
between the FES semantics of a network and the PES semantics of its global type. Section 9 discusses related work and 
sketches directions for future work.

The proofs of all theorems and propositions are given in the main paper, except for those of Subject Reduction (Theo-
rem 6.10) and Session Fidelity (Theorem 6.11), which are standard and thus deferred to Appendix B. The proofs of lemmas, 
when not trivial, are collected in Appendices A, B, C, D and E. To help the reader, Appendix F contains a glossary of the 
symbols used and a table of the notations with their meaning and a reference to where they are defined.

2. A core calculus for multiparty sessions

We now formally introduce our calculus, where multiparty sessions are represented as networks of processes. We assume 
the following base sets: session participants, ranged over by p, q, r, . . . and forming the set Part, and messages, ranged over 
by λ, λ′, . . . and forming the set Msg.

Let π ∈ {p!λ, p?λ | p ∈ Part, λ ∈ Msg} denote an action. The action p!λ represents an output of message λ to participant 
p, while the action p?λ represents an input of message λ from participant p. The participant of an action, pt(π), is defined by 
pt(p!λ) = pt(p?λ) = p.

Definition 2.1 (Processes). Processes are defined by:

P ::=coind ⊕
i∈I p!λi; Pi | �i∈I p?λi; Pi | 0

where I is non-empty and λh �= λk for all h, k ∈ I , h �= k, i.e. messages in choices are all different.
Processes of the shape 

⊕
i∈I p!λi; Pi and �i∈I p?λi; Pi are called output and input processes, respectively.

3 Both FESs and PESs enjoy a graphical representation (see Fig. 5 and Fig. 6), as opposed to other kinds of stable ESs.
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p�
⊕

i∈I q!λi; Pi � ‖ q�� j∈ J p?λ j; Q j � ‖ N
pqλk−−→ p� Pk � ‖ q� Q k � ‖ N where k ∈ I∩ J [Com]

Fig. 1. LTS for networks.

The symbol ::=coind , in the definition above and in later definitions, indicates that the productions should be interpreted 
coinductively. Namely, they define possibly infinite processes. However, we assume such processes to be regular, that is, with 
finitely many distinct subprocesses. In this way, we only obtain processes which are solutions of finite sets of equations, 
see [20]. So, when writing processes, we shall use (mutually) recursive equations. When I is a singleton, 

⊕
i∈I p!λi; Pi will 

be rendered as p!λ; P and �i∈I p?λi; Pi will be rendered as p?λ; P . When I contains only two elements, as it will be the 
case in most of our examples, we shall feel free to use the binary choices p!λ1; P1 ⊕ p!λ2; P2 and p!λ1; P1 + p!λ2; P2, where 
the branches p!λi; Pi should be viewed as being parenthesised (since the connector ; is not an operator of our calculus, but 
an integral part of the guarded sum operators). Trailing 0 processes will be omitted.

Processes may be viewed as trees whose internal nodes are decorated by p! or p?, leaves by 0, and edges by messages 
λ.

In a full-fledged calculus, messages would carry values, namely they would be of the form λ(v). For simplicity, we 
consider only pure messages here. This will allow us to project global types directly to processes, without having to explicitly 
introduce local types, see Section 6.

Definition 2.2 (Networks). Networks are defined by:

N = p� P � | p� P � ‖ N

We assume the standard structural congruence ≡ on networks, stating that parallel composition is associative and com-
mutative and has neutral element p� 0 � for any fresh p. Given the associativity of ‖, we shall feel free to write networks in 
the form N = p1� P1 � ‖ · · · ‖ pn� Pn � in the sequel.

If P �= 0 we write p� P � ∈ N as short for N ≡ p� P � ‖ N′ for some N′ . We define the set of participants of N to be
{p | ∃P . p� P � ∈ N}. We say that a network is unary if it has a unique participant4 and binary if it has exactly two par-
ticipants.

To express the operational semantics of networks, we use an LTS whose labels record the message exchanged during 
a communication together with its sender and receiver. The set of communications, ranged over by α, α′ , is defined to be 
{pqλ | p, q ∈ Part, λ ∈ Msg}, where pqλ represents the transmission of a message λ from participant p to participant q.

The LTS semantics of networks is specified by the unique rule [Com] given in Fig. 1. Notice that rule [Com] is symmetric 
with respect to input and output choices. In a well-typed network (see Section 6) it will always be the case that I ⊆ J , 
ensuring that participant p can freely choose an output, since participant q offers all corresponding inputs. Note also that a 
unary network has no transitions.

Note that we could have given first the (standard) LTS semantics for processes, and then derived the LTS for networks 
from it. However, the syntax of our calculus is so simple that the LTS for networks can be defined directly. Thus we chose 
to omit the LTS for processes, which would anyway be of no use in the sequel.

In the following we will make an extensive use of finite (and possibly empty) sequences of communications. As usual 
we define them as traces.

Definition 2.3 (Traces). (Finite) traces σ ∈ Traces are defined by:

σ ::= ε | α ·σ
We use | σ | to denote the length of the trace σ .
The set of participants of a trace, notation part(σ ), is defined by part(ε) = ∅ and part(pqλ ·σ) = {p, q} ∪ part(σ ).

When σ = α1 · . . . ·αn (n ≥ 1) we write N σ−→ N′ as short for N α1−→ N1 · · · αn−→ Nn = N′ .

3. Event structures

We recall now the definitions of Prime Event Structure (PES) from [60,49] and Flow Event Structure (FES) from [8]. The 
class of FESs is more general than that of PESs: for a precise comparison of various classes of event structures, we refer the 

4 Unary networks will not be typable, and therefore, by Subject Reduction, a typable network will never evolve to a unary network. On the other hand, 
this will be possible for non typable networks.
3
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reader to [9]. As we shall see in Sections 4 and 5, while PESs are sufficient to interpret processes, the greater generality of 
FESs is needed to interpret networks.

Definition 3.1 (Prime Event Structure). A prime event structure (PES) is a tuple S = (E, ≤, # ) where:

1. E is a denumerable set of events;
2. ≤⊆ (E × E) is a partial order relation, called the causality relation;
3. # ⊆ (E × E) is an irreflexive symmetric relation, called the conflict relation, satisfying the property:

∀e, e′, e′′ ∈ E : e # e′ ≤ e′′ ⇒ e # e′′ (conflict hereditariness).

Definition 3.2 (Flow Event Structure). A flow event structure (FES) is a tuple S = (E, ≺, # ) where:

1. E is a denumerable set of events;
2. ≺⊆ (E × E) is an irreflexive relation, called the flow relation;
3. # ⊆ (E × E) is a symmetric relation, called the conflict relation.

Note that the flow relation is not required to be transitive, nor acyclic (its reflexive and transitive closure is just a 
preorder, not necessarily a partial order). Intuitively, the flow relation represents a possible direct causality between two 
events. Moreover, in a FES the conflict relation is not required to be irreflexive nor hereditary; indeed, FESs may exhibit 
self-conflicting events, as well as disjunctive causality (an event may have conflicting causes).

Any PES S = (E, ≤, # ) may be regarded as a FES, with ≺ given by < (the strict ordering) or by the covering relation of 
≤.

We now recall the definition of configuration for event structures. Intuitively, a configuration is a set of events having 
occurred at some stage of the computation. Thus, the semantics of an event structure S is given by its poset of configurations 
ordered by set inclusion, where X1 ⊂X2 means that S may evolve from X1 to X2.

Definition 3.3 (PES configuration). Let S = (E, ≤, # ) be a prime event structure. A configuration of S is a finite subset X of 
E such that:

1. X is downward-closed: e′ ≤ e ∈X ⇒ e′ ∈X;
2. X is conflict-free: ∀e, e′ ∈X, ¬(e # e′).

The definition of configuration for FESs is slightly more elaborated. For a subset X of E , let ≺X be the restriction of the 
flow relation to X and ≺∗

X be its transitive and reflexive closure.

Definition 3.4 (FES configuration). Let S = (E, ≺, # ) be a flow event structure. A configuration of S is a finite subset X of E
such that:

1. X is downward-closed up to conflicts: e′ ≺ e ∈X, e′ /∈X ⇒ ∃ e′′ ∈X. e′ # e′′ ≺ e;
2. X is conflict-free: ∀e, e′ ∈X, ¬(e # e′);
3. X has no causality cycles: the relation ≺∗

X is a partial order.

Condition (2) is the same as for prime event structures. Condition (1) is adapted to account for the more general – non-
hereditary – conflict relation. It states that any event appears in a configuration with a “complete set of causes”. Condition 
(3) ensures that any event in a configuration is actually reachable at some stage of the computation.

If S is a prime or flow event structure, we denote by C(S) its set of configurations. Then, the domain of configurations of 
S is defined as follows:

Definition 3.5 (ES configuration domain). Let S be a prime or flow event structure with set of configurations C(S). The domain 
of configurations of S is the partially ordered set D(S)=def(C(S),⊆).

We recall from [9] a useful characterisation for configurations of FESs, which is based on the notion of proving sequence, 
defined as follows:

Definition 3.6 (Proving sequence). Given a flow event structure S = (E, ≺, # ), a proving sequence in S is a sequence e1; · · · ; en

of distinct non-conflicting events (i.e. i �= j ⇒ ei �= e j and ¬(ei # e j) for all i, j) satisfying:

∀i ≤ n ∀e ∈ E : e ≺ ei ⇒ ∃ j < i . either e = e j or e # e j ≺ ei
4
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Note that any prefix of a proving sequence is itself a proving sequence.

We have the following characterisation of configurations of FESs in terms of proving sequences.

Proposition 3.7 (Representation of FES configurations as proving sequences [9]). Given a flow event structure S = (E, ≺, # ), a subset 
X of E is a configuration of S if and only if it can be enumerated as a proving sequence e1; · · · ; en.

Since PESs may be viewed as particular FESs, we may use Definition 3.6 and Proposition 3.7 both for the FESs associated 
with networks (see Sections 5) and for the PESs associated with global types (see Section 7). Note that for a PES the 
condition of Definition 3.6 simplifies to

∀i ≤ n ∀e ∈ E : e < ei ⇒ ∃ j < i . e = e j

To conclude this section, we recall from [17] the definition of downward surjectivity (or downward-onto, as it was called 
there), a property that is required for partial functions between two FESs in order to ensure that they preserve configura-
tions. We will make use of this property in Section 5.

Definition 3.8 (Downward surjectivity). Let Si = (Ei, ≺i, # i), be a flow event structure, i = 0, 1. Let ei, e′
i range over Ei , 

i = 0, 1. A partial function f : E0 →∗ E1 is downward surjective if it satisfies the condition:

e1 ≺1 f (e0) =⇒ ∃e′
0 ∈ E0 . e1 = f (e′

0)

4. Event structure semantics of processes

In this section, we define an event structure semantics for processes, and show that the obtained event structures are 
PESs. This semantics will be the basis for defining the ES semantics for networks in Section 5. We start by introducing 
process events, which are non-empty sequences of actions.

Definition 4.1 (Process event). Process events η, η′ , also called p-events, are defined by:

η ::= π | π ·η π ∈{p!λ,p?λ | p ∈ Part, λ ∈ Msg}
We denote by PE the set of p-events, and by | η | the length of the sequence of actions in the p-event η.

Let ζ denote a (possibly empty) sequence of actions, and � denote the prefix ordering on such sequences. Each p-event 
η may be written either in the form η = π · ζ or in the form η = ζ ·π . We shall feel free to use any of these forms. When 
a p-event is written as η = ζ ·π , then ζ may be viewed as the causal history of η, namely the sequence of past actions that 
must have happened in the process for the last action π to be able to happen.

We define the action of a p-event to be its last action:

act(ζ ·π) = π

Definition 4.2 (Causality and conflict relations on process events). The causality relation ≤ and the conflict relation # on the 
set of p-events PE are defined by:

1. η � η′ ⇒ η ≤ η′;
2. π �= π ′ ⇒ ζ ·π · ζ ′ # ζ ·π ′ · ζ ′′ .

Definition 4.3 (Event structure of a process). The event structure of process P is the triple

SP(P ) = (PE(P ),≤P , # P )

where:

1. PE(P ) ⊆ PE is the set of non-empty sequences of labels along the nodes and edges of a path from the root to an edge 
in the tree of P ;

2. ≤P is the restriction of ≤ to the set PE(P );
3. # P is the restriction of # to the set PE(P ).
5
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It is easy to see that # P = (PE(P ) ×PE(P )) \ (≤P ∪ ≥P ). In the following we shall feel free to drop the subscript in ≤P

and # P .

Note that the set PE(P ) may be denumerable, as shown by the following example.

Example 4.4. If P = q!λ; P ⊕ q!λ′ , then PE(P ) = {q!λ · . . . · q!λ︸ ︷︷ ︸
n

| n ≥ 1} ∪ {q!λ · . . . · q!λ︸ ︷︷ ︸
n

·q!λ′ | n ≥ 0}.

Theorem 4.5. Let P be a process. Then SP(P ) is a prime event structure.

Proof. We show that ≤ and # satisfy Properties 2 and 3 of Definition 3.1. Reflexivity, transitivity and antisymmetry of 
≤ follow from the corresponding properties of �. As for irreflexivity and symmetry of # , they follow from Clause 2 of 
Definition 4.2 and the corresponding properties of inequality. To show conflict hereditariness, suppose that η # η′ ≤ η′′ . From 
Clause 2 of Definition 4.2 there are π , π ′ , ζ , ζ ′ and ζ ′′ such that π �= π ′ and η = ζ ·π · ζ ′ and η′ = ζ ·π ′ · ζ ′′ . From η′ ≤ η′′
we derive that η′′ = ζ ·π ′ · ζ ′′ · ζ1 for some ζ1. Therefore η # η′′ , again from Clause 2. �
5. Event structure semantics of networks

In this section we define the ES semantics of networks and show that the resulting ESs, which we call network ESs, are 
FESs. We also show that when the network is binary, then the obtained FES is a PES. The formal treatment involves defining 
the set of potential events of network ESs, which we call network events, as well as introducing the notion of causal set of a 
network event and the notion of narrowing of a set of network events. This will be the subject of Section 5.1.

In Section 5.2, we first prove some properties of the conflict relation in network ESs. Then, we come back to causal sets 
and we show that they are always finite and that each configuration includes a unique causal set for each of its network 
events. We also discuss the relationship between causal sets and prime configurations, which are specific configurations 
that are in 1-1 correspondence with network events in ESs. Finally, we define a notion of projection of network events on 
participants, yielding p-events, and prove that this projection (extended to sets of network events) is downward surjective 
and preserves configurations.

The proofs omitted in this section can be found in Appendix A.

5.1. Definitions and main properties

We start by defining network events, the potential events of network ESs. Since these events represent communications 
between two network participants p and q, they should be pairs of dual p-events, namely, of p-events emanating respectively 
from p and q, which have both dual actions and dual causal histories.

Formally, to define network events we need to specify the location of p-events, namely the participant to which they 
belong:

Definition 5.1 (Located event). We call located event a p-event η pertaining to a participant p, written p :: η.

As hinted above, network events should be pairs of dual located events p :: ζ · π and q :: ζ ′ · π ′ with matching actions π
and π ′ and matching histories ζ and ζ ′ . To formalise the matching condition, we first define the projections of p-events on 
participants, which yield sequences of undirected actions of the form !λ and ?λ, or the empty sequence ε . Then we introduce 
a notion of duality between located events, based on a notion of duality between undirected actions.

Let ϑ range over !λ and ?λ, and � range over (possibly empty) sequences of ϑ ’s.

Definition 5.2 (Projection of p-events on participants). The projection of a p-event η on a participant p, written η�p , is defined 
by:

q!λ�p =
{

!λ if p = q

ε otherwise
q?λ�p =

{
?λ if p = q

ε otherwise
(π ·η)�p = π �p ·η�p

Definition 5.3 (Duality of undirected action sequences). The duality of undirected action sequences, written � � �′ , is the sym-
metric relation induced by:

ε � ε � � �′ ⇒ !λ ·� � ?λ ·�′

Definition 5.4 (Duality of located events). Two located events p :: η, q :: η′ are dual, written p :: η �̂ q :: η′ , if η�q � η′�p and 
pt(act(η)) = q and pt(act(η′)) = p.
6
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Dual located events may be sequences of actions of different length. For instance p :: q!λ · r!λ′ �̂ r :: p?λ′ and
p :: q!λ �̂ q :: r!λ′ ·p?λ.

Definition 5.5 (Network event). Network events ν, ν ′ , also called n-events, are unordered pairs of dual located events, namely:

ν ::= {p :: η,q :: η′} where p :: η �̂ q :: η′

We denote by NE the set of n-events.

We define the communication of the event ν , notation cm(ν), by cm(ν) = pqλ if ν = {p :: ζ ·q!λ, q :: ζ ′ ·p?λ} and we 
say that the n-event ν represents the communication pqλ. We also define the set of locations of an n-event to be
loc({p :: η, q :: η′}) = {p, q}.

It is handy to have a notion of occurrence of a located event in a set of network events:

Definition 5.6. A located event p :: η occurs in a set E of n-events, notation p :: η∈∈E , if p :: η ∈ ν and ν ∈ E for some ν .

We define now the flow and conflict relations on network events. While the flow relation is the expected one (a network 
event inherits the causality from its constituent processes), the conflict relation is more subtle, as it can arise also between 
network events with disjoint sets of locations.

In the following definition we use |�| to denote the length of the sequence �.

Definition 5.7 (Flow and conflict relations on n-events). The flow relation ≺ and the conflict relation # on the set of n-events 
NE are defined by:

1. ν ≺ ν ′ if p :: η ∈ ν & p :: η′ ∈ ν ′ & η < η′;
2. ν # ν ′ if

(a) either p :: η ∈ ν & p :: η′ ∈ ν ′ & η # η′;
(b) or p :: η ∈ ν & q :: η′ ∈ ν ′ & p �= q & | η�q | = | η′�p | & ¬(η�q � η′�p ).

Two n-events are in conflict if they share a participant with conflicting p-events (Clause (2a)) or if some of their par-
ticipants have communicated with each other in the past in incompatible ways (Clause (2b)), as illustrated by the n-events 
ν and ν ′ in Example 5.8 (Point 3). Observe that in Clause (2b) the condition | η�q | = | η′ �p | is needed if we want 
to check duality of the two projections. Without this condition we could get unwanted conflicts, for instance between 
ν = {p :: q!λ, q :: p?λ} and ν ′ = {p :: q!λ · q!λ′, q :: p?λ · p?λ′}. Removing this condition and checking duality only up to the 
length of the shortest projection would yield more conflicting events, as discussed in Example 5.8 (Point 3). Note also that 
the two clauses (2a) and (2b) are not exclusive, as shown in Example 5.8 (Point 4).

Example 5.8. This example illustrates the use of Definition 5.7 in various cases. It also shows that the flow and conflict 
relations may be overlapping on n-events.

1. Let ν = {p :: q!λ1 · r!λ, r :: p?λ} and ν ′ = {p :: q!λ2, q :: p?λ2}. Then ν # ν ′ by Clause (2a) since q!λ1 · r!λ # q!λ2. Note that 
ν # ν ′ can be also deduced by Clause (2b), since (q!λ1 · r!λ) �q =!λ1 and p?λ2 �p =?λ2 and | !λ1 | = | ?λ2 | and 
¬(!λ1 �?λ2).

