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Abstract 

We study three notions of bisimulation equivalence for concurrent processes. 

Bisimulation equivalences are based on an operational interpretation of pro-

cesses as labelled transition systems, and constitute the strongest notion of 

equivalence one may adopt for such systems: two systems are equivalent if and 

only if they have the same step—by—step behaviour. 

We focus first on Milner's notion of weak bisimulation (also known as ob-

servational equivalence) and propose an alternative formulation for it. More 

specifically, we show that Milner's notion may be redefined as one of reducibil-

ity to a same system - via a reduction function called abstraction homorrior-

phism. We use our characterisation to derive a complete set of reduction rules 

for observational equivalence on finite processes. We also show how abstraction 

homomorphisms may be extended to labelled event structures: however we do 

not consider the possibility of unobservable events here. 

We look then for notions of bisimulation which account for the concurrent 

aspects of processes. Traditional transition systems - evolving via successive 

elementary actions - only provide an interleaving semantics for concurrency. 

We suggest two generalisations of the notion of transition system: distributed 

transition systems, obtained by generalising the residual of a transition, and 

pornset transition systems, obtained by extending the notion of action labelling 

a transition (an action being now a partially ordered multiset). For the latter 

we find a corresponding notion of bisimulation on labelled event structures. 

Based on these new kinds of transitions, we obtain two bisimulation equiva-

lences - one stronger than the other - which are both more discriminating than 

Milner's equivalence. For both of them we present an algebraic characterisation 

by means of a complete set of axioms. 
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Chapter 1 

Introduction 

In recent years much effort in theoretical computer science has been devoted to 

the search of semantic models for concurrent programs. 

A concurrent program is inherently part of a larger environment, with which 

it interacts in the course of its computation. It is therefore to be regarded as 

a reactive system - in Pnueli's terminology [Pnu 841 - or perhaps more appro-

priately, to suggest a looser correlation with the environment, as an interactive 

system. 

It has now become common sense that functional semantics, describing one 

program's behaviour as a function from an input to an output state, is not 

adequate for communicating programs. On the one hand intermediate states 

of computation cannot be overlooked, since they are relevant to the program's 

behaviour in a surrounding environment. Properties like deadlock, liveness 

etc. cannot be described in an input—output semantics. On the other hand 

the notion of final state, which is crucial to functional semantics, is not as 

important here. A program may be nonterminating, and thus meaningless as a 

simple input—output function, and yet have a perfectly defined semantics as an 

interactive system (think for instance of operating systems or process control 

systems). 

More generally, attempts at using denotational semantics for concurrent 

processes (yielding interleaving models) have not been completely successful, 

mainly because they failed to match operational intuitions [Plo 76, MM 791 

What prompted the abandon of denotational models in favour of operational 

ones, and gave in general a new impulse to operational semantics, was Plotkin's 

SOS (Structural Operational Semantics [Plo 81]), which allows for clean op- 



erational specifications in terms of structural rules, thus recovering some of the 

advantages of denotational semantics. More specifically Plotkin shows that la-

belled transition systems determined by such structural rules may be used to 

model a wide range of programming languages and concepts. 

Labelled transition systems (LTS's) are essentially objects evolving from one 

state to the other via successive transitions. Hence LTS's appear as a convenient 

model for concurrent programs characterised by their on—going behaviour. In 

fact most recent research in concurrency, starting with Milner's Calculus of 

Communicating Systems (CCS) [Mil 801 , has been based on an interpretation 

of concurrent programs as LTS's. Each transition is labelled by an action, 

representing an interaction with the environment or an internal computational 

task. 

Because of their simple and general definition, labelled transition systems are 

widely used in semantics. Adopted to define the semantics of abstract machines 

and for modelling sequential and concurrent languages, they also provide the 

semantic universe for dynamic and temporal logics ([Par 81, Pnu 85, Sti 851 ), 

and support notions of effective or computable process [Bou 85, DSi 851 

A notable advantage of LTS's, as regards the modelling of program be-

haviours, is that they allow for different levels of description of the same pro-

gram. By varying the definition of the transition relation one obtains a whole 

range of different descriptions of the same program, going from a full account 

of its structure to some more interesting "abstract" specifications. Examples of 

abstract transitions are Milner's weak transitions for CCS, as well as the obser-

vation criteria of [Bou 851 , which are at the basis of a verification system for 

parallel processes [LMV 871 

In spite of their internal flexibility, transition systems still need to be fac-

tored by equivalence relations to yield an adequately abstract model. Several 

equivalences (and preorders) have been put forward to this purpose, corre-

sponding to different notions of extensional behaviour. We mention here some 

of the proposed equivalences, by order of increasing strength: string equivalence 

- the traditional language—theoretic equivalence, testing and failure equivalences 

[DII 84,BHR 841 , observational equivalence [Mil 801 , and bisimulation equiv-

alence [Park 81, Mil 821 
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We shall be mostly interested here in bisimulation equivalence, a refinement of 

Miler's observational equivalence (Mil 80, HM 851 that rapidly superseded it 

in Miler's own works (mainly by virtue of better mathematical properties). 

In fact the two equivalences coincide on a large class of processes and we shall 

often use the two names interchangeably. A first concern of this thesis will be 

to characterise the weak bisimulation equivalence as a relation of reducibility 

to a same process, as explained in the second part of this introduction. 

While they account for the interactive and nondeterministic aspects of con-

current computation, ordinary transition systems do not seem suited to repre-

sent the nonsequential behaviour of processes. Evolving by sequences of transi-

tions, LTS's essentially simulate parallelism between independent processes by 

a choice between the possible interleavings of their activities. They provide a 

so—called interleaving semantics of concurrency. 

In fact, interpreting concurrency as nondeterministic interleaving may be a 

useful simplifying assumption. It has allowed for the construction of elegant 

algebraic models in which the specification and verification of large concurrent 

systems are possible. All the models mentioned above [BHR 84, DH 84, HM 85, 

Mil 801 are based on interleaving assumptions. It may be argued, on the other 

hand, that such assumptions are not realistic: that they may be justified in the 

case of a single processor performing multitasking, but do not appropriately 

account for distributed systems. 

Perhaps the most representative theory of "true concurrency" is that of Petri 

nets, developed from the early work of Carl Adam Petri [Petri 621 . Petri nets 

provide a nonsequential model for concurrent systems, built on the primitive 

notions of causality and concurrency, which has been at the basis of many 

subsequent proposals. Though operational in nature, this model did not have 

until recently [Gra 81, Rei 85, CV 871 a transition system semantics reflecting 

its original intention. The usual operational rules (firing rules) for Petri nets - 

allowing a single transition or a set of concurrent transitions to fire in one step 

- do not fully preserve the causal and concurrent structure of a system. Thus 

these rules, which proved very useful in the analysis of properties of nets, did 

not lead to a satisfactory notion of behaviour of a net. 

In [Petri 771 Petri indicated in the concept of process - roughly, a deter-

ministic unfolding - the appropriate notion of nonsequential computation for 



a net. The behaviour of a net is then defined to be the set of its processes. 

Processes have been subsequently studied and generalised in a series of works 

[Best 84, GSW 80, GR 83, Rei 851 . In fact, what seems essential in a process 

is the partial order of its transitions, what W. Reisig calls abstract processes in 

[Rei 851 . The idea of concentrating on the partial order of events of a Petri net 

- of a particular kind - was used also for building the theory of event structures, 

started by Nielsen, Plotkin and Winskel [NPW 791 and then developed mainly 

by Winskel [Win 871 

An event structure (ES) describes a concurrent nondeterministic computa-

tion as a partially ordered set of events. The ordering represents causality; two 

non—related events may be in one of two relations, concurrency or conflict. The 

notion of configuration  of an ES is introduced to represent the possible stages of 

a computation: in fact a configuration is something very similar to an abstract 

process. Event structures constitute a simple system model, where the relations 

of concurrency and causality among events (transitions) are clearly expressed; 

moreover they are close to abstract processes and thus to a behavioural repre-

sentation of a net. This explains why they have received much attention as a 

model for concurrency in recent years [CFM 82, Win 82, BC 86, GV 871 

As well as labelled transition systems, Event structures play a unifying role 

in the semantics of languages. We just saw that the configuration space of an 

ES is a way of representing the behaviour of a Petri net. On the other hand one 

may use labelled event structures to model algebraic languages like CCS and 

CSP (see [Win 82)). Event structures also provide a very clean model for data 

type theory: here the space of configurations is the domain of possible values of 

a type. Evolving from Kahn & Plotkin's concrete domains, ES's give a concrete 

representation of a data type, well—suited for the definition of standard domain 

constructions [Win 871 . 71  

To come back to the modelling of concurrency, many other authors have 

been concerned with partial ordering models. An earlier formalization of a 

partially ordered set of actions was given by Mazurkiewicz, with the notion 

of trace [Maz 841 . This concept was generalised to that of pomset - partially 

ordered multiset - by Pratt in [Pra 851 . In his thesis [Gi 841 , Gischer presents 

very elegant results about pomsets, and gives a characterisation of the class of 

pomsets required to model a simple algebra of concurrent processes. The notion 



of pomset is also related to that of partial word studied by Grabowski EGra 811 

Nonsequential behaviours have also been studied extensively by M. Shields (Shi 

82]. Another contribution to this line of research is Montanari & Degano model 

of concurrent histories EDM 861 , sort of concrete computations that may be 

concatenated, and from which one can eventually extract a partial ordering of 

atomic actions. This approach has been used in EDDM 85, DDM 871 to give a 

partial ordering semantics for CCS. 

To conclude this discussion, we should like to mention another point of dif-

ference between true concurrency models and the algebraic models mentioned 

earlier. The first are mostly concerned with representations of processes, and 

generally do not provide constructs (a language) for defining processes. As a 

consequence these models lack a notion of hierarchical decomposition, and do 

not lend themselves to the definition of abstraction mechanisms. On the con-

trary algebraic models are based on the choice of a syntax (a set of program-

ming constructs) for processes, and the semantics itself - describing processes 

as labelled transition sytems - is syntax directed (structural, in the sense of 

Plotkin). Based on the operational semantics, a notion of behavioural equiv-

alence - be it bisimulation, testing equivalence or others - is introduced on 

processes. Because processes are essentially terms of an algebra, it is often 

possible to develop equational theories for the behavioural equivalence. 

* * * 

In this thesis, we present an attempt at bringing together the advantages of 

partial ordering models, representing causality and concurrency as primitive 

notions, and algebraic models, expressing a chosen set of primitive constructs 

and offering a now consolidated methodology for reasoning about processes. We 

shall now briefly discuss our guiding ideas, before passing to a more detailed 

overview of our work. 

Our starting point are some existing algebraic calculi of processes, essentially 

CCS and MEIJE - a calculus presented in [AB 841 , which already accounts for 

some aspects of nonsequential behaviour. We concentrate on a simple algebraic 

language CL whose operators are prefixing by an atomic action (a: ), sum 

(+) and parallel composition (I). This is a subset of both CCS and MEIJE 

(as well as of other algebraic languages for concurrency). 
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The terms of this language are interpreted in CCS as transition systems per-

forming successive atomic actions a, b, etc. Thus CCS provides an interleaving 

model of concurrency, leading typically to the identification: 

alb = a:b + b:a 

The calculus MEIJE gains some more descriptive power as regards concurrency 

by allowing compound actions made out of concurrent atomic actions. Hence 

the above identification is not valid in MEIJE, since the first process has a 

compound action a b, which the second cannot match. On the other hand 

MEIJE retains a notion of global time and does not capture all the relations of 

causality among actions. For example the two processes: 

ab 	and 	alb + a:b + b:a 

have the same operational behaviour in MEIJE, whereas the second one shows 

some additional causal dependencies which, to our view, should not be ignored. 

A main object of this thesis is to devise a more expressive semantics for 

the language CL, capable of reflecting both the causal and concurrent relations 

specified in a process. Basically, this is achieved by enriching the transitions: 

a 
p —4  p 

of a system. We have studied essentially two generalisations of the notion 

of transition system : distributed transition systems, obtained by generalising 

the residual p' of a transition to a compound residual <p',p" >, and pomset 

transition systems, obtained by extending the notion of action a labelling a 

transition (an action being now a partially ordered multiset). 

The idea underlying distributed transition systems is that for any atomic 

action, one may identify the local component which has performed the action. 

More precisely, a distributed transition gives rise to a compound residual, made 

out of a local component and a remote concurrent component. For example the 

process a: b I  c will have a transition: 

a:blc -- <b,c> 

where b and c are respectively the local and concurrent residuals. This descrip- 

tion reflects a view of concurrent processes as distributed in space. Separating 
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the components allows us, intuitively, to distinguish causality - relating an ac-

tion to its local residual - from concurrency - relating it to the nonlocal residual. 

Based on the new transitions, we define a distributed bisimulation equivalence 

on DLTS's, which acts recursively on both components of the residual. 

On the other hand pomset transitions are obtained from CCS transitions by 

relaxing the requirement of atomicity for actions (both in space and in time). We 

saw that the calculus MEIJE already renounces atomicity in space for actions, 

by allowing parallel composition within actions. We proceed one step further 

and drop the condition of atomicity in time too, by introducing sequencing 

(prefixing) in the actions. In this way actions become whole nonsequential 

computations. We have for example a transition: 

a:(b+c)Id 	a:bld NIL 

where the action d occurs in parallel with the sequence a: b. In this sense we 

obtain a completely asynchronous calculus, free of global time assumptions. 

We shall see that pomset transitions allow for an exact representation of the 

relations of concurrency and causality between atomic actions of a process. 

Distributed transitions give a more intensional description: they capture the 

relations between atomic actions as well as the relation between actions and 

choices. As a consequence distributed bisimulation equivalence is strictly in-

cluded in pomset bisimulation equivalence (which is in turn incuded in Milner 

strong bisimulation). 

The remainder of this introduction is devoted to a summary of the work pre-

sented in the thesis. 

This work is roughly divided in two parts. The first part, which includes 

chapters 2 and 3, is dedicated to the study of abstraction homomorphisms, func-

tions that simplify the structure of a process while preserving their behaviour. 

We show how such morphisms may be used to define a notion of abstract be-

haviour, both on transition systems (chapter 2) and on labelled event structures 

(chapter 3). 
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In chapter 2, we use the notion abstraction homomorphism to establish an alter-

native formulation for Milner's weak bisirnulation equivalence. We concentrate 

on a class of acyclic labelled transition systems determined by weak transitions, 

which we call nondeterministic processes. We define abstraction homomor-

phisms on this class and a corresponding reduction relation on processes. We 

show that this relation enjoys the Church-Rosser property, and yields unique 

minimal forms for processes. Based on this relation, we then introduce an ab-

straction equivalence on processes: two processes are equivalent if they 

are reducible to a same process. We then study the relationship between our 

notion of reduction and that of weak bisimulation. We show that abstraction 

homomorphisms are essentially single-valued bisimulations. As a corollary we 

may prove that our abstraction equivalence coincides with weak bisimulation 

equivalence, and can therefore be used as a simple alternative formulation for 

it. Our characterisation proves helpful in deriving a a complete set of reduction 

rules for the weak equivalence on finite nondeterministic processes. 

In chapter 3, after a short review of the algebraic calculi CCS, MEIJE and 

SCCS, and a discussion on Petri nets, we introduce the model of Labelled Event 

Structures (LES 's). We may then interpret processes of CL (the language men-

tioned earlier) as finite LES's. We extend to LES's our definition of abstraction 

homomorphism, and present an axiomatisation for the corresponding reduc-

tion relation. In conclusion we suggest the possibility of deriving a notion of 

bisimulation (on LES's) from that of abstraction homomorphism. 

Chapter 4 is devoted to the study of distributed transition systems (DLTS's), 

which partly originated as an attempt to provide an operational counterpart for 

abstraction homomorphisms on LES's. As mentioned earlier, distributed transi-

tions yield a compound residual, and the corresponding distributed bisimulation 

equivalence 	tests recursively both components of the residual. DLTS's are 

used first to interpret terms of CL. We may then show that 	is weaker than 

the abstraction equivalence — ab,  defined on LES's in chapter 3. In a further 

section we extend our DLTS semantics to deal with communication. We give 

an alternative formulation of the semantics, which uses a local and a global 

residual, and present a complete axiomatisation for on the language with 

communication. 
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Chapter 5 extends the DLTS semantics to a language with unobservable actions 

(and communication). Following Miler's style, we describe the behaviour of 

processes by weak distributed transitions. The treatment of the corresponding 

weak distributed bisimulation d  is considerably more complicated than that 

Of d . However the results of chapter 4 mostly carry over to weak DLTS. In 

particular, we find a complete axiomatisation for (the congruence induced by) 

d. 

In chapter 6 we present an interpretation of processes of CL as pomset tran-

sition systems, whose actions are partially ordered sets. We show that our 

semantics for terms agrees with an (intuitive) transition system semantics for 

labelled event structures, where transitions are labelled by configurations of 

events. We give an algebraic characterisation for the new bisimulation 

called pomset bisimulation equivalence. Finally we establish the relation be-

tween x and the bisimulations examined in previous chapters: it turns out 

that 	is strictly included between our distributed bisimulation 	and Mu- 

ncr's strong bisimulation . 

Chapter 7 presents a short conclusion and points to some interesting open 

problems. 
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Chapter 2 

Abstraction on nondeterministic 
processes 

Labelled transition systems (LTS's) [Kel 76, Plo 811 are generally recognised as 

an appropriate model for nondeterministic processes. LTS's describe processes 

as evolving through states via successive transitions. Each transition is labelled 

by an action, which may represent an interaction with the environment or an 

internal computational task. 

LTS's are often considered modulo bisimulation equivalence, a notion pro-

posed by Park and Milner [Park 81, Mil 831 : informally speaking, two systems 

are said to be equivalent if a full correspondence can be established between 

their sets of states in such a way that corresponding states are accessed by the 

same transition sequence and give rise to equivalent subsystems. 

We shall here concentrate on a class of acyclic labelled transition systems 

- with internal unobservable actions - that we call nondeterministic processes. 

We show that for this class of systems, the notion of bisimulation equivalence 

may be restated as one of "reducibility to a same system" via a simple reduction 

relation. This relation is proven to enjoy the Church-Rosser property, and to 

yield unique minimal forms for processes. We also show that, when restricted to 

finite nondeterministic processes, the relation can be characterised algebraically 

by a set of reduction rules. 

The chapter is organised as follows. In section 2.1 we recall the definitions of 

labelled transition system and bisimulation. In sections 2.2 and 2.3 we present 

our computational model, the class of nondeterrninistic processes. We argue 

that this basic model is not abstract enough, particularly when systems are 
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allowed unobservable transitions as well as observable ones. We therefore in-

troduce abstraction homomorphisms ECFM 821 as a means of simplifying the 

structure of a process by merging together some of its states: the result is a 

process with a simpler description, but "abstractly equivalent" to the original 

one. We can then infer a reduction relation between processes from the exis-

tence of abstraction homomorphisms between them. We prove some significant 

properties of this relation, such as substitutivity under standard operators and 

the Church-Rosser property. Based on the reduction relation, we define an ab-

straction equivalence relation on processes: two processes are equivalent if they 

are reducible to a same process. 

In section 2.4 we study the relationship between our notions of reduction and 

abstraction and the notion of bisimulation between transition systems. The cri-

terion we use for identifying states of a process via abstraction homomorphisms 

is similar to the one underlying the definition of bisimulation: we show in fact 

that our abstraction equivalence coincides with (the substitutive _version of) 

bisimulation equivalence, and can therefore be used as a simple alternative for- 
 I-

mulation for it. In section 2.5 we establish a notion of minimal ity for processes: 

a process is minimal if it cannot be further reduced by means of abstraction 

homomorphisms. 

In section 2.6 we consider a small language for defining finite nondetermin-

istic processes: essentially a subset of R. Miler's CCS. On this language our 

equivalence is just Milner's observational congruence, for which a complete fi-

nite axiomatisation has been given in [HM 83]. So, on the one hand, we get a 

ready-made algebraic characterisation for abstraction equivalence; on the other 

hand, our characterisation proves helpful in working out a complete system of 

reduction rules for that language. 

2.1 Labelled transition systems 

We recall here the definition of labelled transition system, a general model of 

computation first proposed by Keller [Kel 761 and subsequently extensively 

used for describing concurrent programs (see [Plo 811 , [Mil 841 ). 

Labelled transition systems describe programs as progressing through 

states by sequences of actions. Formally, if A is a set of actions: 
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Definition 2.1 A labelled transition system (LTS) over A is a triple 

S = (Q U {r},A,---)), where (Q U {r}) is the set of states of S, r 0 Q is 

the initial state (or root) of S, and -' c [(Q U {r}) x A x (Q U {r})] is the 

transition relation on S. 

We shall use q, q'... to range over Q, and a, b... to range over A. The inter-

pretation for (q, a, q') E—+ is that S may evolve from state q to state q' via a 

a.ction a. We will generally write q --
a 
  q' in place of (q,a,q') e—+ 

For L ç A, let L 	
{(q, q') 	 a aa E L s.t. q -* q}. With a slight abuse 

of notation, we shall write —c for the transitive and reflexive closure of ---*, 

which we call the derivation relation on S. We may assume that all states of an 

LTS S = ( Qu{r}, A, ----p)  are accessible from the root, that is: Vq e Q, r -* q. 

For an LTS S = (Q U {r},A,—*), we will use Qs, — s , instead of Q, -p  
whenever an explicit reference to S is required. 

Note: one does not in general require LTS's to have an initial state. We 

adopt here rooted LTS's since we are primarily interested in modelling individ-

ual programs. 

According to our definition, an LTS S is a machine starting in some definite 

state and evolving through successive states by means of elementary transitions. 

On the other hand, each state of S may be thought of as the initial state of 

some other LTS: we may then regard the system S as giving rise to new systems, 

rather than going through successive states. 

In fact, the whole class £ of LTS's may be described as a (nonrooted) 

labelled transition system whose states are LTS's. The transition relation - 

is defined as follows: if S = (Q U {r}, A, —*) and a E A, then S -- S' if 
a 

S = (Q U {r 'j, A, -p)  with r 	r, Q U {r 'j = {q E (Q U {r}) I r 	) 
* q}. 

We say that 5' is a derivative of S whenever S —i S'. Thus for any S E £, 

a one-to-one correspondence can be established between the states and the 
o.u-seies 

derivatives of S. In the following we will often availof this correspondence 

between states and (sub)systems. 

2.1.1 Bisimulation relations 

A natural method for comparing different computing systems is to check to 

which extent they can behave like each other, according to some definition of 
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behaviour. 

The behaviour of an LTS S is determined step by step by the actions it can 

perform. For any a E A, let us say that S' is an a-derivative of S if S -- S'. 

Then the behaviour of S can be defined recursively in terms of the behaviours 

of its a-derivatives, for any a E A. 

Based on such a recursive notion of behaviour, one gets an (equally recursive) 

notion of equivalence of behaviour, or bisimulation equivalence, between LTS's: 

two LTS's are said to bisimulate each other if for any a-derivative of either of 

the two, there exists an a-derivative of the other, such that the two derivatives 

still bisimulate each other. The definition of bisimulation equivalence, which is 

given below, is due to D. Park [Park 811 and R. Milner [Mil 831 

Definition 2.2 A bisimulation is a relation R c (C x C) s.t. R c B(R), where 

(S1 ,S2 )EB(R) if VaEA: 

S1  -- S1, implies B S2,  s.t. S2  --- S, with S R S 

S2  --* S implies 2S s.t. S i  -- S, with 	 S21  

In other words a bisimulation is a postfixed-point of the function B. Since 

B is monotonic for relations under inclusion, it has a largest postfixed-point 

(which is also its largest fixed-point) given by U {R I R C B(R)}. This largest 

bisimulation is easily shown to be an equivalence relation. We shall denote it 

by <-> , and refer to it as the bisimulation equivalence. 

2.2 Nondeterministic Systems 

In the previous section, we introduced LTS's without specifying anything about 

the nature of their actions. We shall now get more precise about this point. 

To model the nondeterministic aspects of concurrent systems, it is sufficient 

to consider LTS's performing atomic (unstructured) actions - or sequences of 

such actions. From now onwards, we shall call nondeterministic system (NDS) 

any such LTS. To account for specifically concurrent aspects, on the other hand, 

we will need LTS's with composite actions, generally involving some concurrency 

between their constituents. Such LTS's will be treated in chapter 6. 
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In the rest of this chapter, we shall only be concerned with NDS's. In fact, we 

are interested in NDS's with two kinds of atomic actions: observable and unob-

servable ones. Unobservable actions were introduced by Milner in his calculus 

CCS (Calculus for Communicating Systems) to represent internal communi-

cations. Intuitively, since the communication mode of CCS is that of binary 

rendez-vous, a communication action is no longer available for external obser-

vation - or for a rendez-vous (observers and communicating agents are treated 

in the same way in CCS). We shall here entirely adopt Miler's motivations, 

and generally use CCS notation. For a proper background we refer to Milner's 

book [Mil 80] 

We shall thus assume the set A to contain a single unobservable action r. 

Henceforward, NDS's will be labelled over this enlarged set of actions. We will 

now use p., v ... to range over A, and a, b... to range over (A - T). 

Let S denote the class of all NDS's. We suppose S to be closed w.r.t. some 

simple operators (taken from CCS): a nullary operator NIL, a set of unary 

operators p.: (one for each p. E A), and a binary operator +. The intended 

meaning of these operators is the following: NIL represents a terminated system, 

+ is a nondeterministic choice operator, and the p.:'s provide a simple form of 

sequentialisation, called prefixing by the action p.. We shall generally write p.S 

in place of p.: S. 

The transition relation of a compound NDS is taken to satisfy the properties: 

p.s --- s 

S -- 5' implies (S + S") -- 5 1 , (S" + S) -- S' 

The operators NIL, p.: and + will be given a precise definition for a subclass of 

5, the class of nondeterministic processes that we introduce in the next section. 

2.3 Nondeterministic Processes 

As they are, NDS's have an immediate representation as (rooted) labelled di-

rected graphs, whose nodes and arcs represent respectively the states and the 

transitions of a system. On the other hand, any NDS may be unfolded into an 

acyclic graph. We shall here concentrate on a class of acyclic NDS's that we 

call nondeterrninistic processes (NDP's). 

We 



Basically, NDP's are acyclic NDS's - that is, NDS's whose derivation relation 

is a partial ordering - where each state is assigned a label. The label of 

a state represents the sequence of observable actions leading from the root to 

that state. To make such a labelling consistent, we only allow two paths to join 

in the graph if they correspond to the same observable derivation sequence. 

The labelling is subject to the following further restriction: for any label a, 

there are at most finitely many states labelled by a. As it will be made clear 

subsequently, this amounts to impose a general image-finiteness condition on 

the systems, and is a crucial hypothesis for some of our results. 

In the formal definition, we will use the following notation: the covering 

relation -c associated with a partial ordering :5 is given by: z —C y 1ff 

x < y and ,z such that x < z < y. A*  is the set of finite sequences over A, 

with the usual prefix-ordering and with empty sequence e. In fact, since we are 

interested in observable sequences, we would like r to be replaced by e when 

occurring in strings. Let then 

A® = A* modulo the law r = 

be the set of observable sequences over A. 

Definition 2.3 A nondeterministic process (NDP) over A is a triple 

P = (Q U {r},<,l) where: 

(Q U {r}, <) is a rooted poset of states: V q, r < q 
nlQn.o+o vidc 

I : Q U {r) -* A® is a'labelling function, satisfying: 

1(r) = 

q—C q' implies 	A s.t. 1(q') = l(q)p 

Vu E A°, the set {q I 1(q) = a} is finite 

It follows from our conditions a.J the req 	1 is a monotonic function 

(w.r.t. prefix—ordering) 	that the ordering < on states is discrete. Note that 

an NDP is very nearly a labelled tree: it only differs from a labelled tree in that 

it may have some confluent paths. The reason we do not directly adopt labelled 

trees as a model is purely technical (this point will be discussed in section 2.7). 
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As pointed out already, we label nodes with sequences of actions, rather than 

labelling arcs with single actions: this minor variation w.r.t. the standard 

notation (see e.g. Milner's synchronisation trees) will make it easier to compare 

different states of a process. 

It is easy to see that any NDP P generates an NDS, with ---'p given by —C. 

More precisely, for any jL E A , the relation ---'p is given by 

{(q,q') I q—C q' and 1(q') = l(q)/21. Note that, because of our law: r = 

	

a transition 	is represented in an NDP by the repetition of the same label 

on the two --p related nodes. More generally, the label of a node will now 

represent the sequence of observable actions leading to it. For example: 

a Ir 

the tree 

b("'Ia 

will be in our notation 

a 

In what follows, nondeterministic processes will always be considered up to 

isomorphism (equality up to a renaming of states). We shall thus use P1  = P2  

to mean that P1  is isomorphic to P2 . 

