
Measur-ing Concurrency in CCS
I
!

____ ..-- --J',....__....,._' __

Vashti Christina Galpin

Degrue awarded with distinction 6 May 199'
A research report submitted to the Faculty of Science,
University of the Witwatersrand, Johannesburg,
in partial fulfilment of the requirements for

the degree of Master of Science

january 1993



Abstract
I' Ii

Ii

!I
Ii

Tlnis research r(,pol't'~nvestiga.t..':!sthe application of Charron-Best's measure of coa-
-: I: ..

currency m to Miln€!~?sCalculua'of'Comrnunicating Systems (eCS). The aim of tht~,
'.\

is twofold: fil'.fitto e~\llt1~,t~the measure m in terms of criteria gathered from the

llterature: anct'!lecomi'ito determine the feasiblllty of measuring concurrency in ees
and hence pr,wide ~I rl~w .tool for understanding concurrency using ecs. The ap-

proach ta,k~n)is,to identify the differences hetween the mesaage-passing formalism in

which the measure m is defined, and eeSj and to modify this formalism to-enable

the mapping of ecs agents to it. i..' software tool, the Concurrency Measurement

Tool, is developed to permit experimentation with chosen ecs agents. These ex-

periments show that the measure m, although intuitively appealing, is defined by an

algebraic expression that is ill-behaved. A new measure is defined and it is shown

that it matches the evaluation criteria better than m, although it is sti11110t ideal.

This work demonstrates that it is feasible to measure concurrency in ces and that

a methodology has been developed for evaluating concurrency measures.
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1. Introduction

As Hoare has noted 'Concurrency remains one of the major challenges fa..ing Com-
puter Science, bdlh in theory and in practice' [50, Foreword}. For this reason, the
investigation of issues that relate to concurrency is an important area of research,
as 811chinvestigations can further our understanding of concurrency.

1.1 Problem motivation and analysis

Algebraic calculi of processes provide' an approach to modelling communication and
concurrency by describing the behaviour of concurrent communicating systems in
terms of an operational semantics. Robin Milner's CCS (Calculus of Communicat-
ing Systems) is an example of this type of calculus. ecs provides for the definition
of agents using a small number of operators and allows for the description and spec-
ification of concurrent systems, and hence for an, understanding of the behaviour of
such systems and the comparison of different sYstems. CCS also allows for speci-
fications that abstract from the internal details; and for partial specifications that
use agent variables. Any new vools developed for use with CCS will further the
understanding o~;concurrent systems.

In the literature, there are a number of approaches to analysing the behaviour
and performance of concurrent systems. Lamport and Lynch [47] note that there
are two basic complexity measures for distributed algorithms: time complexity and
message complexity. Time complexity measures the amount of time taken by mes-
sage passing in a particular algorithm, since the time taken for message passing is
assumed to be much longer than that required for computation. Message complexity
is based on the number of messages transmitted during a computation, although it
can also be based on the total number of bits transmitted. Often with distributed
algorithms there is a tradeoff between time and message complexity-an algorithm
can he 'improved' by decreasing its message complexity with a resulting increase in
time complexity. Parallel programs also exhibit concurrency and their performance
can be measured hy speedup; the ratio of time taken to execute the program on one
processor and the time taken on n processors [57].

However, as Bernadette Charron-Bost has noted [15), none of these measures
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assess the structure 6f the computaticn. She gives the example of a multibroadcast
.: !i \i

problem with two solutions-the solution with the lower number of m~~sagesw!~rks
1\

in an essentially less concurrent manner and is less resistant to. failure than the

solution with the higher number of messages. She also notes that message complexity

can be misleading since the length of messages is not taken into account, although

this can be ameliorated by using bit complexity.

The issue of message and time complexity in distributed systems will not be

discussed further ill this document; however, 'speed-up in parallel systems will be

discussed in Chap ter 2 because this gives an indirect indication of the amount of

parallelism present: in a computation.

Recently in the literature, the notion of a concurrency measure has been proposed

by a number of ,lii'hors [2, 31 4, 5~ 14, 15, 32, 36, 38, 44~ 41$, 59]. This notion is

based on the con~ie:pt of a qua!ltitativ~)fleasnre of the amount of concurrency 'in
~, '~'"

a computation 01' al~~.'xithm. These mC:.('s'up?~are defined either on [0, 1J or [0,00),

and they are usually based on an in.tuitivelY appealing feature of the theoretical
"

framework within wh:cll. they are defined.

Although there have been a number of different measures proposed, there has

been a lack of experimental results for these measures, and the rna [ority require

further evalnationj« Generally, it appf-('~rst11at researchers present measures but

little iurther resear(!l}~is done to evaluate the usefulness of the defined measures for

dealing with concurrency in more practical situations. One aspect of this research
'.., . i
I)

is to remedy this situation by first investigating one specifit\f,11easure, and second

by proposing a general approach for evaluating measures. !

To evaluate ~ea,sures of concurrency, it is necessary to determine which features

or characteristics are generally desirable. Dispersed throughout the literature are '

a number of different criteria for evaluating measures of concurrency. .These dif-

ferent approaches will be drawn together in this research and used to evaluate the

measure of concurrency to he investigated. Evaluation criteria can be divided into

two categories-those that are subjective and those that are objective. The .three

objective criteria are those that relate to the performance of the algorithm used

to calculate the measure, to wiiether a measure of concurrency can be determined

for a specific event, and to the stability of the measure with respect to ~ranu1arity.

(Thesrt.<l1rms will be defined and explained in Chapter 2.)

The remaining criteria can he described as subjective. The intuitive understand-

ability of the measure and its behaviour on small examples are subjective because

2

'_'
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they relate to individuals' perceptions of concurrency, These two criteria, are often
used in the original design of the measure. ;/

Another important criterion is that of compatibility 'Y~~koperators. Operators
:;_/

on concurrent computations allow computations to b~;'Joined' in some sense. Ex-
amples of such operators are parallel concatenatio~t~nd sequential concatenation.
When two computations are combined by an operahor, it would be desirable that the

t,

measure of concurrency for the combined compll~'itions can be explained in terms of
the type of operator. For example, when compllt~tions are combined in parallel, it is
reasonable to expect the measure to inn-ease ,4 the computation has in some sen.se
become more parallel. There are a number of different approaches to operators in
the literature which will be discussed in this document. Compatibility with opera-
tors is an important criterion as it relates t9!4e dift',2rentlevels of abstraction that
are used in specifications, and to partial specifications. If the effect of an operator
can be explained, then the effect on the amOUI1t of concurrency when exchanging
components or lnstantlating variables can he determined. This will lead to a·better
understanding of concurrent systems.

Finally there are two further criteria, which are also subjective, that relate to
the functionality of the measure+usabillty in analysing distributed algorithms and
applicability to real sittiations. These last two criteria obviously are important in
determining the usefulness of the measure,

1.2 Statement of problem and objectives of the re-
search

CCS is a formalism for the investigation of concurrency that provides an understand-
ing of concurrent behaviour and any tools that can he used with CCS will advance
this understanding. An example of this type t)f tool for investigating concurrency
is the concept of a measure of concurrency, A number of these measures are pre-
sented in the literature; however, most of these have not been fully evaluated. The
objective of this research is to address these issues by using CCS as a tramework in
which to evaluate measures of concurrency.

The focus of this research therefore will be to apply ("measure of concurrency
to ecs. As will be shown in Chapter 2, Charron-Bost's measure of cOllcurt(')~cy

,_~,_I

m [14] has been chosen as the measure to be studied in this research, as it is (me
of a number appearing in the literature that require investigation. This measure
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of concurrency is based un the concept that 'the less the stopping of one of t.qe

processes blocks the other processes, the more concurrent is the computation' (14,

p.45]"
By ap.)lying a. measure to ees, a new approach to investigating aspects of con-

currency will be gained and a new methodology for evaluating concurrency measures

in ecs will he defined, although in td'S research only one measure will be investi-

gated.

The main 'Objectives of this research are to:

1. Evaluate m as a measure of concurrency by applying it to ees and using the

evaluation criteria that are found in the literature.

2. Investigate the feasibllity of measuring concurrency in ees,
3. Develop and evaluate a. tool to measure the concurrency of ees agents.

The outcome of achieving these objectives will be:

1. A measure of concurrency defined for ecs will provide a new tool for the inves-

tlgaticn of concurrency and a framework for the measurement of concurrency

in ees.
2. The measure of concurrency m will be evaluated, first in terms of its applica-

bility and second in terms of its validgy as a measure.

3. Au approach to evaluating measures of concurrency will be developed.

1.3 Method of investigation

The research will be conducted in the following manner:

1. A literature survey of evaluation criteria for measU!'4s of concurrency, measures

of' concurrency and relevant issues in ecs will be presented and the choice of

the measure m will be justified.

2. The differences between the message-passing formalism in which the measure

is defined, and ecs will he identified.
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3. The message-passing formalism will he redefined so that] CC~' agl~r.ltscan lie
I ,t I :

translated into this formalism while ensuring that the ousti~ka~~(lnfor the
r: ': j:

measure of concurrency remains the same. 11: will be shown that the existing
results still hold h~ the redefined model.

4.. A translation algorithm will be developed to map CGS agents into the message-

passing formaliam: The algorithm will deal only with a subset of CCS and this
subset will be chosen and mbtivated.

E,. An algorithm will be devehj~ed to calculate the measure and a theoretical
analysis of this algorithm wij~ be presented,

6. The Concurrency Measurement Tool will be Implemented to automate the
calculation of the measure for CCS agents. The Cpncurrency Measurement
Tool will he used to experiment on chosen eGS agel1ts.

7. The results of the experiments will he used to evaluate of the measure in
terms (If the criteria presented In the literature survey and to investigate the
feasibility of measuring concurrency in ecs

1.4 Organisation of the research report

The report will be structured as follows:

Chapter 1. Introduction

Chapter 2. COIICUrrel'lcy: measures and f(,'\rmalisms This chapter will
present the background ilterature that relates to concurrency measures. Ways to
evaluate measures of concurrency will be presented first to set the scene for the
discussion of measures of concurrency, These criteria will be described ill. detail, and
a framework will be developed to discuss the interpretation ef compatibility with
operators. Measures will be gron~ed in terms of the frameworks~\''Yitl!.ihwhich they
are defined. Lamport's mess .!;I1:passing formalism that defines a partial ordering
model of a distributed systemj'will he discussed in some J<~ta.il, as a number of

(/
measures including the measure. t6 he\~vall1atetlin this research, are defined in this
formalism. A discussion of relevant issues in ees, such as partial ordering, time
and a measure of maximum parallelism will also be presented. The justification of
m as the measure for consideration will be given in the final section,
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(Jhapter 3'. Applying the measure to CCS In this chapter, the differences

6

\\
;)between the message-passing formalism that describes a distributed system and CCS
il
!' will be identified and discussed. After this, the message-passing formalism will be
redefined to take into account these differences, TId!) redefinition will be done so
that the justification for the measure still holds in the new formalism. A number of
results are required to define the measure, and it will he shown that these results are
valid in the redeflned.formallsm. Finally, issues relating to the translation procedure
for mapping CCS agents into the message-passing formalism will be discussed and
the translation algorithm will be presented.

I

Chat~ter 4. Concurrency Measurement Tool This chapter will discuss the
progrkm written to perform the experiments on ecs agents. The main focus of the

I

ChaPt,:~rW,lli h. on the algorithm for counting the, number of consistent cut, although
othe~la.Igorithms and an overview of the program will be presented, An analysis of
the ~Iro~'ithmfor CO\\~'ti~lgconsistent cuts will he presented and the performance of
the cl~ncurrency Measiirement Tool will he related to the theoretical results for the
algodUull. Other algorithms will be suggested and analysed.

:1

'I
Chap~el' 5. Results and evaluation The experiments that Were performed
using Ithe Concurrency Measurement T?ol will be detailed, Including a description

of t.'.:~li\aim of each experiment an,{ the 'gents used in the expe.riment, The results
of eac Iexperiment will be presented and. Wi.ll be used to investigate the measure of
concu Irencyin terms of the criteria presented in. Chapter 2. These results will show
that~i\does not meet all the zriteria and a modified measure mnew will be presented
and ev~~uated. This evaluation will show that mnew is hetter behaved than m. It
will be \trgued that the Ill_eastuementof concurrency in CCS is feasible and that a
method~~logyhas been developed to evaluate concurrency measures.

\
Chapte\r 6. Further research and conclusions In this chapter, a summary of
the rese~~chand the conclusions will he presented. Further research will be outlined.



2. Concurrency : measures and
formalisms

2.1 Introduction

In this chapter, background literature will he presented, relating to both measures
of e- ncurrency and ees. Criteria. for the evaluation of measures of concurrency will
be detailed, and a new framework for ~!lediscussion of compatibility with operators
will be developed, This will facilitate the discussion of measures of concurrency
that will flillow. "the majority of the measures to be discussed>in this chapter are
defined in the message-passing model of a distributed system defined by Lamport.
This formalism will be described and then the relevant measures will be presented,
including Charron-Best's meaS1U€m which is the focus of the research. In the
section on CCS, the components of an algebraic calculus will be presented, and-
partial orders ~nd time in CCS will be discussed (an overview of ecs is presented

\\
in Appendix Aj. A measure of maximum parallelism defined for CCS will also be
presented. In the finaJ_,~:ttion, the justification for the choice of Charron-Best's
measure m,will he given.

\\
\\

2.2 Evaluation criteria for measures of concurrericy

The idea behind a measure of concurrency/parallelism is to obtain a numerical
value to indicate the amount of concurrency there may be in a computation or
an algorithm. This value will then allow for the comparison of computations or
algorithms in terms of the amount of concurrency.

In general, measures of concurrency! fall into two distinct groups with respect
to the range of values that the measure can obtain. Measures in the first group give
a value in the interval [0, I], indicating the amount of concurrency present with 0
indicating no concurrency and 1indicating some maximum arnot ••~of concurrency.
Those in ~he.'second group return a value in the Interval [0, oo) giving some indication

1In the rest of this research report, the term 'measure of concurrency' will be used to indicate
both a. measure of concurrency and a. measure of parallelism. -::~;
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of the number of concurrent Pl'oc~~ses.
It is necessary when developing a new tool to perform experiments to ensure

that the tool behaves correctly. In most of the literature dealing with measures of
concurrency, this experimelltai!,~onis not present, except for a few small examples;
For a measure of COnCll1'1'<!!!l{:~~obecome useful, experiments and experiences with
the measure need to be reported.

The process of defining a measure of concurrency presents difficulties as there
is no single objective way to determine if the measure is performing as desired.
Consider the followingexample, If a. new technique is being developed for measuring
short distances, it. can be evaluated and checked for consistency against methods
proven to work, for example, tape measures. However, 1n this situation, there is no
well-defined method with which to compare a concurrency measure to determine its
correcr=ss. This means that it is necessary to determine a number of criteria that

J \ "

can be, ,_f.d to evaluate the measure. This is complicated by the fact is that som~of
these criteria are also used in the definition of the measure. For example, a measure
can be defined hy finding an Intuitively appealing explanation for using ~rparticular
feature of a formal model, and hy using the measure on small examples and with
operators.

The criteria that are found in the literature are as follows:

1. Intuitive understanding of the rneasuns [14].

2. Being well behaved for simple examples [14, 15].

3. Compatibility with operators on computations [15, 18, 32].

4. Usability for comparison and analysis of distrlbuted algorithms and applica-
bility to teal situations [15,45]. r"-"

5. Ability to calculate measure during the computation for a specific event [32,
59].

6. Lack of expense of computation in terms of both time and space. [32,38, 59].

7. Stability with respect to granularity [16].

These criteria are open to criticism because although they ca~ show that a measure
is poor, the process of showing whether a measure is good is more difficult as there
is no objective way to do this.
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In following sections, each criterion willlfe explained. The first four items are

very subjective criteria. although they may not all seem so at first. The next three

are more objective and it is possible to check objectively whether a measure of

concurrency satisfies them, although~there is some debate about whether the final

criterion is ~pplicahle to all measures\\
This section is presented before the r~ew 'of concurrency measures because the

concepts given here are required to disc\l~~~~ measures. However, some material

~n S:c~ion 2.2.a relies ~n de~nitio~s that occurf)ater in this chapter, and the,' .ader
IS advised to read tha~ section Jmefiy at first/i~])

,/1'
2.2.1 Intuitive. understanding of1~measure

This criterion relates to u,-:lng able to understand why the definition of the measure

is sensible [14J. For example, Charron-Best's measure m, produces a value in the

range [0,1], where 0 represents total soquentiallty and 1 total concurrency. The

concepts that are being used to define the measure, namely consistent cuts, are

explained as a way of measuring the tolerance of the computation to stopping. This

explanation appears to give a. good approach to measuring concurrency,

This criterion is, of course, subjective as one cannot objectively determine the

intuitive appeal of a defi.....nition. It is also conceivable,{. owever, that a me.asu.re COUld..
be defined in such a way that its definition is non-int tive or even counter-intuitive;

and still satisfy all other criteria. \

2.2.2 Being well behaved for small examples

It is desirable that a measure of concurrency will work in a reasonable wayan small

examples [15]. In fact, as described above, this is often used in defining a measure.

Charron-Best [14] uses these grounds to reject the measure w. She presents two.,
examples that have the same measure under w. However, the SP;:l.c<;-:~imediagrams

of the examples show that one appears more concurrent. This means that this is a

subjective criterion, since it involves perceptions of concurrency. In small examples,

it would seem fairly easy to obtain some sort of consensus ill the area; however,

when dealing with larger computations, it becomes more difficult to decide.

2.2.3 Compatibility with operators on computations

Compatibility with operators means that when computations are 'joined' by opera-

tors, the amount of concurrency will change in a way that can be explaif ~d by the
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actions of the operators. This issue is discussed both by Charron-Bost [l5, 16
1

; 18]

and Fidge [32] in their papers on measures of concurrency. This section will be

organised as follows: first, the approaches taken in the literature will be discussed

in detail, then a framework will he developed to generalise the work that has been

presented. The explanation of the operators relies on definitions to be presented

later in the chapter and it is suggested that the reader give this section a brief

reading at first, returning after the completion of Section 2.3.

Charron-Bost [15] defines two operators-concatenation al).~ fusion .. Concatena-

tion is essentially the joining of one computation after a.nothe>~rhere the computa-.,

tions have the same number of processes/ (see Figure 2.1a). Fusion OCellI'S when two

computations have some process sequences with common prefixes. The processes are

merged to obtain the longest computations for each process" (see Figure 2.1h). The

effect is to obtain a computation from the two computations that is more parallel
i~>

than either of the component computations.

Charron-Boat's measure of parallelism p is evaluated in terms of these tJi> DP~

erators [15]. If C is the concatenation of C' and CIf, with measures p, pI and p"

respectively, then p can he expressed as

p = w'p' + w"p" where 1i + w" = 1

where w' and w" corre~pond to the relative sizes of the computations C' and Gil.
1 \

This implies that ,__~.i:

p ~ min(p', p") and

p s ma:x(p', p").

Since for p, 0 represents a totally concurrent computation and 1 a totally serial com-

putation, this shows that the computation formed by concatenation cannot become

more parallel than its more parallel component, nor can it become less parallel than

its less parallel component.

2Consider the computation.'>
C =={C1,G2,G3} with G1 =ab
0' == {OLC~,O~} with O{ = I

then

02 == cdc
O~=mn

03 = fghijk
O~= opg

O" == {O~',O~',On with O{' = abi O~'= cdemn. O~'== fghjkopg.
is the concatenation of a and 0'.
3Consider the computations
a = {C1,02,03} with 01 == abcde 02::: fglt 03 =jk
a' ={OLC~,On with O{=ab Oi=fgh O~=jklmno

then
c" =: {Gil,G2',on with C{' = abcde O2' = fgh c~':.::;jklmno.

is defined as the fusion of C and 01• Not~ that Of is a prefix of .01 and .02 is a. prefix of C~.
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(a)

j k --------
Q P q

...-- ...--...____--
f 9 h
j k m n Q

(b)

Figure 2.1: (a) Concatenation. (b) Fusion.

pm =»-

p ~ max(p'~p!f).

Also, if em is the concatenation of C m times with measure pm, then

a b---
jklmno ----

,\

Charron-Bost argues that this shows the behaviour of the measure p is correct.
If C is the fusion of C' and C", with measures p, p' and p" respectively, then it ii

can be shown that

mnce for P, 0 represents a totally concurrent computation and 1 a, totally serial
computation, this shows that the computation formed by fusion is more parallel
than the lesser of two computations combined to form the fusion,

Fidge [32] has defined a measure (3 with range [0,1] with 0 representing total
sequentiality and 1 representing total concurrency. The following relationship holds
for the computations GIl"" en

where j represents the serial concatenation of computations and I represents the
parallel concatenation of computatlons". Also

~--,---- ......_---+-~ .."'i:"
"'The definition of ; and I ate sitl\I'II;r in Fidge's formalism since nested parallelism is allowed.
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etc, I ···1 en) > min j3(Cj).
l$J$n

W]~encomputations are concatenated serially then the amount of concurrency can-
not become greater than the most concurrent component computation: similarly
wh~n computations ar€: concatenated in parallel then the amount of concurrency
car[not become smaller than the least concurrent component computation. He also
notes that

P(C1i ... ;Cn):::: l~~nP(Cj) when (t;?r;}i):::: OVi E {L, ... ,n}
_3_

although in the general case, f3 is significantly reduced.

Geineralisation
i II

Toi:write these concepts in a generalised forn!!,let l represent some generic form
of parallel concatenation, "'--'some generic form of serial concatenation and MC a
generic concurrency measure, defined on [0, 1]with 0 representing a totally sequential
computation and 1 a totally concurrent computation.

I have chosen the following rules to describe compatibility with operators in the
general case for measures defined on [0,1]:

MC(C'",-"G") Sma,x(Mc(C'), Me{C"))

Mc(C'IC") c min(MC(C'), MC(C")).

They can he described as follows:

• when dealing with serial concatenation.the concurrency cannot become greater
than the amount occurring in any component computation;

• when dealing with parallel concatenation the concurrency cannot become less
than the amount occurring in any component computation.

These rules have been chosen because they appeal to an intuitive understanding
of the application of operators to computations, they are not dependent on any
particular measure as both hold for p and (3, and although they are general, they
are not so general as to be meaningless. \)

II

Both Charron-Bost'' and Fidge state that sequential-sompositlon should make
the reSUltingcomputation no more concurrent than its more concurrent component

SAs the work done hy Charron-Bost relates to a. measure defined so that 1 represents total
sequentiality and 0 represents totally concurrency, it is necessary to 'invert' the results with respect
to the generic concurrency measure that is defined so tha.t 1 represents total concurrency and 0
represents total sequentiality, as are most measures presented in the literature,
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\)
computation; and that parallel concatenation should make the resulting computa-
tion no less concurrent than its least concurrent component computation.

However, they differ with respect to sequential concatenation on two results.
I,

First with respect to tli,~,condition under which equality should occur: Fidge states
that equality only happens when hath component computations are sequential and
therefore have measure 0, whereas for Charron-Bost equality occurs when the two
component computation.'!are the same. Second, they differ on whether the resulting
computation can become less concurrent than the component computations; it can
be shown from Charron-Best's work that the resulting computation cannot become
less concurrent than the less concurrent of the component computations, whereas

c'(:~ Fidge does not draw this conclusion. In the rules given above, I have taken a more
general approach that does not exclude any of these interpretations.

2.2.4 Usability and applicability

A measure of concurrency must he usable for comparing and analysing real dis-
tributed algorithms [15, 45). This can be tested by performing the measurement
and investigating the results, As noted earlier, it is difficult to have an objective
or even intuitive idea about the amount of concurrency present in an algorithm, so
this presents problems for evaluating the results of the experiment.

An issue that can also be raised under this heading is the issue of the distribution
of values in the range of the measure. If the values obtained for algorithms being
measured tend to fall in a small snbrange, there are a n,:-mberof possible reasons:

Ii
• ThJialgorithms that are being investigated have some particular characteristic;
other algorithms will have different measures .

• The measure is poor and all 'rear algorithms will have a similar measure that
does not differentiate between them.

" The measure is in a sense 'non-linear' and all 'real' algorithms will fall into a
very small subrange; however the difference in the values of the measures is
significant.

Although the last two items have very different implications, it Is difficult to deter-
mine which one actually holds for a particular measure.
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2.2.5 Ability to calculate measure for a specific event

The measure can be calculated for a specific event if it has been defined so that for
any given event, a value can be calculated for the computation up to and including
this event [32,59]. This allows for an understanding of how the concurrency changes
during the computation, and an indication of where bottlenecks are occurring. An-
other advantage occurs when these values can be determined during the running of
the computation, as opposed to afterwards. This is obviously an objective criterion.

2.2.6 . Expense of computation in terms of both time and space

This relates to the algorithm for the 'lalculation of the measure [32, 38, 59]. The
questions that need to be asked are as follows:

• Does the algorithm require exponential time?

• If the algorithfti t~,exponential, does it allow the calculation of the measure
for reasonably sized examples? What are the constants involved?

,~-;:.::,-,-j:-:_ •.

• If the algorithm is exponential, ar~ ther.€any algorithms that will allow for an
approximate solution? '\

Again, this criterion can he classed among those that can be objectively determined.

2.2. "{ Stability with respect to granularity

For some measures, it is necessary to count events that have occurred in specific
processes. Therefore the definition of what constitutes an event becomes important,
and as this' definition becomes finer 01' coarser, there is an increase or decrease in
the number of events. Charron-Bost [16]defines this as granularity" However, she
expresses reservations about whether it is necessarilydesirable for all measures to
be stable with respect to granularity.

2.3 Measures of concurrency

Under this heading, the measures of concurrency found in the literature will be
presented. It is only relatively recently that the concept of a measure of concurrency
has been proposed, and discussed in detail. In some references, the concept Is
developed as minor part of a broader topic, and in others, the focus of the article
is on a particular measure of concurrency. The different approaches that appear in
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.\
ii

the litJ.ature have not yet been compared, related or fully evaluated and the aim of
this research is to contribute towards th1s.

2.3.1 The message-passing formalism
r>;

The measures of concurrency described in the following sections are defined in the
framework of space-time diagrams of Lamport [46]1 also referred to as the message-
pass/lngforw.alis;<~~-i~sediagrams define a formal model of.a distributed system

I, '.', (,

and allow for th~:"-(k-fi~itionof a partial ordering on the eV;Jntsin the dlstributed
systehl., called tho 'happened before' relation. These measures of concurrency r~ly
on the definitions of logical clocks that capture the partial ordering of events in the
distributed computations,

The, 'happened before' relation

Lamport [46] introduced the 'happened ~~foTe'relation that gives a partial order
of events in a distributed computation. This framework has been formalised by
Charron-Best (14] ~s follows: .".>

A"distributed system consists of a finite set oilsequential processes {Pl, •.. ,Pn}.
,";

A process Pi is characterised by a set of sequences of events. Each sef Pi is prefix
closed, namely for any sequence in Pi, all prefixes of the sequence are also in Pi.
Events fall into three classes:

1. an internal event,

2. the sending of a message to another process,

3. the receipt of a message from another w·ocess.