2. Let ν be as in (1) and ν ′ = {p :: q!λ2 · q!λ, q :: p?λ2 · p?λ}. Again, we can deduce ν # ν ′ using Clause (2a), since
q!λ1 · r!λ # q!λ2 · q!λ. On the other hand, Clause (2b) does not apply in this case, since (q!λ1 · r!λ) � q =!λ1 and
(p?λ2 · p?λ) �p =?λ2·?λ and thus | !λ1 | �= | ?λ2·?λ | .

3. Let ν be as in (1) and ν ′ = {q :: p?λ2 · s!λ, s :: q?λ}. Here loc(ν) ∩ loc(ν ′) = ∅, so clearly Clause (2a) does not apply. On 
the other hand, ν # ν ′ can be deduced by Clause (2b), since (q!λ1 · r!λ) �q =!λ1 and (p?λ2 · s!λ) �p =?λ2 and | !λ1 | =
| ?λ2 | and ¬(!λ1 �?λ2). Consider now ν ′′ = {q :: p?λ2 · p?λ′ · s!λ, s :: q?λ}. Then we cannot deduce ν # ν ′′ in the same 
way because the two projections do not have the same length. However, we can deduce ν # ν ′′′ ≺ ν ′′ , where ν ′′′ =
{p :: q!λ2, q :: p?λ2}. In other words, ν and ν ′′ are in semantic conflict, as Proposition 5.22 shows, but not in the syntactic 
conflict # (the fact that semantic conflict is in general larger than syntactic conflict is common to all classes of ESs 
except PESs). We could have chosen to make the syntactic conflict larger by replacing Clause (2b) by the following 
alternative clause, where �, �′ are as in Definition 5.3 and � is the prefix ordering:

Clause (2b′) or p :: η ∈ ν & q :: η′ ∈ ν ′ & p �= q &
(∃� � η�q ,∃�′ � η′�p . | � | = | �′ | & ¬(� � �′))

With this alternative clause, we could deduce the syntactic conflict ν # ν ′′ . However, in Definition 5.7 we chose to keep 
our definition of # stricter in order to have fewer syntactic conflicts to handle in examples and proofs.

4. Let ν be as in (1) and ν ′ = {p :: q!λ2 · r!λ · r!λ′, r :: p?λ · p?λ′}. In this case we have both ν ≺ ν ′ by Clause (1) and ν # ν ′ by 
Clause (2a), namely, causality is inherited from participant r and conflict from participant p.
7
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We introduce now the notion of causal set of an n-event ν in a given set of events E v . Intuitively, a causal set of ν in 
E v is a complete set of non-conflicting direct causes of ν which is included in E v .

Definition 5.9 (Causal set). Let ν ∈ E v ⊆NE. A set of n-events E is a causal set of ν in E v if E is a minimal subset of E v
such that

1. E ∪ {ν} is conflict-free and
2. p :: η ∈ ν and η′ < η imply p :: η′ ∈∈E .

Note that in the above definition, the conjunction of minimality and Clause (2) implies that, if ν ′ ∈ E , then ν ′ ≺ ν . Thus 
E is a set of direct causes of ν . Moreover, a causal set of an n-event cannot be included in another causal set of the same 
n-event, as this would contradict the minimality of the larger set. Hence, Definition 5.9 indeed formalises the idea that 
causal sets should be complete sets of compatible direct causes of a given n-event.

Example 5.10. Let ν1 = {p :: q!λ1 · r!λ, r :: p?λ} and ν2 = {p :: q!λ2 · r!λ, r :: p?λ}. Then both {ν1} and {ν2} are causal sets of 
ν = {r :: p?λ · s!λ′, s :: r?λ′} in E v = {ν1, ν2, ν}. Note that ν1 # ν2 and that neither ν1 nor ν2 has a causal set in E v .

Let us now consider also ν ′
1 = {p :: q!λ1, q :: p?λ1} and ν ′

2 = {p :: q!λ2, q :: p?λ2}. Then ν still has the same causal sets {ν1}
and {ν2} in E v ′ = {ν ′

1, ν
′
2, ν1, ν2, ν}, while each νi , i = 1, 2, has the unique causal set {ν ′

i } in E v ′ , and each ν ′
i , i = 1, 2, has 

the empty causal set in E v ′ .
Finally, ν has infinitely many causal sets in NE. For instance, if for every natural number n we let νn =

{p :: q!λn · r!λ, r :: p?λ}, then each {νn} is a causal set of ν in NE. Symmetrically, a causal set may cause infinitely many 
events in NE. For instance, the above causal sets {ν1} and {ν2} of ν could also act as causal sets for any n-event ν ′′

n =
{r :: p?λ · s!λn, s :: r?λn} or, assuming the set of participants to be denumerable, for any event ν ′′′

n = {r :: p?λ · sn!λ′, sn :: r?λ′}.

When defining the set of events of a network ES, we want to prune out all the n-events that do not have a causal set 
in the set itself. The reason is that such n-events should not happen in the event structure of a network, although, when 
projected on their locations (see Definition 5.25), they would always give rise to p-events occurring in a configuration.5

Example 5.14 should further clarify this point. This pruning is achieved by means of the following narrowing function.

Definition 5.11 (Narrowing of a set of n-events). The narrowing of a set E of n-events, denoted by n(E), is the greatest fixpoint 
of the function f E on sets of n-events defined by:

f E(X) = {ν ∈ E | ∃E ′ ⊆ X . E ′is a causal set of ν in X }

Note that we could not have taken n(E) to be the least fixpoint of f E rather than its greatest fixpoint. Indeed, the least 
fixpoint of f E would be the empty set.

Example 5.12. The following two examples illustrate the notions of causal set and narrowing. Let

ν1 = {r :: s?λ1, s :: r!λ1} ν2 = {r :: s?λ2, s :: r!λ2}
ν3 = {p :: r?λ1, r :: s?λ1 · p!λ1} ν4 = {q :: s?λ2, s :: r!λ2 · q!λ2}
ν5 = {p :: r?λ1 · q!λ,q :: s?λ2 · p?λ}

Then n({ν1, . . . , ν5}) = {ν1, . . . , ν4}, because a causal set for ν5 would need to contain both ν3 and ν4, but this is not 
possible, since ν3 # ν4 by Clause (2b) of Definition 5.7. In fact (s?λ1 · p!λ1) �s =?λ1 and (r!λ2 · q!λ2) �r =!λ2 and | ?λ1 | =
| !λ2 | and ¬(?λ1 �!λ2). Let

ν1 = {r :: s?λ1, s :: r!λ1} ν2 = {r :: s?λ2, s :: r!λ2}
ν3 = {p :: r?λ1, r :: s?λ1 · p!λ1} ν4 = {p :: r?λ1 · s?λ2, s :: r!λ2 · p!λ2}
ν5 = {p :: r?λ1 · s?λ2 · q!λ,q :: p?λ}

Here n({ν1, . . . , ν5}) = {ν1, ν2, ν3}. Indeed, a causal set for ν4 would need to contain both ν2 and ν3, but this is not possible, 
since ν2 # ν3 by Clause (2a) of Definition 5.7. In fact s?λ2 # s?λ1 · p!λ1. Then, ν5 will also be pruned by the narrowing, since 
any causal set for ν5 should contain ν4.

We can now finally define the event structure associated with a network. The intuition is that the events appearing 
in some configuration of the event structure should correspond exactly to the transitions executable in some state of the 
network.

5 In fact, every event of a PES occurs in a configuration.
8
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Definition 5.13 (Event structure of a network). The event structure of network N is the triple

SN (N) = (NE(N),≺N, # N)

where:

1. NE(N) = n(CE(N)) with
CE(N) = {{p :: η,q :: η′} | p� P �∈N,q� Q �∈N, η∈PE(P ), η′∈PE(Q ),p :: η �̂ q :: η′}

2. ≺N is the restriction of ≺ to the set NE(N);
3. # N is the restriction of # to the set NE(N).

The set of n-events of the ES associated with a network N is the narrowing of its set of candidate n-events, CE(N), 
which contains all pairs of dual located events that may be constructed from two different components of N. We give now 
a simple example that justifies the use of the narrowing function for building the set of events of a network ES.

Example 5.14. Let N = p� q?λ · r!λ′ � ‖ r� p?λ′ �. Then CE(N) contains the unique n-event ν = {p :: q?λ · r!λ′, r :: p?λ′}. If we did 
not apply the narrowing function to CE(N), namely if we took CE(N) as the set of n-events for SN (N), then {ν} would be 
a possible configuration of SN (N), which is clearly wrong, since the network N does not have a corresponding transition. 
Instead, by applying the narrowing function to CE(N) we obtain NE(N) = n(CE(N)) = ∅, since the n-event ν has no causal 
set in CE(N), which is what we expect.

The set of n-events of a network ES can be infinite, as shown by the following example.

Example 5.15. Let P be as in Example 4.4, Q = p?λ; Q + p?λ′ and N = p� P � ‖ q� Q �. Then

NE(N) = {{p :: q!λ · . . . · q!λ︸ ︷︷ ︸
n

,q :: p?λ · . . . · p?λ︸ ︷︷ ︸
n

} | n ≥ 1} ∪ {{p :: q!λ · . . . · q!λ︸ ︷︷ ︸
n

·q!λ′,q :: p?λ · . . . · p?λ︸ ︷︷ ︸
n

·p?λ′} | n ≥ 0}

A simple variation of this example shows that even within the events of a network ES, an n-event ν may have an infinite 
number of causal sets. Let ν = {r :: p?λ · s!λ′, s :: r?λ′} be as in Example 5.10. Consider the network N′ = p� P ′ � ‖ q� Q � ‖
r� R � ‖ s� S �, where P ′ = q!λ; P ′ ⊕ q!λ′; r!λ, Q is as above, R = p?λ; s!λ′ and S = r?λ′ . Then ν has an infinite number of 
causal sets En = {νn} in NE(N′), where

νn = {p :: q!λ · . . . · q!λ︸ ︷︷ ︸
n

·q!λ′ · r!λ, r :: p?λ}

On the other hand, a causal set may only cause a finite number of events in a network ES, since the number of branches in 
any choice is finite, as well as the number of participants in the network.

Theorem 5.16. Let N be a network. Then SN (N) is a flow event structure with an irreflexive conflict relation.

Proof. The relation ≺N is irreflexive since η < η′ implies ν �= ν ′ , where η, η′, ν, ν ′ are as in Definition 5.7(1). As for the 
conflict relation, note first that a conflict between an n-event and itself could not be derived by Clause (2b) of Definition 5.7, 
since the two located events of an n-event are dual by construction. Lastly, symmetry and irreflexivity of the conflict relation 
follow from the corresponding properties of conflict between p-events. �

The fact that the conflict relation is irreflexive in our network FESs means that we do not exploit the possibility of 
self-conflicts offered by general FESs. This is due to the way we defined the set of events of our network FESs, using the 
narrowing function as discussed previously. We could have chosen an alternative definition, introducing additional self-
conflicting events of a more liberal form6 which would have disappeared when building configurations (together with their 
successors having no other possible causes), as it was done for CCS in [10]. However, this would have resulted in much 
larger sets of events for network FESs, leading to more cumbersome examples and proofs. Our design choice here was to 
reduce the set of events of network FESs by introducing already some semantic constraints on their events (like duality and 
the existence of causal sets). It should be stressed, however, that the narrowing function does not exclude all non executable 
events, as shown by the FES in Example 5.20, which has three events, each of which has a causal set but none of which is 
executable.

6 For instance, we could have allowed events of the form {p :: η, ∗} to represent incomplete communications, and then prevented them from occurring by 
putting them in conflict with themselves. In this case, the event ν of Example 5.14 would have also been prevented from occurring because of its unique 
self-conflicting cause {p :: q?λ, ∗}, and we would not have needed the narrowing function.
9
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Although they have an irreflexive conflict relation like PESs, our network FESs exhibit two important features which are not 
shared by PESs, namely non-hereditary conflict (as shown by the FES given in Fig. 5, where the two conflicting events ν ′

1
and ν ′

2 have a common successor ν) and causality cycles (as shown by the FES in Example 5.20, where there is a circular 
dependency among the three events ν1, ν2 and ν3).

Note that n-events with disjoint sets of locations may be related by the transitive closure of the flow relation, as illus-
trated by the next example, which also shows how n-events inherit the flow relation from the causality relation of their 
p-events.

Example 5.17. Let N be the network

p�q!λ1 � ‖ q�p?λ1; r!λ2 � ‖ r�q?λ2; s!λ3 � ‖ s� r?λ3 �

Then SN (N) has three network events

ν1={p :: q!λ1,q :: p?λ1} ν2={q :: p?λ1 · r!λ2, r :: q?λ2} ν3={r :: q?λ2 · s!λ3, s :: r?λ3}
The flow relation obtained by Definition 5.13 is: ν1 ≺ ν2 and ν2 ≺ ν3. These two flows are inherited from the causal-
ity relations within the process ESs associated with participants q and r, respectively. The non-empty configurations are 
{ν1}, {ν1, ν2} and {ν1, ν2, ν3}. Note that SN (N) has only one proving sequence per configuration (which is the one given by 
the numbering of events).

Clearly, if a network is unary, then the set of events of its FES is empty. If a network is binary, then its FES may be 
turned into a PES by replacing ≺ with its reflexive and transitive closure ≺∗ . To prove this result, we first show a property 
of n-events of binary networks. We say that an n-event ν is binary if the participants occurring in the p-events of ν are 
contained in loc(ν).

Lemma 5.18. Let ν and ν ′ be binary n-events with loc(ν) = loc(ν ′). Then ν # ν ′ iff p :: η ∈ ν and p :: η′ ∈ ν ′ imply η # η′ .

Proposition 5.19. Let N = p1� P1 � ‖ p2� P2 � and SN (N) = (NE(N), ≺N, # ). Then n(CE(N)) = CE(N) and the structure SN∗ (N) =def

(NE(N), ≺∗
N, # ) is a prime event structure.

Proof. We first show that n(CE(N)) = CE(N). By Definition 5.13(1)

CE(N) = {{p1 :: η1,p2 :: η2} | η1 ∈PE(P1),η2 ∈PE(P2),p1 :: η1 �̂ p2 :: η2}
Let {p1 :: η1, p2 :: η2} ∈ CE(N). Since p1 :: η1 �̂ p2 :: η2 and all the actions in η1 involve p2 and all the actions in η2 involve 
p1, we know that η1 and η2 have the same length n ≥ 1 and for each i, 1 ≤ i ≤ n, the prefixes of length i of η1 and η2, 
written ηi

1 and ηi
2, must themselves be dual. Then {p1 :: ηi

1, p2 :: ηi
2} ∈ CE(N) for each i, 1 ≤ i ≤ n, hence {p1 :: η1, p2 :: η2}

has a causal set in CE(N).
We prove now that the reflexive and transitive closure ≺∗

N of ≺N is a partial order. Since by definition ≺∗
N is a preorder, we 

only need to show that it is antisymmetric. Define the length of an n-event ν = {p1 :: η1, p2 :: η2} to be length(ν)=def | η1 | +
| η2 | (where | η | is the length of η). Let now ν, ν ′ ∈ NE(N), with ν = {p1 :: η1, p2 :: η2} and ν ′ = {p1 :: η′

1, p2 :: η′
2}. By 

definition ν ≺N ν ′ implies ηi < η′
i for some i = 1, 2, which in turn implies | ηi | < | η′

i | . As observed above, η1 and η2 must 
have the same length, and so must η′

1 and η′
2. This means that if ν ≺N ν ′ then length(ν) = | η1 | + | η2 | < | η′

1 | + | η′
2 | =

length(ν ′). From this we can conclude that if ν ≺∗
N ν ′ and ν ′ ≺∗

N ν , then necessarily ν = ν ′ .
Finally we show that the relation # satisfies the required properties. By Theorem 5.16 we only need to prove that # is 
hereditary. Let ν and ν ′ be as above. If ν # ν ′ , then by Lemma 5.18 η1 # η′

1 and η2 # η′
2. Let now ν ′′ = {p1 :: η′′

1, p2 :: η′′
2}. If 

ν ′ ≺∗
N ν ′′ , this means that there exist ν1, . . . , νn such that ν ′ ≺N ν1 . . . ≺N νn = ν ′′ . We prove by induction on n that ν # ν ′′ . 

For n = 1 we have ν ′ ≺N ν ′′ . Then by Clause (1) of Definition 5.13 we have η′
j < η′′

j for some j ∈ {1, 2}. Since ηi # η′
i for 

all i ∈ {1, 2} and # is hereditary on p-events, we deduce η j # η′′
j , which implies ν # ν ′′ . Suppose now n > 1. By induction 

ν # νn−1. Since νn−1 ≺N νn = ν ′′ we then obtain ν # ν ′′ by the same argument as in the base case. �
If a network has more than two participants, then the duality requirement on its n-events is not sufficient to ensure the 

absence of circular dependencies.7 For instance, in the following ternary network (which may be viewed as representing the 
3-philosopher deadlock) the relation ≺∗ is not a partial order.

7 This is a well-known issue in multiparty session types, which motivated the introduction of global types in [39], see Section 6.
10
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Example 5.20. Let N be the network

p� r?λ;q!λ′ � ‖ q�p?λ′; r!λ′′ � ‖ r�q?λ′′;p!λ �

Then SN (N) has three n-events

ν1 = {p :: r?λ, r :: q?λ′′ ·p!λ} ν2 = {p :: r?λ ·q!λ′,q :: p?λ′} ν3 = {q :: p?λ′ · r!λ′′, r :: q?λ′′}
By Definition 5.13(1) we have ν1 ≺ ν2 ≺ ν3 and ν3 ≺ ν1. The only configuration of SN (N) is the empty configuration, because 
the only set of n-events that satisfies downward-closure up to conflicts is X = {ν1, ν2, ν3}, but this is not a configuration 
because ≺∗

X is not a partial order (recall that ≺X is the restriction of ≺ to X) and hence the condition (3) of Definition 3.4
is not satisfied.

5.2. Further properties

In this subsection, we first prove two properties of the conflict relation in network ESs: non disjoint n-events are always 
in conflict, and conflict induced by Clause (2b) of Definition 5.7 is semantically inherited. We then discuss the relationship 
between causal sets and prime configurations and prove two further properties of causal sets, which are shared with prime 
configurations8: finiteness, and the existence of a causal set for each event in a configuration. Finally, observing that the 
FES of a network may be viewed as the product of the PESs of its processes, we proceed to prove a classical property for 
ES products, namely that their projections on their components preserve configurations. To this end, we define a projection 
function from n-events to participants, yielding p-events, and we show that configurations of a network ES project down to 
configurations of the PESs of its processes.

Let us start with the conflict properties. By definition, two n-events intersect each other if and only if they share a 
located event p :: η. Otherwise, the two n-events are disjoint. Note that if p :: η ∈ (ν ∩ ν ′), then loc(ν) = loc(ν ′) = {p, q}, 
where q = pt(act(η)). The next proposition establishes that two distinct intersecting n-events in NE are in conflict.

Lemma 5.21 (Sharing of located events implies conflict). If ν, ν ′ ∈NE and ν �= ν ′ and (ν ∩ ν ′) �= ∅, then ν # ν ′ .

Although conflict is not hereditary in FESs, we prove that a conflict due to incompatible mutual projections (i.e., a conflict 
derived by Clause (2b) of Definition 5.7) is semantically inherited. Let ϑ↘n denote the prefix of length n of ϑ .

Proposition 5.22 (Semantic conflict hereditariness). Let p :: η ∈ ν and q :: η′ ∈ ν ′ with p �= q. Let n = min{|η � q |, |η′ � p |}. If
¬((η�q ) ↘n � (η′�p ) ↘n), then there exists no configuration X such that ν, ν ′ ∈X.