We proceed now to define the operators NIL, It: and + on NDP's. Let F1 , P2  

be NDP's, with P1 = (Qi  U {r1 },< 1 , l). We have the following: 

Definition 2.4 (Operators on NDP's) 

NIL is the NDP with just a root rNIL 

	

1t:P1 	is the NDP P=(Qu{r},<,l) ,where r 	(Qiu{ri}) and: 

Q=QiU{ri} 

<=<1U{(r)q) I qEQ} 

I e, 	ifq=r 
(q) - 	

/21 1 (q), otherwise 

P1  + P2  is the NDP P = (Q U {r}, <,1) ,where r 0 (Qi U Q2),  and: 

Q = Qi + Q2 (disjoint union) 

<i F' Q1 U -<2 r' Q2 U {(r,q) I q E Q} 

I =  11 1' Qi U 12 1' Q2 U {(r, E)} 
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Let P C S denote the class of all NDP's: in what follows our treatment of 

nondeterministic systems will be confined to P. 

2.3.1 Abstraction homomorphisms 

The NDP-model, though providing a helpful conceptual simplification, does 

not appear yet abstract enough. It still allows, for example, for structural 

redundancies such as: 

aAa 

Moreover we want to be able to ignore unobservable transitions. Such tran-

sitions, being internal to a system, should only be detectable indirectly, on 

account of their ability to affect the observable behaviour of the system. 

Our intention is to define an abstraction mechanism directly on the model. 

To this purpose we introduce a simplification operation on processes, which 

we call abstraction homomorphism. Essentially an abstraction homomorphism 

will transform a process in a structurally simpler (but semantically equivalent) 

process by merging together some of its states. 

The criterion for identifying states is that they be equivalent in some re-

cursive sense: informally speaking, two states will be equivalent if they have 

equivalent histories (derivation sequences) and equivalent futures or potentials 

(sets of subsequent states). Formally: 

Definition 2.5 If P1  = (Qj u{ri },< 1 ,l 1 ), P2  = (Q2 u{r2 }, 2 ,1 2 ) are NDP's, 
— ~ 	. 

a  function  h: r
1 	r2 

is an abstraction homomorphzsm (a.h.) from P1  

to P2  if for any q E Qi: 

1) 12 (h(q)) = 1 1  (q) 

ii) succ 2 (h(q)) = h(succ i (q)) 

where succ(q) = {q' I q < q'} is the set of successors of q, includ,i 	q. 

The notation we use to define h may look slightly odd: what it means is that 

h maps the root and only the root of P1  into the root of P2 . Before giving 
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examples, let us also remark that any a.h. is surjective (instance of ii)) and 

preserves the ordering 	(again by ii)). 

Examples 

a 	q' 	 p. 

a I q" 	 a I h(q') = h(q") 

This example motivates our definition of succ(q): we want to allow q", a proper 

successor of q', to be mapped to h(q") = h(q'). 

a%\: 	

a I h(q) 

Note that the set of predecessors of q is not preserved by the homomorphism, cu.cL 
tt-o.t Ike 	cove,ri 	reJakovi, Is inot r..Cce-s&ct.r ( y  -pre..s--'i&J 

aa 	
ak 

a /\ ab 	 a/ \ ab 

Counterexamples 

 
/ 

at 	 a! 

There is no a.h. here, since by definition an a.h. never maps a proper state into 

a root. As a consequence, a process of the form rP can only be transformed 
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into a process of the same form. 

5) 	a 	q
/  

Again, there is no a.h. here, because the set of successors of q would increase. 

Abstraction homomorphisms may be proven to satisfy some expected properties 

of homomorphisms: it can be easily checked, for example, that the composition 

of two a.h.'s is again an a.h.. We shall also see, later in this section, that any 

a.h. on an NDP P induces a congruence on the states of P. As for now, we 

want to make sure that our notion of abstraction homomorphism is compatible 

with the ordinary notion of isomorphism. We noted already that any a.h. is 

surjective. In fact, it is the case that: 

Fact 2.6 Any injective a.h. from P 1  to P2  is an isomorphism between P1  and 

P2  and vice versa. 

Proof: Let h be an injective a.h. from P1  to P2 . To prove that h is an 

isomorphism between P1  and P2 , it is sufficient to show that: 

h(q) :52  h(q') only if q <i q' 

as the other properties are trivially implied by those of a.h.'s. 

So suppose h(q) :52  h(q'), i.e. h(q') e succ2 (h(q)). Then we have also h(q') E 

h(succ i (q)), by prop. ii) of h. Therefore 	q" E succ 1 (q) s.t. h(q") = h(q'). 

Since h is injective, it can only be q" = q', whence q' succi (q), i.e. q:51 q'. 

We have thus proved that an injective a.h. is an isomorphism. The proof of 

the converse is trivial, and is therefore omitted. 	 D 

For h an a.h. from P1  to F2 , we shall often write h : P1 - P2. 

aba Abstraction homomorphisms induce the following reduction relation -- on 

processes: 

Definition 2.7 P1  - 	P2  if 2 a. h. h: P1  -* P2 . 
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We prove next a few properties of this relation. 

Property 2.8 The relation ab8,  is reflexive, transitive and antis ymmetric (up 

to isomorphism). 

Proof: Reflexivity and transitivity are easy to check. We prove here that -4 

is antisymmetric, namely that: if h: P1  -) P2  and h' : P2  —* P1  are a.h.'s, 

then P1  = P2 . 

For any NDP P = (Q U {r}, :!~ ,l) and for any a E A*,  let: 

qE(QU{r}),l(q) =a}. 

Note that, because of our finiteness restriction on 1, any such Q4, is finite. Let 

now P1 = (Qj U  {ri}, ~ i,li), P2 = (Q2 U {r 2 },<2 ,12 ), and h : P1  —) P2 , h' 

P2  —' P1 . 

For any a E A*, define ha  = h F' Qi, h, = h' F' Q2a. We then have: 

h : 	— Q,, surjectively, whence IQiaI ~! IQ2cI. 

h : Q2a —i  Qi surjectively, whence Q2rI ~! IQiI. 

Summing up, we have I Q,,l = IQ2aI <00. Therefore the function h is injective 

and thus also h = UØ-EA. ha  is injective. By fact 2.6 we can then conclude that 

h is an isomorphism between P1  and P2 . 	 0 

Property 2.9 The relation - 	 is preserved by the operators ji: and +. 

Proof: Let P1 = (Qi U  {ri},:!~ i,lj),P2 = (Q2 U {r2 },<2 ,1 2 ) be NDP's, and 

h : P1  — P2  be an a.h.. We can then deduce that: 

1) JLP1 aba 
 —4 PP2 , Vp..EA 

2)P1+P±+P2 +P, VNDPP 

Proof of 1): Let P = AP1 , P = jP2 , with sets of states (Q U {r'1 }) and 

(Q U {r}) respectively. Then the function f : (Q U {r}) —p (Q U {r}) 

defined by: 

f (q) —  J T2, 	ifq={r} 
— 

1 h(q), otherwise 
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is (trivially) an a.h. from P to P. 

Proof of 2): Let P = P1  + F, P = P2  + F, with sets of states (Q U {r'}) 

and (Q U {r}) respectively. Let (Q U {r}) denote the states of P. 

Then the function f: (QI U {4}) -+ (Q U {r}) defined by: 

	

I r, 	ifq=r' 

1(q) = ' h(q), ifqE Qi 

	

q, 	ifqEQ 

is (trivially) an a.h. from P to P. 	 U 

In what follows, a relation which is preserved by our operators will often be 

called substitutive (w.r.t. these operators). 

We turn now to what is perhaps the most interesting feature of our reduction 

relation, namely its confluent behaviour. Confluence of a.h.'s can be proved by 

standard algebraic techniques, once the notion of congruence associated to an 

a.h. is formalised. 

Definition 2.10 If P (Q U {r}, <,l) is an NDP, we say that an equivalence 

relation on Q is a congruence on P if and only if, whenever q q': 

1) 1(q) = 1(q') 	(labels are preserved) 

ii) q <p == 	3p' p s.t. q' < p' (successors are preserved) 

It can be proved that any congruence - satisfies the following: 

convexity property: q <p < q' and q - q' implies q p 

The proof is by induction on the length n of the longest chain: q'-c q1 -c 

• . -c qn  s.t. 1(q') = 1(qi) = •.. = l(q). That this length is finite is ensured by 

our finiteness restriction on the labelling 1. In fact, in absence of this restriction, 

the convexity property would not hold, as shown by the following example. 

Example 

The figure below shows a process P, whose labelling does not satisfy the finite-

ness property, and a congruence '' on F: 
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r 

q1 a a q1 

P= q2

Aaa 

q 

q3 q 

q4 q 

qi 'j-.  q'1 -.s  q3 - 
with given by: 	A A A A 

q - q - q4  q 

The equivalence -. can be easily checked to be a congruence (the ordering sym-

bols are inserted in the figure to illustrate prop. i) of congruences). However, 

does not satisfy the convexity property, since for example: 

q1  <q2 <qs  and qi  - q3, but qi q, q 	q3 

We show now that, for any NDP P, there is a one-to-one correspondence 

between congruences and abstraction homomorphisms on P. First, some no-

tation: If P = (Q U {r},<,1) is an NDP and h an a.h. on P, we define the 

equivalence h  on Q by: 

h= {(q, q') I q, q' E Q, h(q) = h(q')} 

We can then prove the following two theorems: 

Theorem 2.11 If P is an NDP and is a congruence on F, then there exists 

an NDP F,—., the quotient of P by --., and an a.h. h,.,. from P to P/- s.t. 

Proof: If P = (Q U {r}, ,1) , define P/--. = (Q/--. U {r'}, ~ ',l') by: 

r'<'[q], VqEQ 

Eq] :5' [p] if 3 p'  s.t. q < p' 
--. p 

1'(r') = 

l'([q] ) = l(q) 
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Also, define h,..: (Q U {r}) —+ (Q/- U {r'}) by: 

h-(r) = 

h.,(q)=[q], VqEQ 

We shall then prove that: 

P/-j. is an NDP 

he., is an a.h. from P to P,.-... 

Proof of 1): To prove that P/-. is an NDP: 

First, we have to check that <' is a partial ordering relation. Reflexivity and 

transitivity follow easily from the definition. To prove antisymmetry, use the 

convexity property of 

Second, we show that the labelling 1' meets the requirements. The property 

of finiteness can be easily deduced from the same property of the labelling 1. 

We prove here that [q] -c Ep] implies 1'([p] ) = 1'( Eq] )jz for some p. E A. 

In fact, suppose [q] -c (p3 : this is because q < p' p, for some p'. That is, 

Po,. . . ,p,, n > 1, s.t. q = po—C . .. -c Pn = P. Now it can be easily shown, 

by induction on ii > 1, that: 

P0-C "'-C Pn and  [po] -c [Ps] implies s.t. Po P'—C p 	p, 

So, from [q] -c [p'] we deduce: 	3 q' , p"  s.t. q 	q'-c p" - p'. Then: 

1'([p] ) = 1(p") = l(q')p. = 1'(Eq] )p.. This ends the proof of 1). 

Proof of 2): We want to show that he.. is an a.h. from P to P/-, and that 

-i . By definition h,.. is a function mapping r to r' and Q to  Q/-...'. 

We check now the properties i) and ii) of a.h.'s. 

Property i): 

1'(h..(r)) = 1'(r') = e = 1(r) 

1'(h,..(q)) = P((q] ) = 1(q), for q E Q 
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Property ii): 

succ(h,.,(r)) = succ(r') = (Q/--') U {r'} = h(Q U {r}) = h,..,(.succ(r)) 

succ(h,..,(q)) = succ([q] ) = {[p] J [q] <' [p] } = {[p'] I q  :5  i1} 

= h,({p' I q :5 p'}) = h,..,(succ(q)) 

So h,.... is indeed an a.h. from P to P/—i. 	 U 

Theorem 2.12 If P, F' are NDP's and h is an a.h. from P to F', then h  is 

a congruence on P and P' is isomorphic to P/-h. 

Proof: Again, we show the result in two steps: 

is a congruence on P 

P' is isomorphic to P,Lh  

Proof of 1): We know that 	is an equivalence relation on Q. We check that 

it satisfies the properties i) and ii) of congruences. Suppose q 'h q' : this is 

because h(q) = h(q'). Therefore we have: 

Property i): 1(q) = l'(h(q)) = l'(h(q')) = 1(q') 

Property ii): q :! ~ p means p E succ(q). Then h(p) E h(succ(q)) = 

= succ(h(q)) = succ(h(q')) = h(succ(q')). So 3 p' E succ(q') 

s.t. h(p) = h(p'). That is, 3p's.t.q' < p' and p —h P'- 

Proof of 2): If P' = (Q' U {r'},<',l') and P/—h= (Q/ - h U {r"},<",l") is 

defined as for theorem 2.11 , let 4D : (Q/-'-'h U {r"}) -) (Q' U {r'}) be the 

function given by: 

= TI  

cI'([q]) = h(q) 

Then it is clear that 4 is well-defined. We show now that is an injective a.h. 

from P/—'h to F'. It will then follow, by fact 2.6, that 4P is an isomorphism 

between P/sh  and F'. 
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It is easy to check that is injective, as: 

h(q) == h(p) implies [q] = [p] 

Moreover, satisfies the properties i) and ii) of a.h.'s: 

Property i): l'(I'(r")) = 1'(r') = E = 

I'(cI( [ q ] )) = l'(h(q)) 	1(q) = I"( [q] ) 

Property ii): succ(4([q] ) = succ(h(q)) = h(succ(q)) = 

={h(p) Iq:5p}={([p]) Iq<p}= 

= {dI([p'1 ) I i 	p h P1 1 = I(succ([q] ) 

To prove the confluence property of a.h.'s, we will finally make use of the fol-

lowing: 

Lemma 2.13 If 	2 are congruences on an NDP P, then the relation 

'1,2 =def 	[ 	- U - 	J * , the symmetric and transitive closure of the union 

of -1  and is the least congruence 	on P s.t. 	- 	and 

Proof: It is a standard result that 	is the least equivalence on Q which 

includes both —'i  and 	Then, if 	is a congruence, it will also be the least 

congruence which includes —1 and 

Thus all we have to show is that '-'u is a congruence, namely that it satisfies the 

required properties i), ii). Let '1I2=1  U Now q '1,2 q' if 3n, I qo,. .. ,qn 
5.t. 

q = qo 1I2 	12  qn  = q' 

Then property i) of congruences is easy to check. As for property ii), suppose 

q <p. Since both - and '2  satisfy ii), there exist Po,... ,p s.t. qj <p. and: 

P = P0 '112 	1I2 Pn 

Thus, if we let p' = p,,, we have p -' 1,2P',  and q' < p'. 

For the coming theorems, we will need some more notation. If h, h' are two 

a.h.'s on the same process, we say that h is weaker than W, and write h -< h', 

if h'• The following fact is then (almost) standard: 
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Lemma 2.14 (Factorisation of an a.h. by a weaker one) 

If F, F1 , P2  are NDP 's, and h1  : P -p F1 , h2  : P -p P2  are a. h. 's s. t. 

h1  -< h2  , then there exists a unique a.h. h 2 1 1  : P1 - P2  s.t. the following 

diagram commutes: 

P, 	h2 

P2  

Proof: Let 	stand for -h,, -h2. In view of theorem 2.12, we can 

assume: 

P1  = P/-.- 1 ,P2  = 

Then the unique mapping h2 1 1  that can make the diagram commute is the one 

defined by: 

h2 1 1 (ri ) = 

h211([q] 1) = h2 (q) = [q) 2,  Vq E  

This mapping is a function, because [q] I  = [q'] 1  implies [q] 2 = [q'] 2  for 

the hypothesis that -19 . We now show that h2 1 1  is an a.h.. Let as usual 

ij  and .succ1  refer to P1  . Then h2 1 1  satisfies: 

1) 11([q] 1) = 1(q) = 12( [q] 2) = 12 (h21 1 ( [q] 1)) 

ii) h211(succi([q] 1)) = h2 1 1 (succ i (h1 (q))) = h2 1 1 (hi (.succ i (q))) = 

= h211([q'] 1 I q < q') = h2 (q' I q < q') = 

= h2 (succ 1 (q)) = succ2 (h2 (q)) = succ2(h211([q] 1)) 

We can finally prove the result: 
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Theorem 2.15 (Confluence of abstraction homomorphisms) 

If F, Fi , P2  are NDP's, and h1  : P —f F1 , h2  : P —+ P2  are a.h. 's, then 

there exists an NDP P3  and two unique a.h. 's h13  : P1  — F3 , h23  : P2  — P3  

s.t. the following diagram commutes: 

Xh X2 
P1 	 P2  

h13 •. 	h23  

P3  

Proof: Let again —'i  and 	stand for h1  and — h. . Define —= ['sq U  

Since 	is a congruence (by lemma 2.13), there exist correspondingly an NDP 

P/ 3  and an a.h. h, 3  : P —* P/-. 3  (by theorem 2.12). 

Let now P3  be P/-3  and h3  = h 3 . We have the following situation: 

Xh \~ ~2 
P1 	h3 	P2 

P3  

where both the pairs (h l , h3) and (h2 ,  h3)  meet the hypothesis of lemma 2.14. 

Whence the result with h13  = h31 15  h23  = h312 . 	 0 

Convention: in the following we will use 4-- instead of b, 	whenever 

convenient. We conclude this section by stating the following: 

Corollary 2.16 ( - ) is Church-Rosser) 

If P, F1 , P2  are NDP's s.t. P ab3 
—f P1  and P aba 

 — P2  , then there exists an NDP 
aba 	 aba P3  s.t. P1  — P3  and P2  — P3 	 0 
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2.3.2 Abstraction equivalence 

abs  The relation -* gives us a criterion to regard two processes as "abstractly the 

same". However, being essentially a simplification, --* is not symmetric and 

does not, for example, relate the two processes: 

or the processes: 

E 

a/h: 

Based on 	we will then define on NDP's a more general relation —ab, , of 

reducibility to a same process: 

ab8 	abs Definition 2.17 	—ab, =def - 	• 

We can immediately prove a few properties for . abs 

Property 2.18 	is an equivalence relation. 

Proof: Transitivity follows from the fact that -* is Church-Rosser, which 

can be restated as: ( abs -) U 4 
abs * 	abs 	abs
- ] = -4 • - 	 0 

Property 2.19 —ab,  is preserved by the operators i.: and +. 

Proof: Direct consequence of the substitutivity of --!* under j: and +. 0 

To sum up, we have now a substitutive equivalence —ab,  for NDP's that can 

be split, when required, in two reduction halves. The equivalence _ab8  will 

be called abstraction equivalence. In the coming section we shall study how 

abstraction equivalence relates to bisimulation equivalence. 
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2.4 Relating bisimulations to abstraction ho-
momorphisms 

2.4.1 Weak bisimulation relations 

In section 2.1 we gave the definition of bisimulation for general LTS's. There 

the criterion for testing a system and selecting its subsystems was simply given 

by the transition relation. In the case of NDS's, however, where one wants to 

abstract from internal transitions, a weaker criterion is needed. To this purpose, 

Milner introduced the following weak transition relations =: 

a 	 a T M 

=,.=-4-------- 	n,m>0,aEA—{r} 

1• 	

n>0 

In terms of these new transitions, one can then define weak bisimulation relations 

on NDS's as follows: 

Definition 2.20 A weak bisimulation is a relation R c (S x 5) s.t. R ç F(R), 

where (S 1 ,S2)EF(R) if VtEA: 

	

1) Si = S implies 	s.t. S2  = S, with SRS 

	

ii) S2  =. S implies 	s.t. S 1  = S, with SRS 

Again, the equation R c F(Ra) has a largest solution which is an equivalence 

relation, and will be denoted by <>. This equivalence is generally referred to 

as the weak bisimulation equivalence. We shall mostly omit the "weak" in what 

follows, since we will never use the simple bisimulation <-> on NDS's. 

Now, it is well-known that <> is not preserved by the operator +, as 

shown by the classical example: 

I 	<> NIL, 	but 	 <> 
E 

	

On the other hand the relation 	obtained by closing <> w.r.t. the 

operator +: 

1<>S2 if VS: (S+Si) <> (S+ S2 ) 
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can be shown to be a substitutive equivalence, and in fact to be the largest such 

equivalence contained in <>. (For more details on <> and <>+ we refer 

to (Mil 831 and (Mil 841 ). 

To conclude, <>+ seems a convenient restriction on <> to adopt when 

modelling NDS's. We will see in the next section that <> coincides, on 

NDP's, with our abstraction equivalence ab8• 

2.4.2 Quasi-bisimulat ions 

Looking back at our relations - 	and —ab, , we notice that they rely on a 

notion of equivalence of states which, like bisimulations, is recursive. Moreover, 

the recursion builds up on the basis of a similarity requirement (equality of la-

bels) that reminds'f the criterion (equality of observable derivation sequences) 

used in (weak) bisimulations to derive corresponding subsystems. All this indi-

cates there might be a close analogy between abstraction equivalence and the 

bisimulation equivalence <>. 

In fact, since we know that 'dabs  is substitutive, we shall try to relate it with 

the substitutive closure <> of <> . To this purpose, it will be convenient 

to have <> itself be defined recursively. 

Note that <> only differs from <> in that it takes into account the 

preemptive capacities a system can develop when placed in a sum-context. Such 

preemptive capacities depend on the system having some silently reachable 

state where, informally speaking, some of the "alternatives" offered by the sum-

context are no longer available. This suggests that we should adopt, when 

looking for a direct definition of <>+ , the more restrictive transition relations 
14 

14 	rm 
I 	def 	 fl, rn > 0 

In particular, we will have 	=_r*, n > 0. Note on the other hand that, for 

aEA—{r},it will be: ==4, 

However, the equivalence <>+ is restrictive with respect to <> only as 

far as the first derivation steps are concerned: at further steps <>+ 

behaves like <> , as it can be seen from the example: 
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<>+ • E 

aj 	<> 	ja 

al 	 lab 

ab 1 
So, if we are to recursively define <>+ in terms of the transitions 

14  
 , we 

will have to somehow counteract the strengthening effect of the 's at steps 

other than the first. 

To this end, for any relation R C (S x S), a relation R0  ("almost" R) is 

introduced: 

(Si, S2) ERa  if (Si , S2 ) E R, or (r: S1 , S2 ) E R, or (Si ,r : S2 ) ER. 

We can then define quasi-bisimulation relations on ND S's as follows (the defi-

nition is due to M. Hennessy): 

Definition 2.21 A (weak) quasi- bisimulation is a relation R ç (S x S) such 

that R c E(R a), where (S1, S2) E E(R,) if V/.LE A: 

1) S 1 	S implies 3 S s.t. 82 I = 	S, with SI Ra  S 

ii) 52 I=. S implies 	S s.t. S 1  l=. SI,  with SI Ra  S 

Once more, the equation R ç E(R a) has a largest solution which is an equiva-

lence relation. Now this equivalence has been proven by M. Hennessy to coincide 

with <>+. From now on, we shall use this as our definition for 

Before proceeding, let us make a few remarks about the relationship of quasi-

bisimulations with ordinary bisimulations. 

To this purpose, we will need some more notation. For any NDP F, let 

Der(P) = {P' I P -c P'}. If R is a binary relation , R C (X x Y), we say 

that R is total if {x I (x, y) E R} = X, and write Dom(R) for {x I (x, Y) E R}. 

Let us now introduce the following definition: 



Definition 2.22 (First step condition) If R is a bisimulation s.t. (F1 , F2) E 

R, we say that R satisfies the first step condition on (P 1 , F2 ) if VA E A: 

P1 	P implies 	s.t. F2 	P, with 	 P21  

P2  I= P implies 2P s.t. P1 	P, with P1 RP 

We then have the following characterisation: 

Proposition 2.23 A bisirnulation R is a quasi- bisimulation if and only if, 

whenever (Pi, P2) ER, then R satisfies the first step condition on (P1 , I'2). 

Conversely a quasi-bisimulation is not, in general, a bisimulation, as illustrated 

by the following example. Let P1  = arbNIL, P2  = abNIL. Then the relation R 

as shown in the figure: 

P1 	P2  

is a quasi-bisimulation, but not a bisimulation. Note on the other hand that in 

this example the quasi-bisimulation R could be extended to a bisimulation by 

adding the pair (raNIL, aNIL) to it, i.e. by turning it into a total relation. We 

have in fact the following: 

Proposition 2.24 A quasi- bisimulation R is a bisirnulation if and only if, 
whenever (PI, P2) E R, then R is total on Der (Pi ) and R is total on Der (P2 ). 

To end this digression, let us just add that, if R is a quasi-bisimulation, then R0  

is an ordinary bisimulation. In particular, for the maximal quasi-bisimulation 

we have <> = <> (this fact will be used in the proof of theo-

rem 2.31 below). 
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2.4.3 Characterisation of abstraction homomorphisms 

We proceed in this section to compare abs  with <>+ . We shall see first
abs that our reduction relation - 	is a quasi-bisimulation. We come then to a 

characterisation of abstraction homomorphisms as particular bisimulation rela-

tions. Only at that point will we have all the elements to prove our main result, 

namely that is equal to the largest quasi-bisimulation, and therefore to 

<>+. 

We thus start by showing that abs 
-p is a quasi-bisimulation. Let us first redefine 

j.-derivatives in terms of the new relations 	we say that S' is a (proper) 

a-derivative of S if S 	S'. We can then prove the following two lemmas: 

Lemma 2.25 ( --4 almost preserves /2-derivatives 
) 

ba 
If Pi  - 	P2  and P1  I= P then 	s.t. P2  I= P where either F1' - 4 P 
or P1 

abs 
-* ri'2 . 

Proof: We recall that any state of an NDP P is the initial state rps of some 
derivative NDP F'. Note that P 	P implies l(r) = in P. 

Let now h : P1  -) P2  be an a.h., and let as usual Qt, r, refer to P, i = 1, 2. 

Suppose P1  I= 	P11 . Let r'1  be the initial state of P in F1 : then r'1  E Q (i.e. 
r'1 	ri ) and li(r') = ji. Let now 4 = h(4). Then 4 is the root of some 

derivative P of P2 . Since h is an a.h., we have 4 r2  and 1(4) = 1(4) 
4 

Therefore P2 	Ps'. 

Let now 	= {q q e 	< q}, i = 1,2. From prop. ii) of a.h.'s, we know 

that: h(Q'1  U {r'}) = Q' U {r'}. 

Then we are in one of the following two cases: 

h(Q)=Q 

h(Q)=Qu{4} 

In case 1), h [' (Q U {r'}) is trivially an a.h. from P to P . Therefore 
P 	) P. 

In case 2), h maps some states of Q'1 to 4. Note that these states will be 

labelled by /2 in P1  and by E in P. Let Qe denote the set of such states in P11 

namely Qe = { q I q E Q, 1(q) = 
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Also, let P' = rP . Then Q'2' = Q'2 U {r'2 } and the function: h': (Q U {r}) 

(Q U {r}) defined by: 

h'(r) = r 

h'(Qe ) = 4 

h'(q) = h(q), otherwise 

is (trivially) an a.h., so that in this case we have: P1 
abs —* rP2 . 	 0 

Lemma 2.26 
( 

ab8 
' almost preserves /1-derivatives ) 

If P1 
ab8 

 -) P2  and P2  I= P then 3 P' such that P1 	Pit  , where either 
DI abs

1 
 abs 	D — I or P --4 Ti 2I 

Proof: Suppose P2  i4 P. Let 4 be the initial state of P in P2 . Since h 

is surjective, r'1 	r1  s.t. h(r) = 4, 1(4) = 1(4) = i. Then, if P1 is the 

derivative of P1  with root 4, we have P1 	Fl, and the rest of the proof goes 

as for lemma 2.25. 

Theorem 2.27 -- is a quasi-bisirnulation relation on NDP's. 

Proof: Follows immediately from lemma's 2.25 and 2.26 	 0 

Corollary 2.28 - 	<;-- > 

Proof: <> is the largest quasi-bisimulation. 	
—01 

Note that in lemma's 2.25 and 2.26 we do not need consider the case rPl --- .P. 

The reason this case does not arise is that a.h.'s are single-valued relations. In 

fact, our next task will be to characterise a.h.'s as relations on processes. 

Let us first introduce some terminology. We defined earlier the set Der(P) of 

derivatives of an NDP P. Let now PDer(P) = {P' I p P',P P'} be 

the set of proper derivatives of P. Also, we say that a bisimulation relation R 

is between P1  and P2  if it relates P1  and P2  and is limited to their derivatives, 

namely if P 1  R P2  and R C [Der(Pi ) x Der(P2 )1'. 
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Note that a bisimulation R satisfies the first step condition on (F1 , F2 ) if and 

only if (Pi, P2) e R and P1  0 R(PDer(P2 )), P2  0 R(PDer(Pi )). 

Let now = 	stand for = 	: 	if o,  = j•••ji,. It is easy to see that, for 

any two systems S 1 , S2 , the following holds: 

Lemma 2.29 If S 1  R S 2  for some bisimulation R, then for any a E A®: 

S1  = S implies S s.t. S 2  = S, with S R S 

S2  =& S implies 3 S s. t. S 1  = S, with S R S 	0 

Now, if we regard a.h.'s as relations on processes, we have the following char-

acterisation: 

Theorem 2.30 A relation R on processes is an abstraction homomorphism 

from P1  to P2  if R is a single-valued bisimulation between P 1  and P2  s.t. 