All events and messages are different and can be distinguished from each other by

some means, for example unique J~hbscripts. Messages are sent from on~ process
Pi and received by another process Pj, so a message cannot be sent by multiple
processes or received by multiple processes.

For each i, let Cj be one of the sequences defining Pi. The relation -< is defined
on the set of events obtained from the set of sequences" G1u·..UCn as the smallest
transitive relation satisfying the following: (1) if a and b occur in the same proces~
and a comes before b, then a-cb, (2} if a is a;l\ending of "'l. message m, and b is
the receipt of m, then a-<b. This relation, known!as the 'happened before' relation

SIn [16], a. sequence of events is defined as a. totally ordered set of events.
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r, L u 10P2

Pa

Figure 2.2: A distributed computation Expressed as a space-time diagram.

forms a partial order on the set of events, and was first defined by Lamport 146). It
captures the causal relationship between events.

C =: C1 U ... U ("I. is called a computation of {PI, ... , Pn} if it csatisfies the

following: (1) (C; -<) contains no cycles (2) for every receipt of the message m, there
is a single sending of m,
j is defined as: (L ~ 0 iff rHO or (t = b. Events a and b are concurrent (a co b) if

-,( a j II) and -,( b j a). Concurrent events are those that are causally independent

of each other.

The happened-before relationship can be captured in the space-time diagrams

introduced by Laihport [46] (see Figure 2.2) and such diagrams entirely define the

computation [14]. In Figure 2.2, the horizontal lines represent processes, the time

axis runs from left to right, and send and receive events are joined by a directed

line.

Logical clocks

The reason for defining clocks on a. distributed computation is to provldq a tool
//

to determine if two events are concurrent with respect to the partial ordel defined
!!

above (14J. This can be done by assigning a timestamp or date to each e#ent, and

comparing these dates to see if two events are concurrent. (I
I;

There are three different approaches to logical clocks as surveyed by Ra.ynal [58J:

1. linear logical time - each date is represented by a single integer,

2. vector logical time - each date is represented by an n-dlmenslonal vector,

3. matrix logical time - each date is represented by an n X n matrix.

Only the first and second have heen used for measures of concurre: cy and they will

be described here.
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_~~~.", __ ......:;4. _

Figure 2.3: A distributed computation with linear logical docks.

Lihear logical tlme Linear logical time was defined by Lamport [46) in 1978. 'A
clock Ci is defined for each process Pi which assigns a number cj(a) to each event a.
The entire system of clocks is defined by c which assigns to event b the number c(b)
where c(b):::: cj(b) if b is in process Pj' The implementation rules for the clocks are

as follows:

1. each clock Cj is initialised to 0,

2. when process Pi executes an internal event Ci is incremented by 1,

3. when process Pi executes a send event, Cj is incremented by 1 and the message

m contains a timestamp Tm ::;:cj(a),

4. if event b is the receipt of a message Tn by process Pj, then Cj is set ),0

ma.x(Tm, cj(b) and incremented hy 1.

These clocks satisfy the condition

a:5 b =? c(lt) ~ c(b).

Note that the converse implication cannot hold, as it would imply that c(a) :;:: c(b)

if a and b are concurrent [14). Therefore the relationship betwepn events cannot

be determined from the dates of events. Tineal' vector clocks, however, give a total

ordering of the' eveJ'l,tsand the time at any event gives the number of events (including

that event) in the longest causal chain preceding it.
In Figure 2.3, the distributed computation of Figure 2.2 is shown with linear

logical clocks.

Vector logical time Vector logical time was developed independently in 1988 by

Fidge (30,33], Mattern [49Jand Schmuck [62]1.
7[30, 62] ate cited in Raynal's survey article on logical time (58].
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Partially ordered logical clocks are represented as vectors in ~j1~:

• If V i.E Nn jhen 1J(i] represents the ith component of 11.
c> I)

• Nn is partially ordered hy ~; a S b iff a[i] S b[i] for each index i,

• If u, vENn, then '" = sup] U, 1') is defined as follows: for each index i, w[iJ ::::
maxl uri], v[iJ).

Intuitively, the ith position in the vector clock of ptpcess P; represents the time in

Pi and the jth position (j -:j:. i) represents the most recent knowledge that Pi has of

the time in process Pj. Clocks are applied to processes as follows:

1. the initial value of the dock 0i is (0, ... ,0),

2. when process Pi executes an internal event, 0;[i] is incremented by 1,

3. when process Pi executes a send event, 0i[i] is incremented by 1 and the

message Tn contains a, timestamp Tm :.:Hi(a),

4. if event b is the receipt of a mt:~~sagem by process Pj, 0j is set to sup(Tm' 0j),
and 0j[j] is incremented by 1.

Note that this last rule is equivalent to saying increment 0i(j} by one and

set 0j to sup(Tm' 0i), since 0j[jI always contains the most recent knowledge

about the logical time in .{>tocessPj. So a more general rule for vector clocks

states increment 0i['i1 by 1 before any event in process Pi' This is the formu-

lation that Charron-Bost uses in her work. However, this cannot be applied

to Iinear logical time if the logical dock time is to represent the length of the

longest causal chain of events before a given event (as is required for two of
I

the concurrency measures presented below).

For any event a that occurs in process Pi, its vector time is 0(a.) == 0i(a).
These clocks satisfy the condition

a ~ b {:> C(lt) ~ c(b).

This means that vector clocks characterise concurrency-from the dates of two

events it is possible to determine whether the events are concurrents. It has been

Sthere are other way/) to characterise cOll"lIrreucy. For example, the absence of a. path between
two events in the directed graph formed by the space-time diagram [44].
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P1 ~
(1,0;11) (3,1,0) (4,1,(1)

P2 -------..

P3
((l,n,l) (4,1,4)

Figure 2.4: A distributed computation with vector lcgical clocks.
Q ~

______________________ ~ i.~ _

shown by Charron-Best that for n processes, clocksof size n are optimal-vthe partial
ordering of events cannot he captured with smaller clocks [17:}.

'"

In Figure 2.4, the distributed computation of Figure 2.2 is shown with vector
logical clocks. ;\'

Fidge (:31]9 extends vector clocks to deal with nested parallelism where processes
can be dynamically created (I,n,<1 terminated.

In the following sections, I. will present the five measures of concurrency defined in
the above described framework . Each measure is defined for a speciflc computation
of an algorithm, where (j, computation is defined to be a specific execution of an
algorithm. Charron-Bost notes [15, 16] that to obtain a m~asure for an algorithm
the average of the measures of all the computations with a certain probability must
be calculated. This is not explicitly stated for allmeasures defined in this framework,
hut is taken as given. At the end of each section, any existing work on the evaluation
of each measure will be presented.

2.3.2 Charron-Bosu's measure of concurrency w

Charron-Bost [14] suggests a. measure of concurrency w based on counting con-
current pairs of events-the more concurrent pairs, the more concurrency in the
computation-defined as

w(C) = I{(a,b) I a c~ b}1 , ..
I{(a,b) I a E ci» E c, and 1. '# J}I

If each C; contains qi events, then there are ElSi<iSn qiqj concurrent pairs in total
and this occurs when the computation is totally concurrent. If the computation is
entirely seq,iiential then there are no pairs of concurrent events. Hence the range

!,

!!Cited h~\[32],
\
\!,
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of this measure is [0, I], where 0 represents totally-serial, and 1 totally concurrent,

namely with no communication between processes.

Charron-Bost notes that this is not a very accurate measure [14]t and presents

\'< '. an example to show where the measure does not behave in an intuitive way on a

}kimple example, The measure w does not allow the calculation of a measure for a
\ I

specific event. 'Fklge [32] has presented an algorithm to calculate the measure, but

there is no analysis of its complexity. Kim et al [44] suggest an approximation to

w, W that is cheaper to calculate. The measure has not been evaluated in terms of

any other criteria.

2.3.3 Charron-Bost 's measure of concurrency rn

The measure m (14J will be the focus of this research, and therefore it will be
presented in detail. Th~ reasons for the choice are presented in Section 2.5. The

'.)

measure m is based on counting' the number of consistent cuts in a computation.

The concept behind this is that the more processes wait, the less concurrency the

computation exhibits. Since the ability of the computation to be cut consistently is

related to its tolerance to stopping, a, computation's concurrency can be measured

in terms of its number of consistent cuts.

A cut of a distributed computation can he defined as follows: Consider the sets

{x E Gil X :::1 ai}, where a; is an event in Gi, and their union

G = U {x E c. I x :5 (~i}'
" ie{l, ...,n}

/1 i' \
This is ~alled a cut. It is not lL computation, as it may contain the receipt of a

message but not 'the sending of that message.

A consistent cut is a computation and it can be viewed as a global state of the

computation where causality is not violated [33J, hence the consistent cut cannot

contain the receipt of a message without its sending. However, this global state ~es
include messages that are in transit, namely those messages that have been sent but

not yet received [49].
A consistent cut can be defined formally as fellows: a consistent cut of a dis-

tributed computatlon C is a cut C' that is left closed by the causality relation, This

[.leans that for any a, bE 0, if bE C' and a ::S b =} a E C', A.n example of a consis-

tent cut is the ~,ast of an event a, (1 a)c or (l a) defined by U a) = [z E C,x ::5 a}.
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Results from combinatorics are used to define the measure. If it is assumed that

each C; contains (ji events, then the following values can be determined analytically:

• The value ItS represents the number of consistent cuts in a totally sequential

computation. A totally sequential computation is one in which no events can

happen concurrently ami it can be conceptualised as each process completing

before the next process hegins. Hence, there are qi events in each process at
\\

which t~~ecomputation can be cut consistently. Together with the empty cut
\\

that is a1'IO consistent, it follows that ItS = 1+ ql + ... + fin.
II
"'

• The value J.~c represents the number of (!,l'lststent cuts in a totally concurrent

computation. This is defined to he a computation where there is no commu-

nication between processes. For each process, there are qj events at which

a consistent cut can occur plus the start of the process when no event has

yet occurred, Because all the processes can run concurrently, this means that

jtc = {1+ (jt)·· ·(1+ lJn).

i'l
The measure 'In is defined as

meG) _ jt- !LIl

ItC - p,s

where II, is the number of cuts in t,"\+1;:computation under consideration. The measure

takes values in the interval [0,1] with 1 for a concurrent computation and 0 for a.

sequential computation.

Charron-Bost presents two methods to determine u,

1. A cut

G= U {xEG'iI:r.~(£j}
iE{l,,,.,n}

is consistent if and only if

SUP(0(ltl),"" 0((/.1')) = (0(al)[1], ... , 0(an)[n)).

Hence each cut can be checked for consistency using the vector clocks.

2. The number of antlchalns (or independent subsets )10 of a partially ordered

set of events is equal to the number of consistent CUt3 in that distributed

10An antichain or independent subset Ita..'! the property that no pairs of clements axe related by
the partial order relation. In this case, all the events in an antichaiu will be concurrent.
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computation. Therefore each suhse{pea.n he checked to see if it is an antichain.

Each pair of elements in the subsets can he checked for concurrency using the

vector docks.

Charron-Bost also presents a geometric interpretation of the measure. This inter-

pretation allows for the identification of the events that contribute to a reduction in

concurrency.
Charron-Best presents a comparison of wand m and she notes that w is a

special case of m, Let k-antichains denote antichains of size k, then w investigates

the number of 2-antichains, whereas m investigates the total number of k-antichains

for 2 ~ k ~ n. Hence w = m when theI'€' are 2 processes. She notes that there exist

computations C and C' such that w(C) < w(e') and m(C) > m(C').
Charron-Bost [16) has compared two algorithms for calculating m, based on the

two methods of characterising consistent cuts. She notes that the algorithm that

counts the number of antichains is efficient when the computation under considera.!J

tion contains few 2-antichnins. This would occur when there is little concurrency in

the computation, namely when there are few concurrent events. Kim et al [44] have
presented an analysis of the antichain algorithm that suggests it requires exponential

time. No further analysis of these ~gOrithms has been presented.

Raynal [59] describes m as a go~~ characterisation of the degree of concurrency

in a computation, but he notes that \\11ecomputation of J1 is not feasible. Fidge [32]
:I

notes that the calculation of It using' vector clocks requires 2:15i:$11 nqi integers to

be stored and that m can only he calculated after the computation has terminated.

Recent work by Kim et 1'1.1 [44] suggests an approximation to m, denoted M
that is applied to formal protocol speclflcations. A computation is decomposed

into concurrency blocks and a measure is calculated for each block based on the

antichain approach. They show that the algorithm is fa:.:ter than Charron-Boat's

antichain algorithm; however they do not evaluate M in terms of any of the other

criteria 01' show how the values returned by the approximation tllffer from those

returned from the measure.

It has not been shown that there does not exist a. ~itst algorithm to calculate

11, although any algorithm. using vector clocks would have some expense in terms

of space, because of the necessity of storing the vector clock information and time,

because of the procedure for adding the vector clocks. It is possible to compare
i)

events for concurrency without using vector clocks by showing that there is no

directed path in the graph between the events (44). This results in a. tradeoff between
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space and time; since once the vector clocks have been added, it is faster to check
for concurrency using the vector docks of two events than to show the absence of a
path in the graph of events.

Charron-Bost [16] has shown that m does not. give the expected results when
used with the operators concatenation and fusion. She describes the following: if
C(l) is the computation created from 1 copies of C concatenated together, and C

has measure m and e(l) measure m,(l). Then

m(l) :::::mil and l ........00 => m(l) -;. o.

She notes that this is cour.ter-intuitive, as it would be expected that m(l) :::::m.
However, within the generalisation for compatibility with operators presented in
Section 2.2.3, this would he an acceptable result for an operator such as concate-

nation. She also notes that. with fusion some concurrency is guaranteed when two
very concurrent operations are joined by fusion. Finally, she states that there may
be other operators that are better adapted for use with m, but she is not aware of
au;y;)hat are easily studied from the point of view of cornbinatorics.

Charron-Bost [16] notes that the measure is not. stable with respect to granular-
ity but argues that the causal relationship cannot remain the same as granularity
changes. Therefore this criterion is not applicable to a measure based on the causal
dependence and independence of events.

It is not possible to calculate the measure at a specific event in a computation,
although the measure can be interpreted geometrically which allows the bottlenecks
in the computation to he identified. The measure has not been evaluated in terms
of applicability t~ real examples.

Hence it appears that there is conflicting evidence regarding m. It has been de-
scribed as a good measure of concurrency, although it is computationally expensive
and is not compatible with operators; however, further work is required in these
areas.

2.3.4 Charron-Boss's measure of parallelism p

In other papers [15, lS}, Charron-Bost presents a measure of parallelism, which relies
on the idea that the less processes walt, the more concurrent the computation, as

--

does m. This measure is presented in the above-mentioned framework with the
following assumptions:

1. all processes start together,
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2. the time for an [nternal event in Pi is constant and equal to 8j,

3. sending and receipt of messages is instantaneous,

4. the time taken to deliver a message is constant and equal to 60.

A set of rules is defined for recursively determining the time TCa) at which event

a occurs. T; is defined as the time of the last event in process Pi." Let Pi be the

number of internal events in Ci and Po the number of messages in C. Two measures

are defined. The first (Pi>' •• , Pn) where

Ti - P'Ci
Pi :::::tjE{O .... "fl.};f-:{-i}-P-jS-j•

The measure Pi is caned a coefficient of coupling. This describes the interactions

between Pi and the other processes. It is one when the computation is sequential

and zero when it is tqtally concurrent and the last event of C occurs in Ci. The

measure (PI! .. 'j Pt.) presents problems for comparison as IRn is not totally ordered.

A less accurate measure that allows for comparison is defined as

_ Ei::l (li - Pilii)
P - "'~ (", •. "J.8')·L..,i~=1 L..,iJE(O, .... n}\M J J J

This measure takes on values in [0, I] and equals zero if entirely concurrent; however,

it does not necessarily equal OM if sequential, The measure p is called the mean

coefficient of coupling.

Charron-Bost shows that' thin measure is compatible with the operators con-

catenation and fusion on computations, it is stable with respect to granularity, and

notes that it is well behaved for simple examples of computations. It has not been

evaluated in terms of a'(1Yother criteria ..

2.3.5 Fidge's measure of concurrency fJ

Fidge's aims in designing a measure of concurrency are that it should be more

accurate than w but less computationally expensive than m, should yield useful

results during the computat'on, and should be general enough to deal with 'nested

parallelism', namely where processes can be created and can terminate dynamically

[32]. The measure is defined at an event a in the computation as

{3:::. IP 1-7
IP 1-1
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where I~pI is the number of events that have occurred so far and is calculated by
summing the event-counts for each process in the clock for a

n

I'P 1::= I:0(a)[j].
j=l

This value gives the number of events that occur before event a in terms of the
'happened before' relation. Other events may have occurred in the computation,
but there is no Imowledge of them at a. 1"11,sthe linear logical time and represents
the minimum number of logical time steps necessary to reach a (this is the same as
the longest causal chain)

T::: c(a).

':1'hemeasure is based on the idea that as totally ordered time 1" increases in pro-
portion to the number of events that have occurred !P I the amount of concurrency
decreases. The numerator denotes the amount of time 'saved) by the use of concur-
rency. The denominator represents the amount of time that could be 'saved' if there
were unlimited computing resources, assuming that it is not possible to execute it
in less than one logical time unit.

To calculate the observed cencuivency for the whole computation, it is assumed
when the 'outer level processes' terminate, the logical clock is integrated as for
subprocesses, and the measure co.'lbe calculated.

The range of the measure is [0,1], where 0 represents a totally sequential compu-
tation and 1a.totally concurrent computation. In this context, a totally concurrent
computation would be one in which there is a process for each event in the compu-
tation, since new processes can always be created. Therefore, Fidge's totally con-
current computation is more concurrent than Charron-Best's definition where there
are a fixed number of processes and generally more than one event per process.

Fidge notes that there are similarities between j3 and p, as p measures the addi-
tional time introduced into the computation by concurrency. /3 tends to return lower
figures than w or 711, since it assumes that more processes can be created. Fidge
suggests a more realistic measure that takes number of processors d into account

IP!-'T
j3 == I 'P ! - IPI jd'

He also shows that j3 is well behaved with respect to the operators j (sequential
concatenation) and I (parallel concatenation). It has 110tbeen evaluated in terms of
a.,1Y other criteria, such as applicability to real systems or usability for comparing
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distributed algc:!.thms. Calculation of the measure would seem not to be computa-

tionally intensive since the measure CCLnhe calculated from the last known values of

the linear dock and the vector dock.

2.3.6 Raynal, Mizuno and Neilsen's measure of concurrency a

Raynal et al [59}present two iaeasures: D!e (e) that measures how much time is wasted

in synchronisation delay to produce event e and a( C) that measures how much time

is wasted by synchronisation delay in the whole computation.

Two abstractions CONE and CYLINDER are described.' A CONE refers ~') the

events that causally precede a given event. It is a partially ordered set and c~lbe
defined in terms of the past of an event

CONE(e) = (l e) \ {e}::;= {II I bE C,b:5 e} \ {e}.

A CYLINDER refers to the partially ordered set associated with a given computa-

tion.

There are three values associated with each of the abstractions: volume, might
and height. The calculation of these measures requires an additional counter to be

introduced. Each process Pi contains a counter Wi E Nn• Wi[i] stores Cil the value

of the linear logical dock; and l¥i[j], if:: j stores the last known Cj value of process

Pj. The following rules are used:

1. Wi is initialised to (0, ... ,0),

2. before process Pi executes an event, Wi[i) is incremented by one,

3. When a message is sent, it carries ths value Wi,

4. when a process Pi receives a message from Pj containing Wj

(a) Wi[k) is set to mClx(Wi[k], Wifk)) for 1~ k ~ n ( k f. i)
(b) Wi[iJ is set to ma.x(Wi[i], Wj[j]) and Wi[i) is incremented by 1.

Also define 0iCC) (respectively, Wi(C» to denote the values ;?>f0j (respectively, Wi)
'\)}

when the computation C terminates.

The weight(CuNE(e) represents the number of events that causally precede

e and the weight(CYLINDER(C) represents the total number of events that QC-

curred in the computation, \\
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weight(CONI:{e» = (Ejl;:::l 0(;e)[j])-1 ==1 'P L-l
weight(CYIJNDER(C:) = Ej=l 0i(C;U] (= Ei:::l qi)

The volume(CONE(e» represents the maximum number of events that could pos-
-.......~:;_'"

sibly have occurred before e, taking into aCCOltnt'\tJie;:!:'ioles'or unused time slots
'-.,_~'.~-._--:-:c_;/

forme;: by synchronisation delays. The volume(CYLINDER.(C» represents the
maximum number of events that could have occurred in the computation.

volume(CONE(e» ::::Cl:i=l Wi(e)[j» - 1
volume(CYLINDER(C) =' nxheighi(CYLINDER(C)

The height(CONE(e)) represents the number of events on the iong~Jt causal pa~h
>;- I

of events leading to e. The height(CYLINDER(C») represents thE'~i'eat~lstlogical
;\

time that occurred in the computation.

height(CONE(e) ::::ltV,(e)(i] - 1 = T -1
height(CYLINDER(C) = nlaxl$j:S)~Wj(C)[j]

The concurrency measures are defined as

a (e) - 1 r- volume(CO_?iE(e» - weight(CONE(e))
e . - volume{CONE(e)) ~ he~ght(CONE(e))'

(C) - 1- volume(CYLINDER(C)) - weight(CYLINDER(C))
(l - volume(CYLINDER.(C)) _ height(CYLINDER(C))'

The first measure produces a value for a specific event, and the second for an
entire computation. The numerator denotes the, total synchronisation delay that
occurred, The denominator denotes the maximum synchronisation delay possible
in the computation. The measures are not defined when the denominator is zero
which occurs when only one process is involved in the computation. Raynal et al

[50] also define other measures that quantify interaction between specific processes.
The measure allows for the calculation of a measure for a single event, but has

not been evaluated in terms of any other criteria, Calculation would seem not to be
computationally intensive since the measure can be calcula.ed from the last known

'.,',

values of the\~ocks.
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2~3.7 Other measures

In this section, short summaries of other measures of corv arrcncy will be presented.

Forrnal Ianguages

Two concurrency measures have been developed for the model defined by Arnold

and Nivat [1]11 which deals with regular languages and uses the concept of the homo-

geneous (Cartesian) product of automata to definea model of concurrent processes.

They are based on the concept that the less the processes wait, the more concur-

rency the computation exhibits, A special letter is introduced into the automata to

indicate waiting and the concurrency measure is '.defined in terms of the number of

'times this letter occurs, namely the amount of waiting that occurs. The measure of

Genlet et al [37J is a probabilistic extension of Beauquier, Berard and Thimonier's .

measure (5]12 and is based on a mapping from automata to Markov chains.

Arques et al (2} present a measura of the degree of authorised paralleliscn for

database concurrency control algorithms based on combinatorics of words. It is

defined as the ratio of all possible serializable executions to the number of sarializable

executions permitted by a specific concurrency control algorithm,

Francon (36J presents a measure of p~\l'allelism for three different approaches to

mutual exclusion, The measure is defined on the behaviours of the system that

are defined as words over the alphabet of 'allocate' and 'deallocate'. 'I'he three

approaches to mutual exclusion allow a number of different behaviours and these

are used to calculate the measure.

The measures defined by Francon and by Arques et al (and tq some extent
I

the measuy1esof Berard et al and Geniet et al) represent an interleaved approach

(see Section 2.4.2) to concurrency, as they depend on(ithe concept of a shuffle over
'I

words13, The behaviours of processes are represented as words of actions and the

measure of Arques ct al compares the maximum number of behaviours with the ones

that actually occur.

This relates to an approach suggested by Charron-Bost [14] of counting the

number of linear extensional" of a given partial order of events. However, she rejects

this on the grounds that the. number of linear extensions of a particular partial

llCited in [37].
12Cited in (37].
13The shuffle of two words, till, tiJ2 consists of the set of words obtained hy interleaving the letters

of tIll and lV2 while retaining the order inside tVI and t112. This can be defined recursively [35] as:
(a'll1 W btl2) :::: a(trl UJ b'll2) U b(atll W '02) and u W e = fill tr __ {tr} where € is the empty word.

14A linear extension of a partial order is a total order that extends the partial order.
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order can not be determined analytically from combraatorics, the qomplexity of

counting linear extensions is not known, and an interleaving approach is not suitable

for distributed systems. Pruesse and Ruskey {54] have presented an algorithm to

generate lineal' extensions that rune in constant amortised time15; however, in the

worst case there is an exponential number of linear extensions. This will be discussed

further in Chapter (L

Graph theoret ical ar.proach

Barbosa [4] investigates the (~ff<?ctof h:-capadty channels on the amount of con-

currency using a graph theoretical approach. The reciprocal of the multi-chromatic

index of the graph G is defined to be the measure of concurrency. Barbcsa shows that

the gain in concurrency obtained hy replacing (l-capacity channels with k-ca.pacity

channels can be de..crlbed by a. bound that is usually small and tend ~ to 1 as the

system grows.

Queuing theoretical approach
,Ii

Bamhos and ~)alrand (3] define a degree of parallelism within the area of queuing

theory. They/~ssnme an Infinite number of processors; however I there are precedence

constraints on the jobs being processed that produce a queuing phenomenon. The
i..'

degree of parallelism is defined to he the asyn :totic average number of processors

that work concurrently and it is equal to the ayeragE'iquantity of work that enters

the system in one period.

Execution of program statements

Kumar [45Jnotes that many measures relate specifically to the architecture they are

being applied to and they measure the parallelism that is present in that specific

architecture, and frequently onlythe reduction in completion time as a function

of the number of processes is used to characterise parallelism. He has developed a

software tool COMET to determine the maximum possible concurrency in. a FOR.·

TRAN program. It keeps track of the earliest time that a statement can be executed

by determining when the values that it depends on arc computed. The measure is
_/./

expressed in terms of the number of FORTRAN statements that can be executed

15A generation algorithm tuns ill constant amortised fmc if it runs in O(N) where N is the
number of objects generated
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at one time. This value changes during the execution of the program, and the au-

thor notes that the instant parallelism can be several orders of magnitude larger or

smaller than the average parallelism.

Parallel program execution t imes

This section discusses those measures that are associated with parallel program

performance. An important measure for parallel performance is speedup which

is a ratio of the time taken to execute a program sequentially to the time taken to

execute it in parallel. It measures concurrency indirectly because it only provides an

idea of the amount of concurrency within a program without taking the structure of

the computation into account. It is debatable whether these performance rneasures

achieve the same aims as concurrency measures.
\1

Qllhm [57, Chapter 2] defines the speedup S for a parallel algorithm running on

a parallel computer with n processors as
c,

i/'
B:: Tl J)

t;
~\here Tl is the time taken for the fastest sequential algorithm to run on that com-

puter using one processor and Tn ill the time for the parallel algorithm to run on n
processors. Other definitions take Tl to be the time taken for the parallel algorithm

to run on one processor, 01' the time taken for the fastest sequential algorithm to run
\'

on the fastest sequential computef Thus speedup indirectly measures the average
" I

amount of parallelism by cob:~.1,>aif:'ligthe difference in execution times.

Eager et (II [2n] defines the average parallelism to be the average number of

processors that are busy during the execution of the program, given an unlimited

number of processors and this is equivalent to speedup" with unlimited processors ..,..