Proof. Suppose ad absurdum that X is a configuration such that ν, ν ′ ∈ X. If | η�q | = | η′ �p | then ν # ν ′ by Defini-
tion 5.7(2b) and we reach immediately a contradiction. So, assume | η�q | > | η′�p | = n. This means that | η | > 1 and 
thus there exists a non-empty causal set Eν of ν such that Eν ⊆ X. Let η0 < η be such that | η0 �q | = | η′ �p | = n. By 
definition of causal set, there exists ν0 ∈ Eν such that p :: η0 ∈ ν0. By Definition 5.7(2b) we have then ν0 # ν ′ , contradicting 
the fact that X is conflict-free. �

We prove now two further properties of causal sets. For the reader familiar with ESs, the notion of causal set may 
be reminiscent of that of prime configuration [60], which similarly consists of a complete set of causes for a given event.9

However, there are some important differences: the first is that a causal set does not include the event it causes, unlike a 
prime configuration. The second is that a causal set only contains direct causes of an event, and thus it is not downward-
closed up to conflicts, as opposed to a prime configuration. The last difference is that, while a prime configuration uniquely 
identifies its caused event, a causal set may cause different events, as shown in Example 5.10.

A common feature of prime configurations and causal sets is that they are both finite. For causal sets, this is implied by 
minimality together with Clause (2) of Definition 5.9, as shown by the following proposition.

Proposition 5.23. Let ν ∈ E v ⊆NE. If E is a causal set of ν in E v, then E is finite.

Proof. Suppose ν = {p :: η, q :: η′}. We show that | E | ≤ | η | + | η′ | − 2, where | E | is the cardinality of E . By Condition 
(2) of Definition 5.9, for each η0 < η and η′

0 < η′ there must be ν0, ν ′
0 ∈ E such that p :: η0 ∈ ν0 and q :: η′

0 ∈ ν ′
0. Note that 

ν0 and ν ′
0 could possibly coincide. Moreover, there cannot be ν ′ ∈ E such that p :: η0 ∈ ν ′ �= ν0 or q :: η′

0 ∈ ν ′ �= ν ′
0, since this 

would contradict the minimality of E (and also its conflict-freeness, since by Lemma 5.21 we would have either ν ′ # ν0 or 
ν ′ # ν ′

0). Hence the number of events in E is at most ( | η | − 1) + ( | η′ | − 1). �
8 A prime configuration is a configuration with a unique maximal element, its culminating event.
9 In PESs, the prime configuration associated with an event is unique, while it is not unique in FESs and more generally in Stable ESs, just like a causal 

set.
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A key property of causal sets, which is again shared with prime configurations, is that each configuration includes a 
unique causal set for each n-event in the configuration.

Lemma 5.24. If X is a configuration of SN (N) and ν ∈X, then there is a unique causal set E of ν such that E ⊆X.

In the remainder of this section we show that projections of n-event configurations give p-event configurations. We start 
by formalising the projection function of n-events on participants, which yields p-events, and showing that it is downward 
surjective.

Definition 5.25 (Projection of n-events on participants).

projp(ν) =
{
η if p :: η ∈ ν,

undef ined otherwise.

The projection function projp(·) is extended to sets of n-events in the obvious way:

projp(X) = {η | ∃ν ∈ X . projp(ν) = η}

Example 5.26. Let {ν1, ν2, ν3} be the configuration defined in Example 5.17. We get

projq({ν1, ν2, ν3}) = {p?λ1,p?λ1 · r!λ2}

Example 5.27. Let N and ν be as in Example 5.14. As observed there, if we did not apply narrowing the set of events of 
SN (N) would be the singleton {ν}, which would also be a configuration of SN (N). However, projp(ν) = {q?λ · r!λ′} would 
not be a configuration in SP(P ), since it would contain the event q?λ · r!λ′ without its cause q?λ.

Narrowing ensures that each projection of the set of n-events of a network FES on one of its participants is downward 
surjective (according to Definition 3.8).

Proposition 5.28 (Downward surjectivity of projections). Let SN(N) = (NE(N), ≺N, # N) and SP(P ) = (PE(P ), ≤P , # P ) and 
p� P � ∈ N. Then the partial function projp :NE(N) ⇀PE(P ) is downward surjective.

Proof. As mentioned already in Section 3, any PES S = (E, ≤, # ) may be viewed as a FES, with ≺ given by < (the strict 
ordering underlying ≤). Let η ∈PE(P ) and ν ∈NE(N). Then the property we need to show is:

η <P projp(ν) =⇒ ∃ν ′ ∈NE(N) . η = projp(ν
′)

Note that η <P projp(ν) implies projp(ν) = η ·η′ for some η′ . Recall that NE(N) = n(CE(N)), where n(·) is the narrowing 
function (Definition 5.11).
By definition of narrowing, p :: η ·η′ ∈∈NE(N) implies that there is E ⊆NE(N) such that E is a causal set of ν in NE(N). 
Therefore p :: η ·η′ ∈ ν implies p :: η∈∈E and so p :: η∈∈NE(N), which is what we wanted to show. �
Theorem 5.29 (Projection of n-events preserves configurations). If p� P � ∈ N, then X ∈ C(SN (N)) implies projp(X) ∈ C(SP(P )).

Proof. Clearly, projp(X) is conflict-free. We show that it is also downward-closed. If ν ∈X, by Lemma 5.24 there is a causal 
set E of ν such that E ⊆X. If p :: η ∈ ν and η′ < η, by Definition 5.9 there is ν ′ ∈ E such that p :: η′ ∈ ν ′ . We conclude that 
ν ′ ∈X, and therefore η′ ∈ projp(X). �

Notice that the reverse of Theorem 5.29 is not true, namely p� P � ∈ N does not imply that each configuration of C(SP(P ))

can be obtained by projecting some configuration of C(SN (N)) on p. Consider for instance the network N = p� q?λ �. Then 
{q?λ} ∈ C(SP(P )), while C(SN (N)) = ∅.

The reader may wonder why our ES semantics for sessions is not cast in categorical terms, like classical ES semantics 
for process calculi [60,17], where process constructions arise as categorical constructions (e.g., parallel composition arises 
as a categorical product). In fact, a categorical formulation of our semantics would not be possible, due to our two-level 
syntax for processes and networks, which does not allow networks to be further composed in parallel. However, it should 
be clear that our construction of a network FES from the process PESs of its components is a form of parallel composition, 
and the properties expressed by Proposition 5.28 and Theorem 5.29 give some evidence that this construction satisfies the 
conditions usually required for a categorical product of ESs.
12
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6. Global types

This section is devoted to our type system for multiparty sessions. Global types describe the communication protocols 
involving all session participants. Usually, global types are projected into local types and typing rules are used to derive 
local types for processes [39,19,40]. The simplicity of our calculus allows us to project directly global types into processes 
and to have exactly one typing rule, see Figs. 2 and 3. This section is split in two subsections.
The first subsection presents the projection of global types onto processes, together with the proof of its soundness. More-
over it introduces a boundedness condition on global types, which is crucial for our type system to ensure progress.
The second subsection presents the type system, as well as an LTS for global types. Lastly, the properties of Subject Reduc-
tion, Session Fidelity and Progress are shown. The omitted proofs can be found in Appendix B.

6.1. Well-formed global types

Global types are built from choices among communications.

Definition 6.1 (Global types). Global types G are defined by:

G ::=coind p → q :�i∈Iλi;Gi | End

where I is not empty, λh �= λk for all h, k ∈ I , h �= k, i.e. messages in choices are all different.

As for processes, ::=coind indicates that global types are defined coinductively. Again, we focus on regular terms. Since 
also processes are defined coinductively this allows for a simpler definition of projection, see Fig. 2.

G�r = 0 if r /∈ part(G)

(p → q :�i∈I λi;Gi)�r =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�i∈I p?λi;Gi �r if r = q,⊕

i∈I q!λi;Gi �r if r = p,

G1 �r if r /∈ {p,q} and r ∈ part(G1) and

Gi �r = G1 �r for all i ∈ I

Fig. 2. Projection of global types onto participants.

The type p → q :�i∈Iλi; Gi formalises a protocol which starts with the communication of a message λk from p to q, for 
some k ∈ I , and then, depending on which λk was chosen by p, continues as Gk .

When I is a singleton, a choice p → q :�i∈Iλi; Gi will be rendered simply as p λ→ q ; G. When I contains only two 
elements, as for processes we will use the binary choice notation p → q : (λ1; G1 � λ2; G2). Trailing End types will be 
omitted.

Global types may be viewed as trees whose internal nodes are decorated by pq, leaves by End, and edges by messages λ. 
Given a global type, the sequences of decorations of nodes and edges on the path from the root to an edge in the tree of the 
global type are traces, in the sense of Definition 2.3. We denote by Tr+(G) the set of traces of G. By definition, Tr+(End) = ∅
and each trace in Tr+(G) is non-empty.

The set of participants of a global type G, part(G), is defined to be the union of the sets of participants of all its traces, 
namely

part(G) =
⋃

σ∈Tr+(G)

part(σ )

Note that the regularity assumption ensures that the set of participants is finite.

The projection of a global type onto participants is given in Fig. 2. As usual, projection is defined only when it is defined 
on all participants. Because of the simplicity of our calculus, the projection of a global type, when defined, is simply a 
process. The definition is coinductive, so a global type with an infinite (regular) tree produces a process with a regular tree. 
The projection of a choice type on the sender produces an output process, i.e. a process sending one of its possible messages 
to the receiver and then acting according to the projection of the corresponding branch. Similarly for the projection on the 
receiver, which produces an input process.

Projection of a choice type on the other participants is defined only if it produces the same process for all the branches 
of the choice. This is a standard condition for multiparty session types [39].

Our coinductive definition of global types is more permissive than that based on the standard μ-notation used in [39], 
because it allows more global types to be projected, as shown by the following example.
13
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Example 6.2. The global type G = p → q : (λ1; q 
λ3→ r � λ2; G) is projectable and

• G �p = P = q!λ1 ⊕ q!λ2; P
• G �q = Q = p?λ1; r!λ3 + p?λ2; Q
• G �r = q?λ3

On the other hand, the corresponding global type based on the μ-notation

G′ = μt.p → q : (λ1;q
λ3→ r� λ2; t)

is not projectable because G′ �r is not defined.

However, this additional permissiveness will not be exploited in the present paper. Indeed, the global type G of Exam-
ple 6.2 will be ruled out by the condition of boundedness, introduced next, which aims at forbidding starvation. On the 
other hand, such permissiveness could be of interest whenever starvation is not a concern.

To achieve progress, we need to ensure that each network participant occurs in every computation, whether finite or 
infinite. This means that each type participant must occur in every path of the tree of the type. Projectability already 
ensures that each participant of a choice type occurs in all its branches. This implies that if one branch of the choice 
gives rise to an infinite path, either the participant occurs at some finite depth in this path, or this path crosses infinitely 
many branching points in which the participant occurs in all branches. In the latter case, since the depth of the participant 
increases when crossing each branching point, there is no bound on the depth of the participant over all paths of the type. 
Hence, to ensure that all type participants occur in all paths, it is enough to require the existence of such bounds. This 
motivates the following definition of depth and boundedness.

Definition 6.3 (Depth and boundedness). Let the two functions depth(σ , p) and depth(G, p) be defined by:

depth(σ ,p) =
{

n if σ = σ1 ·α ·σ2 and |σ1 | = n − 1 and p /∈ part(σ1) and p ∈ part(α)

0 otherwise

Then
depth(G, p) = sup{depth(σ , p) | σ ∈ Tr+(G)}

We say that a global type G is bounded if depth(G′, p) is finite for all subtrees G′ of G and for all participants p.

If depth(G, p) is finite, then there are no paths in the tree of G in which p is delayed indefinitely. Note that if depth(G, p)

is finite, G may have subtrees G′ for which depth(G′, p) is infinite as the following example shows.

Example 6.4. Consider G′ = q λ→ r; G where G is as defined in Example 6.2. Then we have:

depth(G′,p) = 2 depth(G′,q) = 1 depth(G′, r) = 1

whereas

depth(G,p) = 1 depth(G,q) = 1 depth(G, r) = ∞
since

Tr+(G) = {pqλ2 · · ·pqλ2︸ ︷︷ ︸
n

·pqλ1 · qrλ3 | n ≥ 0} ∪ {pqλ2 · · ·pqλ2 · · · }

and sup{2, 3, . . .} = ∞.

The depths of the participants in G which are not participants of its root communication decrease in the immediate 
subtrees of G. The proof is trivial since, if G = p → q :�i∈Iλi; Gi , then σ ∈ Tr+(G) implies σ = pqλi ·σ ′ and σ ′ ∈ Tr+(Gi)

for some i ∈ I .

Lemma 6.5. If G = p → q :�i∈Iλi; Gi and r ∈ part(G)\{p, q}, then depth(G, r) > depth(Gi, r) for all i ∈ I .

We can now show that the definition of projection given in Fig. 2 is sound for bounded global types.

Lemma 6.6. If G is bounded, then G �r is a partial function for all r.
14
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Boundedness and projectability single out the global types we want to use in our type system.

Definition 6.7 (Well-formed global types). We say that the global type G is well formed if G is bounded and G �p is defined 
for all p.

Clearly it is sufficient to check that G �p is defined for all p ∈ part(G), since otherwise G �p = 0.

6.2. Type system

The definition of well-typed networks is given in Fig. 3. We first define a preorder on processes, P ≤ Q , meaning that 
process P can be used where we expect process Q . More precisely, P ≤ Q if either P is equal to Q , or we are in one of two 
situations: either both P and Q are output processes with the same receiver and choice of messages, and their continuations 
after the send are two processes P ′ and Q ′ such that P ′ ≤ Q ′; or they are both input processes with the same sender and 
choice of messages, and P may receive more messages than Q (and thus have more behaviours) but whenever it receives 
the same message as Q their continuations are two processes P ′ and Q ′ such that P ′ ≤ Q ′ . The rules are interpreted 
coinductively, since the processes may have infinite (regular) trees.

0 ≤ 0 [ ≤ -0]
Pi ≤ Q i i ∈ I

�i∈I∪ J p?λi; Pi ≤ �i∈I p?λi; Q i

===============================[ ≤-In]
Pi ≤ Q i i ∈ I⊕

i∈I p!λi; Pi ≤ ⊕
i∈I p!λi; Q i

===========================[ ≤-Out]

Pi ≤ G�pi i ∈ I part(G) ⊆ {pi | i ∈ I}
� �i∈I pi� Pi � : G

[Net]

Fig. 3. Preorder on processes and network typing rule.

A network is well typed if all its participants have associated processes that behave as specified by the projections 
of a global type. In Rule [Net], the condition part(G) ⊆ {pi | i ∈ I} ensures that all participants of the global type appear 
in the network. Moreover it permits additional participants that do not appear in the global type, allowing the typing of 
sessions containing p� 0 � for a fresh p — a property required to guarantee invariance of types under structural congruence 
of networks.

Example 6.8. The first network of Example 5.15 and the network of Example 5.17 can be typed respectively by

G = p → q : (λ;G� λ′)
G′ = p

λ1→ q;q
λ2→ r; r

λ3→ s

It is handy to define the LTS for global types given in Fig. 4. Rule [Icomm] is justified by the fact that in a projectable 
global type p → q :�i∈Iλi; Gi , the behaviours of the participants different from p and q are the same in all branches, and 
hence they are independent from the choice and may be executed before it. This LTS respects well-formedness of global 
types, as shown by Lemma 6.9.

p → q :�i∈I λi;Gi
pqλ j−−→ G j j ∈ I [Ecomm]

Gi
α−→ G′

i for all i ∈ I part(α) ∩ {p,q} = ∅
[Icomm]

p → q :�i∈I λi;Gi
α−→ p → q :�i∈I λi;G′

i

Fig. 4. LTS for global types.

Lemma 6.9. If G is a well-formed global type and G 
pqλ−−→ G′ , then G′ is a well-formed global type.

Given this lemma, we will focus on well-formed global types from now on.

We end this section with the expected results of Subject Reduction, Session Fidelity [39,40] and Progress [19,51]. The 
proof of Progress relies on Session Fidelity. Both Subject Reduction and Session Fidelity will be used in Section 8 to show 
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the isomorphism between the configuration domains of the FES of a typable network and the PES of its global type (Theo-
rem 8.18).

Theorem 6.10 (Subject Reduction). If � N : G and N α−→ N′ , then G α−→ G′ and � N′ : G′ .

Theorem 6.11 (Session Fidelity). If � N : G and G α−→ G′ , then N α−→ N′ and � N′ : G′ .

We are now able to prove that in a typable network, every participant whose process is not terminated may eventually 
perform a communication. This property is generally referred to as progress.

Theorem 6.12 (Progress). If � N : G and p� P � ∈ N, then N σ ·α−−→ N′ and p ∈ part(α).

Proof. We prove by induction on d = depth(G, p) that: if � N : G and p� P � ∈ N, then G σ ·α−−→ G′ with p ∈ part(α). This will 
imply N σ ·α−−→ N′ by Session Fidelity (Theorem 6.11).

Case d = 1. In this case G = q → r :�i∈Iλi; Gi and p ∈ {q, r} and G 
qrλh−−→ Gh for some h ∈ I by Rule [Ecomm].

Case d > 1. In this case G = q → r :�i∈Iλi; Gi and p /∈ {q, r}. By Lemma 6.5 this implies depth(Gi, p) < d for all i ∈ I . Using 

Rule [Ecomm] we get G 
qrλi−−→ Gi for all i ∈ I . By Session Fidelity, N 

qrλi−−→ Ni and � Ni : Gi for all i ∈ I . Moreover, since p /∈ {q, r}
we also have p� P � ∈ Ni for all i ∈ I . By induction Gi

σi ·αi−−−→ G′
i with p ∈ part(αi) for all i ∈ I . We conclude G 

qrλi ·σi ·αi−−−−−−→ G′
i for 

all i ∈ I . �
The proof of the progress theorem shows that the execution strategy which uses only Rule [EComm] is fair, since there 

are no infinite transition sequences where some participant is stuck. This is due to the boundedness condition on global 
types.

Example 6.13. The second network of Example 5.15 and the network of Example 5.20 cannot be typed because they do not 
enjoy progress. Notice that the candidate global type for the second network of Example 5.15:

G′′ = p → q : (λ;G′′� λ′;p
λ→ r; r

λ′→ s)

is not bounded, given that depth(G′′, r) and depth(G′′, s) are not finite.
Moreover we cannot define a global type whose projections are greater than or equal to the processes associated with the 
network of Example 5.20.

7. Event structure semantics of global types

We define now the event structure associated with a global type, whose events are equivalence classes of particular 
traces, and we show that it is a PES.

The unique omitted proof can be found in Appendix C.
We recall that a trace σ ∈ Traces is a finite sequence of communications (see Definition 2.3). We will use the following 

notational conventions:

• We denote by σ [i] the i-th element of σ , i > 0.
• If i ≤ j, we define σ [i ... j] = σ [i] · · ·σ [ j] to be the subtrace of σ consisting of the ( j − i + 1) elements starting from the 

i-th one and ending with the j-th one. If i > j, we convene σ [i ... j] to be the empty trace ε .

If not otherwise stated we assume that σ has n elements, so σ = σ [1 ... n].

We start by defining an equivalence relation on Traces which allows swapping of communications with disjoint partici-
pants.