P2  0 R(PDer(Pi )). 

Proof: Only if: Let R be an a.h. from P1  to P2 . Again, we assume that 

any state of P is the root rps of some derivative P'. Also, we write P R P in 

place of R(rp) = rp whenever we want to treat R as a relation on processes. 

Now, R is by definition single-valued and such that P1  R P2  and 

R C (Der(Pi ) x Der(P2 )). Also, R(PDer(Pi )) = PDer(P2 ) implies that 

P2  0 R(PDer(Pi )). What is left to show is that R is a bisimulation, namely 

that R C F(R). Suppose P R P, i.e. R(rps) = rpi. 

Clause i): If P =. P1", we have: rpu E succ(rp) and l(rpn) = l(rpi)p. Now, 

since R(succ(rp) = succ(rps) [prop.ii) of a.h.'s] , there exists rp' E succ(rps) 

s.t. R(r) = rps , that is Pa" R P'. Then l(rpu) = l(rpst) = l(rps)p= l(rp)j.i 

[using prop.i) of a.h.'s] . So we have P = P' , with P' R P2'. 

Clause ii): the proof is symmetric to that of clause i). 

If: Let now R be a single-valued bisimulation between P1  and P2  s.t. P2  

R(PDer(Pi )). Then R can be regarded as a function R : ( Qi U {r1}) -* 

(Q2 U {r2}). By hypothesis we have: R(ri ) = r2,R(Qi) = Q2. We check now 

that R satisfies properties i) and ii) of a.h.'s. Suppose R(rp) = rp, i.e. P11 RP. 
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Property 1): 1(r) = a E A° means Pi  = 	P11 . Since P1  R P2  , we know, by 

lemma 2.25, that 3 P' s.t. P2  = P21' and P R P' . Since R is single-valued, 

it must be P' = P . Whence l(rp') = a. 

Property ii): rp' e succ(rp) means that 3 a E A° s.t. P =& P1,' . Since 

P R P , by lemma 2.25 there exists P s.t. P = P' and Pf R P211 . So 

rps = R(rp;s) E succ(rp). We have thus shown that R(succ(rp) 9 succ(rp). 

By a sythmetrical argument we can show also: succ(rp) 9 R(succ(rp)), and 

this ends the proof of the theorem. U 

2.4.4 Abstraction equivalence equals bisimulation equiv-
alence 

So far we have been concentrating on how bisimulations relate to the reduction 

relation - . We now come to our main result, concerning the relationship 

between the abstraction equivalence ab8 and the substitutive bisimulation 

equivalence <>+ . It turns out that these two equivalences coincide: 

Theorem 2.31 	aba 

Proof of C: From corollary 2.28 we can infer: abs = 	+] C <>+, 

since <>+ is symmetrically and transitively closed. 

Proof of 2 : Suppose P1  <> P2  . We want to show that 2 P3  s.t. 

P1  -  ab P3  2- P2 . For any NDP F, and a E A°, let Der, (P) = {P'jP = P'} 

and PDer(P) = {P' I P = P',P 0 P'}. 

Note that f 1 <>+p2  implies P1 E(<>)P2 , i.e. P1 E(<>)P2 , where E is 

the relation defined at page 36. Then it is easy to check that the relation: 

R = (Pi, P2) U <> 1" (PDera (Pi ) x PDer(P2)) 

is a bisimulation between P1  and P2  s.t. P2  V R(PDer(Pi )). However R will 

not, in general, be single-valued. Let then be the equivalence induced by R 

on the states Q2  of F2 : 

rp' Tp' if 2P E PDer(Pi ) s. t. both (P, P) and (P1'' p2) "' e R 

It can be easily shown that is a congruence on P2 . Therefore, by theorem 2.30, 

there exist an NDP P3  and an a.h. h s.t. h : P2  -p P3 . So P2 abs  -* P3 . 
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Now, by theorem 2.30, h can be regarded as a bisimulation between P2  and 

P3 . Consider then the composition: R' = h o  . By construction R' is single-

valued and s.t. R' C (Der(Pi ) x Der(P3 )). Also, R' is a bisimulation because 

both R and h are. Finally, since P2  R(PDer(Pi )) and P3  V h(PDer(P2 )), 

we have: P3  R'(PDer(Pj )). Thus, by theorem 2.30 again, R' is an a.h. from 

P1  to P3 . So P1  - P3 . Summing up, we have shown that P1  - P3  - F2 , 

that is to say PlabaP2 . 0 

In view of the last theorem, the equivalence —ab,  can be regarded as an 

alternative definition for <>+. In the following sections, we will see how 

this new characterisation can be used to establish a notion of rninimality on 

processes, and to derive a set of reduction rules for <>+ on finite processes. 

2.5 Minimal NDP's 

Our reduction relation ±* can be used to define a notion of minimality on 

NDP's. Intuitively, a process P is minimal if it cannot be further simplified 

by means of an abstraction homomorphism, that is, if any a.h. on P is an 

isomorphism. Formally: 

Definition 2.32 An NDP P is minimal (or irreducible) if, for any NDP F': 

ab8 	I P -* P 	== P = F' (up to isomorphism) 

The natural question is whether any NDP P can be reduced to some minimal 

NDP P . We already know, by virtue of -4 's Church-Rosser property, that if 

such a P exists, it will be unique. We want now to show that P always exists. 

We will then have a notion of canonical representative for an NDP. 

In the previous section we established a correspondence between abstraction 

homomorphisms on an NDP P and congruences on the states of P. The obvious 

idea is then to take P to be the quotient of P w.r.t. the maximal congruence 

on P. But first, we need to make sure that such a congruence exists. 

We gave earlier, at page 39, a definition of bisimulation between two NDP's. 

It is easy to show that for any two NDP's, there exists a maximal bisimulation 

between them. We can then prove the following: 
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Proposition 2.33 Let P = (Qu{r}, <,l) be an NDP, and Rmax  be the maximal 

bisimulation between P and itself. Then the equivalence— max  defined on  Q as: 

Vq 19  q E Q: qi—max q2 1ff Pq1 R,naz Pq2  

is the maximal congruence on P (it is important to note that r 

since —max  is restricted to Q). 	 0 

This proposition allows us to define representatives for NDP's: 

Definition 2.34 If P is an NDP and — max is the maximal congruence on P, 

then the canonical representative P for P is the NDP P = P/'maz . 

We then have the following: 

Proposition 2.35 P'sOb8 P if P = F' (up to isomorphism). 	0 

To sum up, we have now a class of representative NDP's, which can be legit-

imately considered to be the abstract model we were seeking. In this light, 

NDP's are to be viewed as a pre-model, which needs to be further interpreted 

to yield the required model. 

2.6 A language for finite processes 

In this section, we study the subclass of finite NDP's, and show how it can be 

used to model terms of a simple language L. 

The language is essentially a subset of R. Miler's CCS (Calculus of Com-

municating Systems [Mil 801 ). In [HM 851 a set of axioms is presented for L 

that exactly characterises the equivalence <>+ (and therefore ''ab3 ) on the 

corresponding transition systems. We show here that the reduction --* itself 

can be characterised algebraically, by a set of reduction rules. These rules yield 

normal forms which coincide with the ones suggested in [HM 851 

We shall now introduce the language L . Following the approach of 

[HM 851 , we define L as the term algebra TE over the signature: 

=Au{NIL,+} 

If we assume the operators in E to denote the corresponding operators on 

NDP's (A is here identified with the set of unary operators /z: ), we can use 
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finite NDP's to model terms in TE.  If t is a term of TE,  we will write P for the 

corresponding NDP. 

We shall point out, however, that the denotations for terms of Tr, in P will 

always be trees (cf the definition of the operators on NDP's at page 21), that is 

NDP's P = (Q U {r}, !~ ,l) obeying the further constraint: 

confluence —freeness: if q < q" and q' < q" then q !~ or q' < q 

Consider now the set of axioms E: 

El. x+x'=x'+x 

sum - laws 	E2. x + (x' + x") = (x + x') + x" 

x+ NIL =x 

Arx — jtx 

tau - laws 	ES. rx + x = TX 

E6. 	(x+Ty)+jy=p(x+Ty) 

absorption law 	E7. x + x = x 

Let = be the equality generated by E on L. It has been proved in 

[HM 831 that E is a sound and complete axiomatisation for Miler's obser-

vational congruence on L. We will not give here the definition of  szel 

which can be found in (Mil 80, HM 831 . Let us just say that it presupposes 

the definition of the relations --- (and =) directly on the terms of Tr,, as 

follows. For any e A, let -- be the least relation on terms that satisfies: 

1) At -- t 

ii) t 	t' implies (t + t") ' -* t', (t"+t) 	t' 

The weak relations = are then defined in terms of the --- 's just as in section 

2.4.2. Now, it is well-known that, for any t, t' E L: 

tt' if Pt<>+ Pt,  

Combining these facts with the result of the preceding section, we can conclude 

that: 

t =c  t' if 	 Ptl  
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In other words, =, is an algebraic analogue for —ab, . Note on the other hand 

that, although each axiom of E could be viewed as a reduction rule (when 

applied from left to right), the corresponding reduction relation —p would not 

characterise -4. Consider for example the terms: 

t = aNIL + r(aNIL + bNIL), t' = r(aNIL + bNIL) 

We have P ab8 
 —pPt,  , but we cannot infer t —* t'. 

However, using the axiomatisation E as a reference, it is possible to derive 

a new system of reduction rules, which completely characterises --*'. 

Consider the reduction relation 	generated by the following set of re- 

duction rules R, where 	stands for (-3 fl 	3_1) , and the restrictive 
1 relations f= are derived from the —* IS just as in section 2.4.2: 

Ri. x + x' — x ' + x 

sum — laws 	R2. x + (x' + x") —+ (x + x') + x"  

R3. x+ NIL —3x 

r — law 	R4. kirx —+ AX 

generalised 	R5. x + Ax' —+ x whenever x 
absorption law 

In what follows, we will often consider terms modulo the congruence induced by 

Ri - R3. When taken modulo Ri — R3, a term t can be expressed in the form 

>, , where i E I for some finite set of indices I. We set by convention 

EEI ILiti = NIL if I = 0. 

It is easy to check that the rules R 	 abs are sound for NDP s under —+ , in 

the sense that t — t' implies P -4 Pt , . We proceed now to show that the 

rules R are also complete for ±* , namely that whenever P -- we 

can infer t 

To this purpose, we first prove a stronger version of lemma 2.26, the following: 

Lemma 2.36 ( abs 
—) —1 almost preserves /2-summands) 

If  p. -- P2  and P2 ±3  P then 	PI  s.t. P1 ±3  P11 , where either 
abs 	, 	 abs P1  — P2  or P1  —+ rP2 . 
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Proof: Let h: P1 -* P2  be an a.h. and suppose P2  -- P2 . Then, if r'2  is 

the root of P in F2 , we have 1(r'2) = . Also, since h is surjective, r'2  = h(r) 

for some state r E Qi. Now in general it will be: 

r1-C q1 -C –C q = r 

Since h is order-preserving, this implies: 

r2  = h(ri ) 	h(qi ) :5 	:5 h(q,) = h(r) = 

Now, we know that r2-C r' and r2  V h(Q 1 ). Therefore it must be: 

r2  = h(ri)–c h(q1 ) = 	= h(q) = h(r) = 

This implies: 

1(q1 ) = ••• = 1(q,) = 1(4) = tt 

Let P be the derivative of P1  whose root is qi.  Then we have Pj  –f-. P , and 

the rest of the proof goes as for lemma 2.25. 	 D 

We now have the following (soundness and) completeness result: 

Theorem 2.37 t -v t' 1ff P 
abs 

 -) Pt' 

Proof of completeness: We show, by induction on the sum of the sizes of 

Pt and Pt' , that Pt 
abs 
-p  Pt' implies t - t. 

Assume t = Ei Iti ti  and t' = jEJ zi1t, , where i E I and j E J. In the 

rest of the proof, we shall use F, F' for P, Pt' and F1 , Pj for Ps,, P' . Let zi,t 
abs 	, bea summand oft . By lemma 2.36 z El s.t. i = v, and either F1  -p P, 

or P1  --* rP,' . Correspondingly we have, by the induction hypothesis, that 

either t or t1 _C  rt. In both cases we can deduce —v' v1t 

(using R4 for the latter case). 

So, corresponding to any j E J, we can find i E I s.t. 	C  v,t. Let I, C I 

be the set of all indices i thus chosen to match some j E J. Then we have: 

, _*c
I:vit; 

iEIj 	JEJ 

Whence, substituting in t 

t = (>,t, + > /2t) 	(zit + 	j /Ltj) = t' + 	I2ktk 
iEIj 	kEI—Ij 	 JEJ 	kEI—I 	 kEI—Ij 
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We show now that (t' + >kEJ.....Ij  /.Lktk) _c  t', and this will end the proof of the 

theorem. 

Each /2ktk is a summand of t. Thus for P = Pt  and Pk = Ptk we have 
Ph 	 abs P I=* Pk . Since P —p F, we can deduce (by lemma 2.25) that 2 F" s.t. 
jAk 

F' 	F" , where either Fk --* F" or Pk - 	rP". Let now t" be s.t. 

P" = 	Note that t' == t". 

By induction we have either tk 	
C  t" or tk 

_C rt". In any case we can 

deduce pktk — pkt". Thus we have: 

(t' + /2ktk) 
__C (t' + I2kt) 

ILk 
Since t' I= t", we can now use R5 to get: 

(t' + /2kt) 	t' 

As this can be repeated for all k E (I — 13 ), we conclude that: 

(t' + 	I2ktk) __ t' 
kEI—Ij 

To sum up, we have shown that: 

t = (1t, + :: /2ktk) __.4C 
(>v1t + >: ILktk) = (t' + 	

. 	
/.Lktk) 	t' 

iEIj 	kEI—Ij 	 jEJ 	kEI —Ij 	 kEI—I 

A 

Corollary 2.38 R is a rewriting system for the equational theory E. 0 

We can make use of our new axiomatisation for = to characterise normal forms 

for terms in TE.  We say that a term is in normal form if no proper reduction 

(R3, R4 or R5) can be applied to it. It can be shown that: 

Theorem 2.39 A term t = >jEJ p,t1 is a normal form if it satisfies the 

properties (Hennessy-Milner characterisation): 

1) no tj is of the form rt' 

fl) each t1  is a normal form 

iii) if i 0 j then p,t, =. t implies t,—/-- ~ t 
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A natural question at this point is whether there is a correspondence between 

normal forms and canonical NDP's, a notion we introduced in section 2.5. Let 

us just recall that, if P is an NDP, the corresponding canonical NDP P is a 
minimal NDP (no more reducible w.r.t. abs

--) ), which can be viewed as the 

"abstract" representative for P. Now, as pointed out earlier, the denotation P 
of a term t is always a tree. However its "abstract" denotation P might not 

be a tree. So, if i is the normal form for the term t, we do not have, in general, 
the equality Pt = P. On the other hand, the following holds: 

Proposition 2.40 i = V 	Pt = 

We conclude this section by giving a characterisation of finite minimal NDP's. 

Proposition 2.41 An NDP P is minimal if it meets the requirements: 

1) A node which has no brothers does not have the same label as its 

father, unless the latter is the root. 

ii) No node of P has two isomorphic cr-labelled (proper) successors. 

Note that identifying isomorphic or-successors in an NDP (or in a tree) is made 

particularly easy by our labelling on the nodes. 

Examples 

1) Let t = aNIL + TaNIL. The corresponding NDP is not minimal. We 

have: 

Pt 

La 	 at 
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On the other hand, it is generally preferable to have a congruence rather than 

a simple equivalence relation, especially when an algebraic characterisation is 

desired. Moreover, we need very little change in the definition of a.h. to obtain 

'aba = <>+ rather than 'abs = <> (whereas it is somewhat laborious, as 

we saw it in the previous sections, to pass from <> to its closure <>+ while 

keeping a recursive definition). 

Let us spend now a few words about our finiteness restriction for NDP's: we 

said when defining it that this restriction amounts to the condition of image-

finiteness for transition systems. We did not give at that point the definition of 

image-finiteness, since we had not yet introduced the weak transition relations. 

The definition is thus given here. 

An NDP is image-finite if V state q,Vp: the set {q I q ==14 	
i q } s finite 

This property is often assumed for LTS's, and indeed required as a condition 

for many classical results (see [HM 831 ). We saw that it was necessary here to 

prove some of our results. 

As regards our choice of NDP's (in place of labelled trees), we mentioned 

that this was due to a technical reason. In fact, if we had taken trees as our 

model, we would have needed a more restrictive notion of congruence : there 

would have been some additional condition to preserve confluence-freeness. But 

then, our definition for the sup of two congruences , , which is somehow 

standard, would no longer be adequate. This can be illustrated by an example: 

Consider the following NDP P (which is also a tree), and the two congruences 

i and 	on P (of which we only show the nontrivial pairs): 

r 

P= q1 q4 

q2nnana q5  

with -1 given by: q2 - q3 

and ''2  given by: q3 2 q5 
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Note that 
' 

and 	would both be admissible congruences for trees, since 

they both preserve confluence-freeness. On the other hand the equivalence 

1,2 = I -1 U 	] 
* would not be an admissible congruence for trees, since it 

yields the following quotient NDP: 

r 

P/_ 1 , 2  =  

Old 

{q4 } 

{q2,q3,q5} 

which is not a tree. 

S  ~-k ir 
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Chapter 3 

Abstraction on concurrent 
processes 

In the previous chapter we have been dealing with transition systems evolving 

through sequences of elementary actions, what we could call sequential actions. 

Such systems, factored by an appropriate equivalence relation, provide a good 

abstract model of nondeterministic behaviour. 

We address now the question of finding a similarly abstract model for pro-

grams which are both concurrent and nondeterministic. In fact, as pointed out 

earlier, the interest in nondeterministic behaviours is largely due to the fact 

that they arise in models of concurrent programming. Indeed, if we adopt the - 

widely accepted - sequential interpretation of concurrency as nondeterministic 

interleaving, a model for nondeterminism is all we need to deal with concurrent 

programs. The model for the calculus CCS [Mil 801 , as proposed by Milner and 

his collaborators, is an example of such a sequential explanation of parallelism 

(if we forget for a moment about communication). 

Here however we shall abandon this sequential view, and attempt to rep-

resent concurrency as a primitive structural feature of a system, which should 

be apparent in the system's behaviour. What is needed is then some notion of 

"concurrent" transition system. The obvious way to obtain this would be to 

generalise the notion of action of a. system. 

We recall that for an LTS S an action i, that is the label of a transition 

S '7—,.s 

represents a (partial)computation of the system S. In particular, if S is purely 

nondeterministic, ?7 is just a sequence of elementary actions. On the other hand, 
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should be allowed to contain some nonsequentiality between its constituent 

actions. In other words we would need to generalise sequential actions into 

(possibly) nonsequential actions. 

The transition system for the calculus MEIJE of Austry and Boudol 

[AB 841 , which we shall briefly examine in section 3.1.2, represents a step in 

this direction. Here actions of a concurrent program are elements of a com-

mutative semigroup - an idea that originated with Milner's calculus SCCS 

[Mil 831 , and the occurrence of a compound action amounts to the simul-

taneous occurrence of all its components. Such composite actions allow us to 

distinguish the two systems (described in a CCS notation): 

alb 	and 	ab + ba 	 (3.1) 

since the first one is capable of an action --*, while the second one is not. On 

the other hand the following two systems: 

alb 	and 	alb + ab + ba 	 (3.2) 

are considered to have the same operational behaviour, whereas the second one 

shows some additional causal dependencies which, to our view, should not be 

ignored. 

And here we come to what is usually taken as a major argument in favour 

of a partial ordering semantics for concurrency. The idea is that a concurrent 

system is firstly characterised by its causal structure. Now any semantics pro-

jecting concurrent activities onto a global time-scale - as are the interleaving 

semantics for CCS and the above-mentioned semantics for MEIJE - blurs the 

causal connectivity by adding new temporal sequences to the existing causal 

ones. Whence the "plea" for a partial ordering model, where two actions are 

ordered if and only if they are causally related. In such a model sequentiality 

becomes a synonym of causality. 

Now, assuming for a moment that we agree with this philosophy, why don't 

we simply adopt one of the existing partial ordering models as it stands? 

I think here particularly of Petri-nets [Petri 77, Net 801 and related models 

- such as Winskel's Event Structures [Win 801 - some of which have by now 

been well investigated. 

53 



concurrency" . Perhaps the most serious is that they lack, to my knowledge, of 

an operational semantics which reflects their original intention. The operational 
IaI,e,IIe4 

rules (firing rules) usually adopted for'Petri nets, for example - allowing one 

action or a set of concurrent actions to fire in one step - do not preserve all 

the significant distinctions of the model. It is easy to see, in fact, that these 

two rules determine LTS's which correspond respectively with the one for CCS 

(yielding an interleaving semantics) and the one for MEIJE (see section 3.1.3). 

Another common objection to Petri nets is their lack of structure, which makes 

it difficult to change the level of abstraction of a representation. 

To sum up there is not, as yet, a satisfactory notion of operational behaviour 

for true-concurrency models. This may lead us to question the capacity of "tra-

ditional" transition systems to capture the concurrent structure of programs. 

That is why, in Chapter 4, we shall propose a non-standard notion of LTS, 

what we call distributed LTS, which seems better suited to our purposes. The 

idea underlying distributed LTS's is that for any transition one can observe, be-

sides the corresponding action and residual system, also the components of the 

system which are concurrent to that transition. In Chapter 5 we shall extend 

this "distributed" approach to concurrent programs with unobservable actions. 

Later still, in Chapter 6, we will recover a more standard notion of LTS, where 

the additional descriptive power as regards concurrency is gained by admitting 

whole concurrent programs as actions. 

As for now, we shall momentarily put aside transition systems and turn, 

in section 3.2 of this chapter, to the more general question of establishing an 

abstraction mechanism - possibly not based on an operational intuition - on 

concurrent programs. 

Essentially, we shall try to generalise our treatment for the sequential case. 

We recall that in that case a syntax was used to provide the desired algebraic 

setting, and our abstraction mechanism (based on abstraction homomorphisms) 

was introduced directly on the model. Only afterwards was this mechanism 

shown to be closely tied to an operational semantics - defined on the algebra 

by means of structural behavioural rules. 

We shall here proceed along the same lines. We adopt a syntax which is the 

same as for the sequential case - essentially sum and prefixing - with the ad- 
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Labelled Event Structures, a model due to Winskel, Nielsen and Plotkin [NPW 

811 , which appears simple enough, yet exhibiting many interesting features. We 

then define abstraction homomorphisms on LES's, and give an axiomatisation 

for the corresponding reduction relation. 

At that point a question will naturally arise: does our "a priori" abstrac-

tion in any way help us in the search for an operational semantics? Can our 

abstraction criterion be turned into an operationally significant one? These 

questions will bring us to the following chapter, where we shall see that they 

can be answered - to a large extent - positively. 

3.1 Some existing LTS models for concurrent 
programs 

3.1.1 The reference language 

Here and in the rest of the chapter, we shall limit our analysis to a very simple 

class of concurrent programs. We shall only consider finite programs, evolving 

via observable transitions. Programs will be described as terms of a language 

CL. Just like the language L examined in the previous chapter (section 2.6), 

the language CL is presented as the term-algebra over a given signature. In 

fact, our signature E for CL is the same as the one for L, with the addition of 

a parallel operator I. Namely we take 

CL = Tr,, 	with 	: = Au {NIL,+, I } 
Terms of CL will be denoted by t, t', etc. Also, since A is assumed to contain 

only observable actions, we shall use a, b,... to range over it. 

Our intention is to find an interpretation of CL which ensures some "mini-

mal" set of properties for I , like: 

xx'=x'jx 

x I  (x'  I x") = (x I  x')  I x" 

while keeping a distinction between concurrency and nondeterministic inter-

leaving. 
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guage CL: we shall point to what we consider to be the "weaknesses" of these 

interpretations as regards the modelling of concurrency, and thus try to justify 

our departure from them in subsequent sections. 

3.1.2 Algebraic calculi: CCS, MEIJE, SCCS 

According to the terminology in use [Mil 83, Bou 851 , we shall call algebraic 

calculus of processes any formalism for defining processes which meets the fol-

lowing requirements: 

• Processes are defined as terms of a E-algebra, E being the syntax (signa-

ture) of interest. 

• Operationally, processes are interpreted as Labelled Transition Systems. 

The meaning of the operators is specified by a set of rules. These are 

called structural in that they define the behaviour of a compound process 

in terms of the behaviour of its components. 

• A behavioural equivalence is defined by means of the notion of bisirnulation 

on transition systems. 

The calculi CCS and SCCS of Milner [Mil 80, Mil 831 and the calculus MEIJE 

of Austry and Boudol CAB 841 , which we shall shortly review, are examples of 

such formalisms. These three calculi include in their syntax the operators of the 

language CL introduced in the previous section. Since we are here principally 

interested in the treatment of concurrency in these different calculi, we shall 

restrict ourselves to their common subset CL. Besides, for each of the calculi, 

there exists an axiomatisation of bisimulation equivalence on the subset CL, 

which will make our comparison easier. 

To start with the simplest case, we shall interpret the operator I  as just 

putting processes side by side, without allowing communication between them 

(a more general interpretation for I will be considered in the next chapter) 

As will soon be apparent, such a juxtaposition operation is asynchronous in the 

case of CCS and MEIJE, and synchronous in the case of SCCS (where it is 

usually denoted by x). Let us now formally present the calculi. 
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We say that a set of rules specifies the behaviour of a language of terms if, for 
U.' 

any term t in the language, it allows\to infer exactly all the transitions of t. 

In CCS the behaviour of terms of Tr  is specified by the rules: 

a:t —  —*t 

t 	t' implies (t + s) ---* t', (s + t) a 
 —f t 

. t?_+t' implies (tis) --) (t'Is),(sIt) 
a 

—p  (sit') 

The corresponding bisimulation equivalence (defined in the usual way, cf sec-

tion 2.1.1) is characterised by the set of axioms (see [HM 83)) 

A 

Al. x+x'=x'+x 

sum - laws 	A2. x + (x' + x") = (x + x') + x" 

A3. x+NIL=x 

absorption law 	A4. x + x = x 

P1. xix'=x'Ix 

par — laws 	P2. x I  (x'  I x") = (x I x')  I x" 

P3. xINIL=x 

interleaving 	IN. If x = > jEI a1 x1 , y = >,EJ b'y1, then 

XIYEjEI a1  (xi  Iy) + EjEj b,(xty5) 

The law IN is often called expansion theorem, in that it allows a parallel term 

to be expanded into the sum of smaller parallel terms (with fewer occurrences 

of I ). This and the preceding axioms A1-A3 justify the summation notation 

>j a, x1  used in IN (where again we assume E€1 a1  xi  = NIL if I = 0). 

By repeatedly applying the law IN , one can gradually push down the 

operator I , and indeed eliminate it from finite terms (in fact laws P1—P3 are 

not necessary here). In this sense we can say that the axiom IN expresses the 

simulation of concurrency as nondeterministic interleaving. 

Example 1: 	alb = ab + ba 
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Here actions constitute a commutative semigroup (A,.). The occurrence of 

a compound action represents the simultaneous occurrence of its constituent 

actions. 

The behaviour of terms of Tr, is specified by the rules: 

a:t —  --'t 

t 	t' implies (t + s) -- t', (s + t) --+ t' 

iii') t -- 	 b t' and s -) s' imply (t I s) ab 
-i (t' I a') 

The corresponding bisimulation equivalence is characterised by the set of axioms 

(Mil 83] 

Al. x+x'=x'+x 

sum — laws 	A2. x + (x' + x") = (x + x') + x"  

A3. x+NIL=x 

absorption law 	A4. x + x = x 

par — laws 	P1. xix' = x' x 

P2. x I  (x'  I z" ) = (x I x') 

synchrony 	SP. If x = > 	a1 x1, y = > jEJ by5 , then 

xy= 	EI,,EJaibI  (x i  lyI ) 

The law SP states that in SCCS the operator I (usually noted x) is a syn-
chronous parallel composition: at each step all parallel components are forced to 

move together. This amounts to impose a maximal degree of parallelism in the 

execution of a parallel process. In this sense the approach of SCCS is opposite 

to that of CCS, where the execution of a parallel process is strictly sequential. 
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Example 1. However, because of the synchrony constraint, it does not capture 

the "locality" of causal dependencies. For consider the exchange of causalities 

in the example: 

Example 2: 	al be = ac I b 

Note that the following law, which does not hold in CCS, can be derived in 

SCCS: 

distributivity law 	x I (y + z) = x J y + x z 

The synchrony law SP is another example of expansion theorem. Again, the 

operator I  can be eliminated from finite terms, and is therefore not primitive. 

Note however that, in contrast with CCS, some concurrency is retained here in 

the actions. 

Finally, remark that the law: 

P3. xI NIL =x 

is not valid in SCCS, where we get instead x I NIL = NIL as an instance of 

the synckroylaw SP (for y = NIL). 