This can be seen as an indirect measure of the maximum concurrency.

Sevcik [63] investigates a number of ways to characterise parallelism and inves-

tigates their USId in scheduling. He defines the following parameters:

c f : the fraction sequential" l.e. the fraction of the program that must be

executed sequentially.

• A : average parallelism as defined by Eager [29].

• m : the minimum parallelism, l.e. the minimum number of processors used

during the computation.
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• M : the maximum parallelism, l.e, the maximum number of processors used

during the computation.

• F: the fraction spent at maximum parallelism.

.. V : the variance in parallelism.

His research has shown that it is not sufficient to use a single parameter in charac-

terising a parallel program for scheduling purposes. It should be noted that none

of the parameters considered fully capture the structure of the computation in a

general sense, although the concept of using a number of parameters to measure

concurrency has merit.

An approach to determining execution time that deals with task precedence and

random task execution times has been suggested by Robinson [61]. A task graph

consists of nodes that represent tasks and arcs that describe the precedence con-

straints between tasks; the task graph describes a partial order of tasks. Bounds on

the expected execution time can he determined from the random variables associ-

ated with each task. The expected execution time can then be used to determine an

expected speecltlp~\This approach moves closer to the idea of a concurrency measure,

but its focus remains on comparing execution times.

Amdahl's Law [57] although not a measure, is an important result that gives a

bound on the speedup as

S < __ 1_-:-:--
- f+(l-f)/n

where f represents that proportion of the program that is inherently sequential, also

known as the serial fraction [4:1]or the fraction sequential [63]. This law describes

how one aspect of the structure of the computation can limit the speedup, although

it is not general enough to take into account the whole structure.

Other authors [40, 43] have disagreed with the extremely limiting nature of this

law and suggested other approaches, Gustafson [40J notes that f decreases as n
Increases, because in real applications the parallel part of the computation grows

with the number of processors but the sequential component does not grow. Karp

and Flatt [43] suggest that a new metric for parallel programs should be t1eiined in

terms of a serial fraction which is determined experimentally.

However, neither of these suggestions for modification of Amdahl's Law remove

the fact that this law is based on timing and architecture. Amdahl's law and modi-

fications of it therefore differ from the concept, of a concurrency measure where tha
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It M : the maximum parallelism, i.e. the maximum number of processors used

during the computation.

• F : the fraction spent at maximum parallelism.

• V: the variance in parallelism.

His research has shown that it is not sufficient to use a single parameter in charac-

terising .q, parallel program for scheduling purposes. It should be noted that none

of the parameters considered fully capture the structure of the computation in a

general sense, although the concept of using a number of parameters to measure

concurrency has merit,

An approach to determining execution-tlme tha.t deals with task precedence and

random tnsk.execution times has been suggested by Roblnson [61]. l..t'1SK graph

consists of nodes that represent tasks (l.nil arcs that describe the p"rdr.ede;]c~ con-

straints between tasks; the task gra'IJh describes a partial order of tasks. Bounds on

the expected execution time can he determined from the random variables associ-

ated with each task. The expected execution time can then be '\Gcd tu determine an

expected speedup. This approach moves closer to the idea of a concurrency measure,

but its focus remains on comparing execution times.

Amdahl's Law [57] although not a. measure, is an important result that gives a

hound on the speedup as

S< 1
- f+(1-1)/1£

where f represents that. proportion of the program that is inherently sequential, also

known as the serial fraction [4:3]or the fraction sequential [631. This law describes

how one aspect of the structure of the computation can limit the speedup, although

it is not general enough to take into account the whole structure.

Other authors [40, 43] have disagreed with the extremely limiting nature of this

law and su .~ested other approaches. Gustafson [40] notes that j decreases as n
increases, because in real applications the parallel part of the computation grows

with the number of processors but the sequential component does not grow. IGirp

and Flatt [43] suggest that a new metric for parallel programs should be defined in

terms of a serial fraction whlcb is determined experimentally.

However, neither of these suggestions for modification of Amdahl's Law remove

the fact that this law is based on timing and architecture. Amdahl's law and modi-

fications. of it therefore differ from the concept of a concurrency measure where the
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aim is to evaluate the concurrent structure of algorithms independently of execution

times on specific architectures.

2.4 CCS

In this section, work will be presented that pertains to Milner's Calculus of Com-

mtmicating System c; [50]. TIll? operators that will be used in evaluating the measure

of concurrency m will be discussed and the definition of an algebraic calculus of

processes will be given to facilitate the discussion of partial orders and time in CCS.

An overview of ecs is presented in Appendix A. This appendix is presented to

give an overview of the topic for the reader with knowledge of CCS, and to detail

the CCS notation that will he used in this research report.

2.4.1 Operators

As discllsse~leal'lier, a criterion for the evaluation of concurrency measures is that of

compatibility with operators. CCS offers two combinators or operators in the basic

set of comblnators that can he used for obtaining new agents [50]:

• Composition which allows the combination of two agents in parallel,

• Prefix which allows the prefixing of an agent by an action or sequence of

actions. This operator differs from the other types of sequential operators that

were presented earlier, since it cannot he used to put two agents in sequence.

Milner has defined a further two operators [50, Chapter 8]. They are Before and

Par and have the following defini~ions:
\\

P Before Q

Definition 1

P Par Q def (ffdlldona] IQ[d2/doneJ I

\'

These definltlons are only meaningful when P and Q are well-terminating agents,

because they f_'i'.ly01.1 the presence of a done label in the case of an agent that

terminates
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doneDefinition 2 P is well-terminating if, for every aeriiJative pi of P, P' ..._ is
impossible and also if P' don~ then P' N done.O.

These four operators will be used in the evaluation of th~crosen measure .

.. . ;

2.4.2 Algebraic calculi of process and partial orders

The components of an algebraic calculus are defined in [8] as follows:

,,' a syntax consisting of a family of operators defined over a, set of labels,

• an operational semantics specifying the behaviour of the operators which re-

sults in a transition system (it is also possible to give a denotational semantics,

for example, Hoare's CSP Ill} and Hennessy's ATP [41]),

• the semantics given by equivalences compatible with the algebraic structure.

These equivalences equate processes with similar behaviours.

Algebrai~calcllli for representing concurrency and nondeterminism can be divided

into two rri<:~ll~ronps [27]': those that represent concurrency by interleaving and
thOS(1that repres~lt concurrency by some form of 'true concurrency', such as the

partial ordering ofi~vellts.

ecs is an exa:rrt'jpleof the first group+concurrency is represented by the fact

that events can OCruI' in any order, and this means that the parallel operator I is
not primitive with respect to observational congruence, as shown by the Expansion

Law. Any agent containing I can be equated with respect to behaviour to another

agent expressed in terms of the other operators, for example,

a.b.O + b.a.O = a.O I b.O.

These formalisms assume the existence of a global clock and global states [27). Advo-

cates of the interleaving approach admit that for some applicatlons this assumption

is not realistic; however, all formalisms have some ~impl'fi(~ation and this particular

simplification allows fOJ: mathematical models of large concurrent systems that are

amenable to specification and verification [<l6].

Calculi16 in the second group represent concurrency by an alnence of ordering=-

two events are concurrent if they arc causally indapendent, and it is argued that

lOThe calculi based on a 'true concurrency' approach will he referred to as having n. causal
semantics, because tlre causality between events is described in such Il, formalism. This term includes
'partinl ordering semantics' and 'noninterleaving semantics',
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sequential nondeterminlsm should be distinguished from concurrency to understand

properties such as liveness in concurrent systems [27J. There is no assumption of a

global clockl/or linear timescale in these models and behaviours of the system are

expressed as c;i.lusalrelations between actions performed by distributed subprocesses

[27,39]',
A number of different approaches have been taken in providing CCS with a causal

semantics. Best and Devillers [7], Goltz and Mycroft [39) and Hirschfield at al [42}
have used Petri nets to investigate causal models for CCS. Castellani and Hennessy

[13) define a distributed labelled tran~ition system that diatlnguishes the local and

global results of a transition and from this they define a distributed bisimulation

tha,t distingulshes concurrent processes from nondeterministic sequential processes.

Their approach is based on an observational view similar to Milner's but assumes

a number of observers where each can only see the actions in a specific subprocess.

Boudol and Castellani define algebras [9, 10], where labels on the transitions allow

for the unique identification of each transition and hence allow for the definition 01a
concurrency relation. Degano, De Nicola and Montanari [22, 23, 24, 25, 26] present

a number of approaches to providing CCS with a causal semantics. In their latest

work, they define a new operational semantics based on a partial ordering derivation

relation [27]. Many of these approaches involve decomposing a CCS agent into a set

of sequential subprocesses and the transition relation describe 1 how these sets are

transformed.

The issues discussed above relate to the semantics of CCS, which I will not

be dealing with in this research. However, it. may be possible for vector clocks to

be used to define a partial ordering semantics for CCS, and this will be discussed

further in Chapter 6.

2.4.3 Time in COS

The concept of logical time has not been applie~l to CCS. Tofts [65] investigates
\-\\

a temporal model that is an extension of CCS that is more concerned with real-

time lsnues and ensuring that events occur at certain instants than issues qlpartial
!I

ordering, Transitions are divided into action transitions that represent actions of

no duration, and temporal transitions that represent the passage of time. Two

extensions to CCS are defined-weakly timed CCS and strongly timed ecs. A new

equivalence, time-equivalence NT is defined for strongly timed CCS.
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Ql1emada and Fernandez [56]17 iIl.tn~duce time into LOTOS, a data communlca-
\

tion protocol specification language bas~Y.lon ecs. T'Hooft [64] demonstrated that

Timed LOTOS was not suitable for ,!the\,:~escription of timers and time out mecha-
nisms. This attempt at introducing time seems mainly aimed at timing events.

Other work in the area of time and concurrency theory includes the timed model

of CSP presented by Reed and Roscoe [60], the real-timed concurrency theory of

Murphy [53}. and the real-time consistent equivalence of van Glabbeek and Vaan-
drager (661.

2.4.4 Measuring concurrency in CCS

Moller [52] in his PhD thesis, presents a measure of concurrency for ecs. He con-

siders the subset of ecs containing 0, Prefix, Summation and Composition and

attempts to define a normal form for process terms as a product (parallel composi-

tion) of terms

II Pi (n;;:: 0)
l~if, •

where each Pi represents a prime process and is in some prime normal form such as

I:ai·Pi (n > 0)
l:Si$n

where each Pi is in normal form. He shows that a unique decomposition theorem

can be proved for this subset of ecs with or without communication, with respect

to strong and weak observational congruence. Each agent can be expressed a unique

product of primes

This allows for the following definition of a measure, of the measure of maximum
parallelism as

This concept is presented at the beginning of Moller's thesis on axioms for concur-

rency and to the hest of my knowledge has not been investigated further.

17Cited in [134].
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2.5 .·...iChoice of measure IiII
IIIi

In this section, the justification for the measure chosen to be G:t}plied,to CCS till

be presented. The focus in this chapter has been on measures defined in LamB,~rt's

message-passing formalism of a.distributed system for the reason that this forrrfalism

seems more applicable to CCS. The other frameworks in which measures ha~~ been

defined are less suitable for a number of reasons which will be discussed below

after which the measures defined in Lamport's message-passing formalism will be

discussed.

Formal languages

The measures l:1.1.J
i
e<1 e.h the Arnold- Nivat model [1] represent concurrency by an

rn-tuple of actions J;~curring in one timestep and therefore these measures would

be more applicable to the synchronous calculus defined by Milner [50, Chapter 9}.

Degano et al [25] have noted that the multiset labels found in Synchronous ees
give a direct representation of the amount of parallelism.

The other two measures based on formal languages relate to specific areas

(database concurrency control '~nd mutual exclusion) and are not obviously gen-

eralisable to a wider ~etting.

Graph theoretical approach

Barbosa's work [4] relates specifically to the issue of size of channel and its effect on

concurrency, therefore this measure is difficult to generalise to allow the investigation

of other aspects of concurrent systems.

Queuing theoretical approach

Bambos and Walrand [3] deal with queuing theory which is not applicable to ces,
mainly because of the emphasis on service times that are associated with each job. In

ecs, the only timing assumption is that 'concurrent a,g~nts proceed at indeterminate

relative speeds' [50, p. 195]. Time has been applied to ccs» mentioned in Section

2.4.3, but these variants of CCS are not under consideration in this research, as the

aim is to investigate a measure of concurrency for. ees in its original form.
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Execution of program statements

Kumar's concurrency measurement tool {45]is applicable to FORTRAN programs
and looks at the number of statements that can be executed at once. Again this
approach seems more applicable to Synchronous CCS, as the number of program
statements r~l'il.testo the number of multiset labels as described by Degano et al

[251·

Parallel program execution times

The work that relates to performance measures for parallel programs [57, 29, 40,
43, 63]h. not applicable to CCS for two reasons; first, as mentioned above, the only
timing assumption in CCS is that nothing can be said about the relative speeds of
processes; and second, speedup' does not take into account the structure of the com-
putation because it measures concurrency only'Indirectly by comparing execution
times.

Moller's measure of maximum parallelism

I~ Section 2A.4, Moller's measure of concurrency in CCS is defined. The investiga-
Ii

1i(onof this measure relates to finding an algorithm to decompose CCS agents into
normal forms-s-a research issue which Ihave chosen not to pursue, although the ap-
;plication of this measure remains an unexplored area of research. A second reason
.for not choosing this measure-is tire fact that it measures the maximum parallelism

\'

that an agent can have without taking into account the effect'of communication and
therefore it can not be used to evaluate realistic algorithms.

Measures defined in the message-passing formalism

In Section 2.3.1, a number of meastrres were presented in Lamport's framework. All
of these measures have not yet been fully evaluated and therefore it would be worth-
while investigating any of them to determine their strengths and weaknesses. As will
be shown, it is relatively easy to map from CCS to the message-passing formalism.
There is a good match between the two models; it is easy to identify events and
processes in both, and neither model makes assumptions about the relative speeds
of processes.

Charron-Boat's measures Pi and P [15] assume real times associated with each
event, and for similar reasons given above, these measures were not chosen for the
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focus of this research. Charron-Bose's measure w [14J has not been chosen because
'I "

it is described as inaccurate an~ibecause m is an extension of it. 0

Three measures are therefore available for evaluation by application to CGS.
They are a, the measm€ of Raynal et al [59];fl, Fidge's measure [321;and Charron-
Boses measure m [14].

There is conflicting evidence about m. It is described as expensive to compute
(59, 44]; however it has recently been used in the literature as a model of measuring
concurrency [44];hence it is important to fully evaluate tti and determine if it is a
suitable measure of concurrency. By applying th~lmeasure to CCS, more operators
will become available to evaluate the compatihi1i~¥of m with these operators. Fi-
nally, by testing m for usability and avplirahility, the worth of tti for use with real
examples can he determined.

The approach taken in this research will he general and will allow for the future
;,

evaluation and comparison of other measures defined in the same framework.

2.6 Summary

In this chapter, <;. number of measures of concurrency were presented. The majority
are defined in the message-passing formalism that describes distributed systems in

i,i

terms ~{the partial ordering of event.. in processes, Amongst these is the measure
m which will be investigated in this research. Othermeasures that were described
fall into the models of concurrent systems based on formal languages, graph theory,
queuing theory and parallel program execution times,

Anumber of criteria for the evaluation ofmeasures of concurrency were presented
and discussed. They were divided into two groups-objective and subjective criteria.
An important criterion is that of compatibility with operators and a framework was
developed.to discuss the different approaches presented in the literature.

Work relating to partial ordering and time in CCS was described and a measure
of maximum parallelism for CCS agents was detailed. This measure is defined for
agents in a specific normal form.

Justification was given for the choice of m, although it was noted that there are
a number of measures that require an evaluation.

In the next chapter, the message-passing formalism will be redefined to accom-
modate synchronous communication and nested parallelism, so that m can be ap-
plied to CGS agents.



3. Applying the measur-e to CCB

...1.::Ii. Introduction

The aim of this chapter is to develop the necessary ttLeury that will allow for the
application of the measure m to GCS. This will involve the identification rf differ-
ences between the message-passing formalism in which the measure is defined and
CCS. Once these differences have been detailed, it will be possible to redefine the
message-possing formalism so that the justificatio17{for the measure remains and SQ

~ \

that CCS can 'be translated into the redefined formalism, This pr«fess of redefira-
tion will involvechanging some basic features of the formalism and proving that the

@

results scill hold in this new formalism. Finally an algorithm C3.nbe developed to
translate CCS into the new formalism. This will involve determining w~dchsubset
of CCS can be measured.

3.2 The message-passing formalism and ecs
In t~is section, the existing ~iij.tllntlismand Cl .~.will both be briefly presented as
well as a discussion of the differences. Then an outline of the necessary steps to
apply the measure to CCS will be given.

As discussed in Chapter 2, Charron-Bost! describes the following framework:

• A formal definition of a distributed system and computation.

• A partial ordering of events in a distnbuted computation,

• The concept of a consistent cut.

• Vector clocks applied to the distributed system.

• The definition of a measure of concurrency in terms of consistent cuts.

• A comblnatorial characterisation of the number of consistent cuts in a totally
sequential computation and in a. totally concurrent computation.

lClul.l:ron-Bost [14)will be used as lilYmain reference although the material on logical time and
vector clocks has been presented in [.33,46, 49, 62].
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"• Two meth~ds for calculating the consistent cuts-one relating to conditions

on the vector dock and the other relating to antichalns of the partial orcierTi

Milner [50] provides the following+:

• A syntax of operators over a set of events.

- NJI 0, Prefix a., Summation +, Composition I,Restriction \a, Relabelling
I

[f], Constant (or Recursion fix(X = E) ).

• Operational semantics, specifying the behaviour of operators which results in

a transition system, namely the transition rules:

- Ad, Sum, Com, Res, ReI, Con.

• Semantics given by an equivalence, for example strong equivalence and obser-

vation equivalence.

In this research, a measure of concurrency for CCS will he defined and it will involve

mapping the syntax and indirectly the operational semantics to a. formal model of

a distributed SystAqJ..However, it will not involve the second level of semantics.
, . ~_.,_.r

First it is necessary to determine the differences between. the message-passing

formalism that eharro~:Bost presents and the model of ecs. The major differences

can be detailed as follows:

1. Charron-Boat's formalism assumes a fixed number of processes that all effec-
tively ,~~artat the same time, and that no new processes are created during the

coni'ni{·t~tion. In CCS, certain agents can be interpreted as involving process

creation. For example a.b.(c.O 1 d.O), starts as one process that performs a and

b, and then 'branches I into two processes, one that performs c and one that

performs d. Therefore, in each case, there are a fixed number of processes,

however, some processes can only start when other processes have finished.

2. Charron-Best's formalism assumes asynchroaous point-to-point communica-

tion, so each message has a send process Pi and receipt i'Jl'ocess Pj associated

with it, and no other pr.?ces~ can he involve, in the communication. In CCS,

communication occurs between a port a and. its
O

complement a and this com-

munica.tion is synchronous. As in Charron-Best's formalism, only two ~rtic-

2See Appendix A for an overview of CCS
I)
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ignored''. \\
il
\\

3. There is a difference in expressive power with \respect to computations. The

message-passing formalism represents one c«!llplltatioll of an algorithm whereas

a ces agent can describe an entire algorithm. Charron-Bost is not clear about

how computations relate to algorithms and in her presentation she deals with

individual distributed computations that are composed of individual sequen-

tial computations. This laek of clarity extends to defining the measure for au

algorithm; she suggests briefly that a measure can be determined for an algo»

rithm by calculating the average across the values found for each computation.
n

The steps in the process of applying Charron-Best's measure of concurrency to CCS

are as follows:

1. Redefine Charron-Boat's message-passing formalism to take into account pt6~
cess creation and synchronous communication.

2. Prove all proofs with necessary modifications as given by Charron-Bost in the

new formalism.
"\ .

3. Show that intuitively the ha~licidea of a measure of concurrency. still holds in

this formalism.

4. Discuss the difference in expressive power between the message-passing'formal-
ism and ees, and determine how this affects the measurement of concurrency.

5. Present an algorithm for translating CCS into this message-passing formalism.

This involves investigating various issues that relate to me ....curing concurrency

in CCS, for example:

• What is a totally sequential agent'?

• What is a totally concurrent agent?

11 Can all ecs agents he measured or only a subset. If so, which subset?

6. Use the algorithmic translation as ,L basis Jo.\ i;he implementvtion of the con-

currency measurement tool.

3This renearch deals with the bnsic calculus of cas, not the value-passing calculus. This is not
a. major issue lID it call he shown that the two are equivalent, 80 the method developed here will
extend to the value passing calculus,
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3,.3 Discussion

In this work, I will take a different approach to defining synchronous communication

in the message-passing formalism to that presented in th'e literature.

Charron-Bost et a1 and Fklge (19, :33]define synchronous communication in the

message-passing formalism ill a manner which I have found to be problematic when

using consistent .cuts. The concept of consistent cuts has not been dealt with in
/.

the framewo~:k of synchronous communicatipn except in [44] where it is dealt with

briefly.

The definition for synchronous communication given in the literature results

iIJ. the two events that form (1, synchronous communication event being concurrent,

which means that they are not related hy the partial ordering relation. As described

In Chanter 2, a conelstent cut is defined to he the left closure of a cut with respect to

the partYal order of events. When this definition of a consistent cut is applied to the
i'

situation where "ynchronous communication events are defi/I\ed to bo concurrent, it
is possible for a cut to he consistent hut to only include ond!of the two events. This

Ii
contradicts the intuitive idea that a consistent cut represents a consistent global state

'--'
. ""in. the computation [33]. (Note that in the case of asynchronous communication,

the send event can OCC1U' in a consistent global state without the corresponding

receive event because the send event is dependent on the receive event; however for

synchronous communication, both events must be in the global state for it to be

consistent because the two ;2vents (1,,',\ mutually dependent.)

Another anomaly occurs in the situation described above, The partial order

information about pail's of synchronous communlcation events describes them as

concurrent, however their vector dock information is idelltlce?' [34]. This means

that the vector clock characterisation of consistent cuts given by Charron-Bost [141

identifies different consistent cuts to those identified by the left closure definition in

the synchronous case. It also implies that the vector docks contain mote information

of the relationship between events thar lees the partial order.

My approach will be to equate the two events that form a synchronous communi-

cation event. With this definition the partial ordering of events is retained, however

the left closure definition of a consistent cut together with the equating of commu-

nication events means that if OM event occurs in the cut, the other event must also

appear in the cut. This approach will also result in the vector clocks containing only

the Information of the partial order, and hence the vector clock characterisation of

consistent cuts will identify the same cuts as the left closure definition.



CHAPTER .1. APPLYING THE MEASURE TO CCS 43

The idea of equating the events in synchronous communlcation was partly de-

rived from the fact that in CCS, wheR':;:Sommunication occurs between two agents

that are concurrent, their two complementary actions are transformed to a single T

action. Taking the approach that synchronous communication represents a single

event therefore allows a closer match between ecs and the message-passing formal-

ism. The idea also arose from the work of Charron-Bost et a1 (19) where although

they use the definition that results in the two events involved in a synchronous com-

munication event being concurrent, they also make statements such as ' ... in the

synchronous case a. pail' of corresponding send-receive events can be regarded as a

single combined communication event .•. ' [19, p, 25) and ' .•. they behave as if they

are glued together and can only occur together' [19, p. 15].
This approach has one disadvantags in that the value of the number of cuts in

a totally sequential computation must be redefined to take into account that some

pairs of events are reduced to single events. This will discussed further in Section

3.4.4.

3.4 New message ..passing formalism

In this section, a new message-passing formalism will be defined to take into ac-

count the differences mentioned above. This exposition will have the same structure

as Charron-Best's paper (14). A summary .of the original theoretical framework

th ...t Charron-Bost uses was presented in Chapter 2, in the Sections titled The

'happened before relation', Logical clocks and Oharron-Bosf's measure of

concurrency m.

3.4.1 Computation of a distributed system

A computation of a distributed system consists of a finite set of processes which are

denoted P = {Ph P2, ••• , PlI}. In Charron-Best's formalism, each Pi is a set of finite

sequences Ci of events and is prefix. closed, In ('~is new formalism, it will be assumed

that each Pi represents only one specific finitesequence of events. This means that

the property of prefix closure is no longer applicable to the Pi'S. However." this

does not affect the definition of the concurrency measure, and aJIol"'~for a simpler

definition of process creation. '

S S; P gives the processes that start a.t the beglnnlng of the computation. All

processes that are in P\S are caused by other processes and the relation H 1" used
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Figure 3.1: Example of a, distributed computation.

to describe this. The fact that there a.re a number of processes that can proceed

simultaneously allows for the expression of concurrency in this formalism,

The notation Pi ~ Pj is used when process .Pi causes process r,I (i f; j). Each

process in P\S is caused by exactly one process". However, each process may cause

none, one or many processes. Define:F £; P, the set of processes that do not cause

any processess i.e. the 'last" processes.

For example, let 'P = {Pl' .. P7}, with S = {Pt ,.t'2} and :F = {P4, Pa, P7}, then
if PI causes P3 and P4, P2 causes Ps, p.." causes P61 and Ps causes P1, then this

could be expressed as

PI ~ f3, PI H P4, P2 H Pr" P3 H ....PS, Ps ~ PT.
"~

Each Pi ill a finite sequence of events. Let a, b, e, ... denote events. It is assumed that

events can be dlstingulshed from each other. The set of events that occur in specific

se~of processes 'P or a specific process Pi is denoted by E(P) and E(Pi) respectively.

The number of events in the sequence Pi is denoted «, i.e. i E(Pi) 1= qi.

The relation' -< can he defined on the set of events E(P} for a specific set of

processes P = {PI, P21 ••• , Pn} as follows:

1. if process Pi = al(L2 ••• (Lq, and (~j occurs before ak in the sequence, I.e. j < k,

then ai -< Uk,

Define -5.'= ( ~ U =)*, the transitive closure of -< and =. Then -5.' defines a partial

order'' on JE(P). (See Appendix D for the proof of thls.) The relation =5.' captures
the causality between events; if a, j' b then b is causally dependent on a..

~T1Iis means that each process can only occur once in a. computation.
SA partial order is a. relation that is reflexive, antiaymrnetric and transitive (20]. Antisymmetry

has the following definition: if a :;51 b and b ;5' a then a = b.
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Consider the following: 'P = {P17 P2, P.3, P4}, S = {Pl! P2}, :F = {P2, P3, P4)
and Pl H- p~, Pi .- 1':3. Each process is defined as a sequence of events: P1 =
abc, P2 = de!, P3 = gh, P4 = kl. This is expressed diagrammatically in Figure 3.1.

The diagram captures the information of the partial order ~/; if there is a line going

from left to right between a process el and e2 then el .;~'e2. In the example, a ~' Ii.
As yet the formalism described does not allow for communication between pro-

cesses. In this formalism, only synchronous communication will be represented.

Certain pairs of events rspresent synchronous communication events (this commu-

nication can only occur betweenpairs of events) and an event can only participate
,:! ,.\

in one such communication. NdCe also that the events must dccur in different pro-

cesses. The relation .... will he used to describe this. If a and b are the pair of events

in a synchronous communication, then a .... b. This relation i~ symmetric and has

the property that

'<Ia,b,c E E(,P),c:f a,e:f b, (J, ~ b =} -,(a .......c)" .,(b....,. c).