Definition 7.1 (Permutation equivalence). The permutation equivalence on Traces is the least equivalence ∼ such that

σ ·α ·α′ ·σ ′ ∼ σ ·α′ ·α ·σ ′ if part(α) ∩ part(α′) = ∅
We denote by [σ ]∼ the equivalence class of the trace σ , and by Traces/ ∼ the set of equivalence classes on Traces. Note that 
[ε]∼ = {ε} ∈ Traces/ ∼, and [α]∼ = {α} ∈ Traces/ ∼ for any α. Moreover |σ ′| = |σ | for all σ ′ ∈ [σ ]∼ .
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The events associated with a global type, called g-events and denoted by γ , γ ′ , are equivalence classes of particular 
traces that we call pointed. Intuitively, in a pointed trace all communications but the last one are causes of some subsequent 
communication. Formally:

Definition 7.2 (Pointed trace). A trace σ = σ [1 ... n] is said to be pointed if

for all i, 1 ≤ i < n, part(σ [i]) ∩ part(σ [(i + 1) ...n]) �= ∅

Note that the condition of Definition 7.2 must be satisfied only by the σ [i] with i < n, thus it is vacuously satisfied by 
any trace of length 1.

Example 7.3. Let α1 = pqλ1, α2 = rsλ2 and α3 = rpλ3. Then σ1 = α1 and σ3 = α1 ·α2 ·α3 are pointed traces, while σ2 =
α1 ·α2 is not a pointed trace.

We use last(σ ) to denote the last communication of σ .

Lemma 7.4. Let σ be a pointed trace. If σ ∼ σ ′ , then σ ′ is a pointed trace and last(σ ) = last(σ ′).

Definition 7.5 (Global event). Let σ = σ ′ ·α be a pointed trace. Then γ = [σ ]∼ is a global event, also called g-event, with 
communication α, notation cm(γ ) = α.
We denote by GE the set of g-events.

Notice that cm(γ ) is well defined due to Lemma 7.4.

We now introduce an operator of prefixing of a g-event γ by a communication α, which acts as follows: if α is a cause 
of some communication in the trace of γ , then α is added at the beginning of the trace, otherwise γ is left unchanged. This 
ensures that the operator always transforms a g-event into another g-event. We call this operator “retrieval of a g-event 
before a communication”, because it yields the g-event obtained from γ if we were to execute the communication α before 
γ . This operator is the counterpart of the “residual of a g-event after a communication”, which yields the g-event obtained 
from γ after executing the communication α from γ , see Definition 8.9.

Definition 7.6 (Retrieval of g-events before communications).

1. The retrieval operator ◦ applied to a communication and a g-event is defined by:

α ◦ [σ ]∼ =
{

[α ·σ ]∼ if part(α) ∩ part(σ ) �= ∅
[σ ]∼ otherwise

2. The operator ◦ naturally extends to traces:

ε ◦ γ = γ (α ·σ) ◦ γ = α ◦ (σ ◦ γ )

Using the retrieval, we can define the mapping ev(·) which, applied to a trace σ , gives the g-event representing the 
communication last(σ ) prefixed by its causes occurring in σ .

Definition 7.7. The g-event generated by a non-empty trace is defined by:

ev(σ ·α) = σ ◦ [α]∼
Clearly cm(ev(σ )) = last(σ ).

Example 7.8. A trace of the global type p λ1→ q; q λ2→ r; s λ3→ p is pqλ1 · qrλ2 · spλ3, and

ev(pqλ1 · qrλ2 · spλ3) = pqλ1 · qrλ2 ◦ {spλ3} = pqλ1 ◦ {spλ3} = {pqλ1 · spλ3}

We proceed now to define the causality and conflict relations on g-events. To define the conflict relation, it is handy 
to define the projection of a trace on a participant, which gives the sequence of the participant’s actions in the trace. The 
result is a p-event. In this way we can define the conflict between g-events using the conflict between p-events.
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Definition 7.9 (Projection of traces on participants).

1. The projection of α onto r, α@r , is defined by:

pqλ@r =

⎧⎪⎨⎪⎩
q!λ if r = p

p?λ if r = q

ε if r /∈ {p,q}
2. The projection of a trace σ onto r, σ@r , is defined by:

ε@r = ε (α · σ)@r = α@r · σ@r

Definition 7.10 (Causality and conflict relations on g-events). The causality relation ≤ and the conflict relation # on the set of 
g-events GE are defined by:

1. γ ≤ γ ′ if γ = [σ ]∼ and γ ′ = [σ ·σ ′]∼ for some σ , σ ′;
2. [σ ]∼ # [σ ′]∼ if σ@p # σ ′@p for some p.

If γ = [σ ·α ·σ ′ ·α′]∼ , then the communication α must be done before the communication α′ . This is expressed by the 
causality [σ ·α]∼ ≤ γ . An example is [pqλ]∼ ≤ [rsλ′ ·pqλ · sqλ′′]∼ .
As regards conflict, note that if σ ∼ σ ′ then σ@p = σ ′@p for all p, because ∼ does not swap communications which share 
some participant. Hence, conflict is well defined, since it does not depend on the trace chosen in the equivalence class. 
The condition σ@p # σ ′@p states that participant p does the same actions in both traces up to some point, after which 
it performs two different actions in σ and σ ′ . For example [pqλ · rpλ1 ·qpλ′]∼ # [pqλ · rpλ2]∼ , since (pqλ · rpλ1 ·qpλ′)@p =
q!λ · r?λ1 ·q?λ′ # q!λ · r?λ2 = (pqλ · rpλ2)@p .

Definition 7.11 (Event structure of a global type). The event structure of the global type G is the triple

SG(G) = (GE(G),≤G, # G)

where:

1. GE(G) = {ev(σ ) | σ ∈ Tr+(G)}
2. ≤G is the restriction of ≤ to the set GE(G);
3. # G is the restriction of # to the set GE(G).

Note that, in case the tree of G is infinite, the set GE(G) is denumerable.

Example 7.12. Let G1 = p λ1→ q; r λ2→ s; r λ3→ p and G2 = r λ2→ s; p λ1→ q; r λ3→ p. Then GE(G1) =GE(G2) = {γ1, γ2, γ3} where

γ1 = {pqλ1} γ2 = {rsλ2} γ3 = {pqλ1 · rsλ2 · rpλ3, rsλ2 ·pqλ1 · rpλ3}
with γ1 ≤ γ3 and γ2 ≤ γ3. The configurations are {γ1}, {γ2}, {γ1, γ2} and {γ1, γ2, γ3}, and the proving sequences are

γ1 γ2 γ1;γ2 γ2;γ1 γ1;γ2;γ3 γ2;γ1;γ3

If G′ is as in Example 6.8, then GE(G′) = {γ1, γ2, γ3} where

γ1 = {pqλ1} γ2 = {pqλ1 ·qrλ2} γ3 = {pqλ1 ·qrλ2 · rsλ3}
with γ1 ≤ γ2 ≤ γ3. The configurations are {γ1}, {γ1, γ2} and {γ1, γ2, γ3}, and there is a unique proving sequence correspond-
ing to each configuration.

Theorem 7.13. Let G be a global type. Then SG(G) is a prime event structure.

Proof. We show that ≤ and # satisfy Properties (2) and (3) of Definition 3.1. Reflexivity and transitivity of ≤ follow from 
the properties of concatenation and of permutation equivalence. As for antisymmetry, by Definition 7.10(1) [σ ]∼ ≤ [σ ′]∼
implies σ ′ ∼ σ ·σ1 for some σ1 and [σ ′]∼ ≤ [σ ]∼ implies σ ∼ σ ′ ·σ2 for some σ2. Hence σ ∼ σ ·σ1 ·σ2, which implies 
σ1 = σ2 = ε . Irreflexivity and symmetry of # follow from the corresponding properties of # on p-events.
As for conflict hereditariness, suppose that [σ ]∼ # [σ ′]∼ ≤ [σ ′′]∼ . By Definition 7.10(1) and (2) we have respectively that 
σ ′ ·σ1 ∼ σ ′′ for some σ1 and σ@p # σ ′@p for some p. Hence also σ@p # (σ ′ ·σ1)@p , whence by Definition 7.10(2) we 
conclude that [σ ]∼ # [σ ′′]∼ . �
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N = p� q!λ1; r!λ ⊕ q!λ2; r!λ � ‖ q� p?λ1; s!λ′ + p?λ2; s!λ′ � ‖ r� p?λ; s!λ′′ � ‖ s� q?λ′; r?λ′′ �

ν1 = {p :: q!λ1,q :: p?λ1}

ν ′′
1 = {q :: p?λ1 · s!λ′, s :: q?λ′}

ν = {r :: p?λ · s!λ′′, s :: q?λ′ · r?λ′′}

ν2 = {p :: q!λ2,q :: p?λ2}

ν ′′
2 = {q :: p?λ2 · s!λ′, s :: q?λ′}

ν ′
1 = {p :: q!λ1 · r!λ, r :: p?λ} ν ′

2 = {p :: q!λ2·r!λ , r :: p?λ}

#
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Fig. 5. FES of the network N.

G = p → q : (λ1; p λ→ r; q λ′→ s; r λ′′→ s � λ2; p λ→ r; q λ′→ s; r λ′′→ s)

γ1 = [pqλ1]∼

γ ′′
1 = [pqλ1 · qsλ′]∼

γ = [pqλ1 · prλ · qsλ′ · rsλ′′]∼ γ ′ = [pqλ2 · prλ · qsλ′ · rsλ′′]∼

γ2 = [pqλ2]∼

γ ′
1 = [pqλ1 · prλ]∼ γ ′′

2 = [pqλ2 · qsλ′]∼ γ ′
2 = [pqλ2 · prλ]∼
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Fig. 6. PES of the type G.

Observe that, while our interpretation of networks as FESs exactly reflects the concurrency expressed by the syntax of 
networks, our interpretation of global types as PESs exhibits more concurrency than that given by the syntax of global types.

We conclude this section with two pictures that summarise the features of our ES semantics and illustrate the difference 
between the FES of a network and the PES of its type. In general these two ESs are not isomorphic, unless the FES of the 
network is itself a PES.

Consider the network FES pictured in Fig. 5, where the arrows represent the flow relation and all the n-events on the left 
of the dotted line are in conflict with all the n-events on the right of the line. In particular, notice that the conflicts between 
n-events with a common location are deduced by Clause (2a) of Definition 5.7, while the conflicts between n-events with 
disjoint sets of locations, such as ν ′

1 and ν ′′
2 , are deduced by Clause (2b) of Definition 5.7. Observe also that the n-event ν

has two different causal sets in NE(N), namely {ν ′
1, ν

′′
1 } and {ν ′

2, ν
′′
2 }. The reader familiar with ESs will have noticed that 

there are also two prime configurations whose maximal element is ν , namely {ν1, ν ′
1, ν

′′
1 , ν} and {ν2, ν ′

2, ν
′′
2 , ν}. It is easy to 

see that the network N can be typed with the global type G shown in Fig. 6.
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Consider now the PES of the type G pictured in Fig. 6, where the arrows represent the covering relation of the partial 
order of causality and inherited conflicts are not shown. Note that while the FES of N has a unique maximal n-event ν , 
the PES of its type G has two maximal g-events γ and γ ′ . This is because an n-event only records the computations that 
occurred at its locations, while a g-event records the global computation and keeps a record of each choice, including those 
involving locations that are disjoint from those of its last communication. Indeed, g-events correspond exactly to prime 
configurations.

Note that the FES of a network may be easily recovered from the PES of its global type by using the following function 
gn(·) that maps g-events to n-events:

gn(γ ) = {p :: σ@p ,q :: σ@q } if γ = [σ ]∼ with part(cm(γ )) = {p,q}
On the other hand, the inverse construction is not as direct. First of all, an n-event in the network FES may give rise to 

several g-events in the type PES, as shown by the n-event ν in Fig. 5, which gives rise to the pair of g-events γ and γ ′ in 
Fig. 6. Moreover, the local information contained in an n-event is not sufficient to reconstruct the corresponding g-events: 
for each n-event, we need to consider all the prime configurations that culminate with that event, and then map each of 
these configurations to a g-event. Hence, we need a function ng(·) that maps n-events to sets of prime configurations of 
the FES, and then maps each such configuration to a g-event. We will not explicitly define this function here, since we miss 
another important ingredient to compare the FES of a network and the PES of its type, namely a structural characterisation 
of the FESs that represent typable networks. Indeed, if we started from the FES of a non typable network, this construction 
would not be correct. Consider for instance the network N′ obtained from N by omitting the output r!λ from the second 
branch of the process of p. Then the FES of N′ would not contain the n-event ν ′

2 and the event ν would have the unique 
causal set {ν ′

1, ν
′′
1 }, and the unique prime configuration culminating with ν would be {ν1, ν ′

1, ν
′′
1 , ν}. Then our construction 

would give a PES that differs from that of type G only for the absence of the g-events γ ′
2 and γ ′ . However, the network N′

is not typable and thus we would expect the construction to fail. Note that in the FES of N′ , the n-event ν ′′
2 is a cause of 

ν but does not belong to any causal set of ν . Thus a possible well-formedness property to require for FESs to be images of 
a typable network would be that each cause of each n-event belong to some causal set of that event. However, this would 
still not be enough to exclude the FES of the non typable network N′′ obtained from N′ by omitting the output s!λ′ from 
the second branch of the process of q.

To conclude, in the absence of a semantic counterpart for the well-formedness properties of global types, which eludes 
us for the time being, we will follow another approach here, namely we will compare the FESs of networks and the PESs of 
their types at a more operational level, by looking at their configuration domains and by relating their configurations to the 
transition sequences of the underlying networks and types.

8. Equivalence of the two event structure semantics

In this section we establish our main result for typable networks (Theorem 8.18), namely the isomorphism between the 
domain of configurations of the FES of a typable network and the domain of configurations of the PES of its global type. 
To do so, we first relate the transition sequences of networks and global types to the configurations of their respective 
ESs. Then, we exploit our results of Subject Reduction (Theorem 6.10) and Session Fidelity (Theorem 6.11), which relate 
the transition sequences of networks and their global types, to derive a similar relation between the configurations of 
their respective ESs. The schema of our proof is described by the diagram in Fig. 7. Here, SR stands for Subject Reduction 
and SF for Session Fidelity, and ν1; . . . ; νn and γ1; . . . ; γn are proving sequences of SN (N) and SG(G), respectively. Finally, 
nec(σ ) and gec(σ ) denote the proving sequences of n-events and g-events which correspond to the trace σ (as given by 
Definition 8.3 and Definition 8.13). Theorem 8.8 says that, if ν1; · · · ; νn is a proving sequence of SN (N), then N σ−→ N′ , where 
σ = cm(ν1) · . . . · cm(νn). By Subject Reduction (Theorem 6.10) G σ−→ G′ . This implies that gec(σ ) is a proving sequence of 
SG(G) by Theorem 8.15. Dually, Theorem 8.16 says that, if γ1; · · · ; γn is a proving sequence of SG(G), then G σ−→ G′ , where 

ν1; . . . ;νn = nec(σ )

Th.8.8

N σ = cm(ν1) · . . . · cm(νn)

SR

Th.8.7

N′

G

Th.8.15

σ = cm(γ1) · . . . · cm(γn)

SF

G′

gec(σ ) = γ1; . . . ;γn

Th.8.16

Fig. 7. Isomorphism proof in a nutshell.
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σ = cm(γ1) · . . . · cm(γn). By Session Fidelity (Theorem 6.11) N σ−→ N′ . Lastly, nec(σ ) is a proving sequence of SN (N) by 
Theorem 8.7. The equalities in the top and bottom lines are proved in Lemmas 8.4(1a) and 8.14(1).

This section is divided in two subsections: Section 8.1, which handles the upper part of the above diagram, and Sec-
tion 8.2, which handles the lower part of the diagram and then connects the two parts using both SR and SF within 
Theorem 8.18, our closing result. The omitted proofs of Sections 8.1 and 8.2 can be found in Appendices D and E, respec-
tively.

8.1. Relating transition sequences of networks and proving sequences of their ESs

The aim of this subsection is to relate the traces that label the transition sequences of networks with the configurations 
of their FESs. We start by showing how network communications affect n-events in the associated FES. To this end we 
define two partial operators ♦ and �, which applied to a communication α and an n-event ν yield another n-event ν ′
(when defined), which represents the event ν before the communication α or after the communication α, respectively. We 
call “retrieval” the ♦ operator (in agreement with Definition 7.6) and “residual” the � operator.

Formally, the operators ♦ and � are defined as follows.

Definition 8.1 (Retrieval and residual of n-events with respect to communications).

1. The retrieval operator ♦ applied to a communication and a located event returns the located event obtained by prefixing 
the p-event by the projection of the communication:

α♦ (p :: η) = p :: (α@p ) ·η
2. The residual operator � applied to a communication and a located event returns the located event obtained by erasing 

from the p-event the projection of the communication (if possible):

α� (p :: η) = p :: η′ if η = (α@p ) ·η′

3. The operators ♦ and � naturally extend to n-events and to traces:

α♦ ({p :: η,q :: η′}) = {α♦ (p :: η),α♦ (q :: η′)}
α� ({p :: η,q :: η′}) = {α� (p :: η),α� (q :: η′)}

ε♦ν = ν (α ·σ)♦ν = α♦ (σ ♦ν)

ε�ν = ν (α ·σ)�ν = σ � (α�ν)

Note that the operator ♦ is always defined. Instead pqλ� r :: η is undefined if r ∈ {p, q} and either η is just one atomic action 
or pqλ@r is not the first atomic action of η. For example pqλ� p :: q!λ and pqλ� p :: q!λ′ · η with λ �= λ′ are undefined for 
any η.

The retrieval and residual operators are inverse of each other. Moreover they preserve the flow and conflict relations.

Lemma 8.2 (Properties of retrieval and residual for n-events).

1. If α� ν is defined, then α♦ (α�ν) = ν;
2. α� (α♦ν) = ν;
3. If ν ≺ ν ′ , then α♦ ν ≺ α♦ ν ′;
4. If ν ≺ ν ′ and both α� ν and α� ν ′ are defined, then α� ν ≺ α� ν ′;
5. If ν # ν ′ , then α♦ ν # α♦ ν ′;
6. If ν # ν ′ and both α� ν and α� ν ′ are defined, then α� ν # α� ν ′;
7. If α♦ ν # α♦ ν ′ , then ν # ν ′ .

Starting from the trace σ �= ε that labels a transition sequence in a network, one can reconstruct the corresponding 
sequence of n-events in its FES. Recall that σ [1 ... i] is the prefix of length i of σ and σ [i ... j] is the empty trace if i > j.

Definition 8.3 (Building sequences of n-events from traces). If σ is a non-empty trace with σ [i] = piqiλi , 1 ≤ i ≤ n, we define 
the sequence of n-events corresponding to σ by

nec(σ ) = ν1; · · · ;νn

where νi = σ [1 ... i − 1]♦ {pi :: qi !λi,qi :: pi?λi} for 1 ≤ i ≤ n.
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It is immediate to see that, if σ = pqλ, then nec(σ ) is the event {p :: q!λ, q :: p?λ}.

We show now that σ can be recovered from nec(σ ), and that two n-events occurring in nec(σ ) cannot be in conflict. 
Moreover, the n-event obtained by applying nec to a communication cannot be in conflict with the n-event obtained by 
applying the retrieval to the same communication and an arbitrary n-event.

Lastly, we relate the sequences of n-events generated by two traces one of which is a suffix of the other. Given that the 
mapping nec is based on the retrieval operator, this relation is naturally expressed using the retrieval and residual operators.

Lemma 8.4 (Properties of nec(·)).