The calculus MEIJE 

Here again actions are elements of a commutative semigroup (A,.). The rules 

specifying the behaviour of terms of Tr, are given below. Note that the rules for 

the parallel operator are obtained by joining the rule iii) of CCS and the rule 

iii') of SCCS. 

1) a:ta,t 

ti t' implies (t + .$) --+ t', (s + t) a- 
 -+ t 

t --+ t' implies 	(t I a) --) (t' I a), (a It) --) (a I t') 
iii') t --+ t' and a -L a' imply (t  I.) 

--* (t'Is') 

The bisimulation equivalence is characterised by the set of axioms: 

59 



Al. x+x'=z'+x 

sum - laws 	A2. x + (x' + x") = (x + x') + X 11 
 

A3. x+NIL=x 

absorption law 	A4. x + x = x 

P1. xlx'=x'Ix 

par - laws 	P2. x (x' I x) = (x I x')  I x" 

P3. xINIL=x 

asynchrony 	AP. If x =Eir  =j ax1 , y = EEJ b,ry,, then 

xiy = EiEI a, (Xi Iy) + EjEJ b,(xy,) + 

+ >iEI,JEJ a b (xi I ,) 

The law AP shows that in MEIJE the operator I is indeed an asynchronous 

parallel composition (this name was used already by Milner in [Mil 81]): at each 

step, either one of the components moves first, or both the components move 

together. Unlike CCS, MEIJE allows simultaneity between parallel components, 

while not enforcing it as does SCCS. This allows us to distinguish between the 

terms of the above examples 1 and 2. 

Yet, this is not quite sufficient to account for the causal structure of pro-

cesses. The following example, which we recall from the introduction: 

Example 9: 	alb = alb + ab + ba 

shows that causalities can still be absorbed within parallel terms. 

Note to conclude that the asynchrony law AP is a third instance of expansion 

theorem. 

Let us close this review about calculi with a summary of their different ap-

proaches to concurrency. 

• The calculus CCS models the asynchronous behaviour of parallel pro- 

cesses, while not allowing any real concurrency between their actions. 
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haviours but represents concurrency of actions to some extent. Precisely, 

SCCS allows - in fact, enforces - simultaneity among concurrent actions 

of equal "depth" (while it sequentialises concurrent actions of different 

depth). 

• Finally, the calculus MEIJE represents both asynchrony and concurrency. 

Here concurrent actions of any depth are allowed to occur simultaneously. 

There remains a question whether causality is sufficiently expressed in 

MEIJE. 

We should stress that the presentation of the various calculi we have given here 

is a simplified one. In particular what we say about the sequentialisation of 

concurrent actions in CCS is not true any more when communication is allowed 

(see Appendix for a description of CCS with communication). 

Also, our review is by no means exhaustive: there are other examples of 

algebraic calculi for concurrent processes, like bare & Brookes TCSP and the 

algebra ACP of Bergstra & Klop [BK 841 . 14  ROSCOe"S 

In the next section we shall consider three notions of behaviour - determined 

by so-called firing rules - for Petri-nets, which closely correspond to the three 

approaches examined here. 
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3.1.3 Partial ordering models. Petri nets firing rules 

In this section we eamine some notions of behaviour for Petri—nets. The the-

ory of Petri—nets, developed from the early work of Carl Adam Petri [Petri 

621 , provides a nonsequential model for concurrent systems which has been a 

reference for many subsequent proposals. 

Petri-nets are essentially bipartite directed graphs - with two kinds of nodes, 

circles which represent places (local states) and boxes representing transitions. 

Circles and boxes are connected by arcs, which give the so-called flow relation 

of the net. Formally: 

Definition 3.1 A (Petri) net is a triple N = (S, T, F) where: 

S is a set of places 

T is a set of transitions, such that S fl T = 0 

. F C (S x T) U (T x S) is the flow relation, such that T C range(F) 

The set X = S U T is the set of elements of the net. For any x E X, the 

sets 'x =def {y I y F x} and x• =1 {y I x F y} are called respectively the 

preset and postset of x. The condition T C range(F) means that transitions 

cannot be isolated: they are always connected to some place. This is a natural 

restriction if one thinks of transitions as changes of state. On the other hand 

isolated places are allowed, and indeed turn out to be convenient for defining 

the notion of process of a net (see later). 

The definition above only gives a static description of a system. To describe 

the dynamics of a system, one needs the notion of marked net, or "net in a 

given state". A marking of a net is a distribution of tokens on its places, which 

enables some of its transitions to occur (to fire in Petri nets terminology). 

Intuitively, assigning a marking to a net is a way of designating a global state for 

it, made out of several local states. Formally, a marking of a net N = (S, T, F) 

is a mapping M : S -* iN. 

Definition 3.2 A marked net is a net N = (S, T, F) together with a marking: 

• MO : S - IV, called the initial marking of N. 
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Graphically, a marking M is represented by drawing M(s) dots on each place 

s of the net. 

In fact, even before we start wondering about behaviours, the notion of 

marking is necessary to specify the relations among the elements of a net. While 

a notion of independence can be defined for transitions of an unmarked net 

(t 1  and t 2  are independent if they share no bordering places), the definitions 

of concurrency and conflict between transitions, which are fundamental to Net 

theory, can only he given relatively to a given marking. Let us now introduce 

these definitions. 

Definition 3.3 Let N = (S, T, F) be a net and M be a marking of N. Then: 

• A transition t E T is enabled at M if and only if: 

Vs ES M(s) ~: I s fl {t} I (i.e. Vs E t, M(s) ~! 1). 

• Two transitions t1, t2 E T are concurrently enabled (or simply concur-

rent) at M if Vs E S : M(s) ~! I s n {t 1 } I + I s 9  fl {t2} I 
• Two transitions t1,t 2  E T, t 1  54 t2, are in conflict at M if and only if 

they are both enabled at M but they are not concurrently enabled at M. 

Note that a transition may be concurrent with itself. We could have asked for 

t1 t2 in the definition of concurrency. In that case the condition above would 

simplify to: M(s) ~! I s n {t1,t2} 
. However, the general definition turns out 

to be more satisfactory. 

Let us see some examples. In the net below, the transitions t 1  and t2 are 
P 	 statically dependent in that they are both connected to the place p. On the 

other hand they are concurrent in the marking shown on the right: 

ti 	 t2 
	

ti 	 t2 

Consider now another net, with two transitions t1 and t2 which are again 

dependent, and become in turn concurrent and in conflict in the two given 

markings. 
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t '  t 2 	ti t 2 	ti t 2  

Based on the notion of marking, several transition rules can be defined on 

marked nets, specifying how a net evolves from one marking to the other. Each 

of these rules - called firing rules - gives rise to a different notion of computation 

for nets. Traditionally, a computation is assumed to be a sequence of firing 

steps, and the semantics of a net is defined to be the set of its computations 

(whichever is the chosen notion of computation). 

Before passing to defining these rules, we want to add a further feature to 

our nets. Up to this point, the transitions of a net are all distinct. We shall 

now introduce a labelling on nets, so that different transitions may have the 

same label. This will enable us to maintain - at least informally - a correspon-

dence between nets and the terms of our language CL (think e.g. of the terms 

(a + a) , (at a), etc.). We give next the definition of labelled marked net. 

Definition 3.4 Let A be a given alphabet. Then: 

A labelled marked net over A is a 5-tuple N = (S, T, F, M 0 , 1) , where: 

• S is the set of places 

e T is the set of transitions, S fl T = 0 

• F ç (S x T) U (T x S) is the flow relation, T C range(F) 

• M0  : S -* iN, is the initial marking 

• I :T -p A, is the labelling function. 

From now on, we shall always omit the names of transitions when drawing 

labelled nets. This kind of abstraction will be reflected in all the notions of 

computation that we shall consider. 

Let us now proceed to examine these different notions of computation. 
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Simple firing rule 

The basic firing rule for Petri nets (which we call simple here) allows only one 

enabled transition to fire at a time. The definition follows. 

Definition 3.5 (Simple firing rule) 

Let N = (S,T,F,M0 ,l) be a labelled marked net, and M, M' be markings of 

N. Then: 

. A transition t E T fires from M to M', in notation M [t> M', 1ff: 

1) t is enabled in M. 

ii) For any s E S, M'(.$) = M(s) — I s fl {t} I + I s fl {t} 

• Let a E A. The marking M moves under a to the marking M', in notation 

Al --* M', 1ff there exists t E T s.t. M [ t > .M and 1(t) = a. 

Of course, since we want to abstract from the names of transitions, we are 

interested in the "abstract" relations ---, rather than in the relations [t>. 

In particular, computations will be defined in terms of the abstract relations. 

Definition 3.6 Let N = (S,T,F,M 0 ,l) be a labelled marked net over A. 

• A finite or infinite sequence a 1 , a2 ,... of labels, ai  E A, is a firing 

sequence of N if and only if there exist markings M 1 , M2 ,... such that 
a2 Al0  —* Al1  	Al2  . . 

• A computation of N is any of its firing sequences. 

As mentioned earlier, the behaviour of a net is usually taken to be the set of its 

computations. For labelled nets, however, one may wish to have a more refined 

notion of behaviour, in order to distinguish for example the two nets below, 

intuitively representing the terms (ab + ac) and a(b + c). 
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:fl: 
Since nets are now interpreted as labelled transition systems w.r.t. the tran-

sition relations --, , it is immediate to define a bisimulation equivalence on 

them. We then define the behaviour of a net to be its bisimulation equivalence 

class. It is easy to see that we obtain in this way an interleaving semantics for 

concurrency, as was the case for the calculus CCS. As an example, the two nets 

below, representing the terms (a I b) and (ab + ba), have the same behaviour. 

Example 1 

b 

a 

In fact U. Goltz and A. Mycroft give in [GM 841 a translation of (a subset of) 

CCS into Petri nets, and show the equivalence between CCS semantics and nets 

semantics as given by the simple firing rule. 

The simple firing rule, in spite of its failing to represent the nonsequential 

behaviour of nets, has been for long the standard operational rule for nets, and 

in fact has proved a useful tool in the analysis of marked nets. 
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Step firing rule 

The natural improvement on the simple firing rule consists in allowing more 

than one enabled transition to fire in one step. Of course, only concurrent 

transitions are allowed to occur together in the same step. In particular, a 

transition which is concurrent with itself may occur more than once in a step. 

Thus a step will consist of a multiset rather than a set of transitions; a 

multiset of transitions in T being defined, as usual, as a mapping f : T —p W. 

If f is a multiset on T and 1: T —* A a labelling on T, we denote by f 

the multiset of labels of f, defined as follows: Va E A, f, (a) = E 1(t)=a f(t). 

The new rule, called step firing rule, is given next. 

Definition 3.7 (Step firing rule) Let N = (S, T, F, M0 , I) be a labelled marked 

net over A, M, M' be markings of N, and f: T —* V. Then: 

• f is a step from 	to M', in notation M [ f > M', if: 

Each transition t of f is enabled at least 1(t) times in .M, 

namely: Vs E S M(s) ~! Et8• 1(t). 

For any s E S, M'(s) = M(s) — >tEs• f(t) + tEa 1(t). 

• Let L be a multiset on A. Then the marking M moves under L to the 

marking M' , in notation M L )  , if and only if there exists a step 

f:T-1N s.t. M[f> M' and f1=L. 

Computations of nets are now redefined in terms of the relations --* 

Definition 3.8 Let N = (S, T, F, M0 , 1) be a labelled marked net over A. 

• A finite or infinite sequence L 1 , L 2 ,... of multisets on A is a step se-

quence of N if and only if there exist markings M 1 , M2 .... such that 

M0  _L, + 
 M1  - M2  

• A computation of N is any of its step sequences. 

Let us now consider the bisimulation equivalence induced by the relations --). 

This equivalence is stronger than the one induced by the simple firing rule. It 
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a  a b 

does not identify, for example, the two nets of example 1 above. On the other 

hand, the two nets below are still equivalent: 

Example 2 

Note: the nets of examples 1 and 2 here are just representations of the CL terms 

of examples 1 and 3 in the previous section. In fact G. Boudol et al. define in 

[BRS 851 a translation of nets into MEIJE terms, such that step bisimulation 

semantics for nets coincides with bisimulation semantics for the corresponding 

MEIJE terms. 

Maximal steps. If we restrict ourselves to maximal steps only, whose defi-

nition we assume to be intuitively clear, we obtain a bisimulation equivalence 

which corresponds to the one induced by the rules of the calculus SCCS. The 

two nets below are for instance identified. 

Example 5 

10" 'I 	1  
Note on the other hand that the new equivalence distinguishes the two nets 

of example 2, because the left hand one cannot start by executing a transition 
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a alone. We conclude that this new equivalence is not comparable with the 

previous two ones. 

Processes 

In closing this section, we must at least mention the notion of process of a Petri 

net. Although processes are not constructed through an operational rule, and 

have a rather complicated definition based on occurrence nets, they appeared, 

from the very beginning, to be the "right" notion of behaviour for Petri nets 

[Petri 77] 

An occurrence net is essentially an acyclic net with no branching places. 

In such a net each transition may occur only once - whence the name, and 

there are no conflicts between transitions. The idea behind an occurrence net is 

that its transitions represent occurrences of transitions in a given computation. 

An occurrence net may then be regarded as a deterministic unfolding of some 

marked net. A process associates one of its unfoldings to a net. Formally, 

a process is a mapping from an occurrence net to a marked net, satisfying a 

number of properties. 

The main advantage of processes with respect to firing rules, is that they 

seem to preserve all the information about concurrency and causality which is 

specified in the net. 

However, processes as they stand are rather awkward. What seems essential 

of a process is the partial order of the transitions of the underlying occurrence 

net, what W. Reisig calls abstract processes [Rei 851 . By focussing on the tran-

sitions only, one seems to be able to study many relevant behavioural properties 

of a net. Recently, abstract processes have become - possibly under different 

names, pornsets [Pra 85, Gis 841 , partial words [Gra 811 - the object of several 

studies. 

As a matter of fact, the idea of concentrating on the transitions of an oc-

currence net - although of a more complicated kind - was used already for 

building the theory of event structures, started by Nielsen, Plotkin and Winskel 

[NPW 791 and then developed mainly by Winskel [Win 87]. 

Let us briefly recall the notion of occurrence net used in [NPW 791 : here an 

occurrence net is generalised in order to represent a possibly nondeterministic 



computation. Thus forward branching is allowed in the net, while the idea that 

each transition (event) fires at most once is retained from the standard notion. 

In occurrence nets, the relations between events may be determined stati-

cally: in Winskel's occurrence nets, two events may be causally related, concur-

rent or in conflict. Event Structures are derived from such occurrence nets by 

forgetting the conditions and keeping the events together with their relations. 

Event structures appear on one side as a simple system model, where the 

relations of concurrency and causality among events are clearly expressed; on 

the other side they are close to abstract processes and thus to a behavioural 

representation of a net. This explains why they have received much attention 

as a model for concurrency in recent years [CFM 82, Win 82, BC 86, GV 871 

In the next section we shall be concerned with labelled event structures, and 

try to extend to them our notion of abstraction homomorphism. 
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3.2 Labelled Event Structures 

We recall here the definition of Labelled Event Structure (LES), a simple par-

tial ordering model due to Winskel, Nielsen and Plotkin [NPW 811 . Labelled 

Event Structures are obtained from Petri nets - more specifically branching oc-

currence nets - by cancelling the conditions and retaining the events with their 

existing relations. We recall that in an occurrence net, events are in one of 

three relations: causal dependency, conflict or concurrency (see [NPW 811 for 

the definition). In particular, the relation of conflict (resp. concurrency) be-

tween causally independent events is determined by the existence (resp. the 

absence) of a common preceding condition. Henceforth in a LES, where condi-

tions have been removed, the relation of conflict (or the complementary relation 

of concurrency) will have to be given explicitly. 

Roughly speaking, LES's are directed acyclic graphs whose nodes represent 

events. They can also be regarded as a enrichment of labelled trees, where a new 

relation of concurrency may hold between unconnected events, and confluence 

is allowed after concurrent events. Here and in the rest of this chapter, we shall 

only be concerned with finite  LES's. The definition follows. 

Definition 3.9 Let A be a non-empty set. A finite A-labelled event structure 

(A-LES) is a structure (E, , #,A)  where 

E is a finite set of events 

< is a partial ordering on E, called the causality relation 

# C (E x E) - (< U >) is a symmetric conflict relation, satisfying 

the property of hereditariness: 	e # e' < e" implies e # e" 

A : E -p A is the labelling function 

Here concurrency comes in as a derived relation: two events in E are said to be 

concurrent, noted '-', if they are neither comparable nor in conflict. That is to 

say: 

'def (ExE)(<u>U#) 

The relation '-' is a symmetric irreflexive relation. Note that by definition the 

three relations <U >, #, and '.-' induce a partition upon (E x E). 
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Since we have labelled structures, we shall mostly be interested in their isomor-

phism classes. In particular, we will always omit the names of events when 

drawing LES's. We JeKotr, #_ 1ko isoorpsWi, rdcJo-t orv 

In figures we will represent the ordering :5 by arrows (or simple lines, in which 

case we assume that the order increases downwards) and we show just one of the 

remaining relations - whichever is most convenient. For instance the following: 

is a structure with three events e, e' and e" respectively labelled a, b and c, such 

that e causes e", e, and e' are concurrent and e' and e" are in conflict. 

3.3 Interpretation of terms as LES's. 

We shall now impose a structure of E-algebra on LES's. We will then have 

an interpretation of terms of CL as LES's. Similar structured LES's have 

been considered already by Winskel [Win 821 and for example by TJ.Goltz in 

[Gol 86] 

Informally, the unary operator a: inserts a minimal a-labelled event r on 

top of a LES, while the binary operator J (resp. +) juxtaposes two LES's and 

inserts a relation of concurrency (resp. conflict) between their sets of events. 

In fact, there is a straight correspondence between the operators a: , , + of 

E and the connectives <,'-', # of LES's, and the application of an operator 

results in an extension of the corresponding connective. 

In the definition, we shall use the following notation. If V is a connective in 

{'-', # }, we write (V) for the corresponding operator. So we have  
and (#) = +. Let now S1, S2 be LES's, with Si= (E1 ,<1 , #,A 1 ). Then: 

Definition 3.10 (Operators on LES's) 

NIL is the empty LES, with no events 

a:S1  is the LES S= (E,<,#,A), where 
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E = E1  U {r}, for some r 

<=<iu{(r,e)IeEEll 

Ia, 	ife=r 
A 1 (e), otherwise 

If V E {'-', # }, then S1  (V) S2  is the LES S = (E, <, #, A), with: 

E = E1  + E2  (disjoint union) 

c=_<1 u_<2 

ifV='—' 
= 	(#i U #2) U {(e1,e,) I  e1  E E1 , e, E E1 , I j, 1,5 e {1,2}}, 

if V = 

A= Al U A 2  

Equipped with these operators, LES's constitute a -algebra, and thus a candi-

date model for our language CL. For any t e CL, let St denote its interpretation 

as LES. We then have: 

SNIL = NIL 

S a : t  = a: St  

St+ti = 

Stit ,  = ss 

Having fixed an interpretation for terms of CL, we want now to characterise 

the interpretation equality = I  on terms: 

t =I t' if St - Q - 

In fact, it can be easily shown that = is the equality generated by the set of 
axioms: 
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I 

Al. x+x'=X'+z 

sum - laws 	A2. x + (x'+ x") = (x + x') + x" 

A3. x+NIL=x 

P1. xlx'=x'Ix 

par - laws 	P2. x (x' I x") = (x J x')  I x" 

P3. xNIL=x 

The proof makes use of normal forms of the type (t op t') , where op E {+, 11, 
t does not have op as its head operator, and t, t' are themselves normal forms 

different from NIL. Any term can be reduced to a normal form by means 

of the axioms A2, A3 1  P2, P3 (i.e. using associativity to shift parentheses to 

the right, and the identity laws to eliminate occurrences of NIL in subterms). 

Such normal forms can be easily associated to LES's which are interpretations 

of terms. Thereafter one shows that if two such LES's are isomorphic then the 

corresponding normal forms are equal up to Al, A2, P1, P2. 

3.4 Abstraction homomorphisms on LES's 

As was noted already, LES's can be regarded as a generalisation of labelled 

trees. Just like NDP's and labelled trees, Labelled Event Structures provide a 

basic, concrete model. Again, our intention is to abstract from the basic model 

to obtain a more interesting equality on terms, which identifies for example the 

terms t and (t + t) 

To this end, we shall try to extend to LES's the abstraction method intro-

duced in Chapter 2. Let us look back at our definition of abstraction homomor-

phisms for NPS's. The general idea was to simplify the structure of a process 

by identifying similar states. In the case of NDP's, two states were considered 

similar if they carried the same label and had similar sets of subsequent states. 

For LES's we will need a stronger condition, since we want to distinguish for 

example the events e and e' in the following example: 
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e e' 
aT al 

bi b 1 
on the grounds that e and e' have different parallel contexts and thus there is a 

"computation" that distinguishes them (informally, a computation of a LES S 

is a finite beginning of S which is free of conflicts, because choices have been 

solved. A formal definition will not be given until Chapter 6). 

To ensure this kind of distinction we shall require that, for each event e, the 

set of events concurrent with e be also preserved by a homomorphism. Namely, 

if we let conc(e) =def  {e' e '-' e'}, an a.h. h between two LES's S 1  and S2  will 

now have to satisfy both the requirements: 

succ 2 (h(q)) = h(.succ1 (q)) 

conc z (h(q)) = h(conc1 (q)) 

Furthermore, we need to change our condition on labels. For NDP's this was: 

1 2 (h(q)) = li (q) 

where the label l(q) represented the sequence of characters leading to q. On 

the other hand, in a LES events are labelled with simple characters rather than 

derivation sequences. Therefore the above condition on label preserving is going 

to be weaker for LES's than it was for NDP's. For example it will allow the 

simplification below: 

e f 

a 	# .b 

b 
e 

a 

b h(e) = h(e') 

As a matter of fact, we cannot really speak of derivation sequences for LES's. 

For consider the LES: 
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e 	ell 

a V_ b 

c el 

What would be here the "derivation sequence" for the event e'? This question 

brings us back to the general problem of finding a notion of derivation for partial 

ordering models. 

For the moment we shall simply get around this problem by keeping char-

acters as labels, and seek some new condition to support the weaker one on 

labels. 

To this purpose, let us consider once again the definition of abstraction ho-

momorphism for NDP's. Note that, for an NDP F, the requirement 

1(q) = 1(q') for merging two states q and q' implies some similarity between 

their sets of predecessors. For NDP's with only observable transitions, this sim-

ilarity can be stated explicitly as follows. For any state q of F, let pred(q) denote 

the set of predecessors of q (defined in the obvious way), and A(q) be the last 

character in the sequence 1(q). Thus .X(q) is the label of the last transition(s) 

entering q (note that, because transitions are assumed to be all observable, all 

transitions entering q must have the same label). 

Now we can replace condition i) : 12(h(q)) = li (q) in our definition of a.h.'s 

(see page 22), where 1(q) is the derivation sequence for q, by the following two 

conditions: 

A 2 (h(q)) = A i (q) 

pred2 (h(q)) = h(pred1 (q)) 

without substantially changing the notion of a.h.. The only change regards 

confluence: with this new definition, an a.h. can never introduce confluence in 

an NDP, whereas this was possible with the definition of Chapter 2. 
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Example 

a 	 a 	 a a 

ab 	ab 
ab 

The above simplification is not allowed by the new definition. In fact, a) and 

b) would be the conditions to adopt - rather than i) - for defining a.h.'s on 

labelled trees, in order to preserve their tree-structure. 

To come back to our problem, we have now split condition i) of a.h.'s into 

two conditions a) and b). Now a) is just a character-preserving condition, 

similar to the one we have for LES's. Thus b) seems to be the additional 

condition we were looking for. 

We come in this way to the following definition of abstraction homomor-

phism for LES's: 

Definition 3.11 If S1  = (E1 ,<1 , 	S2  = (E2,<2, #2,1 2) are LES's, a 

surjective function h : E1 - E2  is an abstraction homomorphism (a.h.) from 

S1  to S2  if W. E E1  the following hold: 

 

1) )t 2 (h(e)) = A i (e) 

pred2 (h(e)) = h(predi (e)) 

 

 

succ2 (h(e)) = h(succi (e)) V 

 

where: 

conc 2 (h(e)) = h(conci (e)) 

   

pred(e) =def  {e' I e' > e } is the set of proper predecessors of e; 

.succ(e) =def {e' I e < e' } is the set of proper successors of e; 

conc(e) =def {e' I e '-' e'} is the set of events concurrent with e. 

Before giving examples, let us list a few simple facts about a.h.'s. Let MIN(S) = 
{eEs I(e' <e) ==' (e'=e)}. 
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Fact 3.12 If h is an a.h. from S 1  to 52,  then h(MIN(S 1 )) = MIN(S2 ). 

Proof Uses surjectivity and property ii) of h. 

Fact 3.13 If h is an a.h. from S 1  to 52,  then for any e, ë E E 1 : 

1) e '.- e' 	==. 	h(e) '—' h(e) 

e < e' == 	h(e) < h(e') 

h(e) .—' h(e') 	== 	'—' e' s.t. h(e) = h(e") 

h(e) < h(e') 	3 e" < e' s.t. h(e) = h(e") 

Let us now examine some examples. 

Examples 

a # 	a 

1) 

b # 	b 

a 

b 

Counterexamples 

e 
a # .b 

2) 

b 

h(e) 

ajb h(e') 

The mapping h here is not an a.h. because it violates condition ii) h(pred(e')) = 

0 {h(e)} = pred(h(e')). It can be noted from this example that condition ii) 

is not implied by condition i) (which is satisfied here). 

3) 

	

e 	e' 

	

a 	a 

	

b 	'-' 	b 

h(e) = h(e') 
a 

b 
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This is not allowed because h(e') E h(conc(e)) 	conc(h(e)) = 0. 

	

e 	e' 

	

a 	
h(e) 	h(e') 

, 

/ 

a 	a 
  

bi V lb 	 'l) e ll 

where V E { #, '_'}. This is not allowed since we have for example: 

h(pred(e")) = {h(e)} 0 {h(e),h(e')} = pred(h(e")). 

	

e 	 e' 	 h(e) 	h(e') 

	

a 	# 	a 	_-. •c 	 a? 	'•-' 'C 

bI 	bI 	
/ 	I 

bl 

The mapping h here is not an a.h. because h(conc(e)) = 0 0 h(e') = conc(h(e)). 

Note that we just gave one example of a.h.: the others are all counterexamples. 

We shall see in fact, in the following section, that the only simplification per-

formed by a.h.'s is of the kind illustrated in ex. 1) (identification of isomorphic 

conflicting components). 

But first, we want to establish some simple properties of a.h.'s. We shall 

proceed in the same way as we did for NDP's. 

We start by defining the reduction relation a6s) 
on LES's. Let us again 

write h: S1  -+ S2  to indicate that h is an a.h. from S to S2 . 

Definition 3.14 S1 
abs r. 
-p , if 2 a.h. h: S1  -+ S2 . 

We can then easily show the following facts. 

Property 3.15 The relation -4 is reflexive, transitive and antis yrnmetric (up 

to isomorphism). 

Property 3.16 The relation ±* is preserved by the operators a: , and +.D 
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3.5 Characterisation of the abstraction rela-
tion 

We have at this point an interpretation of terms of CL as LES's, and a reduc-

tion relation S - S' on LES's. We want now to characterise by a set of 

axioms the relation on terms, which we also denote --* , defined as: 

abs 	 abs t -+ t1 	 ?
-+ St , 

This section will be devoted to such a characterisation. More precisely, we shall 

give here a system of reduction rules which generates the relation -Z on 

terms. 

Consider the following set of reduction rules R, where 	stands for 

(—) n -31 ): 

RA1. x + x' +-* x' + x 

sum - laws 	RA2. x + (x' + x") -+ (x + x') + x"  

RA3. x+NIL—+x 

RP1. 	xIx'-.---*x'jx 

par - laws 	RP2. 	x I  (x'  I x") 4-+ (z I x')  I x" 

RP3. xNIL — x 

absorption 	RABS. x + x -* x 

Note that only three of these rules express proper reductions, namely RA3, RP3 

and RABS, among which RABS is the only nontrivial one. 

Let now - be the reduction relation generated by R. 

Our purpose is to show the characterisation result: 

Theorem 3.1 	t -* t' if St abs 
 -p S' 

The soundness of the rules R (that is the only if part of the statement) can be 

proved very easily. To prove the if part, i.e. the completeness of R, we need 

as usual to devise appropriate normal forms for terms. These should be such
abs that their components are preserved by the relation --* on the corresponding 

abs LES s, so that if t, t are normal forms the proof that S - Ss == t - t 



can use induction on the sizes of S, S e '. Moreover normal forms should bring 

one closer to semantic interpretation. In the present case, normal forms will be 

terms taken up to associativity and commutativity of I and +, whose proper 

subterms are all different from NIL. As a matter of fact, such forms are just a 

notation for isomorphism classes of LES's. Formally: 

Definition 3.18 A normal form is either NIL or one of the following: 

• A guarded form a: t, where t is a normal form. 