It is necessary to redefine ~' to include communication. This will be clone by the

following rule

'<I(L,b E E('P), a - b =?- a = b.

This will retain the partial ordering information of -< and add the new infant 'y 10n

given by the ....,.relation by equating events involved in communication.

Then the relation ~ which i1\C':lll{lescommrnicatlon can be defined as (-< u =)"
or the transitive closure of --< and =; however = now includes the information from

-. The relation ,::5 gives a partial order on E('P). (See Appendix B for the proof of

this.) The transitivity captures t~e causality that results from communication. For

example, if a,b E E(Pi) and c,d ~\E(Pj), with a ~ 0 and C::5 d, then if b....,. c, band
C are equated and a ::5 d. \\

'P ill called a computation whe~(E(P),~) as defined by 1-+ and +-<> ccntalns no

cycles. (Charron-Bost Includes in ~~l' definition of a computation the>additional

condition that for each receipt of a message m there is a (single) sending of m. In

the new fo~maiism, this has been dealt with above in the definition of +-t·, 80 that by

definition the two components of a synchronous communication eyent are included

in a computation.)

Two events are concurrent when they are not related by ::5. Formally, a and p
are concurrent (a co b) if -,«(1, ::5 0) and .,(b ::5 a). Note that this definition implies
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Figure 3.2: An example of a distributed computation with synchronous communi-
cation.

that a and b are not in the same process, or in different processes that are related

by 1-+,

For example, consider the following: P == {PI, P2, P3, P4}, S :;::{PI, P2}, :F =
{P2, P3,P4} and PI H P2, Pt t-+ P3' Each process is defined as a sequence of events:

PI == ab, P2 == cdefg, P3:;:: hijHm" P4 :;::nJlqrs and the communication events are

j ._. ]J and r H e. This is shown in Figure 3.2. This diagram captures partial order

:;; if there is a directed path joining event €1 and e2. then ei :; e2. For example,

i :S sand i:$ e. Events i and d are concurrent.

3.4.2 Cuts
)',

The measure m is based on the number of consistent cuts in a computation and for
\\

this reason the definition of a cut and a consistent cut are required. This definition
i','

has a similar intuitive basis as in the asynchronous case; however, for consistency

to hold, both events that take part in a, synchronous communication event must 'be

in the cut.

Charron-Bost defines a cut w,Jth respect. to all processes: for each index i, let aj

be an event ill Pi, then

c == U {x E E(Pi) I :r. :; Ui}
ie{l, ...,n}

is a cut of the computation.

There is a problem with this definition in that it does not allow a cut that

excludes some processes, i.e, processes where no events have occurred at the place

of the cut, for example, the empty cut.

For example, if P1 = ob, P2 == cd, and P3 = e], then it should be possible to

obtain the cut {c,e,j} from the definition ({c,e,!} = {4~E(Pl) I x:; c}U {x E

E(P2) I x :; f}) (see Figure 3.3(a)). However, this is1tnot possible because the
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Figure 3.3: (a) An example of a ("~~:'} Charron-Bost 's formalism. (b).An example
of a cut in the new formalism.

definition requires that an event is chosen from each process. This is only a minor
problem in Charron-Bost's work", but it beco~es important when introducing the
causal relation between prooeases, 1-+. For example, given Pi 1-+ Pj and Pi 1-+ Pj, it
should be possible to cut at an evet;'.tin p~and at no event in PJ or Pk, because this

\

would satisfy the intuitive idea of a :'ee Figure 3.3(b)).
The definition can be modified .ows: let N = {l,... ,n}, and let Ee ~ N.

Eo will contain the indices of the processes that do not contribute any events to the
cut C. Then for each i E N\Ec. choose an a; E E(Pi), then

c= U {XEE(Pi)Ia::::)a,i}
iEN\Ec

is a. cut of the computation.
A'consistent cut,C of a computation is defined as follows: C is a consistent cut

if it is a cut that is left closed by ::S, namely, if a, b E E(P) such that II E C and if
a ::S b then a E C.

The past of an event a, is defined as follows: (! G,) == {x E E(P) I x ::S a}. It is a
consistent cut. The followingnotation will be used for the past of event a in process
Pi: (1 a)i = U a) n E(Pi) ;::: {a: E E(Pi) I a: :j a}~ Note that is not necessarily a
consistent cut. Note, however, that it is a totally ordered set, as all events come
from one process, and arc ordered by -<.

The definition of a cut given above can therefore be r~written as

c = U {x E E(Pi) I x ::5 a~} == U (L a.i);.
i€N\Ec iEN\Er;

_____ ~.". ·'~···""'."~·"_~.".1'·,..,.'........,.-.~,

6Charron~B()st'r 1'~',,)j' of th ~'~<'1t.f.C'ilcemingthe checking oi il. cat for consist mcy using vector
clocks is not complete as it omits the cuts.Lhat are not defined by n events.
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Consider the example given in Figure 3.2 (p. 46)

• Let Ee = {3,4}, (1.1::;: b, (1.2::;: c, then C = {a,b,c} and it is a consistent cut.

• Let Ee ::;:0, a1 ::;: b, a2 ::;: e, fZa ::.:.:I, (1.4 ::;: s,
then C = {a,b,c,d,e,h,i,j)k,1,n,p,q,1',s}. It, is a consistent cut.

• Let Ee::;: {I}, (1,2 = d, 0.3::;: i, (1.4::;: q, then C = {c,d,h,i,n,p,q} is a cut. It

is not a consistent. cut since b :::S hand b rt c.
As further examples, U q)::;: {a,b,h,i,j,n,p,q}, U q)l ::;:{a,b}, (! q)2 = 0,
(l q)3::;: {h, i.i], (l q)4 ::;:{n,p,q}.

3.4.3 Clocks

In this section, the theoretical background for vector logical cldd'& will be presented,

First the docks will he defined, then some results will be proved. The first result

shows that the vector clock of an event gives the number of events that have hap-

pened in that process before the event under consideration. The next two results

show how vector clocks can be used to characterise concurrency.

Partlally''ordered logical clocks are represented as vectors in Nn:

., If v ~ Nn then 11[i] represents the ith component of v.

• Nn is partially ordered by ~i (t ~ b iff a[iJ ~ b(i) for each index i.
" \

• If U,11 E Nn, then w = sup( u, v) is defined as follows: for each index i,\Y'[i] =
\

max( uri], v[iJ). '

Clocks are applied to the message-passing formalism described above as follows I

o Each-process Pi has a clock 0; that takes v~lues in n.sn.

• 0j( a) represents the time of event (L in process Pi.

• Initial values of docks

- If Pi E S, then the initial value of the dock 0i is (0, ... ,0).

- If Pi E P\S and PI; H Pi, then let a be the l~~t event in PC~clock 0j
takes the value of the clock 0I;Ca).

• Updating values of docks
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Figure 3.4: A distributed computation with vector clocks.

- For each event in Pi, 0i(i] is incremented by 1.

- If a +-lo b is a synchronous communication event and a occurs in Pi and b
in Pjl then both 0i and 0j are set to SUp(0i' 0j) when this event occurs",

• For any event a that occurs in process Pi, its vector time is 0)(a) = 0i(a).

Consider the example given previously. In Figure 3.4, vector clocks have been

added to the computation. Note that communication is treated as an event and

therefore the dock is incremented. At event i, the third positien has been changed

to 39 al ...-~he fourth to 2,
In the next .part of this section;' some results are proved that relate to vector

~\

clocks. Tne statements Of these proofs do not differ from those stated by Charron-

Bast. To understas j why this is so, consicle:r the following case: if Pi H Pj then

by the rules given above, 0j contains full kliowledge of 0i, so it is possible to

present the proof statements without recourse to the H relation, Note also that the

communication information is contained in the partial order and therefore does not

need to be dealt .with explicitly.

Proposition 1 For any euent a, 0(a)[i] equals the number of the events of Pi that
belong to the past of a : 0(c)(i] =1 E(Pi) nU a) 1=1 (! a)i I.
Proof: If 11 E S, then 0i is Initialised to. (0,.,.,0) and on each event in Pi,
0i[i] is incremented by one, so this value represents the number of events up to and

including a in Pi.
If Pi E 'P\S then the following situation exists for some Pi,,'··' Pjm

When Pi! starts;:"0il is initialised to (0, .. '\ 0), so 0il [i] = O. As Pi cannot be

started before Pjl it is not possible for it to communicate any timestamp to Ph

7This approach to vector clocks in the case of synchronous communication is presented by Fidge
ill [33]
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(either directly or indirectly). Therefore at the last even~ Pjp 0i1[i] = 0 still

holds and therefore holds at the start of Pj2' This argument holds for each Pil< hence
when Pi starts the value of 0i(i] is zero and so by a similar argument to above, on

event a in Pi. 0(a)[i] will represent the number of events up to and including a in

.PJ• (In the case of a communication event, say a +-+ b with a E E(Pi), bE E(Pj},
then a remains in Pi and the count of the number of processes remains the same.)

l.J

The following result shows that the vector clocks totally capture the information

o~ the partial order. This is in contrast to linear vector clocks as mentioned in

Chapter 2.

Theorem 1 For any events a anti b of a liistributed computation the following holds

a:1 b ~ 0(a) s 0(b).

P:roof:
=> : Since :1 is transitive, c ~ a implies that c :1 b, hence for each i, c E

{:r; E E(Pi) ! x :1 a} => c E {x E E(Pt) I x j b}, i.e. {x E E(R) I x j

a} ~ {e E E(Pi) I :z: :5 b}. Therefore (! ali ~ U b)h so from Proposition 1,
EJ[i](a) ::; 0[iJ(b) Vi E {11 ••• , n}, therefore 8(a) ::; 0(b).

¢:; : Assume the converse; there aretwo cases:
\\

1. b ~ a; by the first part of the proof it can be shown that 0(b) ~ 8(a)-,'

contradiction.

2. a co bi therefore a E' E(Pi) and b E E(Pj} with i f::. i. since if a and bare

in the same process, then they are not concurrent. Consider (! b)i == {x E

E(Pi) I :1: :1b}. There are two cases.

(a) (! b)i = 0 and hence (! b)j C (! a)i.

(b) (1 b)i :f. 0, (! b)i is totally ordered and has a largest element c, say. Note

that c -< a, otherwise if a ~ c then since :1 is transitive and c j b ,
a::s b which would be a contradiction of G, co b. Therefore (! C)i C (! a);.
However, (! b)j == (1 C)i since c is the largest element of (! b)i and lienee
(L b)i C (! a)i.

In either case, (J b)i C (1 a)i. Hence by Proposition 1 9(h)[i] < 0(a)[i].
Therefore it is not true that 0(a) ::; 0(b)~contradiction.
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IJ

The final result in this section presents a method for determining if two events

are concurrent, .by investigating the values of the vector clocks.

Proposition 2 iGt a and b be two euents that belong respectively to Pi and Pj.

Then

a c- b ~ ( 0(b)[i] < 0(a)[i} and e~:a)[j) < 0(b)[j] J.
'\

\\
"Proof:

:::} ; Assume f co b, with a .E E(Pi) and b E E(Pj). Consider (! b)i = {x E

E(Pi) I x ~ b}. '.tnere are two cases, as in Theorem 1 and it can be shown by <'J

similar argument that (l b)i C (l a);. Hence by Proposition 1, 0{b)[i] < 0(a)[i].
By a symmetrical argument, it can he:l\hown that 0(ct)[j] < 0(b)[j).

-{= : 0(b)[i] < 0(a)[i] and 0(a)(jJ < 0(b)[j] show that 0(0,) '/; 0(b) and 0(b) i
Sea). Therefore from Theorem 1, ..,«(t ~ b) and ..,(b ::i a), hence a co b. 0

These results show how vector ducks can fully describe the partial order;j. This

allows for a characterisation of concurrency as shown in the last proposition.

,
3.4.4 Measure of concurrency

Charron-Bost motivates the measuring of concurrency in terms of consistent cuts

\by arguing that the tolerance of a computation to stopping relates to its ability to

fie cut in a consistent manner. 1\tlis argument still holds in the new formalism. For
1\

example, consider Figure 3.4 (p. 49). If process P3 is stopped (or cut) a~ i, then
process P4 can be stopped (or cut) at n, however, it cannot be cut at p because

event j has not occurred, because &{ the cut at i. If the communication event j o{-lo P

were not present, more cuts would be possible, for example at q.
Recall that the measure of concurrency for the computation G is defined by

Charron-Bost (14) as

m(G) = p-tt
8

pC _ p8

By definition, m(G) should fall in the interval [0,1]. As a. result of the redefinition

of the formalism, there are now a few choices for ItS and pC.
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" /1/ represents the number of consistent cats.in a totally!) sequential execution

of C. It is determined by summing ,':he number of events in C. There are two
"J .'.)

possible values

The first value counts each event separately, so each pair of communication

events is counted as two events. In the second case, each pair of communication

events is counted as one event, to mirror the equating of communication events.

This value is obtained by subtracting the cardinality of the communication

relation. To ensure that the measure remains in the range [0, 1},it was decided

that the second value, ",:nin would he :1,Ised.This can be explained by the fact

tha.t for some computations", < "1.ci{; ~\rld:I;~Tlr·em < 0, This occurs because
~. ." . __ ' " r

when Jt is calculated, pairs of comrrnii ..{i~t.tcn events are viewed as one event,

;whereas for "'~nax they. are viewed as two.
\~

• In the original formalism, a totally concurrent computation was one with no

communication constraints and therefore ItC = (1+ ql)(l + Q2)" .(1 + qn).
In the new formalism, there are two factors that constrain the amount of

concurrency-communication and the causality between processes. It was

decided that a totally concurrent agent in the new formalism should be one in

which there is no communication and in which the process structure is retained.

The first condition is transferred from the original formalism. The second

condition can be explained as follows: removing communication indicates how

concurrent the agent under consideration can possiblybecome; however, if the
process structure was removed, it would result in the concurrency of the agent

under consideration berng compared to th.e concurrency Q~ a 6.1.)r-- ~\a.gent.
I

Because the causality of processes is being taken into account, a more complex

equation is required to characterise the number of consistent cuts Jtc i~ a totally

concurrent computation in terms of qi

where

{

q; + II ClltS(Pi)
cuts(Pj) = {PJIPjI->P,}

qi + 1

if Pi rt :F
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,-)

It The number of consistent cuts in a given computation f.t can be calculated by

methods that will be discussed in the next section.
'I
l{

• The original measure is defined for a specific computation of an algorithm. In
i

this research I will extend the measure to algorithms by defining an ordered

pair il.<;_ the measure of an algorithm. More 'specifically two values will beIf ,-cc ••.

ch~s~n t6'represent the measure of concurrency of an algortthm A:
U

- mil1{nt(C) I C is a computation of A}

- :nax{m(C) I C is a computation of A}.

This makes it more diffio'. \ to c0tnPHe algorithms because !Ri' is not totally
\',

ordered. However, it seems realistic that when taking into) account all corn-

putations of an algorithm, there may be algorithms that cannot easily be

compared,

Amother possible approach suggested by Charr~h.Bost [15, 16] which will D"l

discussed further in Chapter 6 is that of determining probabilities for compu-

tations, and using these pl'ohabir\ties ~i'" Weights to determine a measure for

the algorithm from the mea.sures\~f each computation. This approach would
\ \

generate a. total ~ lel'ing of algori\~m!j.
. :1

3.4.5 Calculating the number of conslstent cuts

Charron-Bost presents a result for determining whether a cat-defined by al, ... , a"
is consistent by checking a specific condition on she vector clocks

"The idea is that consistency occurs when the clock of a process Pi has the most

up-to. date knowledge about its own 'time', and all other processes have the same

or older knowledge about its time.

As the notion of a cut has been redefined, this result needs-to be modified. First,

to recap, the definition of a cut is as follows: let N ::;.{1,... ,nL and let Eo S; N.
Eo will contain the indices of the processes that do not contribi,H\1lany events to the

\' '-S- "

cut C. Then for each i E N\Ea, choose an aj E E(Pi), then

c..>'.~) U {z E E(Pi) I x :5 ai} = U (1 ai),
c> ieN\Ec iEN\Ec

is a cut of the computation.



CHAPTER 3. APPLYING THE MEASURE TO CCS 54

Additional notation is required because of the new definition. Let C be a cut

defined by Ee and ai for i E N\Ee. Define T, E wn as 0(ai) if i E N\Ee orherwise

T; is defined-as (0, ... ,0). The value 1i(jJ will denote the jth component of Ti. The

following result can now be proved.

Proposition 3 The cut. C defined by Ee tuul a; [or each i EN\EcI

c = U {:r E E{Pi) I x:5 ail = U (!ai)i
i6N\Ec

is a consistent cut if and onlll if

sup(:Tt, ... ,Tn) = (Tl[l], .. "Tr~[n]).

Proof: The proof of this proposition appears in Appendix B. o

Charron-Bost presents a second approach to counting consistent cuts, whereby

it is shown that the number of consistent cuts in a computation is equal to the

number of antichalns''. This result has not been proved in the redefined formalism.

Finally, it has been suggested that the number of consistent cuts in a computa-

tion is equal to the number of nodes in the (finite) transition graph of' a confluent

CCS agent. As yet, this result has not been proved and an outline of a possible

proof is presented in the section on further work in Chapter 6.

3.5 Expressive power

The message-passing formalism has now been redefined to deal with the first two

differences described in Section 3.2. The remaining difference to be discussed is

that of expressive power. As noted earlier, the message-passing formalism repre-

sents one particular behaviour or computation of an algorithm, whereas ecs is a

description of the behaviour of an algorithm. In the following section" some back-

ground material on computations and nondeterminism will b(jipresented, after which

it will be discussed how the difference in expressive power affects the measurement

of concurrency.

A computation is defined to he a, specific behaviour or execution of an algorithm

or program. Therefore for a. sequential algorithm, there are a number of different

computations of that algorithm, each relating to different inputs. It is generally

8An antichain is a subset of a. partially ordered set with no pair of elements comparable. An
antichain is IUSO called an independent subset. In this context, it means that each pair of elements
is concurrent.
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expected that sequential programs or specifications will be deterministic; that is for a

giv,'''~input, the program will behave in a predictable way. Obviously it is possible for

a construct that causes nondeterminism to be introduced into a sequential language.

However, the issue of nondeterminism becomes more important When dealing with

concurrency as it is necessary to model the nondeterminism that occurs in the real

world because of relatlvistic eITerts of time-these effects are the result of a lack of

a global 01' centralised dock.

Nondetenninlsm can be described dt> follows: an algorithm exhibits nondeter-

ministic behaviour if for a subset of its inputs, two or more different behaviours

are possible for each Input in this subset, So for each input, there are one or more
possible computations.

The message-passing formalism does not explicitly express uondetermlnlsm as

it describes individual computations, except for that, non determinism which results

from the inl:edt',1Ving of events from different processes.

When dealing with a·concurrent algorithm specified in CCS, nondeterminism is

introduced by a number of factors and t.hese result in different computations:

" Summation, for example

.- a,1.) + b.O can perform the action a ('1' the action b

• Composition

- (L.O I b.O can perform (t then b, or b then a

- a.O I a.O can perform as a first action a, a or r

'I'here is a special class of nondeterministic agents called confluent agents {seeAp·
pendlx J\ Although these agents generate a number of computations, they have

the characteristic that performing an action does not preclude the later occurrence

of 3, different action that could have occurred at that time. These are a useful class

of agents since the property of confluence is desirable when specifying concurrent

systems [50]. Nondeterminism can occur in confluent ag~nts as follows:

• Confluent Summation", for example
_'--~-----~---

°For (H,,,,, an E Art, n c n. the COIlfiuellt Sum (a1 I ... ! CXn).P is defined recursively as
follows

O. p 'l:,' p
(a1 I.··' ar.).P 'l:,' L1Si!n (\';.(a1 1·.·1 (1';-t I a;+1 I ... 1an). P (n > 0)
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- (0, I b).0 ~f a.h.O + b.a,.O can perform a and then TJor alternatively band

then a.

It Confluent Composition-", for example

- 0..0 ll~b.O ~f (a.O I b.O)\0 can perform a then b, or b and then a .

.' - a.O I{IL} a.O ~f {a,O I a.O)\a can only perform T, so this agent does not

display nondeterminism.

Note thaf nondeterminism can no longer occur because of potential communication

across the Composition operator since all communication is restricted by the set

used in the definition of Confluent Composition. (See Appendix A.)

It is necessary to determine what effect the difference ill expressiveness has on

applying the measure to CCS. The most general approach is to consider each tracell

of actions as a separate computation. However, in this research it will he ensured

that at least the confluent agents can be measured.

The simplesf way;to deal with Confluent Summation is to consider each occur-
rence of the Summation operator as causing two different computations. Therefore,
in the example given above, there are two computations ab and ba, This approach

can be applied more generally to any occurrence of Summation, where each occur-

renee of this operator if>treated as the point where the computation becomes two

computations. For example, given (L.O I (o.c.O + d.e.a), there are two computations

a.O I h.c.O and e.o I d.e.O.
The type of nondeterminism allowed by Confluent Composition can he consid-

ered as bask to the message-passing formalism since it is the nondeterrninism that

\)CC111'S because of interleaving of events. Hence (a.O I b.o)\0 can he regarded as two

processes, one of which performs a and the other b. In a. Confluent Composition

communication is 'forced') that is the set of actions in the Restriction is defined ill.

such a W'd,Y that communicatlon has to happen if there is the potential for it, namely

if an action and its complement a,ppeal' on opposite sides of the Composition. This

maps conveniently tv the relation H which defines the communication events.

To generalise to Composition, consider the differences between Composition and

Confluent Composition. There are two major differences; first, the two agents in-

volved in the Composition must be confluent and second, nondeterminism as a result------~--~-- -
_ leFor L C r., Pi I~P~ .g;! (Pl I P2)\L is a Confluent Composition if C(PI) n l:(P2) = ~ and
.c(P1)n 'c(Pa) £; L UL.

11A trace is the sequence of actions generated by a ees agent.



CHAPTER 3. APPLYING TIlE MEA8URE TO CCS 57

of communication is removed. For the purposes of resolving the differences between

the formalisms, the second is more important, since it permits the definition of the

communication event relation - and it would be desirable to retain this in an at-

tempt to make the approach more general. For example, given a.() I a.O there is

the potential of a, a or 1'. To retain a simple translation to <-+, the Composition

operator will be rede.'ned so that communication can only appeal' when the action

and its complement are bound by Restriction. This involves combining COnl3 with

Res as follows

Com~
EeEt s-t 'iF'-9 l' _,.;. -

-(E-l-P-),-L-.!:-(E'I F')\L (f E L U L)

This rule can also be viewed in terms 8f a condition on Com, stating that it cannot

be applied if Corn. or Com2 can be applied. There are also similarities between the

Compcsitio- ?perator as redefined by Com~ and Hoare's Conjunction and Hiding
r

operators", J, p. 194].

Note that communication in Confluent Composition will satisfy this rule, as

communication always' falls in the scope of a Restriction. This redefinition does

affect the agents that can be described in CCS using Composition; however, it

does not have a serious impact because in general communication is restricted w~en

specifying concurrent systems in CCS.

To understand how Composition works when Com3 replaces Com11 consider

the following.if two compleIP:-'iiif~y actions fall in the scope of a Restriction, these

actions will be the events that are paired In the +-+ relation and will be represented

by one 7' action-this is the same as in standard CCS. However, the difference

occurs in the case where there is no Restriction. In standard CCS, the occurrence

of the action, its complement or a communication action is permitted; however for

the purposes of this research the ability to perform a communication action will be

precluded.

For example, in the agent (a.O I a.O) only the actions a and a will be permitted,

and in the agent (a.O I a.O)\a only the t: action is permitted, as in standard CCS.

This discussion also raises the issue of measuring the concurrency of an algo-

rithm. As noted in Section 3.4.4, the measure of an algorithm will be determined by

the minimum and maximum values found over all computations of that algorithm.
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3.6 Translation of CCS

a.S.l Discussion

The message-passing formalism has now been extended to deal with synchronous

communication and process creation, and can be applied to CCS. There are a number

of questions that must he answered before the translaue-: r CC,.3 agents into the

redefined formalism is presented. These relate to motivatin., tile h'Ulslation and to

determining which subset of ces should be modelled. The following points describe

informally the intended translation process and are presented here to set the scen~,

for the discussion.

• tecs actions will be mapped it~ events in the message-passing formalism, and
II

actions and their complements will be used to identify communication event

pairs •.W4en a communlcatlon event occure, the two actions are replaced by a

single r action. For example, consider the following agent (a.O I a.o) \ a. The

communication event that occurs between (t and a will be represented by the

single action r,

• An agent of the form al ..... an.Q where Q is a. ecs agent that does not start
(Nith a prefixed action, will be identified as a process. So, for example, the

agent a.b.(c.d.O I e./.O) will be decomposed into three processes-PI = ab,

P2 := cd 'and P3 = (1,\ with P1 f-o+ Pz and Pl t--+ P3.
• 'Ii

• As discussed in the previous section,the Composition operator will be modified

by the replacement of the transition rule Coma by Com~ to allow simple'

translation from ces to! the ~ relation. When two complementary actions

fall in the scope of (1, Restriction, these actions will be the events that are

paired in the +... relation and will be represented. by one r action. However,

when two complementary actions are not bound by a Restriction, they are not

considered as communication events, and therefore are not related by the H

relation.

The approach that will be taken here is that ees agents can be broken dOW1~into

a number of computations, each oJ)which will be expressed in ecs notation.

Events and actions

In the message-passing formalism, processes are composed of events. It is necessary

to translate the actions of CCS to events. In ecs, there is the. set of labels E: = AUA,



\\
/'/

CHAPTER 3. APPLYING TllE Iy/EAStJRE TO CCS 59

from which the set of actions Act = l u {T} is defined. T is a distinguished a~tion

that represents communication. The translation of actions to events can be dOI~das

follows:

!l Each element of C represents an event.

• A communication pair is indicated hy an action a and its complement ii. When
the communication occurs, it is indicated by a single event which is represented

by the r action.

Processes
-

In the formalism, processes are described as a finite sequence of events. Therefore,

to translate GGS into this ~odel, it would be reasonable to identi{y sequences of

action'Preflxes as events. For example, in the agent a.b.c.d.e.O, the process would

consist of the events abcde. -In general, an agent of the form al ••••.an.Q where Q
is a eGS agent that does not start with a prefixed action, will be identifi~d as a

process.

Uniqueness of' events and messages

In the message-passing formalism, events and messages are assumed to be distin-

guishable from each other. In ecs, actions which will be treated as events, do not

have this property when considered as elements of Act. However, each action will

be mapped to a specific point in the time-space diagram, and from the point of

view of the Concurrency Measurement Tool, this will be sufficient to distinguish

actions'; A more rigeroua approach to the unique identification of actions is to label

them with the transition in which they occurred. For example, consider the agent

a.b.O I a.c.O. There are two possible actions both of which are a actions. They can

be distinguished as:

• the a action that causes the transition a.b.O I a.c.O ~ b.O I a.c.O and

.. the a action that causes the transition a.b.O I a.c.O ~ a.b.O I c.O.
Ii

Messages can be distinguished similarly by associating them with the transition

where the communication occurred. This approach, hci$'eve.t, is not required for the

correct implementation of the Concurrency Measurement Tool.
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-CCommunication

In the message-passing formalism, communicationjs ,defined by the H' relation which

defines pairs of events between" which communication occurs. As discussed in detail

above, this set of events will be identifled by using a redefined form of Compt)sitf6n

where Restriction is used to permit communication. The communication events that

can occur are those that are present in the Restriction set.