1. Let nec(σ ) = ν1; · · · ; νn. Then

(a) cm(νi) = σ [i] for all i, 1 ≤ i ≤ n;
(b) If 1 ≤ h, k ≤ n, then ¬(νh # νk).

2. ¬(nec(α) # α♦ ν) for all ν .
3. Let σ = α · σ ′ and σ ′ �= ε . If nec(σ ) = ν1; · · · ; νn and nec(σ ′) = ν ′

2; · · · ; ν ′
n, then α♦ ν ′

i = νi and α� νi = ν ′
i for all i, 2 ≤ i ≤ n.

Notice that if α� ν is undefined and ν is an n-event of a network with communication α, then either ν = nec(α) or 
ν # nec(α).

Lemma 8.5. If N α−→ N′ and ν ∈NE(N), then ν = nec(α) or ν # nec(α) or α� ν is defined.

The following lemma, which is technically quite challenging as it involves reasoning about the fixpoint properties of the 
set of n-events of a network FES (as defined by the narrowing function), relates the sets of n-events of two network FESs, 
where one network is a one-step derivative of the other, by means of the retrieval and residual operators.

Lemma 8.6. Let N α−→ N′ . Then

1. {nec(α)} ∪ {α♦ ν | ν ∈NE(N′)} ⊆NE(N);
2. {α� ν | ν ∈NE(N) and α� ν defined} ⊆NE(N′).

We may now prove the correspondence between the traces labelling the transition sequences of a network and the 
proving sequences of its FES.

Theorem 8.7. If N σ−→ N′ , then nec(σ ) is a proving sequence in SN (N).

Proof. The proof is by induction on σ .

Base case. Let σ = α. From N α−→ N′ and Lemma 8.6(1) nec(α) ∈ NE(N). Since nec(α) has no causes, by Definition 3.6 we 
conclude that nec(α) is a proving sequence in SN (N).

Inductive case. Let σ = α ·σ ′ . From N σ−→ N′ we get N α−→ N′′ σ ′−→ N′ for some N′′ . Let nec(σ ) = ν1; · · · ; νn and nec(σ ′) =
ν ′

2; · · · ; ν ′
n . By induction nec(σ ′) is a proving sequence in SN (N′′).

We show that nec(σ ) is a proving sequence in SN (N). By Lemma 8.4(1b) nec(σ ′) is conflict free. By Lemma 8.4(3) νi =
α♦ ν ′

i for all i, 2 ≤ i ≤ n. This implies νi ∈NE(N) for all i, 2 ≤ i ≤ n by Lemma 8.6(1) and ¬(ν1 # ν j) for all i, j, 2 ≤ i, j ≤ n
by Lemma 8.2(7). Finally, since ν1 = nec(α), by Lemma 8.4(2) we obtain ¬(ν1 # νi) for all i, 2 ≤ i ≤ n. We conclude that 
nec(σ ) is conflict-free and included in NE(N). Let ν ∈ NE(N) and ν ≺ νk for some k, 1 ≤ k ≤ n. This implies k > 1 since 
nec(α) has no causes. Hence νk = α♦ ν ′

k . By Lemma 8.5, we know that ν = nec(α) or ν # nec(α) or α� ν is defined. We 
consider the three cases. Let part(α) = {p, q}.
Case ν = nec(α). In this case we conclude immediately since nec(α) = ν1 and 1 < k.
Case ν # nec(α). Since nec(α) = ν1, if ν1 ≺ νk we are done. If ν1 ⊀ νk , then loc(νk) ∩ {p, q} = ∅ otherwise ν1 # νk . We 
get νk = α♦ ν ′

k = ν ′
k . Since ν ≺ νk , there exists r :: η ∈ ν and r :: η′ ∈ νk = ν ′

k such that η < η′ , where r /∈ {p, q} because 
r ∈ loc(νk). Since nec(σ ′) is a proving sequence in SN (N′′), by Lemma 5.24 there is ν ′

h ∈NE(N′′) such that r :: η ∈ ν ′
h . Since 

α♦ r :: η = r :: η we get r :: η ∈ νh . This implies νh ≺ νk , where νh # ν by Lemma 5.21.
Case α� ν defined. We get α� ν ≺ ν ′

k by Lemma 8.2(4). Since nec(σ ′) is a proving sequence in SN (N′′), there is h < k such 
that either α� ν = ν ′

h or α� ν # ν ′
h ≺ ν ′

k . In the first case ν = α♦ (α�ν) = α♦ ν ′
h = νh by Lemma 8.2(1). In the second case:

• from α� ν # ν ′
h we get (α♦ (α�ν)) # (α♦ ν ′

h) by Lemma 8.2(5), which implies ν # νh by Lemma 8.2(1), and
• from ν ′ ≺ ν ′ we get (α♦ ν ′ ) ≺ (α♦ ν ′ ) by Lemma 8.2(3), namely νh ≺ νk . �
h k h k
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Theorem 8.8. If ν1; · · · ; νn is a proving sequence in SN (N), then N σ−→ N′ , where σ = cm(ν1) · · · cm(νn).

Proof. The proof is by induction on n.
Case n = 1. Let ν1 = {p :: ζ · q!λ, q :: ζ ′ · p?λ}. Then cm(ν1) = pqλ. We first show that ζ = ζ ′ = ε . Assume ad absurdum that 
ζ �= ε or ζ ′ �= ε . By narrowing, this implies that there is ν ∈ NE(N) such that ν ≺ ν1, contradicting the fact that ν1 is a 
proving sequence.
By Definition 5.13(1) we have N = p� P � ‖ q� Q � ‖ N0 with q!λ ∈ PE(P ) and p?λ ∈ PE(Q ). Whence by Definition 4.3(1) we 
get P = ⊕

i∈I q!λi; Pi and Q = � j∈ J p?λ j; Q j where λ = λk for some k ∈ I ∩ J . Therefore

N
pqλ−−→ p� Pk � ‖ q� Q k � ‖ N0

Case n > 1. Let ν1 and N be as in the basic case, N′′ = p� Pk � ‖ q� Q k � ‖ N0 and α = pqλ. Since ν1; · · · ; νn is a proving 
sequence, we have ¬(νl # νl′ ) for all l, l′ such that 1 ≤ l, l′ ≤ n. Moreover, for all l, 2 ≤ l ≤ n we have νl �= ν1 = nec(α), thus 
α� νl is defined by Lemma 8.5. Let ν ′

l = α� νl for all l, 2 ≤ l ≤ n, then ν ′
l ∈NE(N′′) by Lemma 8.6(2).

We show that ν ′
2; · · · ; ν ′

n is a proving sequence in SN (N′′). First notice that for all l, 2 ≤ l ≤ n, ¬(νl # νl′ ) implies ¬(ν ′
l # ν ′

l′ )
by Lemma 8.2(5) and (1). Let now ν ≺ ν ′

h for some h, 2 ≤ h ≤ n. By Lemma 8.2(3) and (1) α♦ ν ≺ α♦ (α�νh) = νh . This 
implies by Definition 3.6 that there is h′ < h such that either α♦ ν = νh′ or α♦ ν # νh′ ≺ νh . Therefore, since ν ′

l is defined 
for all l, 2 ≤ l ≤ n, we get either ν = ν ′

h′ by Lemma 8.2(2) or ν # ν ′
h′ ≺ ν ′

h by Lemma 8.2(6) and (4).

By induction N′′ σ ′−→ N′ where σ ′ = cm(ν ′
2) · · · cm(ν ′

n). Since cm(νl) = cm(ν ′
l ) for all l, 2 ≤ l ≤ n we get σ = α · σ ′ . Hence 

N α−→ N′′ σ ′−→ N′ is the required transition sequence. �
8.2. Relating transition sequences of global types and proving sequences of their ESs

In this subsection, we relate the traces that label the transition sequences of global types with the configurations of their 
PESs. As for n-events, we need retrieval and residual operators for g-events. The first operator was already introduced in 
Definition 7.6, so we only need to define the second one, which is given next.

Definition 8.9 (Residual of g-events after communications).

1. The residual operator • applied to a communication and a g-event is defined by:

α • [σ ]∼ =
{

[σ ′]∼ if σ ∼ α ·σ ′ and σ ′ �= ε

[σ ]∼ if part(α) ∩ part(σ ) = ∅
2. The operator • naturally extends to traces:

ε • γ = γ (α ·σ) • γ = σ • (α • γ )

The operator •, applied to a communication and a g-event, gives the g-event obtained by erasing the communication, 
if it occurs in head position (modulo ∼) in the given g-event, and leaves the g-event unchanged if its participants are 
disjoint from those of the communication. Note that the operator α • [σ ]∼ is undefined whenever either [σ ]∼ = {α} or one 
of the participants of α occurs in σ but the first communication of σ is different from α. For example pqλ • [pqλ]∼ and 
pqλ • [pqλ′ ·σ ]∼ with λ �= λ′ are undefined for any σ .

The following lemma gives some simple properties of the retrieval and residual operators for g-events. The first five 
statements correspond to those of Lemma 8.2 for n-events. The last three statements give properties that are relevant only 
for the operators ◦ and •.

Lemma 8.10 (Properties of retrieval and residual for g-events).

1. If α • γ is defined, then α ◦ (α • γ ) = γ ;
2. α • (α ◦ γ ) = γ ;
3. If γ1 < γ2 , then α ◦ γ1 < α ◦ γ2;
4. If γ1 < γ2 and both α • γ1 and α • γ2 are defined, then α • γ1 < α • γ2;
5. If γ1 # γ2 , then α ◦ γ1 # α ◦ γ2;
6. If γ < α ◦ γ ′ , then either γ = [α]∼ or α • γ < γ ′;
7. If part(α1) ∩ part(α2) = ∅, then α1 ◦ (α2 ◦ γ ) = α2 ◦ (α1 ◦ γ );
8. If part(α1) ∩ part(α2) = ∅ and both α2 • (α1 ◦ γ ), α2 • γ are defined, then α1 ◦ (α2 • γ ) = α2 • (α1 ◦ γ ).
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The next lemma relates the retrieval and residual operator with the global types in the branches of choices.

Lemma 8.11. The following hold:

1. If γ ∈GE(G), then pqλ ◦ γ ∈GE(p → q :�i∈Iλi; Gi), where λ = λk and G = Gk for some k ∈ I ;
2. If γ ∈GE(p → q :�i∈Iλi; Gi) and pqλk • γ is defined, then pqλk • γ ∈GE(Gk), where k ∈ I .

The following lemma plays the role of Lemma 8.6 for n-events.

Lemma 8.12. Let G α−→ G′ .

1. If γ ∈GE(G′), then α ◦ γ ∈GE(G);
2. If γ ∈GE(G) and α • γ is defined, then α • γ ∈GE(G′).

Each non-empty trace gives rise to a sequence of g-events, compare with Definition 8.3.

Definition 8.13 (Building sequences of g-events from traces). We define the sequence of g-events corresponding to a non-empty trace 
σ by

gec(σ ) = γ1; · · · ;γn

where γi = ev(σ [1 ... i]) for all i, 1 ≤ i ≤ n.

We show that gec(·) has similar properties as nec(·), see Lemma 8.4(1). The proof is straightforward.

Lemma 8.14. Let gec(σ ) = γ1; · · · ; γn.

1. cm(γi) = σ [i] for all i, 1 ≤ i ≤ n.
2. If 1 ≤ h, k ≤ n, then ¬(γh # γk);

We may now prove the correspondence between the traces labelling the transition sequences of a global type and the 
proving sequences of its PES. Let us stress the difference between the set of traces Tr+(G) of a global type G as defined at 
page 13 and the set of traces that label the transition sequences of G, which is a larger set due to the internal Rule [Icomm] 
of the LTS for global types given in Fig. 4.

Theorem 8.15. If G σ−→ G′ , then gec(σ ) is a proving sequence in SG(G).

Proof. By induction on σ .

Base case. Let σ = α, then gec(α) = [α]∼ . We use a further induction on the inference of the transition G α−→ G′ .
Let G = p → q :�i∈Iλi; Gi , G′ = Gh and α = pqλh for some h ∈ I . By Definition 7.11(1) [pqλh]∼ ∈GE(G).

Let G = p → q :�i∈Iλi; Gi and G′ = p → q :�i∈Iλi; G′
i and Gi

α−→ G′
i for all i ∈ I and part(α) ∩ {p, q} = ∅. By induction 

[α]∼ ∈GE(Gi) for all i ∈ I . By Lemma 8.11(1) pqλi ◦ [α]∼ ∈GE(G) for all i ∈ I . By Definition 7.11(1) pqλi ◦ [α]∼ = [α]∼ , since 
part(α)∩{p, q}=∅. We conclude [α]∼ ∈GE(G).

Inductive case. Let σ = α ·σ ′ with σ ′ �= ε . From G σ−→ G′ we get G α−→ G′′ σ ′−→ G′ for some G′′ . Let gec(σ ) = γ1; · · · ; γn and 
gec(σ ′) = γ ′

2; · · · ; γ ′
n . By induction gec(σ ′) is a proving sequence in SG(G′′). By Definitions 8.13 and 7.6 γi = α ◦ γ ′

i , which 
implies α • γi = γ ′

i by Lemma 8.10(2) for all i, 2 ≤ i ≤ n.
We can show that γ1 = [α]∼ ∈GE(G) as in the proof of the base case. By Lemma 8.12(1) γi ∈GE(G) since γ ′

i ∈GE(G′′) and 
α • γi = γ ′

i for all i, 2 ≤ i ≤ n. We prove that gec(σ ) is a proving sequence in SG(G). Let γ < γk for some k, 1 ≤ k ≤ n. 
Note that this implies k > 1. Since γk = α ◦ γ ′

k by Lemma 8.10(6) either γ = [α]∼ or α • γ < γ ′
h . If γ = [α]∼ = γ1 we are 

done. Otherwise α • γ ∈GE(G′′) by Lemma 8.11(2). Since gec(σ ′) is a proving sequence in SG(G′′), there is h < k such that 
α • γ = γ ′

h and this implies γ = α ◦ (α • γ ) = α ◦ γ ′
h = γh by Lemma 8.10(1). �

Theorem 8.16. If γ1; · · · ; γn is a proving sequence in SG(G), then G σ−→ G′ , where σ = cm(γ1) · · · · · cm(γn).

Proof. The proof is by induction on the length n of the proving sequence. Let cm(γ1) = α and {p, q} = part(α).
Case n = 1. Since γ1 is the first event of a proving sequence, we have γ1 = [α]∼ . We show this case by induction on 
d = depth(G, p) = depth(G, q).

Case d = 1. Let α = pqλ and G = p → q :�i∈Iλi; Gi and λ = λh for some h ∈ I . Then G α−→ Gh by rule [Ecomm].
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Case d > 1. Let G = r → s : �i∈Iλi; Gi and {r, s} ∩ {p, q} = ∅. By Definition 8.9(1) rsλi • γ1 is defined for all i ∈ I since 
{r, s} ∩{p, q} = ∅. This implies rsλi •γ1 ∈GE(Gi) for all i ∈ I by Lemma 8.11(2). By induction hypothesis Gi

α−→ G′
i for all i ∈ I . 

Then we can apply rule [Icomm] to derive G α−→ r → s :�i∈Iλi; G′
i .

Case n > 1. Let G α−→ G′′ be the transition as obtained from the base case. We show that α • γ j is defined for all j, 2 ≤ j ≤ n. 
If α • γk were undefined for some k, 2 ≤ k ≤ n, then by Definition 8.9(1) either γk = γ1 or γk = [σ ]∼ with σ � α ·σ ′ and 
part(α) ∩ part(σ ) �= ∅. In the second case α @ p # σ @ p or α @ q # σ @ q, which implies γk # γ1. So both cases are impossible. 
If α • γ j is defined, by Lemma 8.12(2) we get α • γ j ∈GE(G′′) for all j, 2 ≤ j ≤ n.
We show that γ ′

2; · · · ; γ ′
n is a proving sequence in SG(G′′) where γ ′

j = α • γ j for all j, 2 ≤ j ≤ n. By Lemma 8.10(1) 
γ j = α ◦ γ ′

j for all j, 2 ≤ j ≤ n. Then by Lemma 8.10(5) no two events in the sequence γ ′
2; · · · ; γ ′

n can be in conflict. Let 
γ ∈ GE(G′′) and γ < γ ′

h for some h, 2 ≤ h ≤ n. By Lemma 8.12(1) α ◦ γ and α ◦ γ ′
h belong to GE(G). By Lemma 8.10(3) 

α ◦ γ < α ◦ γ ′
h . By Lemma 8.10(1) α ◦ γ ′

h = γh . Let γ ′ = α ◦ γ . Then γ ′ < γh implies, by Definition 3.6 and the fact that 
SG(G) is a PES, that there is k < h such that γ ′ = γk . By Lemma 8.10(1) we get γ = α • γ ′ = α • γk = γ ′

k .

Since γ ′
2; · · · ; γ ′

n is a proving sequence in SG(G′′), by induction G′′ σ ′−→ G′ where σ ′ = cm(γ ′
2) · . . . · cm(γ ′

n). Let σ =
cm(γ1) · . . . · cm(γn). Since cm(γ ′

j ) = cm(γ j) for all j, 2 ≤ j ≤ n, we have σ = α ·σ ′ . Hence G α−→ G′′ σ ′−→ G′ is the required 
transition sequence. �

The last ingredient required to prove our main theorem is the following separation result from [9] (Lemma 2.8 p. 12):

Lemma 8.17 (Separation [9]). Let S = (E, ≺, # ) be a flow event structure and X, X′ ∈ C(S) be such that X ⊂ X′ . Then there exist 
e ∈X′\X such that X ∪ {e} ∈ C(S).

We may now finally show the correspondence between the configurations of the FES of a network and the configurations 
of the PES of its global type. Let � denote isomorphism on domains of configurations.

Theorem 8.18 (Isomorphism). If � N : G, then D(SN (N)) �D(SG(G)).

Proof. By Theorem 8.8 if ν1; · · · ; νn is a proving sequence of SN (N), then N σ−→ N′ where σ = cm(ν1) · · · cm(νn). By applying 
iteratively Subject Reduction (Theorem 6.10) G σ−→ G′ and � N′ : G′ . By Theorem 8.15 gec(σ ) is a proving sequence of SG(G).

By Theorem 8.16 if γ1; · · · ; γn is a proving sequence of SG(G), then G σ−→ G′ where σ = cm(γ1) · · · cm(γn). By applying 
iteratively Session Fidelity (Theorem 6.11) N σ−→ N′ and � N′ : G′ . By Theorem 8.7 nec(σ ) is a proving sequence of SN (N).

Therefore we have a bijection between D(SN (N)) and D(SG(G)), given by nec(σ ) ↔ gec(σ ) for any σ generated by the 
(bisimilar) LTSs of N and G.

We show now that this bijection preserves inclusion of configurations. By Lemma 8.17 it is enough to prove that if 
ν1; · · · ; νn ∈ C(SN (N)) is mapped to γ1; · · · ; γn ∈ C(SG(G)), then ν1; · · · ; νn; ν ∈ C(SN (N)) iff γ1; · · · ; γn; γ ∈ C(SG(G)), 
where γ1; · · · ; γn; γ is the image of ν1; · · · ; νn; ν under the bijection. I.e. let nec(σ ·α) = ν1; · · · ; νn; ν and gec(σ ·α) =
γ1; · · · ; γn; γ . This implies σ = cm(ν1) · · · cm(νn) = cm(γ1) · · · cm(γn) and α = cm(ν) = cm(γ ) by Lemmas 8.4 and 8.14.