• A sumform 	> 	t , where each t 1  is a normal form which is either 
iEI, III >2 

a guarded form or a parform. 

• A parform [f ti where each t:  is a normal form which is either a 
iEI, Ill >2 

guarded form or a surnform. 

For convenience, we shall use the notation t = 	E ti  for unspecified 
IEI, I II >2 

normal forms, intending that t = NIL if I = 0 and t = t1  if I II = 1. Also, 

we will occasionally extend the above terminology - guarded forms, etc. - to 

(isomorphism classes of) LES's which are interpretations of normal forms. We 

shall study now how our homomorphisms act on the interpretations of normal 

forms. It will turn out that, while guarded forms and parforms are preserved 

by a.h.'s, this is not true in general for sumforms. In other words, a sumform 

can be simplified to a normal form of a different kind: however its summands 

will always be preserved. 

Our first task will be precisely to show that if t = 	E ti  is a normal 
iEI, Ill >2 

form, and h is an a.h. on S, then h preserves the summands S t, of S, and its 

restriction to any St , is still an a.h.. To this purpose, we shall use the fact below, 

which characterises the relation among events belonging to the same summand 

To avoid heavy notations, we adopt the following shorthand: 

• If S is a LES, we write e E S to mean e E Es. 

• If h : S1  -+ S2  is an a.h., then h(s1 ) denotes the structure S 2 , and for 

any substructure S! = 	1' E' , h(Sfl denotes the structure S 2  ' h(E). 
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Fact 3.19 Let t = 	> 	tj  be a surnform, and St be the corresponding 
iEI, Ill >2 

LES. Two events e, ë E MIN(S) belong to the same summand S t ,  if and only 

if: 

e = e' or e '-' e' or 3e" E MIN(S) s.t. e '-' e" '-' 

Proof. Only if: Let for short S = S, Si  = Se,. Consider any S, and take 

e, el E (MIN(S) fl S1 ) = MIN(S1 ). Then e zf e', e' e. Two cases are possible: 

t, = a: s. Then MIN(S1 ) is a singleton and thus e = e' trivially. 

t. = H 	Suppose e # e': this means that e, e' are in the same 
jEJ, IJI>2 

component S 3 . But then it will be: e '-' e" '-' e' for any e" in a different 

component S,k (there is at least one such S1k,  given that II > 2). 

If: Let again e, e' E MIN (S). Then, if e = e' or e '-' e', the two events e, e' 

are trivially in the same summand. Suppose now that e - e" '-.--' e' and e # e'. 

Then e and e' are in the same summand because they are both in the same 

summand as e". 0 

We are now able to prove the lemma: 

Lemma 3.20 Let t 	 t1  be a sumform, and t' 	t, be a normal 
iEI, III ~:2 	 jEJ 

form. Then any a.h. h : S -p 	between the corresponding LES's satisfies 

the following properties: 

1) Vi  {1,... ,n} 3j E {I,— , M1 s.t. h(S,) = S' (summands are preserved) 

ii) The restriction of h to any summand: h 1  : S 1  -+ h(S) is still an a.h. 

Proof of i) : Let S = S, S' =St, , Si  =St ,, S,' = Ss. To prove our statement 

it is enough to show that WE {1,... ,n} 3j E 11... . ,m} .s.t. h(MIN(51 )) = 

MIN(S,). Then the required result h(s1 ) = S will follow, since: 

E8 . 	= MIN(S1 ) U succ(MIN(S1 )) 

and thus: 	h(E5 .) = h(MIN(S1 )) U h(succ(MIN(51 )) 

= MIN(S) U succ(MIN(S)) 

=E'. 

Let us then proceed to prove that h(MIN(S 1 )) = MIN(S,). We know from 

Fact 3.12 that h(MIN(S)) = MIN(S'). Then, in view of fact 3.19, we may 
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prove h(MIN(S)) 9 MIN(S1 ) by showing that the relations s—' and '.—' • '—' are 

preserved on minimal elements. Let e, e' E MIN(S) fl Si. Fact 3.13 above gives 

us both e '—' e' == h(e) '.—' h(e') and e '—' e" '—' e' ==' h(e) '—' h(e") '—.' h(e'). 

So we can conclude that: 

Vi  fl, ... ,n} 2j e {i,.. . , m} s.t. h(MIN(S)) 9 MIN(S,). 

We still have to prove the reverse inclusion. Let h(e), h(e') E MIN(S') fl S, and 

suppose e E Si . 

Consider first the simplest case: h(e) '—' h(e') . Then, by Fact 3.13 iii), we 

know that 3 e" .s.t. e '—' e" and h(e") = h(e'). Since e '—' e" , e" E Si by fact 

3.19. 

Take now the other case: h(e) '—' h(e") '—' h(e') . Here, using Fact 3.13 as 

above, we deduce first that 3 e s.t. e s.—' 	 and h() = h(e"). Then we have 

h(e) '.—' h(e') , and by Fact 3.13 again, we deduce now that 3e' s.t. '.—' ë' and 

h(e') 	h(e'). To sum up, we have found two events ë,' s.t. e '—' '—' ' and 

h(e) = h(e"), h(e') = h(e'). Note that by fact 3.19, e s.—' 	 implies that 

, ' E Si. 

We can conclude that in any case if h(e),h(e') E MIN(S') n S,' and e e Si 
then there exists E Si  such that h(') = h(e') . We have thus proved that: 

Vi E {1,... , m} , Vi E {1,.. . , n} s.t. h(S 1 ) fl Sj  0 0: MIN(51 ) C h(MIN(S1 )) 

and this ends the proof of part i). 

Proof of ii) : we want now to show that hi =def  h f' Si  is an a.h. from Si  to 

the corresponding S. We know from part i) that h1  is surjective. As for the 

other properties, note that Ve E S 1 : 

char1 (e) = 	char(e) 

pred1 (e) = 	pred(e) 

.succ1 (e) = 	succ(e) 

conc1 (c) = 	cone(e) 

where f1 = f 1' Si . This is because e' E S - S i = 	e # e' and thus 

pred(e), e' 	succ(e), e' 	conc(e). 



Having established that, it is easy to see that hi  = h ' Si  inherits properties 

1) - 4) of a.h.'s from h. For example, if h(s1 ) = S, we have: 

h.(pred(e) = h(pred(e)) = pred(h(e)) = pred1(h1 (e)) 	0 

We shall now prove for guarded forms and parforms a stronger result. Precisely 

we show that abstraction homomorphisms preserve guarded forms and parforms 

as well as their immediate components. We start with guarded forms. 

Lemma 3.21 Let t = a: t0  be a guarded form, t' be a normal form, and 

h : S -p S. an a.h.. Then: 

1) t' is a guarded form. 

ii) the restriction of h to S f0 , h0  : S 0  -* h(S 0 ) is again an a.h. 

Proof. 1): A normal form t is a guarded form if and only if MIN(S) is a 

singleton. This implies that h(MIN(S)) = MIN(Ss) is a singleton, i.e. that t' 

is guarded. 

Proof. ii): We use again the shorthands 5 = S, 5' = St , ,etc.. Let now e0  
be the unique event in MIN(S). Then e'c, = h(eo) is the unique minimal event 

of S'. Moreover, if E0  = E 0 , E = E 0 , we have: 

h0 (E0 ) = h(E0 ) = h(succ(e o)) = succ(h(eo)) - — .1_Jo  

So h0  is surjective. 

As for the other properties, note that S o  inherits the functions char, succ and 

conc from S exactly as they are, and similarly does S, from S'. What is 

left to check is that for any e ES0  : ho (predo (e)) = predo '(ho (e)) (where to be 

precise we use predo  to refer to So , and pred'0  to refer to Si). 

Now for any e E S : predo (e) = pred(e) - e0 . Moreover, if e E S0  then 

h(e) 	4, because pred(e) 	0 implies pred'(h(e)) 	0. 

We then have, for any e •E S0 : 

ho (predcj (e)) = h(pred(e) - eo) = h(pred(e)) - h(eo) 

= pred'(h(e)) -4 = predo '(ho (e)) 

which is what we wanted to show. We conclude that h0  is indeed an a.h. from 

5o to S. 	
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To prove that parforms are preserved by a.h.'s, we need some more definitions. 

Essentially we need to consider parforms whose components may be parforms 

again. This is because, as we shall see next, a.h.'s preserve parforms but their 

components are not necessarily mapped to individual components of the image. 

Consider the example: 

[(ab) + (ajb)]Ic -* abJc 

Here the first parallel component of the left member is mapped to (a I b) , which 

is not an individual component of the right member. We thus need a notion of 

generalised parform. 

Convention: We use the notation I I 	t 2  to denote a parform whose 

components ti may again be parforms. We call 	I 	ti  a generalised 

parforrn. 

We then set: 

Definition 3.22 Let S be a LES, and S 1 ,. . . , S, be substructures of S s.t. 

{E s1 , . . . , Es } is a partition on E. We say that {S 1 ,. . . , S,} is a copartition 

on S if and only if: (e S i  , i j and e' E S,) = (e '.- e'). 

The two concepts are related by the following statement. 

Fact 3.23 t = I 	 is a copartition of St  . 	D 

We can now prove our lemma about parforms: 

Lemma 3.24 Let t = II ti be a parform, t' be a normal form, and 
iEI, Ill >2 

h : St St, an a.h.. Then: 

t' is a parform. 

the restriction of h to any S, , h : S t , -* h(S 1 ) is an a.h. 

Proof of 1): If t is a parform, it is a sumform with just one summand. Thus, 

using exactly the same reasoning as for lemma 3.20, we can show that this 

summand is preserved by h. This implies that t' also has a unique summand. 

Now this summand cannot be a guarded form since then MIN(S) would be 
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a singleton, whereas MIN (S t) contains at least two elements, say e, e' , with 

e s..—' e' implying h(e) '.-' h(e') (and thus h(e) 0 h(e')). Thus t' = 	fl 	t,. 
,EJ,IJI>2 

Proof of ii): Let as usual Si , S,' stand for St i , St; and E1  stand for E, 

etc.. From part i) we know that t' = II t,. We shall prove now that 
JEJ,IJI>2 

{h(S1) I i E I} is a copartition of S'. We know that: 

• U h(S1 ) = S' 	(because of h's surjectivity) 
iEI 

•h(S)flh(S,)=O for i,jEI,ij, since Ve 1 E Si, e1ES,wehave: 
e, == h(e1 ) '-' h(e,). 

So {h(S1) I i E I} is indeed a copartition of S'. It follows from Fact 3.23 that 

there exists a partition {J1 I i E I} of J such that t' = I I 	t' j . and Sf,. = h(s1 ). 

Supposing I fl J = 0, we rename for simplicity each S. as S,', so that for 

any i E I , 5,' = h(Si ) . We want now to show that for any i, the restriction 

h1  : Si -p  S,' is again an a.h.. 

Note that, for any e E Si , we have: 

char1 (e) = char(e) 

pred1 (e) = pred(e) 

succ1 (e) = succ(e) 

conc1 (e) = cortc(e) - USk 
k54i 

Similarly for any e' E S1' = hi  (Si ). In particular we have: 

conc(e') = conc'(e') - U h(5k) 
k54i 

It can be easily seen that h1  preserves all the functions ft. For example: 

h1 (pred1 (e)) = h(pred(e)) = pred'(h(e)) = pred(h1 (e)) 

h1 (conc1 (e)) = h(conc(e)) - h(Ukl1 SO = conc'(h(e)) - Uk1 h(Sk) 
= conc(h1 (e)) 

0 

We are now ready to prove our completeness result. This relies as usual on a 

normalisation lemma, which we state without proof. 

Lemma 3.25 (Normalisation) 

For any term t E CL there exists a normal form i such that t - . 	0 



We can then prove the main result of this section. 

Theorem 3.26 (Completeness) 

Let t,t' be terms of CL. Then St -• 	 t 

Proof: By induction on the sum of the sizes of S, Ss. Notation: we let 

S = S, S' = Ss, Si = S, etc. In view of the normalisation lemma, and given 

the soundness of the axioms, we can assume t, t' to be normal forms. 

We need distinguish three cases: 

t = a: t o . Here we know, by lemma 3.21 , that t' will also be of the 

form a: t, and that the restriction h0 =def  h ['st is still an a.h.. We can 

then apply induction to get t 0  -*R t,, and thus, by substitutivity of -, 

a: to  - a:t. 

t = fl t1  . Here, by lemma 3.24 and fact 3.23 we know that there 
161, I II >2 

exists a generalised parform t' = I 	t such that S' = h(S1 ) and the 

restriction h : Si  -p S1' is an a.h.. Again, since I II ~! 2, we can apply 

induction to get t 1 -* t . Whence, using substitutivity of -) together 

with rules RP1, RP2, we obtain t -* t'. 

t = 

	

	t1 . Then, by lemma 3.20, there are two possibilities for 
161, III >2 

t'=t: 
IEJ 

1) t' is a proper sumform, that is I ~! 2. Then for any i E I there 

exists a j E J s.t. h(S1 ) = S, and Si  ±* S,'. 

fl) t' has only one summand. Then for any i E I we have h(S1 ) = 5' 

and Si abs  —S. 

Case i): Take z E I, and assume h(s1 ) = S and Si  abs  -p S. By induction we 

have: t1  -* t,. Define now, for any j E J, the set I, =def  {i E IIh(S1) = s;}. 
Note that {I I I E J} is a partition on I. Then, using substitutivity of -* 
and the absorption rule RABS, we obtain: 

i: t1 	4 R (t ++ t;) 	RABS ___________ 	3 
161, 

Ii times 



and thus, by substitutivity again: 

= >ti =  > 	 = 
iEI, III ~!2 	iEI1,5EJ 	 jEJ 

Case fl): Since h(S) = 5' and Si - 	 S' for all i e I, and the size of 
each Si is smaller than the size of 5, we can apply induction to get for any 

i E I t• — t'. Whence, by substitutivity of —): 

t = 	i: ti  —*R  (t ' + '-' +t') 	3RABS 

	

iEI, III >2 	 -.-- 	 - 

	

— 

	
III tlffie8 

which is what we wanted to show. 

We have thus established that our reduction relation on LES's is a rather 

strong one: the only proper reductions (implying a reduction of the number 

of events) it performs on LES's are those corresponding to the absorption law: 

x + x —' X. 

We define now an abstraction equivalence abs on LES's, as follows: 

Definition 3.2 	' 	
abs 	abs 

abs 
— 

— del C 	+ U + 	] * 

A corollary of our characterisation theorem is that the equivalence 	is the 
congruence generated by: 

Al. x+x'=x'+x 

sum — laws 	A2. x + (x' + x") = (x + x') + x"  

A3. x+NIL=x 

absorption law 	A4. x + x = x 

P1. xlx'=x'lx 

par — laws 	P2. xl(X' l x") = (xlx') Ix  

P3. xINIL=x 

Note that we have not defined 'abs as reducibility to a same LES here. In fact, 

we shall not develop the study of abs  as we did in chapter 2 here. 



We want to establish first whether there is an operational counterpart for 'abs• 

We know from Chapter 2 that a.h.'s are closely related to bisimulations, We 

may then try now to derive an operational semantics for terms of CL), using 

our new notion of abstraction homomorphism as a reference. 

This new operational semantics will be the subject of next chapter. 



Chapter 4 

Distributed Bisimulations 

In this chapter we propose an interpretation of concurrent processes as dis-

tributed labelled transition systems (DLTS's). In such systems, each transition 

gives rise to a compound residual, made out of a local component and a remote 

concurrent component. This description reflects a view of concurrent processes 

as distributed in space - whence the name, and is based on the same intuition 

as our abstraction homomorphisms for labelled event structures. 

Distributed LTS's give a more intensional description of processes than do 

usual LTS's (like those examined in the previous chapter). In particular, in 

a DLTS the global residual after a transition may be retrieved by combining 

the two - local and concurrent - residuals. On the other hand separating the 

components allows us, intuitively, to distinguish causality - relating an action 

to its local residual - from concurrency - relating it to the nonlocal residual. 

Distributed LTS's will be used to model the simple algebraic language CL 

introduced in the preceding chapter, whose operators are prefixing, sum and 

parallel composition. 

Based on the new transitions, we define a distributed bisimulation equiva-

lence on DLTS's, which acts recursively on both components of the residual. 

We show that this equivalence preserves the concurrent structure of processes, 

while allowing some nontrivial identifications among them. In particular, the 

new equivalence turns out to be weaker (more interesting?) than the one in-

duced by abstraction homomorphisms, although based on a similar intention. 

In fact, distributed bisimulation allows more complicated absorptions than the 

one expressed by the idempotence law. 

ME 



Our semantics can be easily extended to a language with communication. We 

adopt the communication discipline of CCS: a communication action results 

from the simultaneous execution of complementary actions by parallel processes. 

Any such action is denoted by a symbol r, and cannot contribute to a further 

communication. For the rest we shall not, in this chapter, try to distinguish 

communications from other actions. In other words, we study here the strong 

distributed bisimulation, while the corresponding weak bisimulation, where ac-

tions r are considered as unobservable, will be treated in the next chapter. 

Our distributed LTS's are somewhat nonstandard, in that the result of a 

transition is not itself a state of the LTS, but rather a pair of states. We 

thus propose an alternative formulation of our semantics, where each transition 

yields a unique (global) residual, while an additional information - the local 

residual - is annexed to the label. This appears to be a more satisfactory 

description, because the local information varies at each step of execution, just 

like the executed action, and is used by the bisimulation in a similar way. 

We show that the two semantic formulations are equivalent. The latter is 

more intuitive, and closer to traditional transition system semantics, whereas 

the first is simpler to manipulate and better suited for conducting proofs. 

The algebraic characterisation of our new equivalence is not easy to derive. 

We propose here a complete finite axiomatisation, which makes use of two 

auxiliary operators, an asymmetric parallel operator V  and a communication 

operator L. 

4.1 Distributed transition systems 

In this section we introduce the basics of our formalism. We shall keep to the 

approach of algebraic calculi of processes, as was delineated in the previous 

chapter. 

We start by defining syntax and transition rules for processes. To begin 

with, let us take the simple syntax E considered already: 

E=Au{NIL,+,I} 

Processes are terms of P = Tr,. We we shall prefer to use the name P when 

treating processes as computational objects. Let p, q, r,... range over P , and 
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a, b, ... denote actions of A. We will often abbreviate a: p to ap, and a: NIL 

simply to a. 

As anticipated in the introduction, we shall interpret processes as distributed 

transition systems. Before formalising this notion, let us illustrate it with a 

simple example. Consider the parallel process p I q , where p = a: P. With the 

operatioflal interpretation of CCS, we have: 

pq --+ p'Iq 

We aim here at giving a more "distributed" description of a parallel process. 

We regard p I q  as consisting of two independent subprocesses p and q, which 

are placed at different localities, say 1 1  and 12. Then the action a above takes 

place at locality 11, yielding the local residual p'. The process q is independent 

from a, and may evolve concurrently with it: we say that q is the concurrent 

residual of the transition. We describe this situation by means of an arrow: 

pq 

We may then hope, by examining the two residuals separately, to achieve a 

distinction between causality and concurrency. 

Let us now give the set of rules specifying the behaviour of processes of P 

as distributed transition systems. For any a E A, let --* be the least relation 

in P x (P x P) satisfying the following set of rules R. 

RULES £ 

Ri. a: p -- <p,NIL> 

p -- <p', p" > implies 

	

	p + q ---* <p', p" > 

q  + p ---* <p ' , p"> 

p --+ <p', p"> implies 

	

	p I q  --+ <p', P"  I q> 

qp --+ <p' , q lp"> 

As mentioned already, the interpretation for p ---* <p' , p" > is that p may 

perform an action a, thereby producing a local residual p' and a concurrent 



residual p". Rule Ri states that a term a: p has a transition -- yielding a local 

residual p and a concurrent residual NIL: nothing can happen in parallel with 

the action a. Rule R2 is the ordinary rule for sum. The most interesting rule 

is R3, which adds new components to the concurrent residual. It follows from 

this rule that the concurrent residual of a transition p ---* <p' ,p" > is a term 

of the form Pi I I P, , where one of the pi  , equal to NIL, has been inserted 

at the very first step by rule Ri, while all the others have been introduced by 

successive applications of rule R3. 

Let us examine some examples. 

Examples 

ab + (alb) 	--* <b, NIL> 

-3 <NIL, NIL I b> 

<NIL, aINIL> 

(abIc + d)Ie --+ <b, (NIL Ic)Ie> 

--* <NIL, (ab I NIL) Ie> 

_±L <NIL, NIL Ie> 

-- <NIL, (ablc + d)INIL> 

The first example shows the difference between a transition ---* coming from 

a sequential subterm ab and an homonymous transition coming from a parallel 

subterm a I b: in the first case the concurrent residual is NIL, whereas in the 

latter it contains the parallel component b. 

Looking at the second example, on the other hand, one may remark that 

the concurrent residual of a transition p --) <p', p"> - taken modulo sim-

plification of NIL components - is not in general a subterm of p, whereas the 

local residual always is. The reason is that building the concurrent residual may 

imply the resolution of some choices. This point is in fact rather important, and 

will be raised again in the last section of this chapter, where we discuss the al-

gebraic characterisation of our behavioural equivalence. In the next section we 

shall give the definition of this equivalence and examine some of its properties. 
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4.2 Distributed bisimulation equivalence 

In this section we define a behavioural equivalence on P, called distributed 

because at each step it compares both the local and the concurrent residuals of 

two processes. Its definition is based on the notion of distributed bisimulation, 

which we introduce first. 

Definition 4.1 A distributed bisimulation (d-bisimulation) is a relation 

R C (P x P) satisfying, for any (p, q) E R, the following property of 

d-invariance: 

1) p --- <p' , p" > ==:>. q --+ <q' , q">, with p'  R q '  and p"  R q" 

ii) q -- <q',q"> ==>p ---* <p',p">, with p'Rq' and p"Rq" 

If we let D(R) be the set of all pairs (p, q) satisfying clauses 1) and ii), 

we may summarise the above definition as: a relation R C (P x P) is a 

d-bisimulation if R C D(R). 

Now our behavioural equivalence over P , which we call distributed bisimulation 

equivalence and denote by 'd , is defined to be the union of all d-b is imulat ions: 

Definition 4.2 Let p, q E P .Then p -'d q if 2 d-bisimulation R s.t. p R q. 

Note that, apart from the separate recursion on the two parts of the residual, the 

definitions of d-bisimulation and d-bisimulation equivalence do not otherwise 

differ from the usual definitions. In fact it is easy to check that the relation 'd 

satisfies the following properties, which we state without proof. 

Property 4.3 

1) 	is an equivalence relation. 

ii) 	'd is the largest solution of R C D(R) (and R = D(R)). 

By virtue of Property 4.3 ii), we can use for 'd  the same convenient proof rule 

as for standard bisimulation equivalences: to prove that p 	q, it is enough to 

construct a d-bisimulation R such that p  q, since then we have R C 

because 'd  is the largest d-bisimulation. In what follows, we shall often avail 
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of this proof technique. As a first application, we use it to show that d is 

preserved by the operators of E, namely: 

Property 4.4 	is a s-congruence. 

Proof: Trivial for the operators a: and +. To show that 	is preserved by the 

operator I , we seek a d-bisimulation R such that (p  I r, q I r) E R whenever 

p 	q. Now it is immediate to check that the relation: 

R={(pir,qjr) I p—'q} U 'd 

is such a d-bisimulation. The proof that (r I p, r I q) E 'd  is of course sym-

metric. 	 D 

Let us consider some examples. 

Example 3) 	ab + (alb) -/- d (ajb) 

These two processes are not equivalent because the first one has a transition 

--* with concurrent residual NIL , while the the second has a unique transition 

--+ with a concurrent residual obviously not equivalent to NIL (the transitions 

of the processes are described in Ex. 1 above). 

Example 4) 	(a I b) + (a I b) 	(a I b) 

This is just an ordinary absorption, the typical identification effected by bisim- 

ulation equivalences. However Example 3) suggests that 	may be more 

discriminating than the (strong) bisimulation equivalence 	of CCS. We shall 

see in fact, in in section 4.11, that 	is strictly included in 

Note on the other hand that both examples 3) and 4) are valid for the abstrac- 

tion equivalence abs considered in the previous chapter. The obvious question 

is now: do the two equivalences —ab8 and 	coincide on our language TE? 

We answer by giving a counterexample to 'd == 	ab8• 

Example 5) 

(ai  + az ) I b 1  + a1  I (b 1  + b2 ) + (ai I b1) 	'd 	(ai  + a2) I b1  + a1  I (b 1  + b2 ) 
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One may easily check that the two transitions --- and -- of the additional 

term (a1 I b 1 ) in the left member are matched respectively by the first and the 

second term in the right member. 

Note on the other hand that this identification is not allowed by the equivalence 

aba. For consider the corresponding labelled event structures S 1  and S2 , 

where for sake of space we represent S  as S2  + S: 

Si 	 S2  

a 1 	b 1 	 a1 	a2 	b 1 	a1 	b1 	b2  

e 
S2  + 1t\_) 

e 2 	4 	e3  

We may envisage here to reduce S 1  to S2  by mapping the part S2  of S1  

isomorphically to S2 , and the additional events e 1 , e2  to 4 , 4 respectively. 

However the resulting mapping h is not an abstraction homomorphism because: 

h(conc(e i)) = {h(e2)} = { 4} {e 3 } = conc(4) = conc(h(ei)) 

This example shows that the equivalence 'abs  is more intensional than our 

d-bisimulation equivalence ''d . Intuitively, this is because abstraction homo-

morphisms - as well as the functions conc, succ, etc - are defined globally on 

a fixed set of events, whereas bisimulations are defined recursively on isomor-

phism classes of LES's (i.e. representations of terms). Let us try to explain this 

point better. Consider the equivalence on LES-representations of terms: 

St, 	d S 2 	if tl d 

Note moreover that each occurrence of an event e in St  corresponds to a 

transition of (some subterm of) t. Then S succ(e) represents the local residual 

of the transition, and S ('conc(e) its concurrent residual. 

Now consider the occurrence of e 1  in S. Then S2  may match this with the 

occurrence of 4. It is easy to see that the two pairs of residuals are equivalent: 

no 



S1 ' succ(e1) ''d  S 2  F' succ(e) 

S 1  F' conc(e1) 	'd S2  F' conc(e') 

whereas for the mapping h considered above we had: 

h(conc(e i )) 	conc(e) 

We have thus established that 	'abB. We will show now, on the other 

hand, that 'ab 	'd. For consider the set of properties: 

Al. x+x'=x'+x 

sum - laws 	A2. x + (x' + x") = (x + x') + x 

A3. x+NIL=x 

absorption law 	A4. x + x = x 

P1. zlx'=x'Ix 

par - laws 	P2. x I  (x' I x") = (x I x')  I 
P3. XJNIL=x 

We know from the previous chapter that 'abs  is precisely the congruence in-

duced by these laws. Now it is easy to see that these laws are sound for d, 

namely: 

Property 4.5 	The equivalence 'd satisfies properties Al - A4, P1 - P3. 

Proof: Let p = q be an instance of one of the laws Al - A4. Then (p, q) 
belongs to the relation: R = {(p, q)} U Id, (where Id is the identity relation 

on P) which is obviously a d-bisimulation. Whence p ' d q. 

Let now p = q be an instance of Pi, for i E {i, 2, 31. Then the relation R, 
where: 
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R 1  = {(rls, sir) I r,s e P} u Id 

R2= {( rI(siu), (r Is) iu) Ir,s,uE P} U Id 

R3 = { (r I NIL, r) I r E P} U Id 

is a d-bisimulation containing (p, q). Thus p q, and this ends the proof. 0 

In conclusion, the relation between abs  and 	sums up to: 

Corollary 4.6 	C d (ab3 is strictly contained in 'd ). 

Proof: Since 'd  is a congruence, it follows from property 4.5 that ab8 

On the other hand example 5) shows that 'ab8 	 0 

Before ending this section, let us recapitulate what we have obtained so far 

concerning our language CL. We have defined two notions of equivalence on 

CL: the first, is based on the system model of labelled event structures, 

and seems to be the strongest possible equivalence one can adopt (as long as 

one does not want to see the names and the number of locations); the other, 

is based on an operational criterion, and corresponds to a more abstract 

concept of behaviour. In particular, 'd  allows some interesting interferences 

between sum and parallel composition. 

Hence, although we have failed in our search for an operational counterpart 

Of — ab,, we have obtained a new notion of equivalence which seems worth 

investigating. In the rest of this chapter we will no longer be concerned with 

ab3. Instead, we shall undertake a detailed study of 'd , for an extended 

version of CL including communication. 