If,
II

Totally concurrent agents and totally seqnen)~ialagents

As mentioned in Section 3.2, it is necessary to investigate what agents will be inter-

preted as totally concurrent agents and totally sequential agents. These agents are

required to calculate the measure,

As described in Sec~lOn 3.4.4, there are two factors that constrain the amount

,_,r concurrency in a computation in the redefined formalism; communication/ md

process causality, In line with the dlscussion given ~!Ja£t section, a totally con-

current agent will be defined as one \, ..~no comm~~1ication, so each process is not

block~d by communication with other processes; lr.b~;:~1,the process causality will

be retained in' the definition of a totally concurrent agex\h __This means that delays
'-~"-'_

th~t occur because of the structure of processes will contribute-:r(;::;~.\lemeasure. For

example, consider the agent Ci..b.{c.d.OI c.e.O)\c. The totally concur;~\torm of this

agent will be a.b.(c.d.O I c.e.O) where no communication can Occur. So\he effects

of the communication on the concurrency are not taken into account; however, the

effects of the fact that events c, c, d and e can only occur after a, and b are taken

into account.

A totally sequential agent is the agent where each pair of communication events

has been reduced to one event, and where all events must occur one after another.

For example, consider a.b.{c.tl.o , c.e.O)\c again. A totally sequential form of this

agent will be one interleaving of possible events, for example a.b.T.d.e.O or a.b.T.e.d,O,
with the pair of communication events reduced to one T event, as discussed in Section

3.4.4. In effect, the agent that represents the sequential computations ln the example

is a"b.7'.cl.e.O+ a.b.r.e.ds), the agent that is defined by the Expansion Law.

Finite agents

The formalism assumes that processes' eventually terminate and therefore the mea"

sure can only be applied to a set of processes with a finite number of events. F(lr
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that reason, only finite agents will he used. Milner [50, p. 160] defines finite agents

as follows; I i

(r-'::':::\\

An agent expression is finite if it contains only finite Summations and

no Constants (or Recursions).

Subset of COS

The subset of ecs that can he dealt with contains the following operators!

0, Prefix, (finite) Summation, Composition, Restriction and Relabelling

and excludes:

infinite Summation and Constant (or Recursion).

However, as discussed above the message-passing formalism does not allow the

Summation operator, so the agents that are used for input will be divided into

the different computations that would result from the presence of a Summation.

Relabelling will be treated in a similar way-+an agent for input will he in a form

where all Relabellings have been applied,

The last question to be answered is the suitability of the subset of CCS. As

stated above, this subset includes (finite) confluent agents which are defined by:

0, (finite) Confluent Summation (which includes Prefix), Composition,

Restriction and one-to-one Relabelling.

Milner has noted in his book [50] that confluence is a desirable property for

ensuring well-behaved specifications. This would indicate that although it would he

preferable to capture the whole of CCS, the subset that has been dealt with is, in

fact, significant. Possible extensions to the subset will be discussed in Chapter 6.

Use of CCS notation

Note that the different syntactic forms of agents are usel te: distinguish the dif-

ferent forms these agents take in the message-passing form Iism even though these

different syntactic forms may he equated by the equivalence semantics (~, ~ or

=) of CCS. For example, consider Figure 3.5, (a) represents diagrammatically, the

one computation that is possible in the message-passing formalism by the agent

a.O I b.O, and (b) represents diagrammatically the two computations that are pos-

sible in the new formalism by the agent a.b.O + b.a.O, although from the Expansion
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(aJ

'jr~-..../!

(h) I--_~~__ .;..b ~,_

b a

Figure 3,5: (a) a.O'fb:~1~(b) a,b.O + b.a.•O.
)

Ii
Law, a.O I 0.0 =,. a.b.O + b.a.Q. Note that (a) is the totally concurrent form of the

agent a.O ,I b.O and (b) is its totally sequential form.

This use of notation does not impose any restrictions on the agents .that can, he

translated. However, this illustrates that the research deals with the syntax and
ii

operational semantics of CCS, hut not the equivalence semantics of CCS.

3.6.2 'Iranslation algorithm

The algorithm presented is a static algorithm to translate a CCS agent into the

new formalism. It is static in the sense that the decomposition of the agent into

processes is based only all the syntax of the agent. The input is a CCS agent and the

output is a set of processes P = {PI, P2,' .. , P1l,}, consisting of sequences of events,

a relation that describes the causal links between processes 1-+, and a relation that

describes the communication pairs --. Note that this translation algorithm maps

CCS agents into the message-passing formalism, whereas the algorithm used in the

Concurrency Measurement Tool which will be presented in the next chapter, maps

CCS agents into the data structures that represent the message-passing formalism.

In the following, aijent will he used to indicate the CCS agent and i, i.k will
indicate process numbers.
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translate/ agent , i)
if agent has the form a.E then

...add a to Pi

tra.nslate( E ! i)
if agent has the form ElF then

get new process numbers j and k

create empty processes Pj and Pk

add (Pi, Pj) and (Pi, Pk) to ......

translatel E, j)
transli).te( F, k)

/f

if agent has the form 0 then

do nothing

if a1}Enthas the form E\!L

add the action a to the restriction information about E
translate(E, i)

After this has been done, the communication pairs +-t can be determined from

the restriction information that was recorded. A communication pair occurs

whenever a label a and its complement a occur within two distinct processes

in the scope of a Restriction on a..

3.7 Summary

In this chapter, the differences between the message-passing formalism of a dis-

tributed system and CCS were identified. The major differences are asynchronous

versus synchronous communication, and nesting of processes, and expressive power.

The formalism was redefined to allow for these differences, and it was shown 'that

the original results are valid in a. modified form in the new formalism, and that

the justifica.tion for the measure still holds. The difference in expressive power be-

tween CCS and the formalism was resolved by defining how agents in CCS will be

measured. It was determined which subset of CCS will be used in the research,

and it was shown that this subset includes confluent agents. Finally, a translation

algorithm was presented to map CCS agents into the redefined formalism.

In the next chapter, the Concurrency Measurement Tool which was developed

to measure the concurrency of CCS agents, will be discussed. This discussion will

include the algorithms used in calculating the measure, and the performance of the

Concurrency Measurement TooL



4. The Concurrency Measurement
Tool

4.1 Introduction

In this chapter, the Concurrency Measurement Tool will be described and discussed.
The Concurrency Measurement Tool is a. program that provides for the measure-
ment of the concurrency of agents in a specific subset of ecs, as detailed in the
previous chapter. First, an overview of the-program will be given, with discussion.
of the approach taken, the data structures used and the algorithms implemented.
The two major algorithms-that for updating vector clocks and that for calculating
Ii-will be discussed. The second algorithm comprises the main work in determin-
ing the measure and a theoretical analysis of its performance will be given. Thh

\

analysis will be compared with experimental results that Wereobtained. Sugges-
tions for optimising the algorithm will also he presented. F:'inally,extensions to the
Concurrency Measurement Tool and the application of it to other measures will he
discussed.

4.2 Description of approach

Since there is no known method for analytically determining the number of consis-
tent cuts in an arbitrary computation, it is necessary to generate cuts and check
them for consistency. As there are a large number of possible cuts to be checked,
it becomes necessary to automate the process, Therefore, as part of this research,
a program Wasimplemented to calculate the measure for a g'\v._ , ees agent, sub-
ject to the limitations described in Chapter 3. The program pluvides the ability
to perform experiments on ecs agents and hence to evaluate the measure and the
feasibility of applying a measure of concurrency to CCS.

The program receives as input a CCS agent, and maps the agent in a data
structure that if: a representation of the message-passing formalism as redefined in

\ \

the previous chapter. As the algorithm requires vector clocks to determine if a
cut is consistent, vector clocks must he added to the events. Once this is done, the
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number of consistent cuts JL can be counted. The values J1c and J1$ can be determined
analytically and the measure can be calculated.

4.2.1 Data structures

The basic data structure is that of the event. Events are combine.r into a tree
structurethatteprresents the possible causation of one process by another. Although
in Chapter 3, the presentation is at the level of processes, in the implementation of
'the Concurrency Measurement Tool, ~?€nts cannot be represented as a sequence of
Iabels attached to each process because of the amount of data associated with each
event. It is sometimes necessary to have dummy events that represent no action,
as only binary branching is allowed. These dummy events are ignored when the
measure Is calculated.

In the following, the type declarations (in C) for the data ssructures are pre-
sented. Both the action type and the l'e~~rictiont.ype contain label fields. Instead
of each action being represented hy a single character as in the previous chapter, an
action label consists of a string. This allows for the use of meaningful names when
defining CCS agents. The action structure has a label field and a field to indicate

I)
whether the label is complemented. The R~striction operator defines a subset of
actions that are p'tecluded, and these actions are stored in a linked list. icIt is not
necessary to store the complement of an action, since if L is the setthat is specified
by the operator, then LuI is the set of actions that are prevented by the Restriction.

struct action_t 1* action type *1
{

labelstr label;
int bar;

}:

1* label name *1
1* complement indicator *1

atruct i~striet_t 1* restriction type *1
{

labelstr res; 1* label name *1
struct rastrict_t *next_resj 1* pointer to next restriction in list *1

J.;

The event structure has t.wopointers to the two next events, a pointer to a possible
communication event and an action structure as described above, Next there is a
pointer to the variable that contains the vector clock, and a counter to record the
latest clock update. Other fields contain the event number and the process number
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in which the event occurs. There is a pointer to a structure of Restrictio~i~ that
captures all Restrictions that apply to that event and hence to all events further
down the tree.

struc:t event_t
{

struc:t 3vent'.~t*l_eventj
struct event,.il*r_event;
strnct event...t *c:OllUll;

\1,/'-;
struc:t actic:m.;;-C~a.t't;~
int *c:lock;
int update; I ''-'j,,/
int event_n;p.m}'
int procesS_llllll~i~
struct rest4ict_t *next_r~sj

}j

.,"~
"~.'1* event type *1

1* pointer to next (lett) event *1
1,1<pointer to next (:tight) event *1
1* pointer to ,went (~nvolved in eOll1lUunication

(may be HULL) *1
1* action intormation (may be empty) ~I
1* poin~~r to vector clock *1
l~ I\l,ost recent cloak 'update */
J* ',;lllllberot event *1 '

T'"
J*".(UlllP'V..g,tprocess that event occurs in *1

: \'

1* pointer to list' of restrictions
, (nm.y be &I1LL)*1

Finally, there is a. structure to keep track of process information This structure
duplicates sorne'of the information that can be obtained from the event tree.

struct process_t
c
struct event_t *tirst_6ventj
int num_eventSj
int tirst;
int last;
int lett;
int righti

struct event_t *cut:

};

1* process type *J'
)/

1* pointer to tirst e'1;nt in process *1
1* number of "events in/~rocess *1
1* first (non-empty) event in process *1
1* last (n~n-empty) ~vent in process *1
1* number of next (left) process *1
1* nmaber ot next (right) process *1
/* tor convenience, this type contains infer:

about which event (if any) in the process
is contributing to the current cut during
the cnt checking proce~s *1

1* pointer to event in current Cut
(may be HULL) *1

1* indicator of whether events in process
can contribut~ to current cut *1

Ii

This structure captures the H- relation in the fields left and right. It also con-
tains the information about the event (if u.nv)in the process is contributing to the
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current cut being checked. Finally, the enable field indicates whether the.process

is currently available to contribute evelltf:l to the cut. This will be discussed in more

detail later.
,,>,

/,

4.2.2 Program overvi'ii r
)!

There are two main sectiq'/(s in the program. The first relates to creating an event

tree, finding communkadm events and adding til)' vector clock. The second consists
;I

of the procedures to c<0tn1a.te u, ILc and ItS, and from these to determine the value

of m, The structure of the program is as follows:

input t!,sagent
parse agent and ~reate event tree
find p~irs of comm~~ication event~ ruld return count
add vector clockS to events
calculate It by generating all cuts and checking them tor consistency
calculate P.c and 118 analytically :fT.C"l the number of events in each

process
calculate measure and print results

The agent is input 'ia a, file, in the form specified in the previous chapter. To

find pairs of communication events, the restriction lists are. used to determine what

subtrees to search, Vector clocks are updated by the rules presented in Chapter

3. Dummy events receive the same time stamp as the event preceding them. The

procedures used to find Jt will he discussed in more detail in the next section, and

Jl$ and Jlc can both be calculated by knowing the number of events in each process,

the structure of the processes and the number of communication events.

The output includes the measure, Il, JtS, ftC, the number of events, number of

processes, number of communication events and the time taken to obtain Jl.

4.3 Translation procedure

The translation procedure takes ecs agents and translates them into the data struc-

tures given above. A recursive descent parser together with a number of 6""lllantic

routines is used to create the event structure. The grammar is shown below, includ-

ing the action symbols indicating the semantic routines, which are the functions

that create the event tree:
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<: •• > indicates Z'onterminalo
{ ..} indicates optional elements
t~.. indicates action symbol::!

<agent>' --> Nil.<atail> #tNil
LPar <agent> RFar <atail> #fPar
Action #StoreAction Dot <agent>

<atail> --> Comp <agent> <atail> #fComp
Res <Set> <atail> #fRes
empty string

--> Act.ion#StoreRe\Str,~ct
LBrace <setelem> RBrace

<setele~? -~> Action #StoreRestrict { Comma <setelem> }

<set>

terminals
Nil
LBrace
Comma
Action

o
{

LFar
RBrace
Comp

(

}

RPar
Dot
Res

)

\
{'}X where X is a string consisting ot one 0:1;' mcz e lower
case letters.

semantic routines associated with action symbQls
StoreAction

J

...record details of action for use l.tter in the
translation p~ocedure

StoreRestrict - add new action for restricti~n to list of actiots tor
later usa

fNiJ.,tPar,
fAction, fComp,
fRas ...(in general) create new events and add them to event tree

As opposed to the conceptual algorithm presented in Chapter 3, the grammar and
the semantic rontines presented here embody the concrete algorithm that is used to
translate CCS agents into the cJ.;Ltastructures that are themselves a concretisation
of the message-passing formalism.

4.4 Algorithm for adding vector clocks

The goal of the algorithm is to add vector clocks to the event tree using the rules
presented in Chapter 3, which are presented here in a less formal form:
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- Initial values of docks

- If aX).event occurs at the beginning of a process that is. not caused by
another process) then the initial value of the clock is (0, ... ,0).

- If an event occurs at the begin~ing of a. process that .is caused by anot~t
process, then the clock is set to the value of the dock of the last event iIi
the other process.

III Updating values of clocks

- For each event that occurs Inc process Pi I the ith position of the vector

clock is incremented by 1.

- If two events are partners in synchronous communication then their clocks

are set to the maximum Of the values of their clocks after the previous

step has been done.

A counter is used to indicate if the update of the ith position. has been performed

and this is used to indicate which events (nodes) have been visited, The algorithm
traverses the t, 1 depth-first adding vector docks. If tho beginning ala, new process

is found, the clock for the first event is copied from the Iast event in the previous

process. In a similar fashion, an event that is not ~,tthe beginning of (1. process takes

a copy of the clock from the previou event, Then reg:>l'rlle3sof whether the event

is at the beginning of a process, a communication event ( any other event, the ith.!
position is incremented, However, if the event is one OJ;' a pair of communication §
events then it is necessary to find the maximum of the two clocks. This can only

be done once both clocks have had the position in the vector that correspond to

their process indices updated. If the partner has not been updated yet, the subtree

beneath the event cannot he updated and is left until the partner is updated and
then vector docks are added ,to the subtrees beneath both events.

As each event is visited at most twice) the//algorithm takes O(q) time where
! II

q :::; 2:j::=l qj l the total number of events. \, ... !'
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add_clocks to event e
it 0 is not a communication event

copy clock tronl pr<evious aVant
if a is not a d1l1lll1lY event

increment position i of the clock, whore e is in process i
set update count or to new value
add_clocks to the left ch:ild of e
add_clocks to th~ right child of e

el.se 1* e is a cOllUllunicationevent *1
if e's communicat:i.onpartner has not bee. updated

copy clock from previous event
increment pOSition i, where a is ill. process i
set update counter to new value

else 1* e's has bean updated *!
copy clock :from previous event
increment positiol'L i at the. clock, where e l.S in process i

take max at a's clock and a's partners clock
sat update counte.r to net;l'value
add_clocks to the left child of e
add_clocks to the right child of e
add_cloeks to the left child otie's partner
add_elocks to the right child of e's partner

4.5 Algorifhm for counting consistent cuts

The algorithm for counting the number of consistent cuts in an arbitrary compu-
tation is necessary to determine 1£. The approach taken is based on Proposition 3
which presents a condition for determining whether a cut is consistent.

This cut depends on the vector times of the events that defined the cuts. Let
C be a cut defined by Eo, and a. for each i E N\Eo. C = UiEN\Ec(t lti)i, and
let T, E Nil be defined as 0(ttj} if i E N\Eo otherwise (0, ... ,0). lithe following
condition holds for a specific cut then the cut is consistent

SUp(Tb ••. , Tn) = (t'i.(lJ, .. ,' Tu[n]).

This result suggests a simple way for determining the number of consistent cuts,
first generate a cut, then use the condition to check if the cut is cOllsistet;:t.

There are two functiona-e-gerucues and consistent_cut-for implementing this
algorithm. The first is a recursive procedure to generate all cuts and the second
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checks whether a cut is consistent or not. These algorithms will he discussed in

detail below.

Function gEm_cuts

In the original message-passing formalism, there were ('11 +1)(q2 +1) ..• (qn +1) cuts
to be checked, namely the number of consistent cuts in a totally concurrent version

of the computation. However, in the new formalism, because of process causality;

this is described byl
\'

ftC = IIcutS(Pi) where c\tts{Pi) = (]i + II cuts(Pj).
PiES {P,!Pj ......P,c}

Hence, to prevE"').textra work, the causality structure of the processes needs to be

taken into account. This will mean that the actual number of (Juts as described by

theabove equation, will be checked for consistency, as opposed to an inflated value

"'~iir;~nby ('1•.it l)«(]z + 1) ... (qn + 1).
In order to generate only those sets of events that form cuts as defined by the

causality of processes , it is necessary to allow processes to be 'enabled' and 'disabled'.

If Pi .-1' Pj then no eyents of process Pj can contribute to a cut unless the final event

of process Pi Is in the cut. Therefore, process Pj will he marked as disabled until

the final event of Pi has been put in the cut. The algorithm proceeds by working

through each process, adding events (in order of occurrence) to the cuts, After each

process has had the opportunity to contribute an event, the cut is defined and can

be checked for consistency. The procedure is started by the call ~en_cuts (0).

l'This is the same as the more detailed equation presented in Section 3.4.4 since if Pi E :P,
{PJ I Pi 1-+ P,} == 0 and 1111 = 1.
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gen_ctl;t-,a(intpz ) "
if pr ~ total_number_of_processes

it consistent_G~t()
.increlnent consistent_cut counter

/» it each proce,.:S has
contributed an event *1

1* check cut tor consistency *1

aI/HI 1* still processes to contribute *1

gen_cuts(pr + 1) 1* with no event contributing from progess pr *1

it procass pr is enabled
while not last event. in process.pr 1* add each event in turn

from proGeSs pr to the *1
add next event to cut 1* cut, except last one *1
gen_cuts(pr + 1)

~nable next processes
gen_cuts(pr + 1)

disable next processes
1* with last event from process pr *1

Function consistent_cut

As described above, the vector clocks of the events that form a cut can be examined

to determine whether the cut is consistent. The condition that is required to hold

on the vector clocks can be rewritten as follows:

sup(Tl?"" Tn) ::::(T1[1], ... ,Tn[n])
{4' \lp E {l, ... , n} m!tx Tj[p] ::::Tp[p]

15;.?$n
~ 'Vp,jE{l, ... ,n} Tj[p]$ Tp(P]

Consider j and Pi there are four distinct scenarios that can occur with respect

to membership of Ee:

• jjp E Ee, then l'j[p] ::::0 ::::Tp[pL and the condition holds,

• j E Ee and p rf. EOI then Tjtr)] ~ 0 ::; Tp[P], and the condition holds,

• j ~tEo and p E Eo, then Tj[pJ > 7;.,[P) :::: 0, and the condition does not hold,

• i,» rf. EOI then Tj[p] > 0 and Tp[p] > 0 and these two values must be explicitly
checked to determine if the condition holds.
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To minimise the time involved in accessing complex data structures, the above

scenarios were used to derive an algorithm that first determines if a process has

contributed an event to the cut before explicitly checking the clock values. As soon as

a counterexample is found, it can be indicated that the cut is not consistent. However

if a cut is consistent it re-quires O( n2) operations to show this. The algorithm can

be described as follows;

fore p = OJ P < total...number_ot_processes; p++ )
:for( j = 0; j < total...number_ot_processes; j+ )

if j E Ee
1* do noth.ing since 1j []I] = 05 Tp(P] *1

else if p E Be
return (talse)

else it 7j [P] > Tp [P]
return(talse) 1* condition tails *1

return(true) 1* condition true, cut is consistent *1

1* condition fails *1

4.5.1 Analysis of algorithm

In this section,,! will present a worst-case analysis of the algorithm used to check for

consistent cuts. This analysis is an extension of an analysis presented by Charron-

Bast [16]. The number of cu~s to be checked can be described by the following

formula
n

""c = IIcuts(Pi) where cuts(Pi) = qi + II cuts(i'j).
PiES {PjIPj .....PJ}

The worst case occurs for a. given n where n is the number of processes when there

is no causality between processes, namely when

then there are ""C == IIi=1 (qi + 1) cuts to be checked.
To analyse this algorithm the following inequality which is derived from the

relationship between geometric and arithmetic means [21] is required

n IT(qi + 1)::; L:i=l{l]i + 1) :::;~ + 1 where q =t qj,
i=l n n j=1

therefore
nIT (qi + 1) ::; (!i + 1t.
i=l n
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From this, pC can be expressed as
11

J.tc::: II(qi + 1) :$ (q/n +n-.
i=l

Note that in the case where all the qi's are equal, namely

Vi E {I, ... ,n}, qi::: s!»

then

and hence the upper bound is achieved in this case.
Also in the worst case it takes n2 steps to check a cut for consistency which

therefore gives an upper bound of n2(q/n + 1)11 steps to generate and check all cuts
for consistency.

This gives an algorithm of O(qll /nll-2) where q is the total number of events in
the computation and n is the number of processes. Although it has not been shown
that this is a tight upper hound for solving this problem, it is the tightest upper
bound known.

It would b~ l'bfficultto per'orm an average case analysis as this would require the
knowledge of the probabillties associated with the occurrence of certain computation
structures. However, an approach to the average case can be demonstrated as
follows. Assume that on average, when a cut is not consistent, it will requite half
the time used for determining If a cut is consistent to discover this, and let t be the
time required in ~heworst case, then time taken in an average Casecan be described
as

'!!"'t + (pc - J.t)! = .(IL + }tc)t E 0(t).
Jtc P.c 2 2p.c

This shows that even in; an average case, the algorithm remains exponential.
Fidge [32] notes that the calculation of p. requires l:l$i$n nqj integers to be

stored. Using q as defined above, this can be written as

n n

2: nqi ::::n 2: qi = nq.
i:::l i=l

In the implementation of the Concurrency Measurement Tool, assuming an average
number of restrlctions per event, let the number of bytes required to store an event
be Ct. The total number of events is defined above by q, and n is the total number
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of processes, Dummy events are required in some circumstances, but more than q

dummy events are not possible. Sc the space required for the event tree is 2clqn. If
each process requires C2 bytes to be stored, then C2n bytes are required to store all

processes in the process structure. This gives a total of n(2cIQ + C2) bytes for these

two data structures, or space complexity of O( qn) which correlates with Fidge's

result.

These results show that the algorithm implemented is expensive. In the next

section, other approaches will be discussed after which experimental timings for the

program be will compared to the above theoretical result.

4.5.2 Other algorithms

The research done here did not focus on finding the roost efficient algorithm to

perform the counting of consistent cuts, so in some sense the algorithm used is
j

naive. In the literature, however there are indications that an efficient algorithm

has not been found. Ra.YMl et al [59] note that the calculation of f.J, is not feasible

but do not give any further details. Fidge [321notes that the space requirements for

calculating f.J, are expensive.

Charron-Bost [14, 16] has derived an algorlthm based on her result that relates

the number of consistent cuts to the 'number of aatlchains in the partial order. The

algorithm first determines all 2-an.tichains and from these, builds the k-antichains

for k 2: 3. She notes that the algorithm is efficient only when tl\ere are few 2-

antichains in the computation under consideration. This occurs because if there are

few 2-antichains, there are few k-alltichains for k > 2. This is. the same as saying

that, the algorithm is efficient when there is little concurrency in the computation.

The analysis of this algorithm is complex and requires determining the number of

k-antichains for each k in terms of the number of 2-antichains. I have investigated

this algorithm further and found it to be O((nq)n+l).
Kim et al [44] present an approach whereby they divide computations into con-

currency blacks, and count the number of antichains in each block. This results in

an approximation to m that is faster to compute; namely O((nq}n/bn-1), wher~ I.
is the number of concurrency blocks. ',--,

The algorithm that is used in the Concurrency Measurement Tool also exhibits

that property that the less concurrent the computation, the faster it is to count

consistent cuts, as the procedure to check for consistency needs to find one index

pair for which the condition does not hold to show that a cut is not consistent,
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Figure 4.1: An example computation.
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although as shown above it does not affect the complexity of the algorithm.
It!would seem therefore that all algorithms proposed in the literature ate ex-

ponential. However, in term~ of the algebraic expressions found by the analyses,
Charron-Best's antichain algorithm is the more expensive. Depending on the rel-
ative sizes of it 'and b, the analyses of algorithm that I have implemented and the
algorithm proposed by Kim et al are similar, but the latter algorithm is less desirable
because of the inaccuracy involved in the approximation of m.;

A few different approaches have been suggested that attempt to take the struc-
ture of the graph into account, however their worst case analysis appears to be the
same as the algorithm given above. A basic approach to improving the algorithm
is to eliminate the generation of cuts that are not consistent. This can be done by

.t

'knowing' where the communication events are in a graph. Consider Figure 4.1-1et
the current cut be defined by (l dh U(l e)2. It is not consistent and in fact it will
only be consistent once the algorithm ha~,reached the cut (t d)l U (t c)2. If the
communication events can be located, then it should be possible to avoid checking
the cuts created by adding f and g. In some sense, it is necessary for the algorithm
to determine why the cut is not consistent, namely in which processes the inconsis-
tency occurs and how to skip it. This may require an additional data structure to
retain the communication structure, but this is an issue for furthe- research.

4.6 Use of the Ooncurrency Measurement Tool

As mentioned earlier in this chapter, the CCS agent is input via a file, \,je calculation
is performed, and m, It, its, ltc, the number of events, the number of C'\' ',:ulnication
events, and the time taken to obtain It are output.