By Theorem 8.8, if ν1; · · · ; νn; ν is a proving sequence of SN (N), then N σ−→ N0
α−→ N′ . By applying iteratively Subject 

Reduction (Theorem 6.10) G σ−→ G0
α−→ G′ and � N′ : G′ . By Theorem 8.15 gec(σ ·α) is a proving sequence of SG(G).

By Theorem 8.16, if γ1; · · · ; γn; γ is a proving sequence of SG(G), then G σ−→ G0
α−→ G′ . By applying iteratively Session 

Fidelity (Theorem 6.11) N σ−→ N0
α−→ N′ and � N′ : G′ . By Theorem 8.7 nec(σ ·α) is a proving sequence of SN (N). �

9. Related work and conclusions

Event Structures (ESs) were introduced in Winskel’s PhD Thesis [60] and in the seminal paper by Nielsen, Plotkin and 
Winskel [49], roughly in the same frame of time as Milner’s calculus CCS [47]. It is therefore not surprising that the 
relationship between these two approaches for modelling concurrent computations started to be investigated very soon 
afterwards. The first interpretation of CCS into ESs was proposed by Winskel in [61]. This interpretation made use of Stable 
ESs, because PESs, the simplest form of ESs, appeared not to be flexible enough to account for CCS parallel composition. 
Indeed, since CCS parallel composition allows for two concurrent complementary actions to either synchronise or occur 
independently in any order, each pair of such actions gives rise to two forking computations: this requires duplication of 
the same continuation process for these forking computations in PESs, while the continuation process may be shared by the 
forking computations in Stable ESs, which allow for disjunctive causality. Subsequently, ESs (as well as other nonsequential 
“denotational models” for concurrency such as Petri Nets) have been used as the touchstone for assessing noninterleaving 
operational semantics for CCS: for instance, the pomset semantics for CCS by Boudol and Castellani [7,8] and the semantics 
based on “concurrent histories” proposed by Degano, De Nicola and Montanari [29,27,28], were both shown to agree with 
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an interpretation of CCS processes into some class of ESs (PESs for [27,28], PESs with non-hereditary conflict for [7], and 
FESs for [8]). Among the early interpretations of process calculi into ESs, we should also mention the PES semantics for TCSP 
(Theoretical CSP [11,50]), proposed by Goltz and Loogen [46] and later generalised by Baier and Majster-Cederbaum [2], and 
the Bundle ES semantics for LOTOS, proposed by Langerak [45] and extended by Katoen [43]. Like FESs, Bundle ESs are 
a subclass of Stable ESs. We recall the relationships between the above classes of ESs (the reader is referred to [10] for 
separating examples):

Prime E Ss ⊂ Bundle E Ss ⊂ F low E Ss ⊂ Stable E Ss ⊂ General E Ss

More sophisticated ES semantics for CCS, based on FESs and designed to be robust under action refinement [1,26,34], 
were subsequently proposed by Goltz and van Glabbeek [57]. Importantly, all the above-mentioned classes of ESs, except 
General ESs, give rise to the same prime algebraic domains of configurations, from which one can recover a PES by selecting 
the complete prime elements.

More recently, ES semantics have been investigated for the π -calculus by Crafa, Varacca and Yoshida [21,58,22] and by 
Cristescu, Krivine and Varacca [23–25]. Previously, other causal models for the π -calculus had already been put forward 
by Jategaonkar and Jagadeesan [42], by Montanari and Pistore [48], by Cattani and Sewell [18] and by Bruni, Melgratti 
and Montanari [12]. The main new issue, when addressing causality-based semantics for the π -calculus, is the implicit 
causality induced by scope extrusion. Two alternative views of such implicit causality had been proposed in early work 
on noninterleaving operational semantics for the π -calculus, respectively by Boreale and Sangiorgi [6] and by Degano and 
Priami [30]. Essentially, in [6] an extruder (that is, an output of a private name) is considered to cause any action that uses 
the extruded name, whether in subject or object position, while in [30] it is considered to cause only the actions that use 
the extruded name in subject position. Thus, for instance, in the process P = νa (b〈a〉 | c〈a〉 | a), the two parallel extruders 
are considered to be causally dependent in the former approach, and independent in the latter. All the causal models for the 
π -calculus mentioned above, including the ES-based ones, take one or the other of these two stands. Note that opting for 
the second one leads necessarily to a non-stable ES model, where there may be causal ambiguity within the configurations 
themselves: for instance, in the above example the maximal configuration contains three events, the extruders b〈a〉, c〈a〉
and the input on a, and one does not know which of the two extruders enabled the input. Indeed, the paper [22] uses 
non-stable ESs. The use of non-stable ESs (General ESs) to express situations where a computational step can merge parts 
of the state is advocated for instance by Baldan, Corradini and Gadducci in [3]. These ESs give rise to configuration domains 
that are not prime algebraic, hence the classical representation theorems have to be adjusted.

In our simple setting, where we deal only with single sessions and do not consider session interleaving nor delegation, 
we can dispense with channels altogether, and therefore the question of parallel extrusion does not arise. In this sense, 
our notion of causality is closer to that of CCS than to the more complex one of the π -calculus. However, even in a more 
general setting, where participants would be paired with the channel name of the session they pertain to, the issue of 
parallel extrusion would not arise: indeed, in the above example b and c should be equal, because participants can only 
delegate their own channel, but then they could not be in parallel because of linearity, one of the distinguishing features 
enforced by session types. Hence we believe that in a session-based framework the two above views of implicit causality 
should collapse into just one.

We now briefly discuss our design choices.

• The calculus considered in the present paper uses synchronous communication - rather than asynchronous, buffered 
communication - because this is how communication is classically modelled in ESs, when they are used to give semantics 
to process calculi. We should mention however that after first proposing the present study in [15], we also considered 
a calculus with asynchronous communication in the companion paper [16]. In that work too, networks are interpreted 
as FESs, and their associated global types, which we called asynchronous types as they split communications into outputs 
and inputs, are interpreted as PESs. The key result is again an isomorphism between the configuration domain of the FES 
of a typed network and that of the PES of its type.

• Concerning the choice operator, we adopted here the basic (and most restrictive) variant for it, as it was originally 
proposed for multiparty session calculi in [39]. This is essentially a simplifying assumption, and we do not foresee any 
difficulty in extending our results to a more general choice operator, where the projection is rendered more flexible 
through the use of a merge operator [31].

• As regards the preorder on processes, which is akin to a subtyping relation, we envisaged to use the standard subtyping, 
in which a process with fewer outputs can be used in place of a process with more outputs. However, in that case 
Session Fidelity would become weaker, since a transition in the LTS of a global type would only ensure a transition in 
the LTS of the corresponding network, but not necessarily with the same labelling communication. The main drawback 
would be that Theorem 8.18 would no longer hold: more precisely, the domains of network configurations would only be 
embedded in (and not isomorphic to) the domains of their global type configurations. Notably, typability is independent 
from the use of our preorder or of the standard one, as proved in [4].

As regards future work, we plan to define an asynchronous transition system (ATS) [5] for our calculus, along the lines 
of [10], and show that it provides a noninterleaving operational semantics for networks that is equivalent to their FES 
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semantics. This would enable us also to investigate the issue of reversibility, jointly on our networks and on their FES 
representations, since the ATS semantics would give us the handle to unwind networks, while the corresponding FESs could 
be unrolled following one of the methods proposed in existing work on reversible event structures [53,25,36,37,35].

As mentioned at the end of Section 7, the quest for a semantic counterpart of our well-formedness conditions on global 
types – namely, for properties that characterise the FESs obtained from typable networks – is still open. By way of compar-
ison, such semantic well-formedness conditions have been proposed in [56] for graphical choreographies, a truly concurrent 
graphical model for global specifications with two kinds of forking nodes, representing respectively choice and parallel com-
position. In [56], those well-formedness conditions, called well-sequencing and well-branchedness, were shown to be sufficient 
to ensure projectability on local specifications. In our case, the property corresponding to well-sequencing is automatically 
ensured by our ES semantics, and we conjecture that the well-branchedness condition for choice nodes (corresponding to 
projectability) could amount in our simpler setting10 to the following semantic condition:

Let ν1, ν2 ∈ NE(N) and p :: ζ · π ∈ ν1 and p :: ζ · π ′ ∈ ν2 with π �= π ′ and q = pt(π) = pt(π ′). If ν1 ≺∗ ν ′
1 for some 

ν ′
1 ∈NE(N) such that r ∈ loc(ν ′

1) with r /∈ {p, q}, then ν2 ≺∗ ν ′
2 for some ν ′

2 ∈NE(N) such that r ∈ loc(ν ′
2).

This condition would allow us to rule out the FESs of both networks N′ and N′′ discussed at the end of Section 7. How-
ever, it should be completed with a condition corresponding to boundedness, and the conjunction of these two conditions 
might still not be sufficient in general to ensure typability. We plan to further investigate this question in the near future.
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Appendix A. Proofs of Section 5

This section contains the proofs of Lemmas 5.18, 5.21 and 5.24.

Lemma 5.18. Let ν and ν ′ be binary n-events with loc(ν) = loc(ν ′). Then ν # ν ′ iff p :: η ∈ ν and p :: η′ ∈ ν ′ imply η # η′ .

Proof. The “if” direction holds by Definition 5.7(2a). We show the “only-if” direction. First observe that for any n-event 
ν = {p :: η1, q :: η2} the condition p :: η1 �̂ q :: η2 of Definition 5.5 implies η1 �q � η2 �p by Definition 5.4, which in turn 
implies | η1�q | = | η2�p | by Definition 5.3. If ν is a binary event, we also have | η1 | = | η1�q | and | η2 | = | η2�p | by 
Definition 5.2, since all the actions of η1 involve q and all the actions of η2 involve p, and thus the projections do not erase 
actions.
Assume now ν ′ = {p :: η′

1, q :: η′
2}. We consider two cases (the others being symmetric):

– ν # ν ′ because η1 # η′
1. Then η1�q � η2�p and η′

1�q � η′
2�p imply η2 # η′

2;
– ν # ν ′ because | η1�q | = | η′

2�p | and ¬(η1�q � η′
2�p ). As argued before, we have | η2�p | = | η1�q | and | η′

2�p | =
| η′

1�q | . Then, from | η1�q | = | η′
2�p | and the above remark about binary events, we get | η2 | = | η1 | = | η′

2 | = | η′
1 | . 

From ¬(η1�q � η′
2�p ) it follows that η1 �= η′

1 and η2 �= η′
2. Then we may conclude, since | ηi | = | η′

i | and ηi �= η′
i imply 

ηi # η′
i for i = 1, 2. �

Lemma 5.21. (Sharing of located events implies conflict) If ν, ν ′ ∈NE and ν �= ν ′ and (ν ∩ ν ′) �= ∅, then ν # ν ′ .

Proof. Let p :: η ∈ (ν ∩ ν ′) and loc(ν) = loc(ν ′) = {p, q}. Then there must exist η0, η′
0 such that q :: η0 ∈ ν and q :: η′

0 ∈ ν ′ . 
From p :: η �̂ q :: η0 and p :: η �̂ q :: η′

0 it follows that η0 �p = η′
0�p . This, in conjunction with the fact that pt(act(η0)) =

pt(act(η′
0)) = p, implies that neither η0 < η′

0 nor η′
0 < η0. Thus η0 # η′

0 and therefore ν # ν ′ by Definition 5.7. �
Lemma 5.24. If X is a configuration of SN (N) and ν ∈X, then there is a unique causal set E of ν such that E ⊆X.

10 Our choice operator for global types is less general than that of [56].
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Proof. By Definition 5.11, if ν ∈NE(N), then ν has at least one causal set included in NE(N). Let E ′ = {ν ′ ∈X | ν ′ ≺ ν}. By 
Definition 3.4, E ′ ∪ {ν} is conflict-free. Moreover, if p :: η ∈ ν and η′ < η, then by Lemma 5.21 there is at most one ν ′′ ∈ E ′
such that p :: η′ ∈ ν ′′ . Therefore, E ′ ⊆ E for some causal set E of ν by Definition 5.9. We show that E ⊆ E ′ . Assume ad 
absurdum that ν0 ∈ E\E ′. By definition of causal set, ν0 ≺ ν . By definition of E ′ , ν0 /∈ E ′ implies ν0 /∈ X. By Definition 3.4
this implies ν0 # ν1 ≺ ν for some ν1 ∈ X. Then ν1 ∈ E ′ by definition of E ′ , and thus ν1 ∈ E . Hence ν0, ν1 ∈ E and ν0 # ν1, 
contradicting Definition 5.9. �
Appendix B. Proofs of Section 6

This section contains the proofs of Lemmas 6.6, 6.9, Theorems 6.10, 6.11 and of the auxiliary Lemmas B.1, B.2, B.3.

Lemma 6.6. If G is bounded, then G �r is a partial function for all r.

Proof. We redefine the projection ↓r as the largest relation between global types and processes such that (G, P ) ∈↓r im-
plies:

i) if r /∈ part(G), then P = 0;
ii) if G = r → p :�i∈Iλi; Gi , then P = ⊕

i∈I q!λi; Pi and (Gi, Pi) ∈↓r for all i ∈ I;
iii) if G = p → r :�i∈Iλi; Gi , then P = �i∈I p?λi; Pi and (Gi, Pi) ∈↓r for all i ∈ I;
iv) if G = p → q :�i∈Iλi; Gi and r /∈ {p, q} and r ∈ part(Gi), then (Gi, P ) ∈↓r for all i ∈ I .

The equality E of processes is the largest symmetric binary relation R on processes such that (P , Q ) ∈ R implies:

(a) if P = ⊕
i∈I p!λi; Pi , then Q = ⊕

i∈I p!λi; Q i and (Pi, Q i) ∈ R for all i ∈ I;
(b) if P = �i∈I p?λi; Pi , then Q = �i∈I p?λi; Q i and (Pi, Q i) ∈ R for all i ∈ I .

It is then enough to show that the relation

Rr = {(P , Q ) | ∃G . (G, P ) ∈↓r and (G, Q ) ∈↓r}
satisfies Clauses (a) and (b) (with R replaced by Rr), since this will imply Rr ⊆ E. Note first that (0, 0) ∈ Rr because 
(End, 0) ∈↓r , and that (0, 0) ∈ E because Clauses (a) and (b) are vacuously satisfied by the pair (0, 0). The proof is by 
induction on d = depth(G, r). We only consider Clause (b), the proof for Clause (a) being similar. So, assume (P , Q ) ∈ Rr and 
P = �i∈I p?λi; Pi .

Case d = 1. In this case G = p → r :�i∈Iλi; Gi and P = �i∈I p?λi; Pi and (Gi, Pi) ∈↓r for all i ∈ I . From (G, Q ) ∈↓r we get 
Q = �i∈I p?λi; Q i and (Gi, Q i) ∈↓r for all i ∈ I . Hence Q has the required form and (Pi, Q i) ∈ Rr for all i ∈ I .
Case d > 1. In this case G = p → q : � j∈ J λ

′
j; G j and r /∈ {p, q} and (G j, P ) ∈↓r for all j ∈ J . From (G, Q ) ∈↓r we get 

(G j, Q ) ∈↓r for all j ∈ J . Then (P , Q ) ∈ Rr . �
We need a lemma relating the projections of a well-formed global type with its transitions.

Lemma B.1. Let G be a well-formed global type.

1. If G �p = ⊕
i∈I q!λi; Pi and G �q = � j∈ J p?λ′

j; Q j , then I = J , λi = λ′
i , G 

pqλi−−→ Gi , Gi �p = Pi and Gi �q = Q i for all i ∈ I .

2. If G 
pqλ−−→ G′ , then G �p = ⊕

i∈I q!λi; Pi , G �q = �i∈I p?λi; Q i , where λk = λ for some k ∈ I , and G′�r = G �r for all r /∈ {p, q}.

Proof. (1). The proof is by induction on d = depth(G, p).
If d = 1, then by definition of projection (see Fig. 2) G �p = ⊕

i∈I q!λi; Pi implies G = p → q :�i∈Iλi; Gi with Gi �p = Pi . 

By the same definition G �q = � j∈ J p?λ′
j; Q j implies J = I and λ′

j = λ j and Q j = G j �q for all j ∈ J . Moreover G 
pqλi−−→ Gi by 

Rule [Ecomm] for all i ∈ I .
If d > 1, then G = r → s :�h∈Hλ′′

h; G′
h with {p, q} ∩ {r, s} = ∅. By definition of projection G �p = G′

h �p and G �q = G′
h �q for 

all h ∈ H . By Lemma 6.5 depth(G, p) > depth(G′
h, p) for all h ∈ H . Then by induction I = J , λi = λ′

i , G
′
h

pqλi−−→ Gi
h , Gi

h �p = Pi

and Gi
h �q = Q i for all i ∈ I and all h ∈ H . Let Gi = r → s :�h∈Hλ′′

h; Gi
h . By Rule [Icomm] G 

pqλi−−→ Gi for all i ∈ I . By definition 
of projection Gi �p = Pi and Gi �q = Q i for all i ∈ I .
(2). The proof is by induction on the transition rules of Fig. 4.

The interesting case is: 
Gh

pqλ−−→ G′
h h ∈ H {p,q} ∩ {s, t} = ∅

[Icomm]
s → t :� λ′ ;G

pqλ−−→ s → t :� λ′ ;G′

h∈H h h h∈H h h
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with G = s → t : �h∈Hλ′
h; Gh and G′ = s → t : �h∈Hλ′

h; G′
h . By induction Gh �p = ⊕

i∈I q!λi; Pi , Gh �q = �i∈I p?λi; Q i , 
λ = λk for some k ∈ I and G′

h � r = Gh � r for all r /∈ {p, q} and all h ∈ H . By definition of projection G �p = Gh �p and 
G �q = Gh �q for all h ∈ H . For r /∈ {p, q, s, t} we get G′ � r = G′

h � r = Gh � r = G � r . Moreover G′ �s = ⊕
h∈H t!λ′

h; G′
h �s =⊕

h∈H t!λ′
h; Gh �s = G �s and G′ �t = �h∈H t?λ′

h; G′
h �t = �h∈H s?λ′

h; Gh �s = G �t . �
Lemma 6.9. If G is a well-formed global type and G 

pqλ−−→ G′ , then G′ is a well-formed global type.

Proof. If G 
pqλ−−→ G′ , by Lemma B.1(1) and (2) G′ � r is defined for all r. The proof that depth(G′′, r) is finite for all r and G′′

subtree of G′ is easy by induction on the transition rules of Fig. 4. �
The proofs of Subject Reduction and Session Fidelity rely on the Inversion and Canonical Form lemmas whose proofs are 

immediate.

Lemma B.2 (Inversion). If � N : G, then P ≤ G �p for all p� P � ∈ N.

Lemma B.3 (Canonical Form). If � N : G and p ∈ part(G), then p� P � ∈ N and P ≤ G �p .

Theorem 6.10. (Subject Reduction) If � N : G and N α−→ N′ , then G α−→ G′ and � N′ : G′ .

Proof. Let α = pqλ. By Rule [Com] of Fig. 1, N ≡ p� P � ‖ q� Q � ‖ N′′ where P = ⊕
i∈I q!λi; Pi and Q = � j∈ J p?λ j; Q j and 

N′ ≡ p� Ph � ‖ q� Q h � ‖ N′′ and λ = λh for some h ∈ I ∩ J . From Lemma B.2 we get

1. G �p = ⊕
i∈I q!λi; P ′

i with Pi ≤ P ′
i for all i ∈ I , from Rule [ ≤ -Out] of Fig. 3, and

2. G �q = � j∈ J ′ p?λ j; Q ′
j with Q j ≤ Q ′

j for all j ∈ J ′ ⊆ J , from Rule [ ≤ -In] of Fig. 3, and
3. R ≤ G �r for all r� R � ∈ N′′ .