4.3 Adding communication 

In this section we extend the definitions of distributed transition system and 

d-bisimulation to deal with communication. To add this new feature to our 

calculus, we simply reinterpret the parallel operator I  so that its arguments 

may synchronise on complementary actions. More precisely, we adopt the com-

munication model of CCS: we assume our set of actions A to be of the form 

AU A, where A is some set of labels and A = {ala E A} is the set of their 

complements. By convention a= = a, for any a E A. Now communication 

is defined to be the simultaneous execution of two complementary actions. A 

communication action is denoted by a special symbol r, and is the only action 

not to have a complement. Thus a r cannot be used for a further synchronisa-

tion: communication is always twofold. The new rule for the operator I is the 

following: 

P --) <ji, p">, q --+ <q', q"> imply 	p I q --+ <P' I q',  p"I q"> 

If we let A , stand for A U {r}, our syntax for processes remains practically 

unchanged: 

E' =A 1 U{ NIL, +, I } 

Let P' = TE' denote our new class of processes. The transitions of processes of 

P' are specified by the rules R', where the new rule for I has been inserted, 

and the labels a, IL of transitions range respectively over A and A 

RULES ,' 

Ri. 	: p --* <p,NIL> 

R2. 	p --* <p', p"> 	implies 	p + q --+ <p', p" > 

q+p -- <p', p" > 

R3a. 	p 	<p', p"> 	implies 	p I q 	<p', p"I q> 

qp --+ <p', qip"> 

R3b. 	p --+ <p',p">, q --* <q''q H>  imply P 1 q 	<jo' I q', 1' I q"> 



Note that R3b. is the only rule where both components contribute to the local 

residual. This indicates that, as long as they are involved in a communication, 

two parallel components are seen as forming just one local process. 

We can now redefine d-bisimulations in terms of the new transitions 

p 14— + <p' ,p" >. We shall still denote by d the resulting equivalence. It 

is easy to check that properties 4.3 and 4.4 continue to hold for ''d  in our 

extended calculus. 

As is to be expected, on the other hand, the relation d allows now new 

identifications between processes. We have for example: 

Example 6) 	(a b a c) 	d (a b a c) + i-  (b I c) 

We shall see more examples later in this chapter, when discussing the algebraic 

properties of d 

4.4 Alternative formulations of the semantics 

We have established a behavioural equivalence on processes of P', based on 

the transitions p --+ <p' ,p">. Note however that the rules R' do not 

really provide an execution model for processes, since they only describe their 

first transitions. We have not specified how a process continues its execution 

after giving rise to a compound residual <p' ,p">. We may now remedy this 

deficiency by adding the following rules for pairs <p, q> of processes. 

R4a. p -- <p', p"> 	implies 	<p, q> —+ <P1 
 I p"l q> 

<q,p> •— <P1 
 I qip"> 

R4b. p --* <p',p">, q --+ <q', q"> imply <p, q> L4 	I q', p"I  q"> 

According to these rules, after each transition p -- <p', p"> the execution 

resumes with the composition of the two residuals: the pair <p' , p"> has 

exactly the same behaviour as the process p' I p". In fact we will show now 

that p' I p" coincides, up to a rearrangement of the components, with the global 

residual of the corresponding CCS transition. 
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We have the following result — where we use the same arrows -- for CCS tran-

sitions for ours, since they may be distinguished by the form of their residuals 

(see Appendix for the definition of CCS transitions on TEa): 

Fact 4.7 (Conversion) Let p E P' . Then: 

1. p ±4  <pS ,pl? > 	=. 3 q 	p'Ip" s.t.  p 	q.

JA 
2. p 	q 	2p',p" s.t. q 	p'Ip" and p 	<p' , p" >. 

where 	is the congruence induced by the laws P1 - P5 at p.  97. 

Proof: By induction on the length of the proof of transitions. 

We may now extend the definition of d-bisimulation to pairs of processes. We 

redefine our class of semantic objects to be P" — def P' U { (p, q) I p, q E P ' }, 

and let P, Q, etc. range over P". We then assume our extended equivalence 

— wh.khwe still denote by — to be the union of all (extended) d-bisimulations 

defined as follows: 

Definition 4.8 An extended d-bisimulation is a relation R ç (P" x P") 
satisfying, for any (P, Q) E R and it E A, the following property: 

i) P —'-* <p' , p"> == 	Q --- 	 <q', q">, with p' R q' and p" R q" 

ii) Q -- <q', q"> = P -- 	<p',p>, with p' R q' and p" R q" 

It is then easy to show that for any processes p, q in P' the pair <p, q> is 

bisimilar to the process p I q. 

Fact 4.9 V p, q E P' : 	<p, q> 'd p I q. 

Proof: The following is a d-bisimulation: 

R={(<p,q>,pq) I p,qE P"} u d 

El 
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Now it is clear that adding a condition <p', p"> R <q', q"> to each clause 

would not affect the resulting equivalence. In fact 'd  is a congruence, and 

thus: p' d q', p" 	q" imply <p',p"> 	p' Ip" 'd q' I q" 'd <q', q">. 

To sum up, in defining d-bisimulations we may dispense entirely with the 

new rules R4. In other words, we may dispense from looking at the "global 

residual" once we have examined the local and concurrent residuals. 

An interesting question, on the other hand, is whether we can replace one of 

the two (local and concurrent) residuals by the global residual, and still obtain 

an equivalent semantics. 

In order to answer this question, we introduce now a new semantic definition 

for processes. Essentially, this is obtained from our original definition at p.  92 

by substituting the global residual for the concurrent one. However, the new 

transitions will be presented in a different notation, closer to the standard: the 

result of a transition will just be its global residual, while the local residual ap-

pears as an additional information associated to the label. A typical transition 
1,P S 	I, will have the form: p 	p 

Let us now give the rules specifying the new semantics. For any p E A 7 , 

we define -- to be the least relation on P x (P x P) satisfying the rules U. 

RULES U 

Ui. 1a:p 'U' p 

 

P
1 

U2. 	p z, p>p" 
_ 	I, 

	

implies p + q 	p 

	

q  + p 	p" 

__ I, U3a. 	p 	> p 	implies 

p' 	_____ U3b. 	
p a, 

>p ,q 

p 	
/4,pt 

p"Iq 

q 	
g:i,p'> qlp" 

imply p1 q  p It 
I 
 q11 

As we said already, the residual p" of a transition p ' 
p" records the global 

evolution of the process p after an atomic action j. Now this is precisely what 

CCS interleaving semantics describes (again, we refer to the Appendix for the 
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definition of CCS semantics). In fact, if we forget about the local residual above 

the arrow, our rules U are just Miler's transition rules for CCS. 

We have the following (obvious) conversion lemma. 

Lemma 4.10 (Conversion) Let p E P . Then: 

1. p 	p" 	. 	p 

, 	 ' 

	

p ±4 pit == 	
I P 

2 p' s.t. p 	> p". 

We may now define a new d-bisimulation equivalence d on P as follows: 

we set pJ(g)q if ctonly if: 

1) p 
_____ 

p" == q _ ____ q", with p' R q' and p" R.. q 

11) q 	q" == p 	p", with p' R q' and p" R. q "  

.D4e 	d 10 6e, tke lou5esf rek+ioi , suck,-fk&t 9 G D'(2.) 
Then it is intuitively clear that L—  d will be more discriminating than the 

(strong) bisimulation equivalence 	of CCS, since it requires an additional 

condition (similarity of local residuals). We prove next that 	is an extension 

Of 	d 

Theorem 4.11 For any p, q E P': 

P d q implies p - q. 

If p, q do not contain occurrences of I , then p .- q implies p d q. 

Proof: 1. We show that —d  is a bisimulation relation, and is thus included 

in the largest bisimulation -. We use to this end the conversion lemma 4.10. 

Suppose that p d q. We want to show that for any CCS transition p --+ p" 

of p there exists a corresponding transition q -- q" of q such that p" d q" . 
It By the conversion lemma we have: p ---* p" 	3 p'  s.t. p 

Then, since pq there must exist q', q" s.t. q 	q", with p' d q' and 

—d q". We can now apply the conversion lemma the other way round to get: 
q z,q') q

"  == q --+ q". Since p" —d we have proved that is a 

bisimulation. 
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2. Let P q  be the class of processes which do not use the operator I • We 

want to show that 	is a d-bisimulation relation on P q . 

Note that for processes of Peq  the local and global residuals always coincide, 

and thus the conversion lemma 4.10 may be strenghtened to: 

p - r if and only if p 	> r 

Moreover, since r is a subterm of p, it will necessarily belong to 	This 

is sufficient to prove our statement. For suppose that p q, with p, q E P eq' 

and p 	r. By the conversion property we have p ---* r. Then, since 

p - q, there exists s such that q 	s and r s. Now, by conversion again, 

we have q 	) s. Since r ' s, we have proved that 	is a d-bisimulation. 

El 

We will show now that —d  is an alternative formulation for 	. To this 

purpose we need a third (and last) conversion lemma. 

Lemma 4.12 (Conversion) Let p E P' . Then: 

p -- <p',p"> 	=#-q 	p'Ip" s.t. p 	q. 

p 
M,P' 

 q 	p"  s.t. q 	p'  Ip" and p --+ <p' , p" >. 

where 	is the congruence induced by the laws P1 - P3 at p.  97. 

Proof: By induction on the length of proofs of transitions. 	 El 

This result, together with the synchronisation and simplification lemmas below, 

will give us the elements to prove that the two equivalences and = d 
coincide. 

Lemma 4.13 (Synchronisation lemma) For any p E P: 

p — - - <p'  ,p" > and p" -—* <r',r'5' imply p 	r', T I,  >. 

Proof: By structural induction on p. There are only two cases to consider: 

1) p = p' + P2. Then we get the result by a simple induction on the summand 

which performs the action. 
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P = P1 I P2. Suppose that the action a comes from the component Pi, 
aa that is p P2 	+ <p , p > because P1 —* <p , s> and p = S I  P2. Now 

we know that p" ---* <r', r">. There are then two possibilities, depending on 

which component of p" = s J P2 performs the action. 

s -- <r', s 11 >. Then r" = d' J P2. Since Pi  meets the hypotheses 

of the lemma, we may use induction to get Pi --- <p' I  r', SIT>.  Whence 

we deduce Pi I P2 _r~ <' I  r', " I P2> , which is the required move since 

S'1 I P2 = 

P2 — <r, u>. Then r"  = s I u. Now pi 
a 

 —* <p' , s> and 

P2 -- <r', u> imply, by the communication rule R3b, that p1 I p2 

<i I r', s I u>, which is the move we were after, since s I ii = r". 	U 

Lemma 4.14 (Simplification) 

For any p, q, r E P' : P r 	q I r implies p 	q. 

Proof: By induction on the sizes of p, q. The proof makes use of the synchro-

nisation lemma 4.13. 

We show that for any move of p there exists a corresponding move of q. 

IU Assume p --, <p', p">. Then p I r -- i <p', r-" I r>. Now q I r can match 

this in three different ways. 

1) 	q I  r 	--* 	<q ' , q "  I  r>, with p' 	q' and p" r 	q" I r, because 

q -- <q', q">. Then by induction we have p" 	q", and thus q --* <q', q"> 
is the required move of q. 

2) 	q I r 	-- 	<r', q I r">, with p' 'd r' and i-"  r 	q I r", because 

r —3 <r', r">. We will show now that: 

(*) 	i" I r 	q I r" and r 	<r1 , TI, > imply q --) <q', q">, 

with r '  —d q' and p" d q " . 

We prove (*) by induction on the number n of actions ji occurring in r. 

Basis: n = 1. Then r" -/-*. Thus q I r" will have to match the transition 

r' I r --+ <r', pit  r 11 > by letting the component q move, possibly together 

with the component r" if jL = r. We have therefore two cases to examine: 
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q moves alone: q -- <q', q"> , and thus q I r -- <q', q" I r">, 

with r' 	q' and p" I r" 	q" I T I' . Then by induction on the simpli- 

fication lemma we get p" 'd q". 

IL = r and q I TI' _i 	<q' IS', q"  I SIT>, with T' 	q'  s' and 

i 11  I TI' 'd q" I .s", because q <q', q"> and T --+ <81,811>. Now, 

from p" I r" 'd q" I s" and T --+ <SI, t1>  we can deduce, by in-

duction, on (*),that q" --+ <u1 , u">, with s' u' and p" U. 

By the synchronisation lemma we finally obtain q -- <q' I u', u">, 

where we know that r' 'd q' I s' q' I u' and p" 'd u" . 

Inductive step: Here q I rit can match the move p r -p <- ,, p r"> in 

three possible ways: a) and b) as in basis case. The new case is: 

C) qlr" --) <s1 , qs">, with r' --ds'  and P" IT" d qlr", because
JA  r" --- <s1 , S" >- We can then apply induction to get q ---* 

<q', q">, with T1 	q' and p" d q". This is the required move of 

q, since r' — d 	d q' and p" d q". 

This ends the proof of statement (*). From which it follows that q --* <q', q"> 

is the matching move for p --* <p', p" >, since p' 'd T 1 	q' and p" d q". 

3) IL = r and q I T _!_? <q' I T, q" I T1 >, with P' 	q' I r' and p1' I
II I II r —dq i r 

because q --+ <q', q"> and T --+ <r', r">. Now p" I r 	q" J r" and 

r --+ <Ti , T" > imply, by the same reasoning as in part 2), that 

q" ---* <51, S I? > with T' d  5' and pit 	s". We may now use the synchro- 

nisation lemma to obtain q --* <q' I SI, 811>. Since p' 	q'i T 	q' s' and 

p" 	a", this is the required move of q. 	 Li 

We may now prove the result: 

Theorem 4.15 (Equivalence of the two semantics) 

For any p, q E P' : p —jq 4= 	pdq. 

Proof: The proof rests on two lemmas: the above conversion lemma 4.12 and 

the simplification lemma 4.14. 
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We recall that 	is the largest solution of R C D(R). Similarly, if we let 

D'(R) be the set of pairs (p, q) satisfying clauses i) and ii) (with R replacing 

Ce d ) at page 103 , we have that d is the is the largest solution of R c  D'(R). 

We shall prove that 	coincides with —d  by showing first 'd  ç D'(—d) 

(whence d 9 L- d ) and then —d  ç D(—d) = 'd. 

d 

Let p d q. Suppose now that p 	" 
r. By the conversion lemma, there 

exists p" such that r 	p'Jp" and p 	<p',p">. Then, since p -jq, there 

must be q', q" such that q --+ <q', q">, with p' d q' and p" d q". We 

may now use the conversion lemma in the other way to get: 3 s 	q' q" such 

that q 	q s. We know already that p' 'd q' and p" 	q". Moreover, since 

is a congruence and 	C 	, we have also: r d 1 I p" 'd q' I q" 	S. 

We conclude that (p, q) E D'(—d). 

d ç D(d) = 

We use here an induction on the sizes of p, q. We need this induction to be 

able to apply our simplification lemma 4.14. 

Let p d q, and suppose that p 	<p', p">. By the conversion lemma, there 

is r 	PIP" such that p ' 	r. Since p d q, there exist q', .s such that 

q 	s, with p' d q' and r = d s. By the conversion lemma again, there is 

q" such that 	q' I q" and q ---* <q', q">. Now we know that p' d q' and 

p'Ip" —d r —d  s f--  d q'Iq"• By induction, P' —d q' and p'p" —d q'Iq" imply 

respectively p' 	q' and p' I  p" d q I q". We may then apply the simplification 

lemma to get p" 	q". We conclude that indeed (p, q) E D(—'d) = 

We have thus established that our two semantics, based on the transitions 

P --+ <p' ,p"> and p 'i" p" respectively, are equivalent as regards the 

resulting d-bisimulation equivalence. As we just saw, the latter formulation 

has some advantages over the first: it is closer to standard execution models 

and allows an easy comparison with CCS interleaving semantics. On the other 

hand, the first formulation is generally easier to work with: in particular, it is 

the one we will use in the next section for proving algebraic properties of 
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Note to conclude that, since the local and concurrent residuals play symmetric 

roles (in composing the global residual), we could as well use the concurrent 

residual in the definition of —d . As it were, any choice of a pair among the 

local, concurrent and global residuals appears to lead to the same behavioural 

equivalence 

4.5 Algebraic characterisation 

The aim of this section is to establish an axiomatisation for the behavioural 

equivalence 'd . We know already from previous sections that d is strictly 

contained between the abstraction equivalence ''aba  and Miler's strong bisim-

ulation equivalence -. Hence in order to obtain an axiomatisation of we 

will need to add new laws to those of aba• 

We noticed as well - in section 4.2 - that the expansion theorem (IN) of 

CCS , expressing the simulation of concurrency by nondeterministic interleav-

ing: 

(IN) 	If x = iEI ax1 , y = EjEj b'y5 , then 

xy = 	iEI a. (xi y ) + > 5EJ b,(xIy1) 

is not valid for d 

This does not mean, however, that 	will not allow interesting dependen- 

cies between the operators. We will have for example the following identifica-

tions: 

Example 7) p + (ri I s) 	p 	where 

p = (ri  + r2 ) I Sj + r1  I (s '  + 82) 

Example 8) q + (r1  + r2) I (s + 82) 	d q 	where 

q = (r1  +r2) 1i + (r1  +r2) 1 32 + nj (s +82) + r2   (s +82). 

We can gather here that 	allows more complicated absorptions than the one 

expressed by the idempotence law A4. Both 7) and 8) are in fact absorption 

laws: for instance 7) states that the term (r1 I s i ) may be absorbed into the 

term r1 1 (s + 82) + (ni  + r2 ) Isi. 
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As a matter of fact, we can find arbitrarily complex absorption laws, which are 

all independent. Before giving more examples, let us formalise what we mean 

by absorption of a term into another. 

Definition 4.16 Let ' Cd  q 	(p + q) d q. 

q, we say that p is absorbed into q. It is clear that p 	q if and only 

if 	C q and q 

Thus in the examples above we have (ri I 81) C  p and (ri+r2) I (81+82) d  q. 

Another example (where we use I up to associativity) is: 

(ri I s l  I ui) 	d  (r + r2) I 8 Ui + r1  (Si +S2) I u i  + r1 i I (u i  + U2) 

and one may easily modify example 8) to a similar but independent one in which 

(ri  + r2  + rs ) I (s i  + 32  + ss ) is absorbed. 

In view of this variety of absorption phenomena, it seems doubtful that there 

might exist a finite set of axioms — or even axiom schemata - which will account 

for all cases. 

We shall get round this difficulty by introducing an auxiliary operator I". 
In order to understand the role of this operator, we must look back at our 

behavioural equivalence (here and throughout this section we shall refer to 

the equivalence 'd  based on the transitions p --) <p' , p'5). 

We recall that, whenever p ---* <p' , p" >, this is because p contains a 

subterm ip' and p" represents, intuitively, the term which is concurrent to 

pp' in p: what we called earlier the concurrent residual of the transition, and 

will rename here, since we are reasoning about terms, the coterm of pp' in p. 

Now the operational behaviour of a term p is exactly determined by the 

set of its (initial) subterms pp' together with their coterms p". Unfortunately 

such coterms are not, in general, subterms of p. For example, in: 

p = ((I.Lp'Isl)+r)Is2 

the term pp' has coterm p" = s1 I S2, which is not a subterm of p. Intuitively, 

this is because the action i eliminates all subterms in alternative with jAp' 

(the subterm r in the above example). 
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As a consequence, we will not be able to prove the equality of two terms by 

first comparing their subterms p'  and the respective coterms, as would be the 

natural way. Now the reason we introduce our new operator f" is precisely to be 

able to express a term p in its explicit form >jEI  ajpj  I' p, where for each i E I 

p is the coterm of ap1  (and a subterm of p). 

The operational meaning of [" is specified by the rule: 

R5. 	p --+ <p', p"> 	implies 	r 1' q  -- <p', p"l q> 

As this rule indicates, the operator I" has some similarity with 1 . In fact it is 

easy to see that p V q is absorbed into p I q, that is: 

pI"q 	d 
pjq 

In absence of communication, that is when I is defined by rule R3a. only, 

the operator V is all we need to derive a complete axiomatisation for . In 

this case p I q is absorbed into (p V q + q " p). Indeed we have the following 

expansion law for 

plq=prq+qyp 	 (FE) 

Thus Y may be viewed as a sort of asymmetric parallel operator: in the term 

p 1" q the components p and q are concurrent but somehow p has an initial 

dominance over q. In fact, the introduction of V may seem to bring us back to 

an interleaving semantics. Fortunately this is not the case, since the equivalence 

- extended to the language with I" - does not satisfy the law: 

	

1P V q = /2 (P I q) 	 (I" IN) 

We have, for example: a V b 71d  ab and also: 

alb d ab+ba '/'d ab+ba 

An important difference between V and I is that V satisfies a distributive law: 

(p+q) V r= (p V r) +(q  V r) (LP1) 

whereas it is well-known that this is not the case for I (at least in the theory 

of bisimulations). 
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The law LP1 will help us a great deal in syntactic manipulations: in particular 

it will be crucial to reduce a term p to its explicit form E as pi  Y 

The operator V is not associative. Instead, it satisfies the property: 

(p If q) If r = p If ( q  I r) 	 (LP2) 

The three axioms PE, LP1, LP2 are very convenient. They may be used to 

derive the laws of 

pq = q p 	 (P1) 

pi(qlr) = (plq)Ir 	 (P2) 

as well as absorption laws of the kind we saw above (in our examples at the 

beginning of section). The other main property of I: 

pINIL=p 	 (P3) 

follows from (PE) above and the additional two axioms: 

PY NIL =p 	 (LP3) 

NIL I" p = NIL 	 (LP4) 

Let now V denote the laws A1-A4, PE, LP1-LP4, as listed in Figure 4.1. 

If E l  denotes the enlarged syntax: 

= ArU{ NIL, +,I, If} 

and we extend 	to the new calculus, we have the following result: 

Theorem 4.17 In absence of communication, the equivalence 'd is 

the E -congruence generated by the axioms V. 

We shall not give the proof of this theorem here, since it is essentially a simpler 

version of the forthcoming theorem 4.20, which covers the case of communica-

tion too. 

Let us now turn to the general case, where I is defined by both rules R3a and 

R3b. Note that the operator If does not have a communication rule like R3b. 

111 



Axioms e = V\PE U L 

Axioms V 

(Al) 	x+(y+z) = (x+y)+z 

x+y = y+x 

x+NIL = 

x+x = 

(PE) 	x y  = x Vy + y I'x 

(x+y) Vz = x Vz + y V z  

(x I' y) I' z = x (y I z) 

x VNIL = 

NIL V x = NIL 

Axioms L 

(CPE) 	xly = x Vy + y Vx + xIcy 

(x+y)Iz = (xIz) + (yIz) 

xy = yx 

xINIL = NIL 

(x V x') I (vy  I ') 
= { 

r (x I ) Y (x'  I ') 	if = 

NIL, 	 otherwise 

Figure 4.1: Axiomatisation of 'd 
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which enforces communication between its arguments. The rule for ' is the 

following: 

R5. p 	<p'  ,p">, q -- <q', q ' > imply i- Ic q _!_ <p' I  q',  p"l q"> 

In fact the operator I is' not strictly needed as long as we do not want to 

abstract from communication actions, what we shall do in the next chapter 

(where this point is further explained, see page 141). At this stage, we could well 

do without 1C 2 by adding a communication rule for the operator V . However, 

to keep our treatment of communication as uniform as possible, we prefer to 

introduce I c  from the start. 

Having defined 1 C  9 we now replace the law FE by: 

p  q = (p 1' q) + (q I' ) + (p Ic q) 
	

(CPE) 

The operator 1C may be seen as a (restricted) synchronous product, similar to 

the product of SCCS. It obeys the following laws (which are valid also for SCCS 

product): 

(p + q) I r = ( Ic r) + ( q I r) 	 (Cpl) 

	

pl c q = q 1 c p 	 (CP2) 

	

P Ic NIL = NIL 	 (CP3) 

On the other hand, I c  only allows synchronisation of complementary actions: 

(1j,p V ') I( 	q') = I r(P I q) V (p'Iq'), if 	= 	
(CP4) 

I NIL, 	 otherwise 

We will denote by A the set of laws CPE, CP1 - CP4, and by e the whole 

set of axioms e = V \PE U A, as shown in Figure 4.1. 

Let E 2  be our final syntax: 

E2  = A u {NIL,--, I F', Ic} 

and d denote now the extended d-bisimulation equivalence. 
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We are then ready to prove our characterisation theorem. The clue of this 

theorem is as usual the reduction of terms to normal forms. Here we adopt as 

normal forms the explicit forms that we mentioned earlier on. Formally: 

Definition 4.18 A normal form (nf) is a term - defined modulo the axioms 

Al, A2, AS - of the form: 

= 	/2ipj 

iEI 

where for each i E I pi  and p are again nf's and by convention = NIL if 

1=Ø. 

Note that all transitions of a normal form P are of the kind 	--* <pj,p>, 

for some i E I. We have the following: 

Lemma 4.19 Normalisation lemma: 

For any p E Tr., there exists a nf 	= 	Iti  pi I" p such that p =e 
iEI 

Proof: The proof of this lemma, by induction on the size of p, makes use of 

all axioms in (F except for the idempotence law A4. Axioms Al, A2, A3 are 

used implicitly throughout. 

NIL is a normal form. 

p = /,t q. We let here 	F' NIL. We have then p = 	by induction 

and LP3. 

p = q+r. We let here 	+ i. Then p—s by simple induction. 

p = q r. If q = jEI v1q 	we define: 	= > iEI uj qj  1'( Ir). Now, >.  
if 4 = NIL then I = 0 and also = NIL. In this case we get, using induction 

and axiom LP4: 

p= ,,  	r = NIL rr =e NIL 6 P 

Otherwise we have: 

P = 	( zijqi Y q) r = C E { ( vi qj  Y q) r r] = 	vi q I' (qflr) = e 
iEI 	 IEI 	 iEI 

using induction and the laws LP1, LP2. 
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p = q L r. If P = NIL we let D = NIL. Then, by induction and axiom 

CP3 we have: p = qP = qINIL =,, NIL. Same thing, using CP2 first, 

when 4 = NIL. 

Otherwise, if 4 = >j61 jLjqj V q and P = >JEJ u,r1  11 r , we define 

= 	r (q2 r5) r (qflr). Then, using induction and axioms CP1, CP2, 

CP4, we obtain: 

r =e (2 L'qj V q) L (j zlj r, V r) 	e 	I (/jqj 	q) L (vr 
iEI 	 jEJ 	 iEI .IEJ 

= 	> r(q,r1) Y(q1r) = 
lsi=v, 

p = qlr. Let Pi = q r T,  P2 = r r q and P3 = q 1. r. We set 

= i + P2 + p3 , where P, and P2  are defined as in case iv), and P3  as in 

case v). Then, using induction and the expansion law CPE, we obtain: 

P = e Pi + P2 + P3 = E Pi + P2 + J'3 = C P 	 0 

We give now our main result. 

Theorem 4.20 The equivalence 	is the E 2  -congruence =, generated by 

the axioms (F. 

Proof. The proof is naturally divided in two parts, the soundness of the axioms, 

which is easy - but somewhat tedious - to show, and their completeness, which 

is straightforward once we have proved the normalisation lemma. 

Soundness: p = e q == p "sd q. Check that if p = q is an instance of 

an axiom of e , then p 	q. 

Completeness: p 	q == p =,r q. We prove this statement by induction 

on the sizes of p, q. The only nontrivial axiom used explicitly in the proof is 

the absorption law A4 

Suppose that p 	q. We may assume p, q to be normal forms: 

P =ktipi V p, 	q = 	v5 q1 V q 
iEI 	 JEJ 

We show now that q + p = q. Then, by a symmetric argument, we have also 

p + q =e  p, and by combining these two equalities we obtain the required 

result: p =e p + q =e  q. 
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To prove q + p =,, q , it is sufficient to show that Vi E I: 

q  + ItiPi I' : =e q 

Note that for any tz ipi VA we have p 	<nj, p>. Since p 	q, there must 

be j E J s.t. q 	<q,, q>, with j.ti = v1  and Pt 'd q5, p 	q By 

induction pi  =e q', p =6 q, whence by substitution and A4 we obtain: 

q + /Ljj ' P = e q + v, q, F' q = e q 

which is what we wanted to show. 	 Fol 

We should point out here that the recourse to an asymmetric parallel operator 

is not unusual. The operator F' was used by M. Hennessy in [Hen 801 for a 

language similar to ours, but with a (formally) different operational semantics. 

Also, the operator F' may be used — and has been used extensively by Bergstra 

and Kiop — in [BK 841 and related works — to give a finite axiomatisation 

for finitary CCS. Note in fact that the axiomatisation proposed by Milner and 

Hennessy makes use of the expansion theorem (IN), which is an axiom schema. 