To determine the maximum and minimum values for the measure of a specific
CCS agent, it is necessary to determine if there is any Summation in the agent
that may cause a number of distinct computations. If this is the case, the cas
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agent must be decomposed into a number of agents that represent the different
computations that. can occur. These agents are measured individually by distinct
executions of the Concurrency Measurement Tool and the maximum and minimum
vrJues for the original agent can he determined from the values obtained. An area
of further research is to automate the decomposition and the presentation 6£ the
maximum and minimum values.

4.6.1 Experimental error

As there is no possibility of different values for the measure being obtained from
different experiments on the same agent, the issue of experimental error does not

/'

playa major role in this research. The execution times presented later in this
chapter form the only,opportunity for experimental error; however they do not form
the crux of this research.

4.7 Performance of Concurrency Measurement Tool

The Concurrency Measurement Tool consists of 1740 lines of optimised ANSI C
code, and was executed on a Silicon Graphics Indigo workstation with on a 50Ml{z
MIPS R4000 processor. In the experiments that were performed the number of
cuts checked per second ranged from 83,000 to 168,000. This would indicate tl' 'at, \

although the algorithm is exponential in the number of processes, it is still fea~~l~
\'. \ \

to calculate the measure for CCS a:gents as long as the number of events and f\! I, •

ceases remains within a reasonable range. For example, in the largest experiment
performed, there.were 60 events, 23 processes and 1.8 X 109 cuts to be checked. Of
these, 11,836were consistent and it took 2.2 x 104 CPU seconds to check the cuts
and calculate the measure.

Table 4.1 presents a comparison of theoretical and actual execution times across
. a number of experiments for different values of q and ti. The first two columns
give the values of nand q respectively. The third column gives the number of CPU
seconds taken to calculate the number of consistent cuts, and the fourth column gives
the predicted number of operations obtained from the analysis of the algorithm as
given in Section 4.5.1. The final column presents the ratio of the third column
to the f0111'thcolumn. These figures in the final column range from 2.07 X 106 to
112.16 ~~106• This range indicates that the number of operations given by the
analysis does to a fairly large extent predict the CPU time required to calculate the
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n q seconds operations operations /
(n2(q/n + l)n) second

4 20 0.01 2.07 x 104 2.07 X 106
5 28 0.06 3.1;~ x 105 5.22 X 106

8 40 12.91 1.07 X 108 8.33 X 106
8 48 33.68 3.69 x 108 10.95 X 106
8 64 144.08 2.75 x 109 19.12 X 106
8 96 885.80 5.22 X 1010 58.94 X 106

in ),56 1027.24 1.57 x 1010 15.27 X 106

10 64 2138.93 4.92 X 1010 23.02 X 11)6

11 56 \)91.0.80 5.18 X 1010 27.11 X 106
11 64 4100.32 1.79 X 1011 43.68 X 106

10 80 6900.07 3.49 X 1011 50.53 X 106
11 80 13398.80 1.50 X 1012 112.16 X 106
12 60 22366.00 3.13 x 1011 14.02 X 106

Table 4.1: Comparison of actual and theoretical times.

nnmber of consistent cuts. This confirms the analysis of the algorithm presented in

Section 4.5.1.

4.8 Extensions to the Concurrency Measurement Tool

One important extension is the addition of a preprocessor to apply Relabellings and

determine the different computations that result from the Summation operator, as

currently it is necessary to create individual input files by hand. The program can

also be extended to deal with these different files and to print all results including

the minimum and maximum of the mea-Slues. A preprocessor could also he used in

the case of probabilistic CCS [55] where actions are assigned probabilities. Then a

weighting can be determined from these probabilities for each possible computation~> i \

and a measure can be determined for the whole algorithm. This is discussed further

in Chapter 6.

Other extensions discussed in Chapter 6 relate to extending the subset of CCS

for which the measure is defined. To make these extensions to the measure usable,

the Concurrency Measurement Tool would also require modification. In general,

the idea would be to extend the map of CCS to the message-passing formalism, and

hence the underlying algorithms are unlikely to need much alteration.
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;1.9 Calculation of other=measures

The otg'!// measures that have been defined in the message-passing formalism are
\. j-. (

W J14], p (15), fJ [:l2] and (\' [59] (see Chapter 2). In what follows, modifications

required to enable the Concurrency ¥~a.surement Tool to calculate the measures

will be briefly detailed.

,;rhe measure w This measure is a special case 01 m and can be calculated by

determining the number of ronc~J.:rreJitpairs of events in tJ::l,ecomputation. The data

structures would remain the same.antl a function could be added to perform pairwise

comparisons of events. If the antichain algorithm is used to count the number of

consistent cuts then finding the number of concurrent pairs will be part of this

algorithm as these are just the 2-antichains.

The measure J3 The calculation of this measure requires two additions. First

linear logical dock/times a~e required in the calculation of the measure. The second

addition-is more complex as it. requh';s changes to the message-passing formalism,

since the clocks must be integrated' ~t~\e end of the computation, namely

0nnal = sup 0(aqJ.
{P,jP(f;P!

It is necessary to check that this is a reasonable approach when applied to CCS

agents. In "ms of the Concurrency Measurement Tool, however it is a relatively
I .

simple mo~taca,tion.

The measurea This measure requires an additional vector counter j,1' which to

be added to the evenn.data structure. As for th~ measure {3, the values of both e
and Ware integrated at the end of the computation. 4ain the modifications are

relatively s1~-nple.

The measure p This measure is not defined in terms of vector clocks and hence

the modifications required are more difficult. p is defined in terms of event and

message times and the values of the measures can be determined analytically if

the number of events and communication events are known. Therefore the data

structures and functions used by the Concurrency Measurement Tool would not be
i-·'

required and a new Pl'og!'1tm should be written.
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4.10 Summary

In this chapter, the Concurrency Measurement Tool was discussed, including ,the

algorithms used to calculate the measure, the most important of tJ"se being the

algorithm used to caldia.te u, It was shown that this algorithm was exponential

in n, however it was posslble to calculate the measure for agents of a reasonable

size. Other algorithms, extensions to the Concurrency Measurement Tool and the

calciilatlon of other measures ,;,ere discussed. In the next chapter, results of exper-

iments performed using the Concurrency Measurement Tool will be presented and

discussed with respect to the criteria, used for evaluating the concurrency measure.



5.. Results and evaluation

In this chapter. the results of ~xperiments performed on CCS agents using the
Concurrency Measurement Tool will he documented and interpreted. First, a review

of the evaluation criteria described earlier in this document will be presented after

which the experiments that Were performed to evaluate m will be discussed in detail.
This discussion will include the aim of each experiment, the agents chosen, figures
C·,

that include the measure for the agent and other relevant information, and a short

Interpretation of the results .. Following this there will be a section that consists of a

fuller discussion of the results ohtained and an evaluation of the measure in terms of

the criteria. The next two sections will present suggestions for an improved measure

and a dlscussion of' this new measure in terms of the criteria.

Finally, the application of a measure of concurrency to ecs will be discussed

and it will he argued that this has resulted in new methodology for the evaluatlon

of concurrency measures defined in the message-passing formalism.

5.1 A review of evaluation criteria

This section presents a summary of the criteria presented in Chapter 2.

tI Intuitive understanding of the measure (p. 9) [14]

,. Being well behaved for small examples (p. 9) [14,. 15]

• Compatibility with operators on computations (p. 9) [15, 18; 32)

• Usability and applicability (p. 13) [15,45]

• Abi.ijty to calculate measure for a. specific event (p. 14) [32, 59]

~ Expense of computation in terms of both time and space (p. 14) [32, 38, 59}

• Stability with respect to granularity (p, 14) [16]
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5.2 rrhe experiments

The Concurrency Measurement Tool will be used to perform a number of experi-
ments'that have been designed to evaluate m with respect to the issues discussed
above, The presentation format for each experiment contains th.e ecs agents or a
description of them, a short description of the aim of the experiment, the results of
th~.experiment and a brief interpretation of the r~~ults.

5.2.1 Experiment A: Simple example

Al dl~f
(C.C1.1'(/·'.<l·a·a.a4.0 I c.ul·b2.hb4.0)\::

A2 <!!:.f (al.c.lL2.l£3.a4.0 I U1·<:.02.b3.b".0)\ c
0' ,bf

(al.a2.c•ll.3.lL4'0 I b1.b2.c.bs.b4.0)\cThe agents A3
: defA,,' (aI.(L2·it3.C.U4'0 I bl.b·~.b~:c.b4'0)\C

As ekf (al.(t2.aa.(/4·C.O I bl.U2.b3.04.C.O) \c

The aim; To investigate the behaviour of the measure on a. simple example.

JLC 41,3 It m

Al 36 10. 26 0.62

The results : A2 36 10 20. 0..38

As 36 10. 18 0.31
A.i 36 10 20 0.38
As 36 10. 26 0.62

Interpretation: In Figure 5.1, the space-time diagrams are presented fofiEx-
perimant A. The results show that there is a symmetry displayed about the middle
:;ofthe computation, which was not expected. The closer the communication is to
the middle of the computation the less concurrency there is. TUs can easily be
explained hy the fact that communlcatlon in the middle of the computation can
affect a. greater number of events, therefore the processes in this computation are
more susceptible to blocking.

5.2.2 Experiment B: Simple example

The agent :



CHAPTER 5. RESULTS AND EVALUATION 83

The aim: To .see how the measure changes as the number of events in each

precess increases.

.i.:J

J.LC J.Ls J.L m
Bl 4 1 1 0

B2 9 4 5 0.2
B4 25 8 17 0.53
BIO 121 20 109 0.8

B100 10201 200 10001 0.98

The results :

Interpretation: In Figure 5.2 the space-time diagrams are presented for Ex-

periment B. The measure seems to extend across the whole of [0,1) for increasing
\1

values of n, It should never reach 1 unless the single communication event in the

graph' is remove« ...The fact that. the amount of C;l1ncurrency increases is in accor-
",\

dance with the expected behaviour of such an example, because as the number of
"

events increases, a single communlcatlon event has less effect on the concl0.,'f,encyof

the computation.

5.2.3 Experiment C: Composition operator
defC1 (Cl.lti.C2.0 ICl·C3.C2.0 I a2.c3.a3'O)\ {Cll C:hc:,:1}

C2 (~I (cl.al,c2'O I Cl.C3,C2.0 14'l.C3.as.O)\{Cl,C2,C3}
(cl.nl.c2'~ ICl·C3·C2'O I a2.c3.a3.0)\ {Cll C2,C3}

The agents:

"

The aim: To Investigate the behaviour of the measure when using the Compo-

sit ion operator ...

J.Lc ItS Jt m
The results : C1 64 7 12 0.0877

C2 4006 13 144 0.0321

Interpretation The agents for this experiment are described in Figure 5.3.

This experiment is used to determine the action of the measure under the CCS

operator Composition. As described in Section 2.2.3, it would be reasonable to

expect the amount of concurrency to increase. However, in this experiment there is

a decrease in the measured concurrency,
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c at (!z (£3 a4 al az a3 c a4..,___._______..,.. .
IeAl

b1 b,2 .h 64 A4
b b'J, b3 b,4C -

\ I
\\
I

t:=' iL2 .:t;i lL4
~a3" c-1 .

~p-bft j..:A2 \!C 62 iii} b~
A5

I
I

Figure 5.1: Experiment A.

-------------------------------------.--------------------

c b

....

Figure 5.2: Experiment B.
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5.2.4 Experiment D: Prefix operator

The agents:

The aim:
operator.

To investigate the behaviour of the measure when using the Prefix

p,e JtS Jt m
The results: Dl 04 7 12 0.0877

D2 (:i7 10 15 0.0877

Interpretation; The agent for this experiment is shown in Figure 5.4. In this

experiment, the effect of the CCS operator Prefix on the measure WaSinvestigated.

As can be Seen from the above table there was no change in the measure.

5.2.5 Experiment E: Par operator

E1 deC (j.m.1J.O I k.p.q.r.done.O II.n.q.O) \ {p, q}

Ei (~[ E1 Far E1
def - {((j.m.p.O I k.p.fj.T.ll1'O II.n.q.O) \ p, q} I

b.(j.m.p.O I k.p.7j.r.d2'O Il.n.q.O)\{p,q} I
The agents:

The aim
operator.

To investigate the behaviour of the measure when using the Par

ItC ItS It m
The results: E1 96 10 24 0.1628

E2 36864 20 554 0.0145

Interpretation The agent used for this experiment (and for the next) are

described in Figure 5.5. This experiment is used to determine the action of the

measure under the operator Par. As described in Section 2.2.3, it would be reason-

able to expect the measure of concurrency to increase, but to a, lesser extent than

with the Composition operator because an additional agent is introduced by the

Par operator. As can be seen from the results, the measure decreases.
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\ ( ~"

Cl al C2

Cl C3 C2

a2 C3 a3

Cl al C2

Cl (;3 C2--........

a2 C3 a3

Figure 5.:3: Experiment C.

I
I bi b.2r-.-
I

Figure 5.4: Experiment D.

n q

Figure 5.5: The agent fOI' Experiments E and F.
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5.2.6 Experiment F: Before operator
def --Fl (i.m.p.O I k.p.q.T.dona.O 11.n.q.O)\ {p, q}

The agents:
F def

:.1
def -((i.m.p.O I k.p.q.r.b.O Il.n.q.O) \ {p,q} I

b.(j.m.p.O I k.p.q.'r.done.O Il.n.q.O)\{p,q})\b

The aim:

operator.

To investigate the behaviour of the measure when using the Before

p.e f.ls ,i m
The results : Fl 96 10 24 0.1628

F~ 9312 19 47 0.0030

Interpretation: This experiment is used to determine the action of the measure

under the operator Before . As can be seen from the results, the measure decreases

significantly.

()

5.2.7 Experiment G: Dining philosophers

The next set of experiments involves the dining philosophers problem which was first

proposed by Dijkstra [28]. This problem is of interest because it is a classic prob-

lem in concurrent systems, and involves mutual exclusion with multiple resources.

Solutions to the problem must ensure that deadlock does not occur. Two solutions

are investigated:

L The room-ticket solution, where there are n-l room-tickets which ensure that

deadlock cannot occur because it only allows n - 1 philosophers in the room

at one time [12].

2. The solution when n is even, where philosophers Pi for i mod 2 = 0 pick up

their right forks first and philosophers Pi for (i + 1) mod 2 = 0 pick up their

left forks first. This prevents a. situation where all n philosophers are holding

a right fork and cannot obtain a left fork. This will be referred to as the

odd-even solution [47].

The agents used for these experiments are detailed in Appendix B. To facilitate the

comparisons of results the notation ;cPy is used, where a: indicates the number of

philosophers in the experiment and y indicates the number of eat and think actions
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that occurs. In Experiment G" philosophers alternatively perform one <eat' action
and then one 'think' action. In Experiment H, the number of eat and think actions
is increased.

Ch 2 philosophers
r:
odd-even solution 2pl

0.2 4 philosopher" odd-even solution 4p1

The agents 03 f) philosophers odd-even solution. 6pl..
0.4 2 philosophers room-ticket solution 2pl

I

05 4 philosophers room-ticket solution 4p1

The aim: To test the usahlllty and applicability of the measure for comparison
of real distributed algorithms.

ftC p,s p, m
G1 1.22 X 103 1.30 X 101 2.00 X 101 5.78 X 10-3 2p1

G2 1.50 X 106 2.50 X 101 1.72 X 102 9.79 X 10-5 4p1

'I'he results :
G3 1.84 X 109 4.20 X 101 1.18 X 104 6.42 X 10-6 6p1

G4 1.01 x 104 1.70 X 101 2.50 X 101 " 4 2p17.92 x io-

Gs 1.03 x lOS 3.30 X 101 2.51 X 102 2.13 X 10.....6 4p1

1.85 x 108 a,Mix 101 4.49 x 102 2.25,x 10-6 4p1

Interpretation: The interpretations of experiments G and H are related, there-
fore the interpretations will he dis(:Uss~dafter the presentation of Experiment H.
Note, however, that the values are very small and decrease as the size of the example
increases. There are two results for G5 since there are two computations that can
occur. The smaller of these values is listed first as the minimum measure for the !\
algorithm, and the larger second as the maximum measure.

5.2.8 Experiment H: Dining philosophers

In the final experiment, the number of think and eat actions was increased for each
philosopher, to see what effect a lower ratio of communication events had on the
amount of concurrency and to test for stability with respect to granularity.
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G2 4 philosophers odd-even solution 1 eat 1 think 4pl

H1 4 philosophers odd-even solution 2 eat 2 think 4p2

H2 4 philosophers odd-even solution 4 eat 4 think 4p4

The agents:
H3 4 philosophers odd-even solution 8 eat 8 think 4p8

G5 4 philosophers room-ticket solution 1 eat 1 think 4p1

H4 4 philosophers room-ticket solution 2 eat 2 think 4p2

H5 4 philosophers room-ticket solution 4 eat 4 think 4p4

The aim: TO test the usability and applicability of the measure for comparison

of real dis/Mlmted algorithms and to test for stability with respect to granularity.
I!

12,;:;',

jI,c ItS J.t m

G2 1.50 X 106 2.50 X 101 1.72 X 1(12 9.79 X 10-5 4pl
HI 4.10 X 106 3.30 X 101 5.12 X 102 1.17 X 10-4 4p2

lIz 1.79 X 107 4.90 X 101 2.52 X 103 1.38"x 10-4 ip4

H3 1.22 X 108 8.10 X 101 1.94 X 104 1.59"x 10-4 4p8

The results :
L03x lOB 3.30 X 101 2.51 X 102 2.13 X ),0-6Gs 4pl

i.se X 108 3.30 X 101 4.49 X 102 2.25 X 10-6 4pl

H4 4.12 X 108 4.10 X 101 1.03 X 103 2.41 X 10-6 4p2

'2.29 X 108 4.10 X 10 6.93 X 102 2.85 X 10-6 4p2

H5 1.42 X 1!)9 5.70 X 101 3.95 X 103 2.73 X 10-6 4p4

7.91 x 108 5.70 X 101 3.13 X 103 3.88 X 10-6 4p4

Interpretation The interpretation of these results will be presented in the next

section. From the results, it can he seen that additional internal events reduce the

amount of concurrency measured. As in the previous experiment, for each of the

room-ticket solutions, two values are obtained for the two different computations
,I

that Can occur. They represent the minimum and maximum values found in each
experiment.

5.3 Discussion and evaluation of m

A number of issues arose in the experiments, which will discussed under the following

headings:
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Behavlour of the measure with respect to parallel operators The be-

haviour of the measure when using the Composition operator can be explained as
follows: .~

II the number of cuts in the totally concurrent computation is squared

II the number of cuts in the computation itself is squared

iii the number of cuts in the sequential computation is doubled and decremented

by one.

Considering experiment C, this means that m(Cz) can he expressed all

(/tCI)2 - (2.uCI ~ 1)
(/tCI)2 - (2/LC1 - 1)

where /tOI , Ilel' /Lcl are the relevant measures for computation Cl,
Since liCl / Pel < 1, (p.cI !ltC!)2 < PC) PCI' Assuming that the size of /tB is

small with respect to pC and u, as in this experiment, the value of m must decrease.

The operator Par was used in Experiment E and it too can be tegarded as a

parallel operator. In this experiment, the measured concurrency decreased and this

decrease can be explained hy a,similar argument to that given above. Note.ihowever,

that there is a sharper decrease in concurrency. This can be explained by the fact

that the Par operator defines an extra agent, dl.d2.done.O + d:).d1.done.O, to he

used for synchronisation purposes.

Both of the results from Experiments C and E contradict the expectation that

as discussed in Section 2.2.3.

Behaviour of the measure with respect to sequential operators The fact

that m does not change when the Prefix operator is used as explained in Experiment

D can he explained by the fact that. a constant number of cuts is added to each

element of the equation. This means that m(D2} can be expressed. as

(PDt + c) - (jJ'Dl + c) _ ItDI - J.~bl
(ltDt + c) - (Itbl + c) - jt'D! - ItDI

where PDI, .ubi' PDt are the relevant number of cuts for computation D1.
There are two possible explanations for why the measure does not change in the

presence of sequential operators as presented in Section 2.2.3; first, if the component
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compntarions are the sama: and second if the component computations are ~ .quen-

tial. As can be sesn, neither hold in this case. The Prefix cloes in a very strong

sense make the computation more sequential and the fact that the measure does not

change, means that the measure can not express this.

Experiment F deals with a sequential operator which is more similar to the

sequential concatenation presented by Fidge and Charron-Bost than the Prefix op-

erator, In the presence of the Before operator, the amount of measured concurrency

decreases, and this agrees with the expectation that

MC(C'""C") s max(Mc(C'), MC(C")).

The dining philosophers experiments It was unexpected that thE!measure

would be so small for these examples, and th~fLthe measure would become smaller as

n increased. Consider, for example, experiment G4(2p1) where only one philosopher

can eat at one time because there is only one"roo~-ticket. This would indicate that

the system is in some sense serial, however this ~Iystem has a higher concurrency

measure than G5 (4p1) where two p~il~sophers 1r11 eat simultaneously (although
three philosophers have access to the dining room)11In fact, because the values are so

small and cover such a small linearrange, the use of these values for the comparison

of different algorithms is difficult to justify.

There are two basic approaches to comparison; taking the absolute value of the

difference of the two values (additive comparison) or taking the ratio of the two

values (multiplicative comparison). Because the measure takes on values in the

range [0,1], additive comparison is Inappropriate, because the values are bounded.

Multiplicative comparison seems more valid to apply to a measure that returns

bounded values; and this approach will be taken here.

When G2 (4Pl) and G5 (4p1) are compared, the ratio of the first to the second is

42.61. Although it can be said that the odd-even solution has less message passing

than the room-ticket solution because there are no room-ticket agents, it seems

unreasonable to say that the odd-even solution is 43 times more concurrent than

the room-ticket approach. Also note the overlap in the room-ticket example--the

minimum value for H5 (4p4) is less than the maximum for H4 (4p2), so these values

do not distinguish hetween the different algorithms,

It can he seen from the relative sizes of JJ,c, j1s and j1 that J.tc dominates the value

of m. Hence, the values obtained it, the experiment are small because j1r. occurs in
\

the denominator. From this, it can he argued that the algebraic expression for m is
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m n ifiil
G1 5.78 X 10-3 4 0.2757 2p1
Gz 9.79 X 10-5 8 0.3154 4pl
G3 6.42 X 10-6 12 0.3692 6pl
G4 7.92 X 10-4 5 0.2397 2pl
G5 2.13 X 10-6 10 0.2709 4pl
G5 2.25 X 10-6 11 0.3066 4p1
Ih 1.17 X 10-4 8 0.3224 4p2
H2 1.:38X 10-4 8 0.3293 4p4
H3 U59 X 1O~4 8 0.3351 4pB
H4 2.8& '(. 10-6 10 0.2789 4p2
H4 2.41 X 10-(1 11 0.3085 4p2
H5 l 3.88 X lO-H 10 0.2ff77 4p4;/
H§,;::;/ 2.73 X 10-6 11 0.3121 4p4

~~::-::>_/

TaNe 5.1: The nth root of m

-""

ill behaved.
To support this argument consider Table 5.1, where the nth root of m is presented.

for both Experiments G and H. As can be seen from this table, ytm ~ 0.3. If it
can he assumed that :.tm is in some sense constant then this irn.l:"U~',that m ~ O.3n•

This has two consequences+first that the value of the measure appe?:f~to be related

to n and second it would appear by extrapolation that as it -+ 00 then m -I- O. This

also implies that the measure is inversely related to n,' namely as n increases r, m

decreases.

\~rheinterpretation given above relates to the experiments performed using the

dining philosophers agents. It would be desirable to be able to generalise these

results to all algorithms. Unfortunately this is not possible, because of particular

features of the dining philosopher problem that may be unique to this ~lgorithm,

for example, the fact that the number of processes correlates with the number of

communication events. However, thls has shown that there are algorithms for which

the measure does not behave well.

The effect of changes In granularity Within the agents for each type. 'of solu-

tion to the dining philosopher's problem; there is little change in the measure as the

number at non-communication events changes. This can be explained by the fact

that the addition of non-communication events is causing f1. and ftC grow " ....srmner
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rate. Charron-Bost states that she did not 2~J)ect m to be stable with respect to

granularity as it is a measure based on a causal relationship: thi~viewpoint call also

be iustified by the fact that the addition of more non-communication events results

in a computation that will he more tolerant to blocking and this approach will be
adopted here. Hence, the measure does not. display the expected change when there

is a change in gra,nuI:'tiit,y:.

5.3.1 Evaluation of m with respect to the criteria

The measure 'Tn will he evaluated in terms of the criteria presented at the beginning

of the chapter. A short description will he given for each criterion and a summary

of these points and the preceding discussion will be presented afterwards.

Intuitive understanding of the measure The measure has a good intuitive

base as described in Section 2.2.1. The concept that the number of consistent cuts

in a computation is an indication of its tolerance to the stopping of individual

processes is valid,

Being well behaved for simple examples The two experiments (A and B)

performed on m would indicate that it is well behaved. The concurrency increases

in a way that is expected; although the symmetry found in Experiment A was

not expected. However, this symmf")'Y can be explained as follows: the single

communication event divides the computation into two parts? and the number of

consistent cuts in the computation equals one plus the number of consistent cuts in

the first part plus the number of consistent cuts in the second part. Hence, whether
" I '

the larger part comes first or second does not affect the number of consistent cuts.

Note that this only applies in the case of two proce~~ses.
//

, c

Compatibility with operators The foul' experiments performed to investigate

this had mixed results. 10 the case of the parallel operators, Composition and Par

the measure deereased-vthls would indicate that the measure is not compatible

with these operators. In the case of the serial operator Prefix, the measure stayed

the same, which cannot he explained in terms of the operator. Finally, the Before

operator yield~(J;the expected decrease in concurrency and hence it WOuldseem that

m is compatible with this operator, although this has not been shown that this is

true in all cases. By using the ecs operators, it has been possible to corroborate
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Charron-Best's results concerning compatibility with operators and moreover, to

show analytically why these results occur.

Usability and applicability The measure was tested on two solutions of the
dining philosophers problem. For all examples, the measure produced very small

values on a small subset of [0,1]. This can be explained by the fact that the algebraic

structure of the equation defining m. and the manner in which fJ,8, JL and It~ grow,

causes I~c to dominate the resultant value of the measure. The measurement of con-

currency for the dining philosophers solutions did not distinguish a mar's concurrent

algorithm.

This has shown the measure does not work in some instances. It may be possible

that the example chosen h~s certain peculiar characteristics that prevent measure-

ment of concurrency, although the analytic results dealing with operators on compu-

tations suggest there are more fundamental problems with the measure. However,

the dining philosopher? example does show that in general, 11,1, cannot be used to fO

~ompare algorithms.

\\ Ability to calculate measure for a specific event The measure m cannot he
\\

calculated for a specific event, although it may be possible to extend the measure.