By Lemma B.1(1) G 
pqλh−−→ Gh and Gh �p = P ′

h and Gh �q = Q ′
h . By Lemma B.1(2) Gh � r = G � r for all r /∈ {p, q}. We can then 

choose G′ = Gh . �
Theorem 6.11. (Session Fidelity) If � N : G and G α−→ G′ , then N α−→ N′ and � N′ : G′ .

Proof. Let α = pqλ. By Lemma B.1(2) G � p = ⊕
i∈I p!λi; Pi and G � q = �i∈I p?λi; Q i and λ = λi for some i ∈ I and 

G′ � r = G � r for all r /∈ {p, q}. By Lemma B.1(1) G′ � p = Pi and G′ � q = Q i . From Lemma B.3 and Lemma B.2 we get 
N ≡ p� P � ‖ q� Q � ‖ N′′ and

1. P = ⊕
i∈I q!λi; P ′

i with P ′
i ≤ Pi for i ∈ I , from Rule [ ≤ -Out] of Fig. 3, and

2. Q = � j∈ J p?λ j; Q ′
j with Q ′

j ≤ Q j for j ∈ I ⊆ J , from Rule [ ≤ -In] of Fig. 3, and
3. R ≤ G �r for all r� R � ∈ N′′ .

We can then choose N′ = p� P ′
i � ‖ q� Q ′

i � ‖ N′′ . �
Appendix C. Proofs of Section 7

Lemma 7.4. Let σ be a pointed trace. If σ ∼ σ ′ , then σ ′ is a pointed trace and last(σ ) = last(σ ′).

Proof. Let σ ∼ σ ′ . By Definition 7.1 σ ′ is obtained from σ by m swaps of adjacent communications. The proof is by 
induction on such a number m.
If m = 0 the result is obvious.
If m > 0, then there exists σ0 obtained from σ by m − 1 swaps of adjacent communications and there are σ1, σ2, α and α′
such that

σ0 = σ1 ·α ·α′ ·σ2 ∼ σ1 ·α′ ·α ·σ2 = σ ′ and part(α) ∩ part(α′) = ∅
By induction hypothesis σ0 is a pointed trace and last(σ ) = last(σ0). Therefore σ2 �= ε since otherwise α′ would be the last 
communication of σ0 and it cannot be part(α) ∩ part(α′) = ∅. This implies last(σ ) = last(σ ′).
To show that σ ′ is pointed, since all the communications in σ1 and σ2 have the same successors in σ0 and σ ′ , all we have 
to prove is that the required property holds for the two swapped communications α′ and α in σ ′ , namely:
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part(α′) ∩ (part(α) ∪ part(σ2)) �= ∅
part(α) ∩ part(σ2) �= ∅

Since part(α) ∩ part(α′) = ∅, these two statements are respectively equivalent to:

part(α′) ∩ part(σ2) �= ∅
part(α) ∩ (part(α′) ∪ part(σ2)) �= ∅

The last two statements are known to hold since σ0 is pointed by induction hypothesis. �
Appendix D. Proofs of Subsection 8.1

This section contains the proofs of Lemmas 8.2, 8.4, 8.5 and 8.6.

Lemma 8.2. (Properties of retrieval and residual for n-events).

1. If α� ν is defined, then α♦ (α�ν) = ν;
2. α� (α♦ν) = ν;
3. If ν ≺ ν ′ , then α♦ ν ≺ α♦ ν ′;
4. If ν ≺ ν ′ and both α� ν and α� ν ′ are defined, then α� ν ≺ α� ν ′;
5. If ν # ν ′ , then α♦ ν # α♦ ν ′;
6. If ν # ν ′ and both α� ν and α� ν ′ are defined, then α� ν # α� ν ′;
7. If α♦ ν # α♦ ν ′ , then ν # ν ′ .

Proof. For (1) and (2) it is enough to show the corresponding properties for located events.
(1) Since α� (p :: η) is defined, we have η = (α@p ) ·η′ and α� (p :: η) = p :: η′ for some η′ . Then α♦ (α� (p :: η)) =

α♦ (p :: η′) = p :: (α@p ) ·η′ = p :: η.
(2) Since α♦ (p :: η) = p :: (α@p ) ·η is always defined, we immediately get α� (α♦ (p :: η)) = α� (p :: (α@p ) ·η) = p :: η.
(3) Let ν ≺ ν ′ . By Definition 5.7(1), there are p :: η ∈ ν and p :: η′ ∈ ν ′ such that η < η′ . Then α♦ (p :: η) = p :: (α@p ) ·η ∈

α♦ ν and α♦ (p :: η′) = p :: (α@p ) ·η′ ∈ α♦ ν ′ . Since η < η′ implies (α@p ) ·η < (α@p ) ·η′ , we conclude that α♦ ν ≺ α♦ ν ′ .
(4) As in the previous case, there are p :: η ∈ ν and p :: η′ ∈ ν ′ such that η < η′ . Since both α� ν and α� ν ′ are defined, 

there exist η0 and η′
0 such that η = (α@p ) ·η0 and η′ = (α@p ) ·η′

0 and α� (p :: η) = p :: η0 and α� (p :: η′) = p :: η′
0. Since 

η < η′ implies η0 < η′
0, we conclude that α� ν ≺ α� ν ′ .

(5) Let ν # ν ′ . If Clause (2a) of Definition 5.7 applies, then there are p :: η ∈ ν and p :: η′ ∈ ν ′ such that η # η′ . From 
α♦ (p :: η) = p :: (α@p ) ·η and α♦ (p :: η′) = p :: (α@p ) ·η′ we get (α@p ) ·η # (α@p ) ·η′ . If Clause (2b) of Definition 5.7
applies, then there are p :: η ∈ ν and q :: η′ ∈ ν ′ with p �= q such that | η �q | = | η′ �p | and ¬(η �q � η′ �p ). Let η0 =
(α@p ) ·η and η′

0 = (α@q ) ·η′ . If part(α) �= {p, q}, then (α@p ) �q = ε = (α@q ) �p and thus η0 �q = η�q and η′
0 �p = η′ �p . If 

part(α) = {p, q}, say α = pqλ, then η0 = q!λ ·η and η′
0 = p?λ ·η′ , which implies |η0 �q | = |η�q | +1 = |η′�p | +1 = |η′

0�p |
and ¬(η0 �q � η′

0 �p ). In both cases we conclude that α♦ ν # α♦ ν ′ .
(6) The proof is similar to that of Point (5), considering that α� ν and α� ν ′ are defined.
(7) Let α♦ ν # α♦ ν ′ . If Clause (2a) of Definition 5.7 applies, then there are p :: η ∈ ν and p :: η′ ∈ ν ′ such that 

(α@p ) ·η # (α@p ) ·η′ . Therefore η # η′ and thus ν # ν ′ . If Clause (2b) of Definition 5.7 applies, then there are p :: η0 =
α♦ (p :: η) ∈ α♦ ν and q :: η′

0 = α♦ (q :: η′) ∈ α♦ ν ′ with p �= q such that | η0 �q | = | η′
0 �p | and ¬(η0 �q � η′

0 �p ). It follows 
that η0 = (α@p ) ·η and η′

0 = (α@q ) ·η′ and p :: η ∈ ν and q :: η′ ∈ ν ′ . If part(α) �= {p, q}, then (α@p ) �q = ε = (α@q ) �p 
and thus η �q = η0 �q and η′ �p = η′

0 �p . If part(α) = {p, q}, say α = pqλ, then η0 = q!λ · η and η′
0 = p?λ · η′ , and thus 

| η�q | = | η0 �q | − 1 = | η′
0 �p | − 1 = | η′�p | and ¬(η�q � η′ �p ). In both cases we conclude that ν # ν ′ . �

Lemma 8.4. (Properties of nec(·))

1. Let nec(σ ) = ν1; · · · ; νn. Then

(a) cm(νi) = σ [i] for all i, 1 ≤ i ≤ n;
(b) If 1 ≤ h, k ≤ n, then ¬(νh # νk).

2. ¬(nec(α) # α♦ ν) for all ν .
3. Let σ = α · σ ′ and σ ′ �= ε . If nec(σ ) = ν1; · · · ; νn and nec(σ ′) = ν ′

2; · · · ; ν ′
n, then α♦ ν ′

i = νi and α� νi = ν ′
i for all i, 2 ≤ i ≤ n.

Proof. (1a) Immediate from Definition 8.3, since cm(σ ♦ ν) = cm(ν) for any event ν .
(1b) We show that neither Clause (2a) nor Clause (2b) of Definition 5.7 can be used to derive νh # νk . Notice that 

νi = {pi :: σ [1 ... i]@pi , qi :: σ [1 ... i]@qi }. So if p :: η ∈ νh and p :: η′ ∈ νk with h < k, then either η < η′ or η = η′ . Therefore 
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Clause (2a) does not apply. If p :: η ∈ νh and q :: η′ ∈ νk and p �= q and | η �q | = | η′ �p | , then it must be η �q =
(σ [1 ... h]@p ) �q � (σ [1 ... k]@q ) �p = η′ �p . Therefore Clause (2b) cannot be used.

(2) We show that neither Clause (2a) nor Clause (2b) of Definition 5.7 can be used to derive nec(α) # α♦ ν . Let part(α) =
{p, q}. Then nec(α) = {p :: α@p , q :: α@q }. Note that p :: η ∈ α♦ ν iff η = (α@p ) ·η′ and p :: η′ ∈ ν . Since α@p < (α@p ) ·η′ , 
Clause (2a) of Definition 5.7 cannot be used. Now suppose r :: η ∈ α♦ ν for some r /∈ {p, q}. In this case (α@p ) � r =
(α@q ) �r = ε . Therefore, since ε � ε , Clause (2b) of Definition 5.7 does not apply.

(3) Notice that σ [i] = σ ′[i − 1] for all i, 2 ≤ i ≤ n. Then, by Definition 8.3

νi = σ [1 ... i − 1]♦nec(σ [i]) = α♦ (σ [2 ... i − 1]♦nec(σ [i])) = α♦ (σ ′[1 ... i − 2]♦nec(σ ′[i − 1])) = α♦ν ′
i

for all i, 2 ≤ i ≤ n.
By Lemma 8.2(2) α♦ ν ′

i = νi implies α� νi = ν ′
i for all i, 2 ≤ i ≤ n. �

Lemma 8.5. If N α−→ N′ and ν ∈NE(N), then ν = nec(α) or ν # nec(α) or α� ν is defined.

Proof. Let nec(α) = {p :: α@p , q :: α@q } and ν = {r :: η, s :: η′}. By Definition 8.1(3) α� ν is defined iff η = (α@r ) ·η0 and 
η′ = (α@s ) ·η′

0 for some η0, η′
0.

There are 2 possibilities:

• {r, s} ∩ {p, q} = ∅. Then α@r = α@s = ε and α� ν = ν;
• {r, s} ∩ {p, q} �= ∅. Suppose r = p. There are three possible subcases:

1. η = π · ζ with π �= α@p . Then r :: η # p :: α@p and thus ν # nec(α);
2. η = α@p . Then either η′ = α@q and ν = nec(α), or η′ �= α@q and ν # nec(α) by Lemma 5.21;
3. η = (α@p ) ·η0. Then α� p :: η = p :: η0. Now, if s �= q we have α� s :: η′ = s :: η′ , and thus α� ν = {p :: η0, s :: η′}. 

Otherwise, ν = {p :: (α@p ) ·η0, q :: η′}. By Definition 5.5 p :: (α@p ) ·η0 �̂ q :: η′ , which implies η′ = (α@q ) ·η′
0 for 

some η′
0. �

Lemma 8.6. Let N α−→ N′ . Then

1. {nec(α)} ∪ {α♦ ν | ν ∈NE(N′)} ⊆NE(N);
2. {α� ν | ν ∈NE(N) and α� ν defined} ⊆NE(N′).

Proof. Let α = pqλ. From N α−→ N′ we get

N = p�
⊕

i∈I q!λi; P � ‖ q�� j∈ J p?λ j; Q j � ‖ N0

where for some k ∈ (I ∩ J ) we have λk = λ and

N′ = p� Pk � ‖ q� Q k � ‖ N0

(1) Let RT = {nec(α)} ∪ {α♦ ν | ν ∈NE(N′)}. We first show that RT ⊆ CE(N). By Definition 5.13(1) nec(α) ∈ CE(N). Let 
ν = {r :: η, s :: η′} ∈NE(N′). We want to prove that α♦ ν ∈ CE(N). By Definition 5.13(1) there are R, S such that r� R � ∈ N′
and s� S � ∈ N′ and η ∈PE(R) and η′ ∈PE(S). There are two possible cases:

• {r, s} ∩ {p, q} = ∅. Then r� R � ∈ N and s� S � ∈ N and thus α♦ ν = ν ∈ CE(N);
• {r, s} ∩ {p, q} �= ∅. Suppose r = p. Then η ∈ PE(Pk) and p :: q!λk · η ∈ α♦ν and q!λk · η ∈ PE(⊕i∈I q!λi; Pi). There are two 

subcases:

– s = q. Then η′ ∈ PE(Q k) and q :: p?λk · η′ ∈ α♦ν and q!λk · η′ ∈ PE(� j∈ J p?λ j; Q j). We have α♦ ν =
{p :: q!λk · η, q :: p?λk · η′} ∈ CE(N);

– s �= q. Then α♦ s :: η′ = s :: η′ , and thus α♦ ν = {p :: q!λk · η, s :: η′} ∈ CE(N).

Therefore in all cases RT ⊆ CE(N). We want now to show that RT ⊆NE(N).
Recall from Section 5 that NE(N) is the greatest fixed point of the function

fCE(N)(X) = {ν0 ∈ CE(N) | ∃E0 ⊆ X . E0 is a causal set of ν0 in X}
Then NE(N) is also the greatest post-fixed point of fCE(N)(X), namely the greatest X such that X ⊆ fCE(N)(X). Therefore, to 
show that RT ⊆NE(N), it is enough to show that RT is also a post-fixed point of fCE(N)(X), namely that RT ⊆ fCE(N)(RT ).

Consider first the event nec(α). Since the only causal set of nec(α) in any set is ∅, it is immediate that nec(α) ∈
fCE(N)(RT ). Consider now α♦ ν ∈ RT for some ν ∈NE(N′) with loc(ν) = {r, s}. Define
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pre(α, E, ν) =
{

� if {r, s} ∩ {p,q} = ∅
{nec(α)} ∪ � otherwise

where � = {α♦ ν ′ | ν ′ ∈ E and E is a causal set of ν in NE(N′)}.
We show that pre(α, E, ν) is a causal set of α♦ ν in RT , namely that it is a minimal subset of RT satisfying Conditions 

(1) and (2) of Definition 5.9.
Condition (1) If nec(α) ∈ pre(α, E, ν), then {r, s} ∩ {p, q} �= ∅. A conflict between nec(α) and any other event of pre(α, E, ν) ∪
{α♦ ν} can only be derived by Clause (2a) of Definition 5.7, since nec(α) = {p :: q!λ, q :: p?λ} and (α@p ) � t = (α@q ) � t = ε
for all t /∈ {p, q}. Suppose r = p. Then p :: q!λ ·η ∈ α♦ ν . Since q!λ < q!λ ·η, Clause (2a) cannot be used to derive a conflict 
nec(α) # α♦ ν . Similarly, if α♦ ν1 ∈ pre(α, E, ν) and p :: η1 ∈ ν1, then p :: q!λ ·η1 ∈ α♦ ν1. Then q!λ < q!λ ·η1, hence Clause 
(2a) cannot be used to derive nec(α) # α♦ ν1.
Suppose now α♦ ν1 ∈ pre(α, E, ν) and α♦ ν2 ∈ pre(α, E, ν). Since E is a causal set, we have ¬(ν1 # ν2). Thus
¬(α♦ ν1 # α♦ ν2) by Lemma 8.2(7).
Condition (2) Let ν = {r :: η, s :: η′}, we have α♦ ν = {r :: (α@r ) ·η, s :: (α@s ) ·η′}. We show that if η0 < (α@r ) ·η, then 
r :: η0 ∈ ν0 for some ν0 ∈ pre(α, E, ν). From η0 < (α@r ) ·η we derive η0 = (α@r ) · ζ for some ζ such that ζ < η. If ζ �= ε , 
then ζ = η′

0 < η. Since E is a causal set, η′
0 < η0 implies r :: η′

0 ∈∈ E . Hence r :: η0 ∈∈pre(α, E, ν). If instead ζ = ε , then it 
must be η0 = α@r �= ε and thus r ∈ {p, q}. In this case {nec(α)} ∈ pre(α, E, ν) and thus r :: η0∈∈pre(α, E, ν).
As for minimality, we first show that ν ′ ≺ α♦ ν for all ν ′ ∈ pre(α, E, ν). If nec(α) ∈ pre(α, E, ν), then {r, s} ∩ {p, q} �= ∅. 
Then nec(α) ≺ α♦ ν . If ν1 ∈ pre(α, E, ν) and ν1 �= nec(α), then there exists ν ′

1 ∈ E such that ν1 = α♦ ν ′
1. Since E is a 

causal set for ν , we have ν ′
1 ≺ ν . Therefore ν1 = α♦ ν ′

1 ≺ α♦ ν by Lemma 8.2(3). Assume now that pre(α, E, ν) is not 
minimal. Then there is E ′ ⊂ pre(α, E, ν) that verifies Condition (2) of Definition 5.9 for α♦ ν . Let ν ′ ∈ pre(α, E, ν) \ E ′ . 
Then ν ′ ≺ α♦ ν = {r :: ηr, s :: ηs}. Assume that r :: η′

r ∈ ν ′ with η′
r < ηr (the proof is similar for s). By Condition (2), there is 

ν ′′ ∈ E ′ such that r :: η′
r ∈ ν ′′ . But then ν ′ # ν ′′ by Lemma 5.21, contradicting the fact that pre(α, E, ν) verifies Condition (1). 

Therefore pre(α, E, ν) is minimal.
(2) Let RS = {α� ν | ν ∈NE(N) and α� ν defined}. We first show that RS ⊆ CE(N′). Let ν = {r :: η, s :: η′} ∈NE(N) be 

such that α� ν is defined. We want to prove that α� ν ∈ CE(N′). By Definition 5.13(1) there are R, S such that r� R � ∈ N
and s� S � ∈ N and η ∈PE(R) and η′ ∈PE(S). There are two possible cases:

• {r, s} ∩ {p, q} = ∅. Then r� R � ∈ N′ and s� S � ∈ N′ and thus α� ν = ν ∈ CE(N′);
• {r, s} ∩ {p, q} �= ∅. Suppose r = p. Then η ∈ PE(⊕i∈I q!λi; Pi) and since α� ν is defined we have that η = q!λk · ηk where 

ηk ∈PE(Pk). There are two subcases:

– s = q. Then η′ ∈PE(� j∈ J p?λ j; Q j) and since α� ν is defined η′ = p?λk · η′
k where η′

k ∈PE(Q k). In this case we have 
α� ν = {p :: ηk, q :: η′

k} ∈ CE(N′);
– s �= q. Then α� s :: η′ = s :: η′ , and thus α� ν = {p :: ηk, s :: η′} ∈ CE(N′).