Instead, one can use an operator F' called left-merge by Bergstra and Kiop, 

which obeys the same laws as ours and moreover: 

/2p V q = ii(pl q) 	 ( F'IN) 

To treat communication one takes in addition the operator 1, with exactly the 

same properties CPE, CP1 — CP4 that we have here. The operational rules 

are those of CCS plus two new rules for F' and ' the following: 

p 
JA

-)  p' implies p 1' q  --* p' I q  

p --+ p' , q ---+ q' imply PI 	_L p'Iq' 

Now it turns out that the laws V U f F' IN} provide a finite complete ax- 

iomatisation for the strong bisimulation 	on the 1ñguage Tr., without com- 

munication, while the laws e U { F' IN} characterise 	on the language TE 2  

(with communication). This point is rather interesting: it shows that the whole 

difference between Milner's semantics and ours comes down to a single axiom, 

the law (YIN). 
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One last remark concerning 	, before we end the chapter. We said earlier 

that we could have avoided introducing the operator L at this stage, by allowing 

communication across Y. In fact, if we do not insist on the finiteness of the 

axiomatisation, there is another alternative to the use of ', which does not 

require a communication rule for Y. This consists in replacing the expansion 

law (CPE) and the remaining axioms of L by the following expansion theorem: 

(EXP) 	If x = EEI jzx 1  I" x and y = 	ii,y3 I" y, then 

2; I y = E iEI A i Xi I' (x  I ) + E jEJ '5 y3  I" (x  I v) 
+ E r (xi  y,)  Y(xIy) 

'Ui - LTi 

Then it may be proved (although we shall not do it here) 	that 

V \{PE} U {EXP} is a complete axiomatisation for ''d  on the language TE 1 . 

To sum up, we have studied in this chapter what we could call the 

strong d-bisimulation equivalence on the language TE 2 . In particular, we saw 

that the introduction of communication leads to new identifications between 

processes. One has typically the absorption of example 6) above: 

r(bjc) 

Note on the other hand that: 

Example 9) 
	

rr(cld) 	2 d  

Similarly, we have: 

Example 10) 
	

T r (p I q I r I s) 

d 	(abläc) 

(abc I aid) 

d 	(aplaq) I (br[&s) 

If we adopt now Miler's interpretation of r actions as unobservable, as we did 

previously in chapter 2, then it is clear that the two absorptions in 9) and 10) 

should become valid as well. 

Our next concern will be precisely to examine the weak version d of our 

d-bisimulation equivalence. We shall see that our results for 'd (the con-

nection with CCS semantics, the existence of a complete axiomatisation) carry 

over to the weak d-bisimulation d. The study of d  will be the subject of the 

coming chapter. 
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Chapter 5 

Weak distributed bisimulations 

In this chapter we develop the theory of distributed bisimulations in the presence 

of unobservable actions. Following Milner, we will assume r actions - that is 

actions arising from communication - to be internal to a process and thus 

unobservable. In fact, the treatment of unobservable actions is a problem in its 

own right, which may be studied (as we did in Chapter 2) independently of how 

such actions occur. 

We shall therefore consider here, besides a calculus with unobservable com-

munication actions, also a simpler one with unobservable actions but no commu-

nication. With the now familiar technique, we abstract from internal actions by 

allowing them to be absorbed into observable transitions. More precisely, any 

sequence of transitions including only one observable transition is now allowed 

to occur in one step. A sequence of this kind is rendered as a weak transition 

labelled with the (unique) observable action in the sequence. For technical 

reasons, it is necessary to introduce also weak transitions of the form = 

representing a finite sequence of r transitions. 

We may now use weak distributed transitions to describe the operational 

behaviour of processes. A weak distributed transition (d—transition) has ex-

actly the same form as a strong d—transition: it is labelled by a single action 

and generates a pair of residuals (local and concurrent). The main novelty is 

that a weak d—transition may affect different parallel components5 while an ob-

servable action is taking place in some component, internal actions may occur 

independently in other components. 
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As is to be expected, the weak d-bisimulation equivalence d  based on the new 

transitions is not a congruence (the critical operator being once again the sum). 

We therefore concentrate on the substitutive version of d,  denoted 

The structure of this chapter is closely modelled on that of chapter 4. Al- 

though the study ofis somewhat more laborious than that of 	, we 

obtain for d  and 	the same kind of results as for d . We show for exam- 

ple that d is an extension of Milner's weak bisimulation equivalence 	. In 

section 5.3 we prove that, when no communication is involved, our alternative 

semantic definition of chapter 4 carries over to weak d-transitions. We have 

not been able, as yet, to generalise this result to the complete calculus (with 

communication). 

Section 5.4 is devoted to the study of the behavioural congruence 	. 

Finally in section 5.5 we give a complete axiomatisation for 	, both in the 

calculus without communication and in the complete calculus. 

5.1 Weak distributed transition systems 

Let us now introduce our new calculi. We assume the usual syntax for processes: 

E'A7U{ NIL, +,I} 
Note that E' does not include the auxiliary operators I' and h. These will 

not be inserted until the last section, where they are needed to derive our 

axiomatisation for 

Let again P = Try denote the class of processes, considered as compu-

tational objects. We seek an operational description for processes of P that 

abstracts to some extent from r-actions. 

To obtain this, we replace the transitions --+ by the corresponding weak 

transitions =.. Informally, the meaning of a weak transition p = <p',p"> 

is that p may evolve internally for some time, then perform an action a and 

thereafter still possibly move internally to reach the state <p', p">. Thus a 

weak transition =#' involves a transition -- as well as a finite number, 

possibly equal to zero, of transitions -- before and after it. 

In fact, because of internal actions, a weak transition == may have an 

effect on different components. For example we expect: 
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Example 1) 	apI (rq + r) = 	<p, NIL I q> 

since the internal action r of the component (rq + r) may occur while the 

action a is taking place in the component ap. 

As was the case already for CCS, weak unobservable transitions of the form 

are needed to obtain an equivalence which is substitutive w.r.t. the oper-

ators Aa: and . The following example shows that an equivalence based on 

transitions = only would not be preserved by prefixing. 

Example 2) The terms a + b and a + rb have the same weak observable 

transitions. However this is no longer true if we prefix them by an action c, 

since the move c (a + rb) =& b has no counterpart in c (a + b). 

For unobservable weak transitions we choose here the simple form p = 	q 

rather than p = <p' ,p">. This means that an unobservable action r 

is regarded as global, and may be localised only indirectly, if it affects the 

observable behaviour of the component where it occurs. For example the locality 

of the action r will not be observable in the process p I rq, whereas it will be 

in the process p I (ri + r), since here the r action may prevent a local observer 

of (rq + r) from obtaining an action of r. 

We now proceed to formally define the relations = 	on F' , via a set of 

rules S similar to those for 	We start by specifying the relation 

The relation = 	is then defined as an abbreviation for 	n > 0. 

The rules for --) are given at top of figure 5.1. Note that they coincide 

with CCS rules if we except the communication rule T 4, which makes use of 

strong d—transitions. However, after our discussion of Chapter 4, it should be 

clear that the rule T4 is in fact equivalent to the communication rule of CCS. 

Consider now the rules for 	, shown at bottom of figure 5.1. There is 

nothing new as concerns rules Si - S3. Rules S4 - S5 allow us to collapse 

unobservable transitions either before or after an observable transition. 

The communication rule S7 deserves some comment. Note that a communica-

tion action following an action a preserves the locality of the a action, although 

the local residual is partly recombined with the concurrent one. Let us consider 

a simple instance of this rule. 
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Rules S 

RULES for 1•
-* 

Ti. r: p_r4p 

r 2. 	p !4  p' 	implies 	p + q L 

q + p L.,.  j 

P r_ ' 	implies 	pq 	p'Iq 

qp _!_ qjp' 

p -- <p', p">, q  --+ <q', q"> imply pq ---* (p'Iq') I (p"Iq) 

RULES for 

Si. a: p ==9*.  <p,NIL> 

 p = <p', p"> implies 	p + q = 	<p', p"> 

q  + p = 	<p',p"> 

 p = <p', p" > implies 	p q = 	<p ' , p "  I  q> 

q   = 	<p', q Ip"> 

 p r  q , q  == imply <q,  q"> 	mply a 
p == 	<q , q" > -p 

 p 
a 

== <p, p >,  r p' 	q 	imply p =
a 	<q, p> 

 p a 
== <p, p>, r p - q 	imply p =

a
<p, q> 

S'. p = <p ' , p " >, p'  --~ 	<r', r">, p" -- 	<s', S it  > 

imply p 	=. 	<r' I  s', r" 

Figure 5.1: Weak distributed transitions 
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Example 3) 	(acbld) I (ef) = 	<bIe,dlf>. 

Here the synchronisation of the actions c and z introduces a causal depen-

dency between the action a of the first component and the subprocess e of the 

second component. This explains why the process e, previously placed in the 

concurrent residual of the transition --+, is now shifted to the local residual of 

the sequence --+ 'r--* Note on the other hand that the components d and f, 
independent both from the action a and from the subsequent communication, 

are left in the concurrent residual. 

As a general consequence of rule S7, the local residual of a transition = 

will no longer be, as was the case for --*, a subterm of the component which 

performs the action a. 

5.2 Weak distributed bisimulation equivalence 

Having introduced the weak transitions = 	and = , we may use them to 

define a new d-bisimulation equivalence d  on processes of P'. We start by 

giving the notion of weak d-bisimulation relation. 

Definition 5.1 A weak d-bisimulation is a relation R C (P 'x P') satisfying, 

for any (p, q) E R and a E A, the following property: 

1) p=p' 	= 	q :4*  q', with p'Rq' 

q=='q' 
	

p 4 p', with p'Rq' 

p 	<p',p"> == 	q = <q', q"> , with p' R q' and p" R q" 

q 	<q', q"> == p = <jJ,p">, with p' R q' and p" R q" 

If we let WD(R) be the set of all pairs (p,q) satisfying clauses i) - iv) 

we have the more compact definition: a relation R c (P' x P') is a weak 

d-bisimulation if R C wD(R). 

A weak d-bisimulation will be sometimes called wd-bisimulation. Our new 

behavioural equivalence over P', which we call weak distributed bisimulatiorz 

equivalence and denote by d, is now defined to be the union of all weak d-

bisimulations: 
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Definition 5.2 Vp, q E P' : p d q 1ff 3 wd-bisimulation R s.t. p R q. 

We have for d  the usual property of (maximal) bisimulation equivalences. 

Property 5.3 

d Is an equivalence relation. 

d Is the largest solution of R C WD(R) (and R = WD(R)). 

EM 

The equivalence d  is preserved by most operators of E', namely: 

Property 5.4 	d 15 preserved by the operators : and 

Proof: Trivial for the operator j: . To show that d  is preserved by I  we seek 

a wd-bisimulation R such that (p I r, q I r) E R whenever p d q. Now it is 

easy to check that the relation: 

R = {(plr, q lr) I pq} U d 

is such a wd-bisimulation. 	 D 

We give next some examples of identifications modulo d. 

Example 4) 	r  I b 	d r(alb) 

Note that this identification would not be valid if we could observe the locality 

of the r-transition in the first process. 

Example 5) 	r(cld) (abc I ãd) 

where C is the absorption relation corresponding to 	d, defined by: 

'q 	== 	(p+q) d q. Similarly, we have: 
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Example 6) 	r(plqlrls) 	
d 	(apaq) I(brIs) 

One last example of absorption, illustrating the effect of rule .S7: 

Example 7) 	a(bld) 	C 	(acb I cd) 

We conclude this section with a simple result: the weak d-bisimulation equiva-

lence d is an extension — although not a conservative one, as shown by the 

examples above — of the strong d-bisimulation "sd  of chapter 4. Moreover the 

two relations coincide whenever there are no internal moves involved. 

Theorem 5.5 

1) p d q 	implies P d q. 

ii) If p, q contain no occurrences of a, then p d q implies p ' d q. 	LI 

5.3 Alternative formulation of the semantics 

We proceed now, as we did in chapter 4, to extend our semantics to pairs of 

processes <p, q>. The rules for pairs are given below. Note that r—transitions 

transform a pair in another pair: nevertheless they are global moves in the sense 

that they do not create a new local residual, but merely preserve the one created 

by a preceding observable transition. 

7- 5.  p _L4 i 	 implies 	<p, q> _L4 	q> 

<q, p> _r_ <q, p'> 

r 6. p —4 <p', p">, q --+ <q', q"> imply <p, q> _L  <p' I q',  p"l q"> 

S8. p 	<p', p" > 	implies 	<p, q> 	<p', p"I q> 

<q,p> 	<p', qlp"> 

Having defined the transitions 	for pairs of processes allows us to unify the 

three rules S5 — S7 in figure 5.1 into just one rule: 
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S9. p = 	<p', p"> 	<q', q"> imply p = 	<q', q"> 

Note again the similarity between the transitions of the pair <p, q> and those 

of the process i' i q. We shall see next that <p, q> and p I q have indeed the 

same behaviour, modulo the (extended) weak d—bisimulation equivalence d - 

The extension of d to pairs of processes is straightforward. If P" =I 

P' U {(p,q) I p, q E P'}, and F, Q, etc. range over P", we define the 

extended equivalence - wich we still denote by d - as follows. 

Definition 5.6 For any F, Q E P", let P d Q if and only if for any a E A 

the following hold: 

P=F' 	= 	Q = Q', with  P'dQ' 

Q=LQ' 	== 	P=P', with Pd Q' 

P = <P', P"> == 	Q 	<q',q">, with P' d q' and pH 
d q" 

Q 	. <q',q"> ==> P 	<p',p">, with P' --d q' and P" d q" 

Again, one may easily show (the proof is the same as for —'d)  that for any 

processes p, q in P' the pair <p, q> is bisimilar to the process p I q. 

Fact 5.' 	V p, q E P' : 	<p, 	q> d P I q. 	 -El 

Once more, adding a condition <p', p"> R <q', q"> at the end of clauses iii) 

and iv) in the above definition would not change the resulting wd—bisimulation 

equivalence. 

In fact, by property 5.4,' ;-- d  is preserved by the operator I . This ensures us that 

when p' d q' and p" d  q" then <P',P'1 > d P' I p" d q' I q" d <q', q">. 

We may conclude that the rules for pairs r5, r6, S8 are superfluous for the 

definition of d  on processes. However, as we shall see in the remainder of 

this section, these rules may be used to give an alternative formulation of our 

semantics along the lines of chapter 4. 
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We have just seen that the compound residual <p', p"> of a transition be-

haves like the parallel process p' I p" . We may then envisage, as we did for our 

"strong" semantics, to describe the behaviour of a process by means of tran-

sitions of a different kind, yielding a single global residual and carrying a new 

information - the local residual - above the arrow. Such transitions will thus 

have the form p 
a,p 

 q, and the relative bisimulation will recur separately on 

the local and global residuals. 

However, using p' I p" in place of <p' , p"> gives us a slight problem when 

trying to reformulate rules S5, S6 and S7 . Consider rules S5, S6 first. Intu-
a 

itively, whenever p 
p' q 

the global residual q includes the local residual p 

Now, if p does a further action r, we must make sure that this action modifies 

consistently the local and global residuals. Thus we cannot for example replace 

rule S5 by: 

S5 1 . 	p aPqpI_LpIl  imply p 

since this would create a mismatch between our local and global description (the 

local residual would no more divide the global residual). A similar argument 

holds for rule S6. 

As for rule S7, we want to be sure that after a transition p 
a,p' 

 q the two 

synchronising actions c and e come respectively from the parts p' and q\ p' of 

the residual q. 

One way of tackling this difficulty is the one adopted in [CH 871 : we 

introduce contexts of the form C [ ] , which are simply terms with a "hole" in 

them (a definition may be found at page 130). Then the transitions take the 

form p = C [p'] , where p' is the local residual and C [3 is the global 

environment for p', corresponding to q\ p' above. The bisimulation recurs on 

p' and C [p'] 

In this case Rule S5 may be reformulated as: 

S5 11. p =
a  C [p3 , p 

r 
-+ p imply p =a  C [P"] 

But of course the simplest way to get round the problem is to keep the "nota-

tion" <p', p"> for the global residual p' I p" , while disallowing the bisimulation 

from taking apart the components of a pair. More precisely, we shall keep our 
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present transitions p =& <p', p">, and define our new wd—bisimulation —d  to 

recur on the local residual p' and on the pair <p', p" >. The definition follows: 

Definition 5.8 For any relation R c (P" x P ") we let p WD'(R) q 

if and only if for any a E A: 

1) p=p' = 

ii) q =' q' 	==. 

q =- q', with p'Rq' 

r 	 I p= p, with p Rq 

p = <p',p"> == q = <q',q">, with p'R q' and <p' ,p" > R <q',q"> 

q = <q',q"> == p = <p',p">, with p'R q' and <p',p" > R <q', q"> 

We then define —d  to be the union of all such relations: 

Definition 5.9 Let p,q E P". Then: 

P =d q if 3 R ç (P" x P") s.t. p R q and R C WD'(R). 

We want now to establish the relation between _d  and our previous bisimu-

lation equivalence d.  Remember that the corresponding strong equivalences 

d and were proven to coincide in chapter 4. Unfortunately we do not 

have, for now, a similar result for d  in our complete calculus (with communi-

cation). However we can prove that the two equivalences =d  and d  coincide 

on the calculus without communication - i.e. the calculus restricted to rules 

i- 1—r3, S1—S6. The proof is based as usual on a simplification result. 

To establish our simplication result we actually need to prove three statements: 

Lemma 5.10 (Simplification, in the restricted calculus) If p,q,r E P 

	

i) r = 	r' and pir d qT' imply q 	q' d P. 

	

r = 	<r', r"> and p r d q I r" 	imply 	q = 	<q', q">, with 

r' d q' and p d q". 

iii) Simplification: p I  r d q I r implies p d q. 
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Proof: The three statements are proved simultaneously, by induction on the 

sum of sizes of p, q, r. 

1) Here p I r 	r' and thus q I r' must have a matching move 

q I  r' 	q' I TI' 	d p I r', for some q', r" s.t. q = 	q' and r' = 	TI'. 

Now, if r" = r' we may apply induction on part iii) to get q' d  p. 

Otherwise we apply induction on part 1) to obtain q' = 	q" d P- 

ii) zi) Here p r == <r,p I r">. Now q I r can match this move in two ways. 

q I TI'  = 	<q', q" I r111 > because q = 	<q', q> and r" = 
It In this case we have r' d q' and p I T 	d q" I r'". 

To the latter equation we may now apply induction, part 1), to obtain 

q" = q" d p. Thus q = <q',q ... > is the required move of q. 

q I T = <, q' I s"> because T 11  = <s', SI, > and q = q'. Then 

r' d  s' and , I r" d q' I "• We may now apply induction on part 
a 

fit i;) to get q =z-  <q", III q > , with r 	d q and p d q 

iii) To prove p d q, we show that for any move of p there exists a corre-

sponding move of q. The converse will then follow by symmetry. 

p =L  p'. Then p I T = 1  I r and q I r must have a matching move 

	

1• 	
, qIT ==q, T dp

I
Ir,where q== 1• 

q and r==1• r. 

Now, if r' = r we apply induction on part Iii) to get q' d p. 

Otherwise we apply induction on part i) to obtain q' = 	q" d p'. 

p ==I* <p' ,,p" >. Then p J T ==2:1,- <p', p"I T>. Again, q J r has two 

ways to match this move. 

qIT 	<q', q"Ir'> because q = 	<q', q"> and T 	r'. 

In this case we have p' d q' and p"JT d q"IT'. 

To the latter equation we apply now induction, part 1), to obtain 

q" = q"  d p". Thus q = <q', q"> is the required move 

of q. 

q I r = 	<r1 , q' I TI' > because r = 	<T', T"> and q =. q' . 

Then p' d  r' and p" I  r d q' I r". We now apply induction on 

part ii) to get q' = 	<q", q'">, with r' d q" and p"  d q'" . 

Since P' d TI , this is the required move of q. 	 D 
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Theorem 5.11 (Equivalence of the two semantics, in the restricted calculi) 

For any p,q E P': p d q  4= 	P =d q . 

Proof: Essentially the same as that of theorem 4.15 for 	The proof of 

d C —d  uses the substitutivity of 	d w.r.t. I , while the proof of 

=d C 	d requires the simplification lemma above. 

Note that we do not need a conversion lemma here, since —d  and 	d are 

based on the same transitions p = 	<p',p"> and p = p'. 

Em 

It is now easy to establish the relation between our semantics and the classical 

semantics of CCS. We show that Miler's weak bisimulation 	is an extension 

Of d . We use the following conversion lemma for = transitions (our = 

transitions being the same as in CCS), which we state without proof. 

Lemma 5.12 (Conversion) Let p E P . Then: 

p :=. <p1 ,p11 > 	== 	3 q 	p'Ip" s. t. p 	q. 

p 	q 	2p',p" s.t. q 	p'Ip"  and p 	<p',p" >. 

where 	is the congruence induced by the laws P1 - P5 at p.  97. 

We may then show that 	is an extension of d - 

Theorem 5.13 For any p,qE P': 

P d q implies p q. 

If p, q do not contain occurrences of I , then p 	q implies p d q. 

Proof: Essentially the same as that of the analog theorem 4.11 for 

In the next section we introduce a behavioural congruence 	based on —1d - 

The rest of the chapter is devoted to the study of properties of 
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5.4 Behavioural congruence 

We saw in section 5.2 that the equivalence d is preserved by most operators 

of V. However d is not preserved by the operator + , as shown by the 

usual example: a d  ra but a + b ~6d  ra + b. We shall therefore strengthen 

d to a congruence 	, as we did already for 	in Chapter 2. 

We first define contexts C [ ] to be generated by the following grammar: 

C[] ::= 1] 	jt:C[] Ip+C[] IC[J +pIpIC[] 1CM I 

Then our behavioural equivalence 	is taken to be the closure of d  w.r.t. 

all contexts: 

Definition 5.14 Let p,q E P'. Then p-- e q 1ff V C [] : C [p] d C [q] 

The relation 	so defined is the largest congruence included in d (this is 

a standard result). Note that sum—contexts are the only relevant ones in the 

definition of , since d  is preserved by all the other operators. As a matter 

of fact, if we define: 

Definition 5.15 p 	q if for some a not in p,q : a + p d a + q 

we have the following useful characterisation for 

Theorem 5.16 	coincides with 	over P'. 

Outline of proof: The nontrivial part is 4 c 	. We prove separately: 

1) 

	

•\ 
	"Z:

. + 	.- 

I  

	

ii) 	is a congruence. 

Then the result will follow, since 	is the largest congruence included in d• 

To prove point i) it is enough to show that 	is a wd—bisimulation. 

To prove point ii), check that the following relations are wd—bisimulations: 

= {(,ap+a,iq+a) I p 	q,a2p,/Lq} U 

R2  = {((p+r) + a, (q+r) + a) I p4q, a p,q,r} U d 

R3 = {((p I r) + a, (q I r) + a) I pq, a p,q,r} U d 0 
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Let us now define - resuming the notation of chapter 2 - a transition relation: 

Irn 
--p, n>O def  

1 

Thus 	involves at least one transition --~ . 

Now it is immediate to check that 	satisfies the property: 

Property 5.17 Let p 	q. Then p I= p' implies q 	q' for some 

q' such that p' d q'. 

Proof: Let p + a d q + a for some a p, q. If p 	p' then p + a I= p'. 

Now the corresponding move of q + a cannot be q + a =L q + a, since 

P' 	q'. We thus have q + a 	q d p' because q I= q'. 	 0 

Property 5.18 p d q if and only if one of the following holds: 

1) pq 

prq 

rp 	q 

Proof: The nontrivial part is the only if one. So suppose p d q. We want 

to show that we are in one of the three cases i), ii), iii). We proceed by case 

analysis. 

Suppose that p 	p' and the corresponding move of q is q 	q, 

with p' d q. In this case we have p rq. In fact it is easy to check 

that, if a p, q, then p + a d rq + a: corresponding to the move 

	

p + a = p' of the first term wepick the move i-q + a 	q of the 

second term. 

Symmetrically, if q I= q' and p replies with p = p, we have rp 	q. 

If we are in neither of cases 1) and ii), then we have p + a d q + a 

that is pq. 13 

Note that the three alternatives i), ii), iii) of the above property may be sum-

marised as ()a,  where Ra  is the function on relations defined in chapter 2 

(at page 36). The notation R3  will be used again in the following. 

The next section is devoted to the search of an axiomatisation for 	. The 

relation 4 will be extensively used as an alternative formulation of 	. 
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5.5 Algebraic Characterisation 

In this section we present a complete set of axioms for the weak behavioural 

equivalence 	. First, we find that the three r-laws of [Mil 80, HM 851 are 

valid for 	: 

(Ii) 	 x+rx = rx 

1UTX = 

/2(x+ry)+.uy=jt(x+ry) 

These three properties can be easily proven for the equivalence 	that was 

introduced in the previous section as an alternative formulation for 	. Fur- 

thermore, we have a law expressing the globality of T - actions: 

T(Xy) = rxIy 

Once more, however, to obtain a complete axiomatisation for our behavioural 

equivalence we need to recourse to the auxiliary operators Y and L• Thus, for 

example, the equation (14) will be derivable from the following two laws of : 

(NIl) 	 7- X  y = r (x y) 

x VY = x VTY 

One further law is required for ', which is similar in structure to 13: 

x ' (y + r z) + x V Z = X I (y + r z) 

In absence of communication, that is when we let aside rules r4 and S7, the 

operator V is all we need to derive a complete axiomatisation for d• The 

behavioural rules for V  are the following: 

71 6. 	p _L ' 	implies 	p V q _r P' I q 

Sb. p 	<p', p"> 	implies 	p 1' q 	<p', p"  I q> 

Let now I denote the set of axioms V extended with the r-laws (Ii) —(13), 

(NIl) - (N13). These laws are all grouped together in Figure 5.2. 
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Axioms I = V U r—laws 

(Al) 	x+(y+z) = (x+y)+z 

x+y = y+x 

x+NIL = x 

x+x = x 

(FE) 	xIy=xYy - - yYx 

(LF1) 	(x+y)  Vz = x Vz + y Vz 

(LP2) 	(x [1 y) I" z = x I" ( y  I z) 

(LF3) 	x V NIL = x 

(LP4) 	NIL V x = NIL 

Axioms V 

(Ii) 	x+rx = rx 

UTX = LLX 

jt (X + ry) + Ay = ji (x + ry) 

r—laws 
(NIl) 	TX y = r (x y) 

X  = XTy 

x I' ( + rz) + x V z = x ' (y + rz) 

Figure 5.2: Axiomatisation of d , in absence of communication. 
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We shall state here, as we did for the strong equivalence 	, two separate 

characterisation results, one for the calculus without communication and one 

for the complete calculus. 

Let first E l  denote the enlarged syntax: 

E 1  = A r U{NIL,+, I, I'} 

If we extend 	to the new calculus, we have the following result: 

Theorem 5.19 In absence of communication, the equivalence 	is 

the E 1  -congruence generated by the axioms T 

Again, we do not give the proof of this first theorem, since it is essentially a 

simpler version of the general theorem 5.23 which follows. 

Consider now the whole language Tr,,, where 

E 2  = A T  u {NIL,+,  

and 1, is specified by the rule: 

Sil. p --+ <p' , p">, q --+ <q', q"> imply p I q _!) (ii I p")  I (q'  I q") 

The other operators are specified by the whole set of rules ri- r4, Sl-S7. Let 

us now extend our equivalence 	to the new language. Then the laws A for 

remain valid for c . Corresponding to the rule S7, we need an additional 

axiom for communication, which we state in the form of an absorption law 

(where p q means p + q = q): 

a (x I ) V (x' y') E a (cx I" x' + v) V (cy r y' + w) 	(CP5) 

Let L! = A U {CP5}. If we denote by ,9 the set of laws \PE U ',as shown 

in Figure 5.3, we have all the elements to state our general characterisation 

theorem. We give first the normalisation lemma. 

Our normal forms are now terms (defined modulo the axioms Al, A2, A3) of 

the form: 

= 	ai pi 	+ i: 
iEI 	 iEJ 

where In J = 0 and for each i E I, j E J, the terms p, p and pj  are again 

nj's. By convention = NIL if both I = 0 and J = 0. 
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We have then the following: 

Lemma 5.20 (Normalisation lemma) Vp E TE2  3 nf 	= .9 p. 

Proof: By induction on the size of p. The proof makes use of all axioms in 

,9 except for the idempotence law A4 and the set of r-laws (Ii) - (13), (N12), 

(N13). As usual, we use axioms Al, A2, A3 without mentioning them. 

We proceed by case analysis. The main change w.r.t. the analogous proof for 

regards cases v) and vi). 

1) NIL is a normal form. 

p = aq. Define P = a 4 1/ NIL. Then p = 	by induction and LP3. 

p = rq. Define j=r. Then p =gf'  by induction. 

p = q+r. We let here = 4 + P. Then p = 	by simple induction. 

p = q Yr. If 4 = NIL define = NIL. Then, using induction and axiom 

LP4 ,weget: p=9 4Yr = NIL rr = 	NIL = q  P. 

Otherwise, if 	= > j aqj F" q + Ejcj r qj  =A NIL, we define: 

= >i aqi I" (qjr) + >j,j  r (q,r) . We then have: 

P =9 ( EiEj aqj  F1  q + > 3EJ rq,) V r 

= 9 EiEI [ (aiqj Y q) V r ] + EjEJ (rq5 V r) 

= 9 EiEj ajq1  I' (q I r) + ::jEJ  (rq1 F' r) 

=9 >EI a1 q1 I' (qr) + Ej,j r (q,r) = 

using induction and the laws LP1, LP2, NIl. 

p = q I ,, r. If P = NIL we let = NIL. Then, by induction and axiom 

CP3 we have: p =g  q 	= q L NIL = NIL . We proceed similarly, using 

CP2 first, when 4 = NIL. 