However, the geometric interpretation (which has not been dealt with in detail here)

can be used to determine which events in the computation are causing a reduction

in the amount of conctll'l'~~cy.
)1

(' /"

Jl
Lack of expense of computation In Chapter 4, it was shown that the algorithm

used to calculate the number of consistent cuts in any given agent was exponential in

the number of processes. It was, however, possible to calculate the measure with the

computing power available, wit.h 1.4 X 109 cuts being the largest number ChE eked

for consistency in any experiment. The possibility that consistent cut counting is
intractable needs further investigation.

Stability with respect to granularity It was shown that the measure showed

some stability with respect to granularity, although this contradicts the expectation

that the measure would change as the granularlty changed.

Summary The more important issues rising out. of the evaluatlon of m are as

follows: m is not compatible with a number of operators, it returns very small
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values, it is expensive to calculate, the value of Itc appears to dominate the value of

tn since it grows faster than It 01' u", These results show that m does not meet the

criteria for evaluation 1.1t<1 this contradicts hath Charron-Bost [14, 16} and Raynal

et al [59].

As shown in the previous sections, the measure m has a number of flaws which can

be explained by the fact that tIC dominates the value of the measure. To solve these

problems, m was redefined and the new measure is defined as

log It - log ItS
mnew == log Itt .~log p,s .

This form was chosen because taking logarithms reduces the size of the values, and

should thus prevent lie from dominating the measure.

Two other algebraic. forms were considered, however they did not prove to be as

successful, although the results were similar to those of mnew. They were

. . .Jii - /ii'S ifji - W
m~~w :::: ~f;:: Jii""= and ffinew == nr;;c #'v ftC '". It·~ V pC - " Ils

The results of the experiments with the new measure are presented in the following

sections. Refer to Section 5.2 for further details of the experiments,

5.4.1 Experiment A: Simple example
\~//

Ite ItS Jt rn 17lnew
Al 36 10 26 O.(i2 0.7459

The results : A2 36 10 20 0.38 0.5411
A3 36 10 18 0.31 0.4589
A4 36 10 20 0.38 0.5411
As 36 10 26 0.62 0.7459
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5.4.2 Experiment B: Simple example
pC ItS Jl m mnew

Bl 4 1 1 0 0

The rcs1ts :
B2 9 4 5 0.2 0.2752

L B4 25 8 17 0.53 0.6615
<: BlO 121 20 109 0.8 0.9420

BWD 10201 200 10001 0.98 0.9950

5.4.3 Experiment c. Composition operator

ILC IttJ It m rnnew
The results : ex 64 "' 12 0.0877 0.2436I

C2 4096 1;) 144 0.0321 (1.4180

5.4.4 Experiment D: Prefix operator

rC I(.s It 1ft 'rnnewI,
\\

The results . Dl {)4 7 12 0.0877 0.2436.
D2 67 10 15 0.0877 O.21,l:~

5.4.5 Experiment E: Par operator

JtC JtS JL
The results : E1 96 10 24

E2 36864 20 554

m muew

0.1628 0.3871
0.0145 0.4417

5.4.6 Experiment F: Before operator

Itt p,s It m m'nc\V
The results : FI 96 10 24 0.1628 0.387'1

P2 9312 19 47 0.0030 0.1.462

iJ



CHAPTER 5, RESULTS AND EVALUATION

5.4.7 Experiment G: Dining philosophers

pC Jls It
G1 1.22 X 103 1.30 X 101 2,00 X 101

G2 1.50 X lOll 2.50 X 101 1.72 X 102

The results:
G3 1.84 x lOu 4.20 X 101 1.18 X 104

G4 1.01 X 104 1.70 x 101 2.50 X 101

Os 1.03 X 108 3.30 X 101 2.51 X 102

1.85 X 108 3.30 X 101 4.49 X 102

97

m mnew

5.78 X 10-3 0.0948 2p1

9,79 x 10-5 0.1753 4P1
6.42 x 10-6 0.3206 8p1

7.92 x 10-4 0.0604 2pl

2.13 x 10-6 0.1357 4F1
2.25 x 10-6 O.lG~O 4pl

5.4.8 Experiment H: Dining philosophers

p.c ItS Jl m m'new

G2 1.50 x 106 2.50 X 101 1.72 X 102 9.79 x'lO-s O.17g3 4pl

HI 4.10 x 106 3.20 X 101 5.12 X 102 1.17 X 10-4 0.2337 4p2

H2 1.79 x 107 4.90 X 101 2.52 X 103 1.38 X 10-4 0.3076 4p4

H3 1.22 x 108 8.10 X 101 1.94 X 104 1.59 x 10-4 0.3852 4p8
.~(

The results:
1.03 X 108 a.ao x 101 2.51 X 102 2.13 X 10-6Gs 0.1357 4p1

1.85 x 108 3.30 X 101 4.49 X 102 2.25 X 10-6 0.1680 4P1

H4 4.12 X 108 4.10 X 101 1.03 X 103 2.41 X 10-6 0.2002 4p2

2.29 x 108 4.10 X 101 6.03 X 102 2.85 X 10-6 0.1820 4»2

Hs 1.42 x 109 5.70 X 101 3,95 X 103 2.73 X 10-6 0.2488 4p4

7.91 x 108 5.70 X 101 3.1~ .. 103 3.88 X 10-6 0.2435 4p4

5.5 Discussion {ilnd evaluation of the new measure
\~.
>\

For Experiments A and B, l~e same trends are shown ~#"rrtncwas by m, although
there is a general increase in J)te values.

When applied to Exp~f!J)'1~nts C and E, muew seems a better measure than m
since the value it~I:';..~(i$~~ as the computation becomes more concurrent through use

<//

of the Compp~!tion operator and the use of the Par operator. However, it is possible
to find agents where this does not hold. Consider the agents Ei and E~where the

number of internal events has been increased (See Figure 5.6).
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Figure 5.6: The agent E~.

E' ~r
1

£' def
-2
E' def
3 =

(jl.h.js.m·lJ•O I k1·k2.1i:3.p.'ij.r.done.O I h.l2.l3.n.q.O)\{p,q}
Ef Par E{

Ei lEi

where the measure has the following values

mllew(ED ::: 0.82(38, mllew(E~) = 0.6369, mllew(E~) = 0.7514

. Once again, this co1fo,radic.tsthe expectation that
/,

).!

m(E~) ?: m(JWD and m(E~) 2: m(ED.

This contradiction (~an he explained hy the fact as Ij,c becomes very large, the value

of log lJ,c will still d iminate the value of the measure, hence as the agent size increases

because of concat~yationl the value of muew will decrease in some cases.

Considering th~\Experiments D and F, the value of mntJw now decreases, as was
\\

originally expected t\~th for Prefix and for Befere , Note also that the decrease

caused. by the Before operator is not as marked.

In both Experiments G and H, the values given by mnew are much increased on
those of m. Also as the number of philosophers increases in Experiments 01 (2p1),
G2 (41'1) and G3 (6Pl), so does the value of mnew, which seems more promising than

the values for m. Similar results are shown for the room-ticket example. However, it
is still difficult to compare the odd-even and rGo:..n-ticket solutions. It appears that

for the same number of philosophers and the same number of eat and think actions,

the room-ticket algorithms are less concurrent than the odd-even algorithms, This

can be explained hy the communication overhead required by the use of room-tickets.

Similarly as the number of non-communication events increases in Experiments

G1 (4rl), H, (4p2), H'J (4p4) and Ha (4p8), the measure also increases substantially,

This would show that mnew is less stable with respect to granularity than m.
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5.5.1 Evaluation of the new measure with respect to the criteria

The measure mllew will he evaluated in terms of the same criteria used in Section

~,.3.L

Intuitive understanding of the measure The measure mnew has a similar

intuitive base as Tni however the use of logarithms causes it to be less intuitive,

especially in the light of the fact that it does not seem intuitive that J.Lc dominates
I!

m.

Being well behaved for simple examples The two experiments (A and B)

performed on mnew would indicate that it is well behaved as m for these examples.

Compatibility with operators mllew shows more compatibility with Prefix, Par
and Composition. However, there exist agents for which mnew .loes not behave as

expected in the presence of parallel concatenation.

Usability and applicability The measure mnew produced better results on the

dining philosophers problem than m, The values of the measure were larger and

. increased as the number of philosophers increased. Different algorithms could be

distinguished by mnew• Further research is required on other examples.

Ability to calculate measure for a specific event mnew cannot be calculated

for a specific event, although it may be possible to extend the measure.

Lack of expense of computation In Chapter ~.it was shown that the algorithm

used to calculate the number of consistent cuts in any given agent was exponential

in the number of processes. Since mnew1 like m, is based on the number of consistent

cuts, it is as expensive to calculate as m.

Ci

Stability with respect to granulal·rty The measure mnew shows less stability

with respect to granularity then rn. As discussed earlier, this i!{ .he result that is

expected because m is based on a causal relationship and because the addition of

more non-communication events makes a computation mote tolerant to blocking.

Summary The measure m'lleW is better than m although it does not fully solve

all problems associated with m.
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5.6 Evaluation of the measurement of concurrency in
CCS

The focus of this chapter so far', has been on the evaluation of the measure m, Two
other important aspects of this research are the feasibility of measuring concurrency
in cas and the development of a methodology for the evaluation of concurrency
measures. In the next two subsections these points will be discussed in detail.

5.6.1 Measuring concurrency in CCS

In the course of this work it has been shown repeatedly by the fact that the evalu-
ation of the measure ni was possible that the concept of measuring concurrency in
ees is a workable one. Although the measures have been defined for a subset of
CCS, it was shown in Chapter 3 that this subset includes confluent agents, A~ area
of research is the extension of the measure to the whole of CCS.

,/
5.6.2 A methodology for the evaluation of concurrency measures

This research has shown that concurrency can be measured in CCS and that it
can be used to evaluate concurrency measures. Hence, the approach taken here
to evaluate ni can be used to evaluate other measures. This will provide both for
evaluation of existing measures and the development of new measures; and for the
further development of a new tool for the theoretical investigation of concurrency
using ecs.

When authors present measures of concurrency in literature, generally they do
not present evaluations of these measures. For a measure to be a useful tool, it is
essential that it is evaluated with respect to relevant criteria. The research has drawn
together a number of criteria and used them in conjunction with the Concurrency
Measurement Tool to evaluate m. This approach can also be applied to other
measures defined in the message passing forrnallsm.

Therefore, an Important outcome of this work has been to produce a method-
ology for evaluating measures of concurrency. This approach currently can be used
for measures defined in the message-passing formalism; however, it may be possible
to use ecs with measures defined in other formalisms. It has been shown to be
a. useful methodology by the fact that it facilitated the discovery that a specific
measure was ill behaved and allowedfor the definition of a measure using the same
basis that fitted better with the evaluation criteria.
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5.,7 Summary
"

In this chapter, criteria fat the evaluation of concUi.'rer[~ymeasures w1te reviewed.

The experiments that were performed using the Concurrency Mea~;rlrement Tool

were presented .. From these experiments, it was shown that the meaq,:(uem. does not
,;

fulfil some of the criteria for evaluation, such as compatibility withi!ecs operators

and applicability and usability. A new measure mnew .was defined and ics values

were determined for the same experiments. It was shown that mnew although better

than m was still problematic with respect to a few criteria.

Through the experiments on both m and mnew it was shown that the concept of

measuring concurrency can be applied to CCS agents. Finally it was shown that this
t , I

research h,,~ f)roduced a methodology for the evaluation of concurrency measures.
II

The work presented in this document has resulted in. a number of questions for

further research and these questions will be discussed in the next chapter together

with the final conclusions.



6. Conclusions and further research

In this final chapter, an outline of the research and the conclusions drawn will be

presented. After this' section, issues that are suitable for further investigation as

a result of this research will he discussed. There are a number of directions that

include improving m, comparing concurrency measures, defining a measure based
Ii:'

on linear extensions, extending the measure to algorithms, proving that there is the

same number of consistent cuts in the computation representing a confluent ecs
agent as there are nodes in a transition graph of that agent, extending the measure

to a larger subset of ecs, applying measures to other algebraic calculi of processes

and defining a partial ordering semantics for ees.

6.1 Outline

The aim of this research was to investigate the measurement of concurrency in ees
and at the same time, to evaluate a, particular measure of concurrency.

Measures of concurrency are proposed in the literature as a means of investigat-

ing distributed algorithms. These aim to assess the structure of computations, as

opposed to time complexity and message complexity which do not do this. ees is a

calculus of processes that allows for the investigation of concurrency. By achieving

a fusion of the two, a new tool can be developed for the investigation of concur-

rency using ees' and comparison of different agents. There are a. number of criteria

which can be used to evaluate a measure and this work aims to address the fact that

measures of concurrency presented in the literature are not fully evaluated.

6.2 Summary of work done

In this section, an overview of the work done in this report will be given.

Literature survey First, the relevant background literature was presented, to

draw together the different approaches to concurrency measurement and evaluation

of these measures. The choice of model was narrowed down to Lamport's space-time

model/message-passing formalism. A number of measures have been defined in this
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i'rameworkand all require some further investigation and evaluation. Charron-Best's
measure of concurrency m was chosen as the measure to be applied to CCS.

Comparison of the message-passing formalism and COS Once the model
and measure had been chosen, it Was necessary to compare the message-passing
formalism and CCS, and determine any differences that would prevent the direct
application of the measure to CCS agents. Three main differences were found-the

h .,

message-passingformalism provides a,synchro~0is ccmmunicatlon and ees provides
synchronous communication; ees allows for process creation, whereas the message-
passing formalism has a fixed number of processes; and ees has more expressive
power than the message-passing formallsm.

Redefinition of the message-passing formalism The message-passing formal-
ism was redefined to 'take into account these differences. This ptocess Involved
defining a new process structure, whereby aprocess could 'cause' other processes,
and determining the effect that synchronous communication had on the ordering of
processes. The result of this WaSa,new partial ordering of events where the events
in a process that causes another process, precede the events in. the process that
\l'f!.S caused and where events that take place in synchronous communications are
/ . ~

/~quated. A number of results were shown to hold in the new formalism. These
results and the inp;:.;tivebasis for the measure (that of consistent cuts being related
to the tolerance of a computation to stopping) justify the extension of the measure
to the redefined formalism.

~evelopment of the traudlation algorithm After the redefinition, it was pos-
sible to define a translation algorithm to map ces agents into the message-passing
formalism snd hence for the measure to be applied to ees agents. A subset of
ees was chosen to be translated-c-this subset includes finite agents defined using
Prefix, 0, (finite) Summation, Composition, Restriction and Relabelling, although
the Concurrency Measurement Tool is not, able to directly handle Summation and
Relab'elling. It was shown that this subset includes finite confluent agents.

\\

Development of an algorithm to calculate the measure An algorithlri.\was
defined to calculate the concurrency measure, The largest part of this algorithr.l.'is
counting the number of consistent cuts in the agent under consideration, since the
number of cuts in the totally concurrent and totally sequential forms can be deter-
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mined analytically. The algorithm generates all possibr~,(',uts,and checks them for
consistency. It was shown that the algorithm has aworst case ax lvsis ofO(qn A~6n-2)

. . '\)
where q is the total number of events in the computation ann It is the number of
processes in the computation. Otger algorithms were suggested,

) \
Implementation 01 the Concurrejcy M~~il{t-remer.t Tool The Concurrency
Measurement To\~1Was implemented to automate the calculation of the mear,lre for
ecs agents, using the algorithm that was'''r·~eloped. It was used to experiment with

,), \,

chosen ees agents to evaluate m and' its performance was measured to compare it-
'i '\:,

with the theoretical analysis given above. It was show that th~\theoretical analysis
did largely predict the performance of the program.

Evaluation of experiments A number of experiments WereperfJ'':led to eval-
" ,_" "~j

nate the measure and to evaluate t:h~measurement c,f\'Joncurrency in eeS."These
experiments will be discussed in more detail in the(§iectiol~below. The outcome was
that the measure m does not meet the criteria for evaluationj.esj ecially with respect
to compatibility with oper',ltom and applicability to real si~~ations, that a better
measure mllew can be defined and that the measurement of concurrency in ees is
possible.

6.3 Cone;

In the following the conclusions of the research will be presented and explained:

1. In the evaluation presented in Chapter 5, it vilas shown that there are flaws in
the measure m. This is demonstrated clearly in the experiments:

\
• \yhen t\\ro agents ale concatenated in parallel, the effect is essentially to
square both }Lc and u, Because of the equational structure of the mea- .
sui~eand the fact. that 11-8 tends to be relatively small, this results in the
squaring of the measure and since m is defined on [0, IJ, m,2 ~ m. There-
fore the amount of measured concurrency decreases which is contrary to
expectation. Similarly, the use of the Prefix operator does not provide
the e~;,pectedresults, although the use of Before the second seq(~l~i~:~ial
operat~~rdoes result in the. expected decrease in concurrency. Therefore
the me~\~l1ie,in general, does not fulfil the criterion of compatlb'Iity with
operato\w. By applying the measure to ees" it was possible t~i confirm

\\
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Charron-BoE-t>f results concerning compatibility wip1lbPe ..a,~rs and to
show a.nalytka.lly why these results occur. A~discJ~sed e~Uer, compat-

:11 . //. '<.

ih
1
ility w~th fopel'atlors'liS an important criterion brat. fCC ..S)Uows for

a rstraction rom ( eta!. ,,' ~,,=,,/I ((~/

• The. results of the dining philosopher experiment showed th\Larpp1}'l,:wr
the measure in a real situation does not aUow)clear comparise» :>falgo-

rithms. The measures calculated fall into· a very s:rp:w.subset of [0,1],

in the range of 2 x 10-6 to 5 X 10-3 which raises issues about the in-

terpretation of the measure, and the validity of comparison. The size of

the values returned by the measure can be explained by the fact that Ike

dominates the measure m.

• In the dining phil9~opher experiment, it was shown that as the size oJj;J
the experiment inc~\~ased, the measure decreased, which Indicates t~;>.;'~[t

L ~
was not measuring the actual concurrency in the agents.

i?
Do these expeziments show that the approach that was used to apply the

measure to CCS was fiawed? No, they show that Charron-Best's measure-is

pr~blernatic. Alt.hough the menage-passing formalism that was used griginally

to definethe measure Was modified, it was done in a consistent way and hence

.,the argument for the motivation of the measure was successfully applied to

the new formalism.

The anomalies presented ahove, call be explained as follows: for reasonable

sized systems, the resulting measure will be very small; and J.Lc the number of

cuts in a totally concurrent computation dominates the value of the measure

for a given computation. Hence, it can be claimed that although the justifl-
cation for the measure is correct, the algebraic expression used to define the

measure is ill behaved.

2. A new measure mllew using logarithms was proposed and evaluated. It was.,

ShCWIlthat this measure was more compatible with the four operators, al-

though in the case of the parallel Operators the measure is not always camp at-
. I

ible. It was shown that mnew ret\lrned larger, more reasonable values than m.

However, for certain computations, it was still possible for log p,c to dominate

the value of rnnew, as in the case of the parallel operators.

3. The algorithm used to calculate Jt was exponential ill the Ilumbe,~ ) .;'pt9cessesj

although it was possible to calculate the measure for the dining philosophers
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algorithms, an example of applying the measure in a real situation. It has

been suggested that the problem is Inherently intractable. This issue requires
'~ful'ther research.

4. The measure was successfully applied to a subset of ecs that included finite

confluent agents. This shows that the measurement of concurrency in ees is

feasible and therefore other measures can he applied to ees and evaluated.

The understanding of concurrency that is provided by ecs allowed for the

evaluation of m. and will allow for the further development of a tool for the '
\'

measurement of concurrency which will aid the theoretical investigation of <.

concurrency, Becans~!of the abstraction provided by ees, cempatibility with"

operators is an important issue in any measure of concurrency for eCSj it is

desirable to be able to understand the effects on Ute amount of concurrency

when components are interchanged or variables are instantiated.

5. The fact that it was possible to apply the concurrency measure to ecs and

evaluate it ill terms of the criteria gleaned f:~m the literature means that. this
approach can he applied to other measures 'and can be used in the definition

of new measures, The redefined formalism, ecs, the Concurrency Measure-

e, ment TOGI and the criteria provide a methodology for evaluatingconem:rency i,'

measures in a manner that has been absent in previous presentations of con-

currency measures.

6.4 Further research

6.4.1 Improving the measure based on consistent cuts

Aa it was shown that the measure had uu<le~l1'able properties, an area of further

research would he to use the motivation given for the measure m-the fact that the
number of consistent cuts is re~'l,ted to how tolerant the computation is to being

,\,
stopped-and attempt the definition of a. better measure based on consistent cuts.

A suggestion was advanced in Chapter 5 using logarithms to define the measure

muewi however, it did not solve all the problems associated with m.
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6.4.2 Further investigation of the algorithm to count consistent
cuts

9:i{rrently the algorithm used to calculate IL is exponential ill the number of pro-

cesses. Further investigation is required to determine if there exists an efficient

algorithm to solve the problem or whether the problem is intractable. ''Some sug-
gestions were presented in Chapter 4. Another suggestion involves that of space

complexity. Fld~~e[:32) has noted that El~i:5n nqi integers are required to store
the vector dock infonnatlorj, It is possible to count consistent cuts without using'/,
vectors clocks. The partial ordering of events describes a directed acyclic graph and

the consistent cut counting problem can be rephrased in terms of the number of

subgraphs there are which have the property that if vertex v is in the subgraph,

every vertex on every path from the root to v is also in the subgraph.

6.4.3 Comparison of measures appjied to cas
\, If
A number of measures have been defined iDiithl;' framework that Charron-Bost used

These include w [14], p [15], {j [321 and Q (5r~]all of which were described in Chapter

2. These measures can also he translated into the new fonnalisru with the necessary

research to ensure they remain consistent and can be motivated. Hence they can

also be applied to ecs, and the Concurrency Measurement Tool can be modified

to calculate these measures. This modification should be minor as the program

already embodies the redefined theoretical basis. For the measures f3 and a, linear
logical clocks need to be added, and for Q. a second type of vector clock is required-

the mcdlfication to the program for these is not large. The measure w is related

strongly to m lind its calculation should he"possible in the existing program; p is

more complex as it does not use vector clo~kii and therefore the implementation
'-i ,.'.

requires more investigation. ThIs Is discussed in more detail in Clf~pter 4.

Similar experiments can he performed to those done in this research and the

results can be used to compare different measures. This work is Important as such

comparisons have not l' evionsly been reported in the literature.

6.4.4 A measure based oil linear extensions

Charron-Bost [14] suggests a measure using linear extensions of the partial ordering

of events, hut rejects it because there is no fast algorithm to count linear exten-

sions. Pruesse and Ruskey [54] have recently presented an algorithm. for generation

of linear extensions that runs in constant amortized time. A generation algorithm
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is said to rtin in constant amortized time if it runs in time O(N) where N is the

number of objects generated. In the worst case, this algorithm Is exponential since

the number of linear~~tem;ion$ is exponential. However, it has been shown that it

is practical for certain examples. This algorithm could be used to Investigate a con-

currency measure basedon lineal' 'extensions, as it seems as good as the algorithms

for counting consistent cuts.
The approach taken in this algorithm revolves around generating each extension

by permuting adjacent elements of the previous extension. Another area for further

research is to investigate whether this technique can be applied to the counting of
r '

consistent cuts, to obtain (t constant amortized time algorithm. In bo-h of these

cases, this research will be fruitful only if it can be determined that there are in-

teresting subclasses of the partial orders (computations) for which the algorithms

become tractable,

6.4.5 Extension of the measure to algorithms

In this research, a. measure for an algorithm was determined from the minimum

and maximum of the values of the measures of its computations. Another a.pproac.'lt

would he to .determine weights W1, ••• IWn" that could be applied to the measures of

the computations C1, .•• ,en for an algorithm A as follows:
n

meA) :::LWtm(Ci).
i=l

These weights could be determined from the probabilities assigned to actions as

discussed by Purushothaman and Subrahmanyam [551. This work involves assigning

probabilities to r actions in agents of the form Tpl 'P1+ 1'P2.PI where PI + P2 = 1.
This determines the probahilities of different actions occurring. These probabilities

can be added to the derlvation tree of the agent and the result would be a decision

tree from which the probability of each computation can be determined.
':)

6.4.6 Extension of th~ message-passing formalism

In Section 3.6.1, the issue of ~~ndeterminism was discussed and it was shown that the

message-passing formalism cannot adequately deal with the nondeterminiem caused

by the Summation operator, or by the possihility of communication permitted by
the Composition operator in the absence of Restriction.

One extension to include the former type of nondeterminism is suggested as

follows and a similar approach could be taken for the latter .ype. This sugg~stion is
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to describe the processes that. a process Pi does l'anse and the processes that it may

cause. This relation ._.. could then he redefined to map from the set of processes

to the powerset of processes and thus capture the nondeterminism, For example,

consider th-e ageht (L.b.(c.tl.O I (e,f.O + g.h.O)) with Pl = ab, P2 ::: cd, P3 = ef and

P4 = gh, then PI I-> {P:h {P3, P4}}. This indicates that PI causes P2, and Pl causes

one of P3 and P4•

A different approach involves finding a topology in which the space-time dia-

grams can be embedded, so that the concept of nondeterminism can be added to

the message passing formalism.

6.4.7 Transition graphs of CCS agents

In Section 3.4.5 on calculating-the number of consistent cuts, it was suggested that

the derivation graph of an agent could he used. A result that has not yet been

proved or disproved is that:

The number of consistent cuts in the computation of a given confluent

ees agent is equal to the number of nodes in the transition graph of

that ees agent.

\\
If this result is shown to hold, it would then he possible to investigate an algorithm

based on creating this graph and counting the nodes.
For a. rigorous proof, it needs to he shown that there is a bijection from the set of

nodes in the transition graph to the set of consistent cuts (or vice versa). Transition

graphs have not been investigated in this research and therefore this proof is beyond

the scope of this report.

An informal justification can he explained as follows: A consistent cut represe.ats

a 'consistent' state of a computation or in other words, a state where all events that

precede an event in the cut are also in the cut. Since communication determines

the precedence between events in different processes, a consistent cut takes this

.~.I'J3rll.municationstructure into account. Therefore it is not possible to have a com-

munication event without its partner and all events th~t preceded the partner, in

the cut. On the other hand, it node in a transition graph represents the agent in a

particular state. The actions which label the directed edges of the graph correspond

to events; and the actions that occur on the preceding edges of the graph must

represent those in the cut, since the agent at a node contains the information about

what can happen j,. the future and nothing else.
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6.4.8 Extension of the measure of concurrency on COS

Another area for future research is the extension of the measure to the whole of

ecs. The subset currently supported includes

Nil, Prefix, finite Summation, Composition, Restriction and Relabelling

and excludes:

infinite Summation and Constant (or Recursion).

However the Concurrency Measurement 'Iool does not deal directly with Summation
'1.--·'·

or Relabelling+-agents for input can consist only of Nil, Prefix, Composition and

Restriction.

Areas for extension Inclnde;

• The Concurrency Measurement Tool can be extended to handle agents that

include finite Summation and Relabelling, explicitly, without some form of

preprocessing by the user. Currently it is necessary to apply Relabelllngs and

decompose the agent into the different computations caused by the occurrence

of Summation before using the Concurrency Measurement Tool, then from the

values for eftch computation, the maximum and minimum values for the agent

are obtained. '1'his proposed extension would automa: the work involved,

allowing the user to input an agent to the Concurrency Measurement Tool

and receive t\,e maximum. and minimum values as output. However, this

extension wlll increase ti,c cost of computing the measure considerably .