Therefore in all cases RS ⊆ CE(N′). We want now to show that RS ⊆NE(N′).
We proceed as in the proof of Statement (1). We know that NE(N′) is the greatest post-fixed point of the function

fCE(N′)(X) = {ν0 ∈ CE(N′) | ∃E0 ⊆ X . E0 is a causal set of ν0 in X}
Then, in order to obtain RS ⊆NE(N′) it is enough to show that RS is a post-fixed point of fCE(N′)(X), namely that RS ⊆
fCE(N′)(RS).

Let α� ν ∈ RS for some ν ∈NE(N). Define

post(α, E, ν) = {α�ν ′ | ν ′ ∈ E and E is a causal set of ν inNE(N)}
We show that post(α, E, ν) is a causal set of α� ν in RS , namely that it is a minimal subset of RS satisfying Conditions (1) 
and (2) of Definition 5.9.
Condition (1) Suppose α� ν1 ∈ post(α, E, ν) and α� ν2 ∈ post(α, E, ν). Since E is a causal set and ν1, ν2 ∈ E , we have 
¬(ν1 # ν2). Thus ¬(α� ν1 # α� ν2) by Lemma 8.2(5) and (1).
Condition (2) Since ν = {r :: η, s :: η′} and α� ν is defined, we have η = (α@r ) ·ηr and η′ = (α@s ) ·ηs and α� ν =
{r :: ηr, s :: ηs}. Let η0 < ηr . Then (α@r ) ·η0 < (α@r ) ·ηr = η. Since E is a causal set for ν in NE(N), this implies
r :: (α@r ) ·η0∈∈E . Hence r :: η0∈∈post(α, E, ν).
As for minimality, we first show that ν ′ ≺ α� ν for all ν ′ ∈ post(α, E, ν). If ν1 ∈ post(α, E, ν), then there exists ν ′

1 ∈ E such 
that ν1 = α� ν ′

1. Since E is a causal set for ν , we have ν ′
1 ≺ ν . Therefore ν1 = α♦ ν ′

1 ≺ α♦ ν by Lemma 8.2(3). Assume now 
that post(α, E, ν) is not minimal. Then there is E ′ ⊂ post(α, E, ν) that verifies Condition (2) of Definition 5.9 for α� ν . Let 
ν ′ ∈ post(α, E, ν) \ E ′ . Then ν ′ ≺ α� ν = {r :: ηr, s :: ηs}. Assume that r :: η′

r ∈ ν ′ with η′
r < ηr (the proof is similar for s). By 

Condition (2), there is ν ′′ ∈ E ′ such that r :: η′
r ∈ ν ′′ . But then ν ′ # ν ′′ by Lemma 5.21, contradicting the fact that post(α, E, ν)

verifies Condition (1). Therefore post(α, E, ν) is minimal. �
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Appendix E. Proofs of Subsection 8.2

This section contains the proofs of Lemmas 8.10, 8.11 and 8.12.

Lemma 8.10. (Properties of retrieval and residual for g-events).

1. If α • γ is defined, then α ◦ (α • γ ) = γ ;
2. α • (α ◦ γ ) = γ ;
3. If γ1 < γ2 , then α ◦ γ1 < α ◦ γ2;
4. If γ1 < γ2 and both α • γ1 and α • γ2 are defined, then α • γ1 < α • γ2;
5. If γ1 # γ2 , then α ◦ γ1 # α ◦ γ2;
6. If γ < α ◦ γ ′ , then either γ = [α]∼ or α • γ < γ ′;
7. If part(α1) ∩ part(α2) = ∅, then α1 ◦ (α2 ◦ γ ) = α2 ◦ (α1 ◦ γ );
8. If part(α1) ∩ part(α2) = ∅ and both α2 • (α1 ◦ γ ), α2 • γ are defined, then α1 ◦ (α2 • γ ) = α2 • (α1 ◦ γ ).

Proof. (1) If α • [σ ]∼ is defined, then in case part(α) ∩ part(σ ) = ∅ we get α • [σ ]∼ = [σ ]∼ and also α ◦ [σ ]∼ = [σ ]∼ , so 
α ◦ (α • [σ ]∼) = [σ ]∼ . Instead if part(α) ∩ part(σ ) �= ∅, then α • [σ ]∼ = [σ ′]∼ where σ ∼ α ·σ ′ and σ ′ �= ε . From part(α) ∩
part(σ ) �= ∅ we get α ◦ [σ ′]∼ = [α ·σ ′]∼ by Definition 7.6. This implies α ◦ (α • [σ ]∼) = [σ ]∼ .

(2) By Definition 7.6 either α◦[σ ]∼ = [α ·σ ]∼ if part(α) ∩part(σ ) �= ∅, or α◦σ = [σ ]∼ . In the first case α•[α ·σ ]∼ = [σ ]∼
and in the second α • [σ ]∼ = [σ ]∼ , which proves the result.

(3) Let γ1 = [σ ]∼ and γ2 = [σ ·σ ′]∼ . If part(α) ∩ part(σ ) �= ∅, then part(α) ∩ part(σ ·σ ′) �= ∅, and we have α ◦ γ1 =
[α ·σ ]∼ and α ◦ γ2 = [α ·σ ·σ ′]∼ . Whence α ◦ γ1 ≤ α ◦ γ2. Suppose now part(α) ∩ part(σ ) = ∅. Then α ◦ γ1 = [σ ]∼ = γ1. 
If also part(α) ∩ part(σ ′) = ∅, then α ◦ γ2 = [σ ·σ ]∼ = γ2 and we are done. If instead part(α) ∩ part(σ ′) �= ∅, then α ◦ γ2 =
[α ·σ ·σ ′]∼ = [σ ·α ·σ ′]∼ , whence γ1 ≤ α ◦ γ2.

(4) Let γ1 = [σ ]∼ and γ2 = [σ ·σ ′]∼ . If part(α) ∩ part(σ ) = part(α) ∩ part(σ ·σ ′) = ∅, then α • γ1 = γ1 and α • γ2 = γ2. 
If part(α) ∩ part(σ ) �= ∅, then σ ∼ α ·σ0, which implies α • γ1 = [σ0]∼ and α • γ2 = [σ0 ·σ ′]∼ . If part(α) ∩ part(σ ) = ∅ and 
part(α) ∩ part(σ ·σ ′) �= ∅, then α • γ1 = [σ ]∼ and σ ′ ∼ α ·σ0, which implies α • γ2 = [σ ·σ0]∼ .

(5) Let γ1 = [σ ]∼ and γ2 = [σ ′]∼ and σ @ p # σ ′ @ p for some p. The only interesting case is part(α) ∩ part(σ ) = ∅ and 
part(α) ∩part(σ ′) �= ∅. This implies α ◦γ1 = [σ ]∼ and α ◦γ2 = [α ·σ ′]∼ . We get (α ·σ ′) @ p = σ ′ @ p since part(α) ∩part(σ ) =
∅ implies p /∈ part(α). We conclude α ◦ γ1 # α ◦ γ2.

(6) The case γ = [α]∼ is immediate. If α • γ is defined, we get α • γ < α • (α ◦ γ ′) by Point 4 and α • (α ◦ γ ′) = γ ′ by 
Point 2. Otherwise let γ = [σ ]∼ and α ◦ γ ′ = [σ ·σ ′]∼ . From α • γ undefined we get part(α) ∩ part(σ ) �= ∅ and σ � α ·σ0. 
Since part(α) ∩ part(σ ) �= ∅ implies part(α) ∩ part(σ ·σ ′) �= ∅ we get σ ·σ ′ ∼ α ·σ1 for some σ1 by Definition 7.6(1). Then 
this case is impossible.

(7) Let γ = [σ ]∼ . By Definition 7.6(1) we have four cases:

(a) α1 ◦ (α2 ◦ σ) = [α1 · (α2 ·σ)]∼ = [α2 · (α1 ·σ)]∼ = α2 ◦ (α1 ◦ σ) if part(α1) ∩part(σ ) �= ∅ and part(α2) ∩part(σ ) �= ∅, since 
part(α1) ∩ part(α2) = ∅;

(b) α1 ◦ (α2 ◦ σ) = [α1 ·σ ]∼ = α2 ◦ (α1 ◦ σ) if part(α1) ∩ part(σ ) �= ∅ and part(α2) ∩ part(σ ) = ∅;
(c) α1 ◦ (α2 ◦ σ) = [α2 ·σ ]∼ = α2 ◦ (α1 ◦ σ) if part(α1) ∩ part(σ ) = ∅ and part(α2) ∩ part(σ ) �= ∅;
(d) α1 ◦ (α2 ◦ σ) = [σ ]∼ = α2 ◦ (α1 ◦ σ) if part(α1) ∩ part(σ ) = ∅ and part(α2) ∩ part(σ ) = ∅.

(8) Let γ = [σ ]∼ . By Definitions 7.6(1) and 8.9(1) we have four cases:

(a) α1 ◦ (α2 • σ) = [α1 ·σ ′]∼ = α2 • (α1 ◦ σ) if part(α1) ∩ part(σ ) �= ∅ and σ ∼ α2 ·σ ′;
(b) α1 ◦ (α2 • σ) = [α1 ·σ ]∼ = α2 • (α1 ◦ σ) if part(α1) ∩ part(σ ) �= ∅ and part(α2) ∩ part(σ ) = ∅;
(c) α1 ◦ (α2 • σ) = [σ ′]∼ = α2 • (α1 ◦ σ) if part(α1) ∩ part(σ ) = ∅ and σ ∼ α2 ·σ ′;
(d) α1 ◦ (α2 • σ) = [σ ]∼ = α2 • (α1 ◦ σ) if part(α1) ∩ part(σ ) = ∅ and part(α2) ∩ part(σ ) = ∅. �

Lemma 8.11. The following hold:

1. If γ ∈GE(G), then pqλ ◦ γ ∈GE(p → q :�i∈Iλi; Gi), where λ = λk and G = Gk for some k ∈ I ;
2. If γ ∈GE(p → q :�i∈Iλi; Gi) and pqλk • γ is defined, then pqλk • γ ∈GE(Gk), where k ∈ I .

Proof. (1) By Definition 7.11(1) γ ∈ GE(G) implies γ = ev(σ ) for some σ ∈ Tr+(G). Since pqλ ◦ γ = ev(pqλ ·σ) by Defini-
tions 7.6, 7.7 and pqλ ·σ ∈ Tr+(p → q :�i∈Iλi; Gi) we conclude pqλ ◦ γ ∈GE(p → q :�i∈Iλi; Gi) by Definition 7.11(1).

(2) By Definition 7.11(1) γ ∈ GE(p → q :�i∈Iλi; Gi) implies γ = ev(σ ) for some σ ∈ Tr+(p → q :�i∈Iλi; Gi). We get 
σ = pqλh ·σ ′ with σ ′ ∈ Tr+(Gh) or σ ′ = ε for some h ∈ I . The hypothesis pqλk •γ defined implies either h = k and σ ′ �= ε or 
part(σ ′) ∩{p, q} = ∅ and pqλk •γ = ev(σ ′) by Definition 8.9(1). In the first case σ ′ ∈ Tr+(Gk). In the second case σ ′′ ∈ Tr+(Gk)

for some σ ′′ ∼ σ ′ by definition of projection, which prescribes the same behaviours to all participants different from p, q, 
see Fig. 2. We conclude pqλk • γ ∈GE(Gk) by Definition 7.11(1). �
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Lemma 8.12. Let G α−→ G′ .

1. If γ ∈GE(G′), then α ◦ γ ∈GE(G);
2. If γ ∈GE(G) and α • γ is defined, then α • γ ∈GE(G′).

Proof. Both proofs are by induction on the inference of the transition G α−→ G′ , see Fig. 4.
(1) For rule [Ecomm] we get G = p → q :�i∈Iλi; Gi and G′ = Gk and α = pqλk for some k ∈ I . We conclude α ◦ γ ∈

GE(G) by Lemma 8.11(1).

For rule [Icomm] we get G = p → q :�i∈Iλi; Gi and G′ = p → q :�i∈Iλi; G′
i and Gi

α−→ G′
i for all i ∈ I and part(α) ∩ {p, q} =

∅. By Definition 7.11(1) γ ∈ GE(G′) implies γ = ev(σ ) for some σ ∈ Tr+(G′). This implies σ = pqλk ·σ ′ and γ = [σ0]∼ with 
either σ0 ∼ pqλk ·σ ′

0 for some k ∈ I or part(σ0) ∩ {p, q} = ∅ by Definition 7.6. Then pqλk • γ is defined unless σ0 = pqλk by 
Definition 8.9(1). We consider two cases.
If σ0 = pqλk , then α ◦γ = [pqλk]∼ since part(α) ∩ {p, q} = ∅. We conclude α ◦γ ∈GE(G) by Definition 7.11(1). Otherwise let 
γ ′ = pqλk • γ . By Lemma 8.11(2) γ ′ ∈GE(G′

k). By induction α ◦ γ ′ ∈GE(Gk). By Lemma 8.11(1) pqλk ◦ (α ◦ γ ′) ∈GE(G). We 
now show that pqλk ◦ (α ◦ γ ′) = α ◦ γ . By Lemma 8.10(7) and part(α) ∩ {p, q} = ∅ we get pqλk ◦ (α ◦ γ ′) = α ◦ (pqλk ◦ γ ′)
and by Lemma 8.10(1) we have pqλk ◦ γ ′ = pqλk ◦ (pqλk • γ ) = γ . Therefore pqλk ◦ (α ◦ γ ′) = α ◦ γ ∈GE(G).

(2) For rule [Ecomm] we get G = p → q :�i∈Iλi; Gi and G′ = Gk and α = pqλk for some k ∈ I . We conclude α • γ ∈
GE(G′) by Lemma 8.11(2).

For rule [Icomm] we get G = p → q :�i∈Iλi; Gi and G = p → q :�i∈Iλi; G′
i and Gi

α−→ G′
i for all i ∈ I and part(α) ∩ {p, q} =

∅. By Definition 7.11(1) γ ∈ GE(G) implies γ = ev(σ ) for some σ ∈ Tr+(G). This implies σ = pqλk ·σ ′ and γ = [σ0]∼ with 
either σ0 ∼ pqλk ·σ ′

0 for some k ∈ I or part(σ0) ∩ {p, q} = ∅ by Definition 7.6. Then pqλk • γ is defined unless σ0 = pqλk by 
Definition 8.9(1). We consider two cases.
If σ0 = pqλk , then α • γ = [pqλk]∼ since part(α) ∩ {p, q} = ∅. We conclude α • γ ∈ GE(G′) by Definition 7.11(1). Otherwise 
let γ ′ = pqλk •γ . By Lemma 8.11(2) γ ′ ∈GE(Gk). We first show that α •γ ′ is defined. Since α •γ and pqλk •γ are defined, 
by Definition 8.9(1) we have four cases:

(a) σ0 ∼ α ·σ1 for some σ1 and σ0 ∼ pqλk ·σ ′
0;

(b) σ0 ∼ α ·σ1 and part(σ0) ∩ {p, q} = ∅;
(c) part(α) ∩ part(σ0) = ∅ and σ0 ∼ pqλk ·σ ′

0;
(d) part(α) ∩ part(σ0) = ∅ and part(σ0) ∩ {p, q} = ∅.

In case (a) σ0 ∼ α ·pqλk ·σ ′
1 ∼ pqλk ·α ·σ ′

1 for some σ ′
1 since part(α) ∩ {p, q} = ∅. Notice that σ ′

1 �= ε since σ0 is pointed and 
part(α) ∩ {p, q} = ∅. We get γ ′ = pqλk • γ = [α ·σ ′

1]∼ and α • γ ′ = [σ ′
1]∼ .

In case (b) γ ′ = γ and α • γ ′ = [σ1]∼ .
In case (c) γ ′ = [σ ′

0]∼ and α • γ ′ = [σ ′
0]∼ , since part(α) ∩ part(σ0) = ∅ implies part(α) ∩ part(σ ′

0) = ∅.
In case (d) γ ′ = γ and α • γ ′ = γ .
By induction α • γ ′ ∈GE(G′

k). By Lemma 8.11(1) pqλk ◦ (α • γ ′) ∈GE(G′).
We now show that pqλk ◦ (α • γ ′) = α • γ . From γ ′ = pqλk • γ and Lemma 8.10(1) pqλk ◦ γ ′ = γ . Therefore from α • γ

defined we have α • (pqλk ◦ γ ′) defined. Since α • γ ′ is also defined and part(α) ∩ {p, q} = ∅, by Lemma 8.10(8) we get 
pqλk ◦ (α • γ ′) = α • (pqλk ◦ γ ′). Therefore pqλk ◦ (α • γ ′) = α • γ ∈GE(G′). �
Appendix F. Glossary of symbols and table of notations

Symbol Meaning

π input/output action: p!λ, p?λ

α communication pqλ

σ trace, finite sequence of communications
S event structure
X configuration of an event structure
η p-event, non-empty finite sequence of input/output actions
PE set of p-events
ζ (possibly empty) finite sequence of input/output actions
ϑ undirected action: !λ, ?λ

� (possibly empty) finite sequence of undirected actions
ν n-event, unordered pair of dual located p-events
NE set of n-events
γ g-event, equivalence class [σ ]∼ with σ pointed
GE set of g-events
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Notation Meaning Where defined

pt(π) participant of action π before Definition 2.1
part(σ ) participants of trace σ Definition 2.3
D(S) domain of configurations of ES S Definition 3.5
act(η) action of p-event η after Definition 4.1
SP(P ) event structure of process P Definition 4.3
PE(P ) set of p-events of SP(P ) Definition 4.3
p :: η located event, p-event η located at participant p Definition 5.1
η�p projection of p-event η on participant p Definition 5.2
� � �′ duality of undirected action sequences � and �′ Definition 5.3
p :: η �̂ q :: η′ duality of located events p :: η and q :: η′ Definition 5.4
cm(ν) communication of n-event ν after Definition 5.5
loc(ν) set of locations of n-event ν after Definition 5.5
p :: η∈∈E occurrence of located event p :: η in some n-event of E Definition 5.6
n(E) narrowing of the n-event set E Definition 5.11
SN (N) event structure of network N Definition 5.13
CE(N) set of candidate n-events of SN (N) Definition 5.13
NE(N) set of n-events of SN (N) Definition 5.13
ϑ↘n prefix of length n of ϑ before Proposition 5.22
projp(ν) projection of n-event ν on participant p Definition 5.25
part(G) participants of global type G after Definition 6.1
G�p projection of global type G on participant p Fig. 2
σ [i] i-th element of trace σ before Definition 7.1
σ [i ... j] subtrace σ [i] · · ·σ [ j] of trace σ before Definition 7.1
σ ∼ σ ′ permutation equivalence of traces Definition 7.1
[σ ]∼ equivalence class of trace σ w.r.t. ∼ Definition 7.1
last(σ ) last communication of trace σ before Lemma 7.4
cm(γ ) communication of g-event γ Definition 7.5
σ ◦ γ retrieval of g-event γ before trace σ Definition 7.6(1) and (2)
ev(σ ) g-event generated by trace σ Definition 7.7
σ@p projection of trace σ on participant p Definition 7.9(1) and (2)
SG(G) event structure of global type G Definition 7.11
GE(G) set of g-events of SG(G) Definition 7.11
σ ♦ν retrieval of n-event ν before trace σ Definition 8.1(1) and (3)
σ �ν residual of n-event ν after trace σ Definition 8.1(2) and (3)
nec(σ ) sequence of n-events corresponding to trace σ Definition 8.3
σ • γ residual of g-event γ after trace σ Definition 8.9(1) and (2)
gec(σ ) sequence of g-events corresponding to trace σ Definition 8.13
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