• The measure could b~' extended to deal with the whole of CCS. This would

involve defining a measure on infinite agents. One approach would be to deter-

mine the measure at specific stages during an infinite computation and from

these values calculate a final measure for the infinite computation. This could

be done by considering the stages of Ute partial computation as finite and ap-

plying a-measure defined 101' finite computations to obtain these-values. Two

basic approaches cal), be used to obtain the. final values from the intermediate
I

values; averaging across all intermediate values obtained, or viewing the inter-

mediate values as a sequence that converges.;to a final value, with conditions
to ensure convergence.
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6.4.9 Applicationof concurrency measures to other formalisms

In this research, the focus has been on measuring concurrency in CCS. There are

other algebraic calculi of processes in the literature for expressing concurrency, and

some of them win he discussed briefly here:

• Bergstra and Klcp's ACP (Algebra of Communicating Processes) [6] and Hen-
nessy's ATP (Algebraic Theory of Processes) [41]have similarities with CCS at

the syntactic and operational level, although different congruences are defined

at the semantic level. E:ach calculus has some operators that are unique, and
therefore to apply any measures defined in the message-passing formalism, it
is necessary to decide how these operators will be mapped into the message-

passing formalism. The issues of differences in expressive power must also he

addressed for these calculi. A similar argument as used in Section 2.5 can be

used to justify the' 'application of one of the measures from the message-passing

formalism.

e Meije I8] and Synchronous CCS (.S(;>, 'r;) [50) are two synchronous process cal-

culi that are similar. In a synchronous calculus, processes proceed in lockstep,

and the assumption that nothing is knOWJl about the relative speeds of the

processes does not hold. As suggested \in Section 2.5, these calculi would be
more applkah,te to the measures of con~~lrrellty based on formal languages,

I~, \

because actions occur in lockstep and tra.iisitions are represented by multlsets

of labels.

• COSY [48] is 'an algebraic approach to Petri nets. Paths which represent

resources, and processes are the components that make up a. COSY program.

Processes act independently except where they are restricted by paths. To

a.pply a measure from those defined in the message-passing formalism, it is
necessary to determlne how to maIl COSY paths and processes in the message-

passing formalism, and to consider issues that relate to the expressive power

of the two formalleme.rand it appears that this would he more complex than
the solution found in this research.

• HO<Ll'H'S CSP (Communicating Sequential Processes) [11), is defined in tenns

of a denotational semantics, although it is sometimes informally described

operationally. It is not immediately obvious how a measure of concurrency

could he applied to CSP processes, r hence this would appear to require a
different approach. i
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6.4.10 Partial ordering semantics for COS

As discussed in Chapter 2, there is a debate about whether tJ4P,!::.iH of concurrency

should display interleaved semantics or semantics based on·'\rl,W: concurrency, The
vector clocks described in this research could he added to ecs i,{) give a partied order-

ing semantics in a similar way to the wor! of Degano et al [27]. In this research, CCS
was mapped into the message-passing formalism. However, for a partial ordering

semantics it would be necessary to add, in some sense, the clocks that define the pa;:-

tial ordering in the mesib·6e-passing formalism to ecs. The methodology preselltei\

here distinguishes between agents that are observationally congruent: however, the'

methodology doe,: deal with the semantic properties of an agent, but rather with
\

properties that are ueflned by the syntax and the transitional rules of ecs.
The general approach to providing ees with a partial ordering semantics can

be described as follows:
1;

• redefine the syn~ax of the expressions in the language,

• \redefiiiethe \~l)era:t.iona1semantics in terms of a new transition relation,

• provide a :nr ' uivalence under the redefined expressions. Generally the
Expansion Law will not hold under this new equivalence.

,
This is a major area of research and requires (I, new approach to the work presented
here.

6.5 Conclusion

The aim of the research was to investigate the measurement of concurrency in ecs.
This aim was achieved by applying the measure ui to ces agents, and in the process

of accomplishing this, criteria for evaluating measures of concurrency were drawn

from the literature, the message-passing formalism was redefined to enable the map-

ping of ecs agents to it, a software tool was developed to calculate the measure,
the measure m was shown by .~valuation a.gainst the criteria to be problematic and

a new measure Tnl1ew was defined which was shown to be better than tn, The re-

defined formalism, ecs, the Concurrency Measurement TL <l>lLcl the evaluation

criteria together form a methodology that'permitted the evaluation of ui, and this

methodology can be applied in the evaluation of other measures.

Wh,,), ;',:;"I}S\ n::·~of concurrency are defined in the literature it is necessary that



A. An overview of CCS

In this appendix, a brief overview of Milner's Calculus for Communicating Systems

(CCS) [50, 51] is given. The aim of this presentation is twofold; first to review of

ecs, and secono to set the notation used in this research report. This is in no way

a full presentation of ees and the reader that has no experience of the subject Is
rc

referred to Milner's hook Comrntmir.atio;:t and Concurrency [50]. The last section

in this appendix presents confluence which is used in the research report.

A"1 The basic language

The language is defined in terms of expressions, actions and an action relation which

combined form a Labelled Transition System.

A.l.l Syntax and notatlion
II

Let A be an infinite set of names (I., h, c, ... , and A be the set of co-names ii,ii,c, ... ,
with a = a. C = .A u .A is the I~f.ltof labels, e a,nd:e will range over E; and 1(, L will

range over C. Define L = {£ I'e E .?}. r is a distinguished action such that r ¢ C,
called the silent or perfect action. Let Act == C u {r}, with a, /3 ranging over Act.

A relabelling function J : £ -...t C is a function such that f(i) = J(.e). It is
extended to Act by deflning J(r) == r,

Also assume a countable set ,f of process variables X, Y, .... An arbitrary (pos-
sibly infinite) indexing set will he denoted hy I. The set £. of process expressions

E, F~.. " is the smallest set including ,1.' and the following expressions:

• a.E; a Prefix (0: E Act),

• EiEIEi, a Summation (when 1 = 0, the summation is written as 0 and repre-
sents the agent that can perform no action),

e Eo IEh a Composition,

• E\L, a Restriction (L ~ ,c),

• E[f], a Relabelling (f a relabelling function),
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• fiXj{Xi == E, liE l}, a Recursion (j E I) (or alternatively A ~f P, a

Constant, "{here PEP, the set of agents which are defined '~9be expressions
.~:j'

~~~that contain' no free variables. This characterisation of recursion will be used

in the sequel because of its more presentable form.)

Let £(E) denote the syntactic sort of the agent E [50, p. 52]. A sort of an agent E

is a subset of £ containing all the actions that E and its derivatives may perform.

A.1.2 Operational semantics

The operational semantics of ecs are defined in terms of a Labelled Transition

System, (C, Act, {AI a E Act}), where the ~~!ation ~ are defined to be the smallest
'~,\

relation satisfying the following rules:

a.E~E

(j E I)

c_)
E~'E'

ElF ~ E' IF

FIE~FI E'

E ~ E' F 2. F'
ElF.!.. E' I F'

Res
E~E'

(a,7i~L)
E\L ~ E'\L

R.el
E[f] f~) E'[f]

Con (A ~£ P)



APPENDIX A. AN OVERVIEW OF CCS 115

Examples Consider the following agents:

• a.O + a.O can perform the action a or the action a.

• a.O I a.o can perform the actions a then a, or the actions a then a, or the
perfect action r,

• (a.O Ia.O)\n can only perform the perfect action r,

A.2 Strong congruence, observational equivalence and
observational congruence

Strong congruence

Strong congruence tV is defined as follows.

Definition a P rv Q iff, fo1' ull 01 E Act,

(i) Whenever P s; pi then, for some Q', Q !!.QI and pI ('oJ Q'

(it) Whene1)er Q !!.Q' then, [or some P', P !!.P' and P' ""Q'.

Because Isitn. is ~ congruence it is substitutive under all operators, namely if
PI tV P2. then a'PI '" a'P2, PI + Q rv P2+ \,:),PI I Q rv P2 I Q, PI \L ,....,P2\L,
Pdf] '" P2[f]i and it is also substitutive under recursive definition.

To define observational equivalence ~, a few definitions are required.

Definition 4 Let t :;:::al ... an E Act... Then

(;) t__clef Ctt Ctn(; ~= ~ ... ---)o

(ii) i E £* is the result of remotling all r 'strom t
(iii) J.tr (~)* ~ (i;)* ... (~)* ~_r; ( .z,)* .

Note that f :;:::s, the empty sequence, and ~.= (.1,.)*.

Definition 5 P ~ Q ifh for all s E £*,

(i) Whenever P ~ ,Pf then, [or some Q', Q =* Q' and pI ~ Q'
(ii) Wheneiler Q ~ QI then, for some P', P :!pI and pI ~ Q',
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However, ~ is not a congruence, therefore the further definition of observational

congruence or equality is required.

Definition 6 P = Q iff, for all ri '6 Act,

(i) Whenever P ~ P' then, for some Q', Q ~ Q' and P' ~ Q'
(ii) Whenever Q ~ Q' then, for some r, P ~ pi and pi ~ Q'.

The following result gives the relationship between the three equivalences.

Proposition 4 p,..., Q ::;.P = Q ::;. P ~ Q.

Finally, the full form of the expansion law is given in the next proposition.
/";

1\
Proposition 5 Let F '= (PI[II] I .,.1 Pn[fn])\L, with N ~ 1. Then

P ,...,L{h(a).(Pl[h] , ... , PI[fi] '···1 PIl[fn])\L,
Pi!!.. PI, fiCa) rt L U L}

+ l:{i ~Pl[ft] I ···1 PI[fi] 1···1 PJ[hll ···1 Pn[fn]) \L 1
Pi ~ PI,Pj i...:z. Pj, fi(e1) ::::/i(f2), i < i},

Example Th~ following agents are equated by the Expansion Law

a.OI b.O '" ,i,b.O + b.a.O.
)

A.3 Determinism and confluence

Strong and weak determinacy can he defined as follows:

Definition 7 P is strongly determinate if, for every derivative Q of P and for all
a 6 Act, whenet)er Q ~ Q' (md Q ~ QII then QI N Q".

Definition 8 P is (weakly) determinate if, for every derivhUve Q of P and for all
s E C* I wheneve' Q =* QI and q =* Q" then Q' N Q".

The concept behind determinacy is predictability, IT an experiment is performed

on a determinate system, the same result. or behaviour should be obtained each

time that experiment .is performed. It would be desirable to have a set of rules
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Figure A.l: The confluent agent a.O I v·Ce.OI d.O) [50, p. 238].

--------~------~~--------------------------
that allow determinate systems to be constructed from determinate components.

However, there is no constrained form of Composition that is determinate and allows

communication. Therefore confluence, a stronger form ef determinacy, has been
proposed.

Definition 9 '1'/ s, the ejy><!;~olr over s, is defined as follows

elS = e

(f.r)/s { f.(r/s) iU¢s= rJ{sjf.) if f. E s,

Definition 10 P is confluent iff, for all r, s E £* I the following diagram can be
completed

p d-.;..' . P1

s,Q. ,Q.s/r
<\

Pz rl.s Q Ql:} . 2 ~

The idea behind confluence is that when performing an experiment different actions

may occur on different orders however the final result will he the same, or more

concisely stated=-the occurrence of one action will not preclude the possihillty of

another. In Figure' A.l, an example of a confluent agent is given.

The following results describe which syntactic forms are confluent, and which
operators preserve confluence.
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Proposition 6 If P is confluent, then so «re the following:

Definition 12 For Lee the"Rest1'ictcri Composition is defined a8~~-"
\\
\''-

PIlL P2 (~f(Pl I Pz)\L
0', co' \ 1\
'.,' ,. ).

and it is called a Conff(uent'Uo~riosition if C(P1) n £(P2) :/0 and £(Ft) n£(P2) ~
LuI.

Proposition 8 Let P, and Pz pc conji:len\,; Then if Pl 1[, Pz is
position it is confluent.

Proposition 9 Lei PI and all Constants wpon which it rlepends b6.~defined usin[l
(mly 0, one-to-one Relabelling, Confluent Sum, Restriction, Conliu.eni\Compositii.;~

(, . . "'\ ';:

and C01?fltants, Then P is confluent.



B~Proofs

In this appendix, proofs of propositions and theorems from f~hapter 3 will J>..~pre-/~ -~.-;,
sflnt~;,)..

\)

Proposition 10 :5.' is It partial OT'fiC1'

Proof: To show that :::5' is a partial order, it must be ~hown that :S' is reflexive,

transitive and antisymmetrlc relation. To recap, :.-5' is equal to the;,transitive closure

( !tof -< U =tIj.
//

1; R,eflexivity : 'I'his follows from equality.

2. Transitivity: This follows from the fact that :5,' is defined to be the transitive

closure.

3. Antlsymmetry: Given (ft :s'b)A(b:s' a), there are four cases to be considered.

(a) (a -< b) A (b == (J,) ~, (a ::; b)

(b) (a::; b) A (b -{ a) =? (a ::; b)

(c) (a::;: b) J\. (b =' a) => (a :: b)

(d) (a -< b) A (b -{ a). This case cannot occur because of the definition of -<.

o

Proposition 11 :S is a pm·tial onler

Proof: :j is defined to he the transitive closure of (-< U ::;:) with the additional

rule that

As can be seen from the previous proof, this is a partial order. o
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Proposition 12 (Proposition 3) The cut C defined by Ee and aj for each i E N\Ea~\:

C = U {:r. E E(I1) I :r. :5 (ti} = U (i ai)i
if;N\Ec i€N\Ec

is a consistent cut if arul only if

SUp(Tb ... ,Tn) ::::(TI[l], ... I Tn[n]).

Prccft
Note that in the following proof it is not necessary to cohsider individually the

cases Pi H- Pi. Pj H P; and tlw case where neither is caused by the other, since. \)

this is captured in the relation :5.
=> : Assume that C defined hy Ee and aj for i E N \ Eo: is a consistent cut,

namely Va E C, b E E(P) (9 :5 a :} b E C). It must be shown that ...

sup(Tll .. " ~,) ::::(Tt[lJ, ... , Tn[nJ)

{:} Vi E {I, ... ,n} m~lJ( Tj[i] = Tj{i]
lSJSn

{:} Vi,j E {11·••• , n} Tj{i] 51Hi}.

For any i, and i. there are four possible cases to consider:

1. i, j E Ee : then: 1j[i] ::::Ti[i] ::::0 so the condition holds .

. 2. i¢ Ee and j E Ee : then Tj[i] ::::0 < Ti[i].

3. iEEe and j ~Eo : hence Tj[iJ > 0, therefore there exists (l. communication

event from Pi, b E E(P;) such that b :5 rtj and b ¢ C since Pi does not

contribute any events to C. This contradicts the fact that C is a consistent

cut, so this case cannot !~l~Jd.

<L i, j ¢ Ee : consider (J.j and aj. They can be related to each other in the

following ways:

(a) aj co Uj : From Proposition 2, this implies 0(aj)(iJ < 0(ai)(i], hence

Tj[iJ < Ti[i] by the definition of T, so the required condition holds.

(b) aj :5 aj : This Implies that 0(aj) 5 0(ai) ~ 0(aj)[i] $ 0(aj)[i] ¢}

T,i[iJ :$ Ti[iJ.

Proposition 1, I (! (tj Ii 1< I (! rtj)i I. Now since :5 is a total order on

E(Pi), (llH)i C (! a.i)i. Therefore 3 u e E(Pi), such that b E (i aj)i but
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b Ii (1 aj)i, therefore b ~ C, hut b ~ aj. which contradicts the definition

of the cut C, and so. this case cannot hold.

So it has been shown that in all cases satisfying the definition of a consistent

cut, the required conditions hold.

¢: : Assume the following holds for C, a cut defined by Ee and aj for i E .N\Ee.

SUP(Tl,"" Tn) = (T1[1], ... , Tn[n])

¢> Vi E {I, .•. , n} m!1.X .TJ[i] = Tj[i]
l~.7::;n

{.} 'Vi,j E {1, ... ,n} Tj[i] ~ 1i[ij

It must he shown that C is a, consistent cut, namely 'Va E: C, bE E(P) (b ::1 a ~
bE C). Suppose the converse, 3 (t E C, bE E(P) such tha~ b::5 a and b ¢-:C. There -

are two cases to consider:

1. a,b E E(Pi) (i E N\Ec) : (L E C and a E E(Pi) implies a E U ail; which
implies that a :5 ai, but b ~ a. so by transitivity b ~ ai which implies that

l?C: U (J·i)i by definition and hence bE C. Contradiction.

2. a E E(Pj), bE E(Pi) (i,j E N\Ee, if; j) : (LEe and a E E(Pj) implies that

a E (1 aj)j and (£ ~ a'j' Also i, ~ C and b E E(Pi) implies b ¢ (L ai)i and
aj :::i b.

':""

Since Uj :::5 b, (! ail, C (l b)i and 0(ai)[i] < 0(b)[i] from Proposition 1.

Also b:1 a., a ~ itj => b:s aj, so 0(b);5: f(aj) and 0(b)[i]:::; 0(aj)[i].

Therefore e(lti~[i] < 0(ctj)[i] and by the definition of Ti,Tj, Ti[i] < Tj[i} since

i,j E N\Ec. Hence 3 i,j E {1, ... , n} such that Ti[i] < Tj[i]. Contradiction.

Therefore it has been proved that C is a consistent cut. n



C..Agents for the dining philosophers
problem

In this appendix, the agents used ":'!l E~periments G and H in Sectlon)5.2 are pre-

sented. The actions are abbreviations for the following:
t - think
e • eat

gfi - get the ith fork

dfi - drop the ith fork

..gt ~,get room ticket
- drop room ticket

G2: 4 philosophers, odd-even so}ution

( t.gfl·g[.t·e.dfl.df4'O I phllosopher;

t.gf1·gf2·e.df1.df2.0 I philosopher-

t.gf3·gf2·e.df3.df2.0 I philosopher-

t.gf~.gf4·e.clf3.df4'O ! philosopher 4

gfl·dfl.gfl·dfl.O I fork,

gf2·df2·gf2·df2.Q I fork2
gfs·df3.gf3·df3.O I forks
gf4·(If4.gf4·(li·4.0 fork,

) \{gf l' df 1" g£21 d£2,gf;J1 df'·~,gf4' df4}
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G3: 6 philosophers, odd-even solution

( t.gf1·g[(j·e.df1,.([f().n I
t.gfi·gf2·G.dfl,df2"O I
t.gf3·gf2,e.cIf3.df2.O I
t.gf3·gf4·e.df3·df4.O I
t.gfs·gf4·e.dfs.clf4.O I
t Iffs·gf6·e.gfr,.gf6.0 I
gfl·dt l.g-il·df 1.0 I
gf2·df2.gf2·clf2.O I
gf3·dfa.gf3·df3.0 I
g[4·df4.gf4·df,t.O I
gfs·dfs.gfs·dfs.O j'
"%f6·dfa.gfl3.clf 6.0

\{gf 1? df} Igf2' df21 gf:h eIf31 gf4, df4, g[s, df 5, gfG, dfe}

G4: 2 philosophers, room-ticket solution

phllosopherj

philosopher ,

philosopher ,
nhilosopher 4

:,hilosophers

\)hilo~.opher6

lorkl
fork2
forka
fork,
forks

fork6

This example is more complex he~a.ltse of the introduction of room-tickets and re-

quires the calculation of the measure for two different possible runs of the agent

(There are more runs, but these relate to permutations on t1e order of processes);

The ih~t agent involving only. two philosophers has only one possible run because

of the existence of ~~1~one room-ticket.

( t.gt.gfl·gf2·e.dft.t1f2·dt.0 I
t.gt·gf2·gfl·e.df~.clfl.clt.O I
irf2·df2.gf2·df2'0 I
'iif1.df1.gf1.df1.0 I
gt.dt\gt.dt.O

) \{,~t,dt,gf1, dfllgf2l df2}

phllosopherj

philosopher ,
forkl
fork2
room - tickets
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I If .,-'/
I - \,

G5: 4 philosophers, room-ticket solution

This situation now involves a number of different computations for the same agent.

This occurs, because any OUl'! of three room-tickets can generate a new copyof itself
to let she fourth philosopher into the room. The agent is described first, and then

the two different computations are given. The same applies t() Experiments If4 and

Hs, although only the agents for those experiments are given in ~his appendix.

Thc·agent

( t.gtj'kfl.gt'4.e.dfl.df4,.clt.O I
t.,gt.gf2·gfl·e.df2.dfl.dt.O I
t'.gt.gf3·gf2;e.clf3.clf2.cJt.O I
t.gt·g[,1·gf3·e.df4;\1[3.dt.O I
gf1·dfl.gf1•dfl.Q I
gf2·df2.gf2·df2.O I
gf2·df2.gf2·df2'O I
g£4,(fi4.gf4·df4.0 I
gt.<lt.(gt.dt.O + 0) I
gt.dt.(gt.dtJ,+ 0) I
gt:di.(gt,dt.O -+ 0)

) \{gt, dt,gf11 df1,gf21 df2,gf3, dfa,gf4, tif4}

philosopher!
phllosopherj

philosophers

philosopher 1

forkl
fork,
forka

fork ..

room - tickets

()



APPENDIX C. AGENTS FOR. TIfE DINING PlIILOSOPHEks PROBLEM 125

The first computation

\\

( t.gt.gf1·gf4·e.r1f1,df.{.dt.O I
t.gt.gf2·gf1·e.df'}..dfl.dt.O I
t.gt.gf 3.gf2.e.dfa.df2.c1t.O !
t,gt.gf4·gfs·e.df4.dfa.rlt.O I
gf1·df1.gf1·"if£1.O 1

gf-;,.df'i·gf2.<lf2.0 I
gf2·df2·gf2·df2.0 I
gf4·df4·gf4·df4'O /1
gt.dt.gt.dt.O I
gt.dt.o I
gt.dt.O

) \{gt, dt,gf1, dfl,gf2t df2,gfa, df3,gf4• df4}

The second computation

( t.gt·g{l·gf4·e.df1.df4.clt.O I
t.gt.gf 2.gfl·e.df2.dfl.clt.O 1

t.gt.gf 3.gf 2.e.df3.df ~.clt.O I
t.gt.gf 4.gf 3:e.df4.df3.clt.O I
gf!.df1.gf1·df1.O I
gf2·df2.gf2·c1f2.O I
lil2·df2.gf2.df2'O I
gf4·df4..gf4·df4.O 1

gt.dt.gt.dt.O I
gt.dt.gt.dt,OI

) \{gt, dt,gfl, dfl1gf2' df2,gf3, df3,gf4, df4.}

philosopher!
philosopher.,

philosophers
philosopher,

£ol'k,

,_-,

fork,
room - tickets

philosopher-

phllosopherj

philosopherj,

philosopher,

fork!

f01'k2

forks
fork,
room - tickets
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Ht: 4 philosophers, odd-even solution, 2 ea(~ 2 think
\1

( t.~¢gfl.gf4.e.e.dfl.df4.{J I U

t.t~~fl.gf2.e.e.dfl.clf2'O ~

t. t.gf 3.gf2"e,e.c1f "l.df 2.0 !
t. t.gf:3.gf 4.~,e.df 3.df".0 I
gfl·dfl.gfl·dfl'O I
gf2·lif 2.giz:i{f 2.0 I
gfa.dfa.gf3·df3'0 I
~l".(lf4.gf4·df4'0

'1 \{gf l' elfl, gf')., df2, gf3' clt'a,gf4, dt',,}

philosopher-

philosopher.,

phllosopherj

philosopher 4-

fork!
fork2
forka

fork,
:/

"
~';

Hz: 4 philosophers, odd-even solution, 4 eat, 4 think

( t.q.t.gf1·gf4·e.e.e:e.df1.clt'".O I
t.t.t. t.gf 1.gt'Z' e.e.e.e.clf1•clf2.0 I
t.t.t.t.gf3·gfz·e.e,e.e.df3.df'2.0 I
t. t.t. t.gf 3.gf'" .e.e.e.e.clfa.df".O I
gt'1·rlf1./if1·df1.O I
gf2Jlf2.gfz·df2.0 I
gf3.dI3·g[3.clt'J.O I
gt'4·(lt·".~t·4·(lf4'O

) \{gf1, dfbgfz' df2,gfa, clf3,gf41 df,,}

philosopher!

philosopher-

philosopherj

philosopher"

Iorkj

fork2
fork,

fork"

H3: 4 philosophers, odd-even solution, 8 eat, 8 th.ink

( t.t.t: t.t.t.t.t.(5fI.gf4.e.e.e.e.e.e.e.e:.:dt'1.df ".0 I philosopher-
t.t.t.t.t.t.t. t.gfl.gfz.e.e.".r.e.e.e.e.dfl.c1f 2.0 I philosopher,

t.t.t. t.t.t, t.t.gf3.gf 2.e.e.e.e.e.e.e.('.c/f3:df 2.0 I philosopher-

t.t.t. t.t.t. t.t.g{3.gf 4.e.e.e.e.e.e.e.e.df3.df 4.0 I
gf1·df1.gfl·df1.O I
gf2·df2.gf2·df2'O I
gt'3·clf3.gf3·dfa.O I
gf~.df4.gf4·df4'O

) \{gfl' elfl, gf2f elf2, gf3' dl3, gf4' df4}

philosopher"

forkl

forkz'
fork3
"'ork'

\ "\
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Il
I)

( t.t.g't.gf l·gf,t{.p·~.dfl·df 4.elt.O'I
\1

t.t.gt.gf 2.gf 1·e.e.df2·df 1.dt.O I
"t.t.gt.gf3.gf2·e.e.df3.df2.dt.O 1

t.t.gt·gf.t·g~·3·e.e.cIf4·df3.dLO I
gf1·df1.gf1·df1.O 1

2·df2.gf2·df2.0 I
gf2·df2·gf2·df2'O I

philosopher-

philosopher-

phllosopher-,

philosopher 4

fork! '

fork.! .
forks

gf4·df4.gf4,clf410 I fork,
~ __ _;:__ I

gt.dt.gt.dt.O I room - tickets

gt.dt.O I
gt.dt.O

t)!( \{gt, dt,gf1, dfl,gf2, df2,gfa, clf3,gf4, (1f4}

Hs: 4 philosophers, room-ricket solution, 4 eat, 4 think

The agent

( t.t.t.t.gt.gf1·gf4·e.e.e.e.dfl·df4.clt.O I
t.t.t.'t.gt.gf2·gf1·e.e.e.f,.df2.dfl.dt.O I
t.t.t.t.gt·g[3·gf2·e.e.e.e.df3.df2.dt.O I
t.t.t.t.gt.gf4·gf3·e.e.e.e.df4.df3.dt.O I
gfl·dfl.gi\.df1'O I
gfv·df2.gf2·df'.l'O I
gf2,df2.gf2·df2.0 I
gf4,df4.gf4·df4.0 I
gt.dt.gt.dt.O 'I
gt.dt.O r
gt.dt.O

) \{gt, dt,gfl, df1,gf2, df2,gfa, clf3,gf4, df4}

philosopher-

philosopherj

phllosopherj

philosopherq

fork1
fork:!

forka
fork;

room - tickets
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