Otherwise, if we have both 4 = > EI a1 q1 '  q + > jEJ rq, 	NIL and 

= >kEK bkrk I"r + EIEL rr1  54 NIL, we define = 	r (qi I q IrkI r). 

Then, using induction and axioms CP1, CP2, CP3, CP4, NIl we obtain: 
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P =9 (>2EI a, q1  I' q + EIEJ  rq1) I (kEK bkrk r + >IEL rn) 

=9 	jEI aq1 	L EkEK bkrk 	+ EEJ Tqi L DEL rr1 + 

+ >IEJ rq1 L EA;EK bkrk 	+ >jEJ  ai qi  r q, IC EIEL Tn1 

9 >.ar=b, r(qrk)  V ( q Ir') + NIL + NIL + NIL 

=9 	a1=; r(qiqirkr) =9 p 

vii) p = q  I r. Let Pi = q  r, P2 = r q and P3 =  q  r. Define 

= i + P2 + PS, where 	and 2  and p  are given by cases v) and vi). 

Then, using induction and the expansion law CPE, we obtain: 

P = 4 Pi + P2 +Ps = 9 Pi + P2 + P3 = 9 P 	 U 

The proof of our completeness result is more complicated than for 	Besides 

a normalisation lemma, it also requires two absorption lemmas, which we prove 

next. The first one is a r—absorption lemma, which holds in the same form for 

weak CCS transitions, see [HM 851 . We recall that k=4 = n > 0. 

Lemma 5.21 (r-absorption lemma) 

1• 

If p is a nf then: p I== p' implies p + r p' =9 P 

Proof: By induction on the size of p. The proof uses axioms A4 and R. 

If 	= EiEjaipi V pi' + ° JEJ rpj, then the transition 	is due to the part 

Ejej  rp1 of p. Now, there are two possibilities: 

p, = p', for some j E J. Then p =9 P + r p' by A4. 

pj 	p', for some j E J. By induction p = ,g p + rp'. Then using 

axiom Ii we obtain: 

P = 9 P + Tp3  = 9 P + Tp1  + pj = 9 P + rp, + p, + 'r p' = p + -r p' 

U 

The second absorption lemma, which is slightly more involved, is the analogue 

for weak distributed transitions of the generalised absorption lemma we gave in 

Chapter 2 for weak CCS transitions. 
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Lemma 5.22 (Generalised absorption lemma) 

If p is a nf then: p = <p', p"> implies p + apt  V p" 	g p 

Proof: By induction on the length of the proof that p = 	<p' ,p">. It uses 

axioms A4, Ii, LP1, CP5 and the above r—absorption lemma. 

Let p = >jEI apj I" p + EjEJ TPj . There are then two main possibilities for 

P 	<P',P">. 

Ir  1. p = 	<p', p"> because for some j E J : Tj 	p, = 	<p', ii'>. 

By induction p, + apt V p" = g p,. Whence we deduce, using Ii: 

p + apt  V p" = p + rp5 + apt V p" 

=9 P + TPI + p + aptV p" 

=9 P+TPi+Pi =9 P 

2. 	p = 	<p',p"> because for some i E I we have a = ai and 

p --+ <p1 ,p> = <p',p">. Now, consider the chain of r—transitions 

leading from <pj,p> to <p',p"> . If this chain is empty, we have a = a,, 

p' = p2 , p" = p for some i E I, and get our result by simple absorption A4. 

Otherwise, consider the last application of one of the rules S5, S6, S7 in the 

derivation of p =&. <p',p">. The general form of this application is: 

p = <q', q"> L4  <p', p"> implies p :=. <p', p"> 

where we know by induction that p + aq' V q" = P. 

Now, according to which of the rules S5, S6, S7 is actually applied, we have 

three different cases. For each case we will just show that 

aq' F q" = aq' I q"  + apt F' p" 

since from this we can deduce: 

P = 9 P + aq' F' q" = 	p + aq' F' q"  + apt  I p"= g J) + apt  F' p" 

Let us now examine the three cases: 
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1) The rule applied is S5: that is <q', q"> 	<p',p"> because 

q' -- p' and q" = p". Then we have q' = 9 q' + rp'  by r—absorption 

lemma. Whence we deduce, using axiom 13: 

aq' = a (q' + rp') = a (q' + rp') + apt =g  aq'  + apt  

We then have, using axiom LP1: 

aq'  "q" = (aq'  + apt  ) Y q" 

= aq' I q" + ap' I' q" 

= aq' I" qU + apt V P It  

The rule applied is S6: <q', q"> 	<p',p"> because q" 	p" and 

q' = p'. Again we may use the r—absorption lemma to get q" =g q" + 

This implies, by axiom 13: 

aqU = a (q" + rp") = a (q" + rp") + apt' = aq"  + ap"  

We may now deduce, using axiom N13: 

aq' I" q" = aq' I' (q" + rp" ) 

= aq' F'(" + rp" ) + aq' VP It 

= aq' F' q"  + aq' r p" 

= aq' I' q" + apt V P 
it  

The rule applied is S7: here <q', q"> -- <P1 
 P" > because 

q' ---* <r, r'> and q" --+ <s, s'> ,with ris =p'  and r'Is' = p". By 

induction q' =g q' + cr F'  r'  and q" =,g q" + s F's' . We then have, 

using the law CP5: 

aq' F' q" = 	a (q'  + cr F' r')  F' (q" + ?s F' s') 

= 	a(q'  + cr F'  r')  F'  (q"  + s F's' ) + a ( r l s ) Y(r'Is') 

= aq' I' q"  + apt  V P 

With the help of these lemmas we can finally prove our characterisation result: 
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Theorem 5.23 The equivalence 	is the E 2  -congruence =,g  generated by 

the axioms 9. 

Proof. As for theorem 4.20 the soundness of the axioms, i.e. the implication: 

p =g q ==>, p q is relatively easy to prove. 

We give here the proof of completeness: pq implies p =g q . The 

proof is by induction on the sum of sizes of p, q. We shall here, to simplify the 

notation, write instead of . Suppose then that p C  q. By virtue of the 

normalisation lemma we may assume p, q to be normal forms: 

p = 	ai  p. 1' pi' + > rp5 , 	 q = 	b, qn I" q, + > rqm 
iEI 	 jEJ 	 nEN 	 mEM 

We proceed with our usual method. We show that q + p =g q and the result 

will follow by symmetry. We prove separately: 

q+rp1 = q 	VjEJ 

q + api  I' p =  q 	Vic I 

Proof of 1). We have p 	p. Correspondingly, since p C q , there exists 

r s.t. q 	r and p' r. By induction P' (= )a r and thus, by 

axiom 12, TPj =9 rr . We may now use the r-absorption lemma to get: 

q =g q+rr =9 q+rp,. 

Proof of ii). We have here p 	<pj, p>. Since 	q , there must exist r 

s.t. q = <r, r'>, with p r and p r'. By induction p1 (=)° r 

and p (= ),, r'. Then using axiom 12 we get rp1  =,r rr and rp =g  rr'. 

At this point we may use axioms 12 and N12 to obtain: 

a1 pi  r A =9 a r p1  VA =g ai r r V p 

=9 air 	= a1 r rr pi' 

=9 ai r FrrI 	=9 ai r Vr
I  

whence, by the generalised absorption lemma, we finally deduce: 

q ='9 q + air Y rf = q + ajpj  

139 



Axioms , = \ FE U L' 

(Al) 	x+(y+z) = (x+y)+z 

x+y = y+x 

x+NIL = 

x+x = 

(x+y) 1"z = x 	+ y V z  

(x 1' y ) F' z = x V (y  I z) 

x I'NIL = 

NIL I' x = NIL 

(Il) 	x+rx = rx 

ILTX = yX 

(x + ry) + jy = ji (x + ry) 

(NIl) 	TX F' y  = r (x I ) 
xF'y=xF'ry 

x ' (y + rz) + X F' z = x F' (y  + rz) 

(CPE) 	xly = X F'y + y r x  + xIy 

(x + y) L z = (x L, z) + (y L z) 

XIy = YlX 

xI NIL = NIL 

I 	 (X' Iy') , if ' 
(Ax F' X') L (vy  F' y ') = 	

r (x y) F'  
I NIL, 	 otherwise 

a (X I v) F' (X' I ') [ a (ex F' X 1  + v) F' (y F' y'  + w) 

Figure 5.3: Axiomatisation of d , with communication. 
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From our axioms 9 we may deduce the following expansion theorem (GEXP): 

Let x = iEI aixi ' x + jEJ 	Y = EnEN bn Yn I' + > mEM  TWm 

Then xy = EiE, ax1  I"(xI y) + EnEj  bn Yn I"(x y ) 
• >JEJ 7(Z1 I y) + EMEM r (x I w,) 

• >1 

To sum up, we have established a finite complete axiomatisation for our be-

havioural congruence 

Here again, as for 	, we could dispense with the communication operator 

L • In fact, if we replace all axioms involving ' in figure 5.3 by the expansion 

theorem (GEXP), we obtain an axiomatisation for which is still complete 

- although not finite. 

On the other hand it would be out of question to eliminate L and simply 

introduce a communication rule for I. As it were, allowing communication 

across V would render unsound our axiom LP2 - which is needed, among other 

things, for the reduction of terms to normal forms. 

For assume we had a new rule for ['i, similar to r 4. Then the two processes 

in the following example would not have the same behaviour, since the second 

would have a transition = leading to (a process equivalent to) NIL, which 

the first one could not match: 

Example 8) 	(a r b) Y (6 V a) =LP2 a r (b I (b I"a) 

One last remark. We justified the use of global unobservable transitions p 

p' rather than distributed ones p = 	<p', p" > by saying that not only the 

presence, but also the locality of an action r should not be directly observable. 

Now, in the light of the previous study, we may argue that there is also a 

technical reason for taking = 	to be global. A weak d—bisimulation d 

based on distributed transitions p = 	<p',p"> would not be preserved by 

as shown by the following example: 

a d ra but alb 	d rab 
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since the first process would have only one r—transition, namely: 

a I b = <a I b, NIL> , whereas the second would have a further possi-

bility: r  lb ==;=>. <a, NIL I b>. 

On the other hand, we saw that the substitutivity of d  w.r.t. I  was crucial 

for some of our results, notably for the equivalence of our two semantics. 

We conclude here our treatment of distributed bisimulations. In the next 

chapter, we shall present a somewhat more standard notion of bisimulation, 

called pomset bisimulation, which also leads to a non—interleaved model for our 

concurrent language. 

142 



Chapter 6 

Pomset transition systems 

In this chapter we present a new behavioural equivalence for concurrent pro-

cesses, called pornset bisimulation equivalence in that it is based on transitions 

labelled by partially ordered multisets (pomsets, in the terminology of Pratt 

and Gischer [Pra 82, Gis 84]). 

The idea underlying this new equivalence is very simple. We noted already 

that in a labelled transition system S the action 77 labelling a transition 

S '7—s 

may be seen to represent a computation of the system S. In the case of se-

quential systems, a computation may always be decomposed in a sequence of 

elementary steps: thus transitions labelled by atomic actions are enough to 

describe the behaviour of such systems. 

On the other hand we know from our discussion in chapter 3 that elementary 

transitions are not sufficient to account for nonsequential behaviours. At least 

we need to enrich the transitions with some information about the concurrent 

structure of processes. This was achieved in our distributed transition systems 

of chapters 4 and 5 by associating with each elementary transition an indication 

of "where" the action had been performed. 

We shall follow here a different approach. If we want actions to represent 

nonsequential computations, we need to endow them with some internal struc-

ture. In doing this, we will relax the requirement that actions be atomic - both 

in time and in space. 
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We saw in chapter 3 that the calculi MEIJE (and SCCS) allow compound ac-

tions made out of concurrent atomic actions. By introducing concurrency in 

actions, one gives up their spatial atomicity. However actions are still atomic 

in time: each parallel component may contribute at most one action to a com-

putational step. 

Consider for example the process p = (a: b) I c (described in our usual 

syntax). This is interpreted in MEIJE as the following transition system: 

Here the action c may occur in parallel with the action a or in in parallel with 

the action b, but there is no way of saying that c happens in parallel with the 

whole sequence a: b. 

In other words the calculus MEIJE, while allowing a complete asynchrony 

among concurrent atomic actions, still retains a notion of global time that creates 

artificial dependencies among actions. 

In fact, if we look at the diagram above, we will notice that each compu-

tation introduces some sequentiality among actions which is not prescribed by 

the syntax of p. For example, if we use . to denote the sequencing of transi-

tions (e.g. a* b will mean -----+) we have a computation a. b. c introducing 

dependencies between a and c, b and c, another computation a. (b . c) intro-

ducing a dependency between a and c, and so on. As a consequence we will 

have the following identification: 

Example 1) 	(a: b) I c = (a: b) I c + a:b:c + a: (b Ic) 

Intuitively, we would like to distinguish here the causal sequences a: b: c and 

a: (b I c) from the computational sequences a. b. c and a. (b. c) - which may 

be due to the term (a: b) I c. 
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The simplest way to obtain this is to allow the use of prefixing (as well as 

concurrent composition) inside actions. Of course an occurrence of" : " within 

an action will only reflect an occurrence of " : " in the process. 

We will then be able to say that a sequence of actions occurs as a whole 

in one step. So for instance the right member of example 1), call it q, will 

have a transition q ---4 b, whereas the left member p only has a sequence of 

transitions p ----- b. In other words, we may now distinguish the "transition 

of a sequence" from a sequence of transitions. 

We come in this way to a generalised notion of action, not necessarily atomic 

neither in space nor in time. In fact, by dropping the requirement of atomicity 

for actions, we lose much of the distinction between actions and processes. If we 

decide to denote by I the concurrent composition of actions, an action becomes 

itself a process, built using only the operators : and 

Hence an action is now a deterministic process. This appears to agree with 

our concept of nonsequential computation as partial order of atomic actions or 

events. It is therefore not surprising that, if - we reconsider our interpretation 

of processes as labelled event structures as was given in chapter 3, we find an 

exact correspondence between the actions of a process and the computations 

(or configurations) of the associated event structure. 

This chapter is organised as follows. In section 6.1 we present our new 

operational semantics for processes, based on the generalised transitions. The 

syntax for processes is essentially the same as in chapter 4, the operators being 

prefixing, sum and parallel composition. However the calculus is simpler here, 

in that we do not consider communication nor r—actions (an extension of this 

semantics to communication is proposed in [BC 87b]). 

In section 6.2, we show that our semantics agrees with an (intuitive) tran-

sition system semantics for labelled event structures, where transitions are la-

belled by configurations. 

We then turn to the study of the new bisimulation 	, called pomset bisim- 

ulation equivalence. In section 6.3 we give a finite complete axiomatisation for 

Finally, in section 6.4 we establish the relation between X and the bisimu- 

lations examined in previous chapters: it turns out that 	is strictly included 

between our distributed bisimulation 	and Miler's strong bisimulation . 
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6.1 Pomset bisimulation equivalence 

In this section we set up our new calculus for processes. We adopt the same 

syntax E used in earlier chapters: 

E = Au {NIL, +, I } 
As usual processes are terms of P = TE, denoted by p, q, r, etc. The elements 

of A are the atoms (or atomic actions) of our calculus. We let a, b,... range 

over A. General actions - the labels of transitions - will be terms over the 

restricted syntax A U { NIL, I } . The set of actions, ranged over by u, v,..., 

will be called Act. 

We shall mostly abbreviate a: NIL to a (both for processes and for actions). 

The behaviour of processes is specified by the following rules. 

Rules V 

Vi. a:p a: NIL 
 

 p 
-- 	

p' implies a:u a : p 	p 

 p 
-- p' implies p + q 

-- p' 

q + p -- p' 

p -- p' 	implies 	p I q -- ii I q 

q p u , q I r' 

p _±.9 p', q 	q' 	imply p I q 	ulv) 
p' J q' 

Rules Vi, V3, V4 are essentially the same as for CCS transitions. Let us then 

focus on rules V2 and V5, which build compound actions above the arrows. 

Note that rule V5, used to build concurrent actions, was encountered already 

in the calculus MEIJE. 
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What is to be stressed here is that rules V2 and V5 merely transfer the con-

structors : and I from processes to actions. Thus V2 is substantially different 

from the rule: 

au a:u (*) 	 p -~ p , p —+ p'1 	implies 	p 	p'1  

which was used for building the weak transitions 	in CCS (as well as the 

compound weak transitions =& of chapter 2). 

In fact V2 is our key rule for distinguishing causal sequences from purely 

computational ones. On the other hand rule V5 is necessary to detect the 

presence of concurrency. 

Let us consider an example. The two processes r = a I b and s = a: b + b: a 

have the following transitions: 

Example 2) 

i) r —p 
a 

NIL b I 	b 
—*NJL 

a INTL --* NIL 

NIL INTL 

a 	b S 
—+ b -) NIL 

 – 

 

La – -NIL 

a:b 
—  NIL 

b : a 
—* NIL 

Here we have a whole set of transitions discriminating between r and s: the 

last transition of r, labelled by the concurrent action a I b, and the last two 
transitions of s, labelled by sequences of actions. 

In fact, our semantics does not only distinguish between r and S. If we let 
t = r + s, rule V2 will allow us to differentiate the two processes: 

	

r= alb 	and 	t = alb + a:b + b:a 

whereas rule V5 will make the distinction between: 

	

s=a:b--b:a 	and 	t= alb  -- a:b -- b:a 
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Consider now the set of transitions of the process p = (a: b) I c examined in 

the introduction: 

Example 8) 

p= (a:b)Ic --- bc 

--k a:b 

a : b 
—, C 

aic -' b 

(a:b)Ic 	NIL 

Note that p has a transition labelled with itself. In fact, since any computation 

is a possible action, every deterministic process may execute itself in one step: 

Fact 6.1 If p is a process over E = A U { NIL, 
}, 

then p 	t, 

where t is some (terminated) process over { NIL, I }. 

We shall now introduce our new bisimulation equivalence. To this end, we first 

define an equality on actions of Act. Let be the congruence generated 

by the axioms: 

ulv = vlu 

uI(vlw) = (ulv)Iw 

Definition 6.2 A pomset bisimulation (p-bisimulation) is a relation 

R C (P x P) satisfying, for any (p, q) E R and u E Act, the following 

property : 

	

1) p -- p' == q -- q', with u 	v and p' R q' 

	

q -- q' = p --, p', with u 	v and p'Rq' 

If C(R) is the set of pairs (p, q) satisfying clauses i) and ii), we may sum up 

the definition as: a relation R C (P x P) is a p-bisimulation if R C C(R). 
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As is now standard, we take our behavioural equivalence - which we call pomset 

bisirnulation equivalence and denote by 	- to be the union of all bisimulations: 

Definition 6.3 Let p,q E P. Then p x q if 3 p-bisimulation R s.t. pRq. 

It is easy to check that that x is preserved by the operators of E: 

Property 6.4 	is a E-congruence. 	 El 

We give next some examples of identifications modulo 	. Here again, it is 

convenient to define the absorption relation generating the equivalence, namely: 

p C q 4= (p+q)q. 

Example 5) 

a:b+b:a:)4 alb+a:b+b:a:)4  aJb> 	alb+alb 

Concerning the first three processes, we noted already in section 6.1 that their 

sets of transitions are pairwise distinct. 

Example 6) 	a: (b I c) 	(a: b) I c 

one distinguishing action being (a: c) from the left member. 

Example 7) a I b C 	(a + c) I b + a I (b + d) 

Here the transitions a and b of the left member are matched respectively by 

the first and the second term in the right member, while the transition a I b is 

matched by either summand in the right member. 

Note that the above examples and counterexamples hold as well for our dis-

tributed bisimulation 'd  of chapter 4. 

It is in fact conceivable, given their common attempt to distinguish causality 

from concurrency, that the pomset bisimulation x and the distributed bisim-

ulation d be just alternative formulations of the same notion of equivalence. 

We shall see in section 6.4 that this is not the case. It will turn out that 

is less discriminating than d , and also - but this is no surprise - that x is 

more discriminating than Milner's strong bisimulation -. 

149 



6.2 A corresponding bisimulation equivalence 
for Labelled Event Structures 

We show in this section that our pomset semantics for terms is compatible with 

a more abstract transition system semantics for labelled event structures, where 

transitions are labelled by configurations of events, as defined by Winskel. 

Let us first recall, from chapter 3, the definition of (finite) LES. 

Definition 6.5 Let A be a non-empty set. A finite A-labelled event structure 

(A-LES) is a structure S = ( E,<, #,A) where 

E is a finite set of events 

is a partial ordering on E, called the causality relation 

# C (E x E) - ( U >) is a symmetric conflict relation, satisfying 

the property of hereditariness: 	e # e' < e" implies e # e" 

A : E -p A is the labelling function 

Two events in E are said to be concurrent, noted '-', if they are neither com-

parable nor in conflict. That is: 

''def (ExE)(<U>u#) 

Let LA be the class of (finite) A-LES's. When the set A is fixed, A-LES's will 

be called simply LES's and we will write £ in place of LA. 

Again, we shall be mostly concerned with isomorphism classes of structures. 

We denote by the relation of isomorphism on LES's, which we assume to 

be clear to the reader. 

As they stand, LES's are a static model: what is needed next is some mech-

anism of execution, which might serve as the basis for a definition of (possibly 

abstract) behaviour of a LES. 

To this purpose, we introduce a notion of computation for LES's. This will 

enable us to describe LES's as labelled transition systems, whose transitions 

are labelled by computations. 

150 



Intuitively, a computation of a LES S is a deterministic beginning of S - since 

choices are resolved while a system computes. 

Also, the actual computation does not keep trace of the structure of choices in 

the underlying LES (the detection of branching points being as usual deferred 

to the bisimulation equivalence). 

As a matter of fact, our notion of computation is exactly Winskel's notion 

of configuration for a LES [Win 801 . The definition follows. 

Definition 6.6 Given an A-labelled event structure S = (E, <, U , A) a compu-

tation of S is a substructure U = S F' F such that: 

1) FcE, 

S F' F is conflict-free: e E F & e' E F implies -i(e # e') 

S F' F is closed under causes: e E F & e' < e implies e' E F 

Note that the empty structure NIL is a computation of any LES. 

Let Comp be the class of conflict-free LES's in L. Then one may regard Comp 

as the class of possible computations of LES's. 

Note that the isomorphism class of a computation is a partially ordered multiset 

of (atomic) labels, that is a pomset over A. 

As announced earlier, our intention is to describe LES's operationally as 

performing a sequence of computations in Comp. To do this, we still need to 

define what remains of a LES after a computation, i.e. the residual of a LES 

by a computation. For S = (E, !~ , #, A), F C E, define first: 

# (F) = {e E E 13 e' E F s.t. e U e' } 

Definition Gi' Let S = (E, <, #, A)  be an A-labelled event structure and 

U = S F' F a computation of S. The residual of S by U, denoted S/U, 

is the substructure: 

SF' [E - (Fu#(F))] 
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We may now define transitions of the form: S U 
-p  S

, 
 on LES s, where U is 

some computation of S and 5' = S/U. We thus obtain a description of LES's 

as labelled transition systems, where labels are elements of Comp. 

Using these transitions, we shall now define a notion of bisimulation on LES's. 

Definition 6.8 A LES-bisimulation is a relation R c (£ x £) satisfying, 

for any (S, T) E R and U, V E Comp, the following property : 

S -- S' == T -- T', with U —_ V and 5' R T' 

T -- T' ==> S -- 5 1 , with U 	V and S' R T' 

Let us denote by xc the union of all LE S-bis imulat ions. 

It is easy to see that any conflict-free LES's S is a computation of itself, namely 

S S
-p NIL. 

Hence, when S,T E Comp, we have S x z  T 	S 	T, since the 

two maximal computations S --) NIL and T -L NIL are necessarily in 

correspondence. 

Note on the other hand that we could not use R in place of c within 

the definition of LES-bisimulation, since this would imply, for example, the 

identification of the two LES's: 

a. 	, •a 	 a 
and 	

a' 

Our next concern will be to relate our semantics for LES's with the semantics 

for terms we presented in the previous section. 

We gave in chapter 3 an interpretation of terms of Tr, as LES's. We refer 

the reader there for the definition of the operators of E on LES's. We shall use 

here L(p) to denote the LES interpretation of the process p. 

We show next that our semantics for LES's is compatible with the pomset 

semantics for processes. This is not surprising, if we note that computations 

reflect exactly the relations of causality and concurrency in the underlying LES. 
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We start by showing that there is an exact correspondence between transitions 

on terms and transitions on LES's. 

Theorem 6.9 Let p,p '  E P, F' E C, U E Comp - {NIL}. Then: 

1) p -- p' == L(p) u , F', where U 	L(u) and F' 	L(p'). 

ii) L(p) -- F' == p --* p' , where U 	L(u) and F' 	L(p'). 

Outline of proof: We only sketch the proof, which is somewhat tedious but 

presents no difficulty. 

The statement i) is proved by using induction on the structure of p. It essen-

tially amounts to proving that LES's (as elements of a E—algebra) satisfy the 

behavioural rules V1—V5. 

As regards point ii), we have to show that any (nonempty) computation of 

L(p) is the interpretation of some action of p, and similarly for its residual. 

Again, this may be shown by structural induction on p. 

107 

This result gives more consistency to our "structural" pomset semantics for 

terms. It shows that our notion of composite action for terms has a natural 

model—theoretic counterpart. 

As a consequence, we may deduce that the corresponding bisimulation equiva-

lences coincide: 

Corollary 6.10 (Compatibility of 	and 	) 

For any p, q E P : p 	q 	L(p) 	L(q) 

Proof: Only if: by induction on the sizes of p, q. We use point i) of theorem 

6.9 and induction to show that: { (L(p), L(q) ) } is a LES—bisimulation. 

If: similarly, using point ii) of theorem 6.9. 

We conclude here our discussion about the semantics of LES's. In the next sec-

tion we shall return to our "syntactic" equivalence and examine its algebraic 

properties. 
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6.3 Algebraic characterisation 

The purpose of this section is to axiomatise the pomset equivalence x on TE. 

Since terms are interpreted as ordinary transition systems over a set of actions, 

we may adopt here the general method established by Hennessy and Milner in 

[HM 85] 

Essentially, this method consists in transforming terms into sumforrns 

a • p, where the a s 's are actions of a given set of actions A. Such 

sumforms are just a notation for finite (acyclic) transition systems labelled by 

actions of A: the a 's are the initial actions of the system, and the p i 's the 

corresponding residuals. 

Now it is a standard result (see again [HM 85]) that bisimulation equiva-

lence on sumforms reduces to equality modulo axioms A1—A4. 

Thus the required axiom system will consist of laws A1—A4, plus a set of 

laws effecting the translation of terms into sumforms (normalisation). In fact 

the main difficulty is in finding the normalisation laws. 

Let us now formalise this method in our setting. We first enrich our syntax 

by allowing terms of the form u .p, for u E Act, with behaviour given by: 

V6. u.p 	p 

Let E • denote the new syntax. We now define sumforms as follows: 

Definition 6.11 A sumform (sf) is a term of Tr,. - defined modulo axioms 

Al, A2, AS - of the form: 

= 	Ui • pi 
iEI 

where for each i E I, u1  E Act and pi is a sumform. By convention = NIL 

if '-0. 

Note that, due to the composite nature of our actions, sumforms are not quite 

sufficient to equate terms syntactically. Since the bisimulation X actually 

uses equivalence classes of actions (up to axioms P1, P2), we would need here, 

besides sumforms for terms, also some kind of equational theory for actions. 
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Roughly speaking, to carry out syntactical comparisons on terms, we must 

proceed as follows: 

Expand terms into sumforms, by means of the normalisation axioms. 

Rearrange the actions in sumforrns as required by phase (iii), using ax-

ioms P1, P2. 

Compare the sumforms thus obtained, using the laws A1—A4. 

In fact, to be completely rigourous, we should generalise our algebra of terms 

to a heterogeneous algebra, including a new carrier of actions. Then our axiom 

system would be made out of laws A1—A4, the normalisation axioms, and the 

additional law: 

uv == u.pv.p 

where 	is the congruence generated by P1, P2 on Act (see page 148). 

However we do not really want to bother about such details here. We shall 

therefore present a unique set of axioms E including A1—A4, P1, P2, where it 

is intended that the only axioms that apply to actions are P1, P2. In fact these 

two axioms, although obviously valid for general processes, are only necessary 

to equate actions. 

In order to normalise terms we need, besides the laws P3 and A1—A3 en-

countered already, two specific axioms Hi and 112. The new axioms are given 

in figure 6.1, together with the rest of the laws M . 

We have now the following: 

Lemma 6.12 Normalisation lemma: 

For any p E TE there exists a sumforrn 	such that p = jV P. 

Proof: The proof of this lemma, by induction on the size of p, makes use of 

all axioms in e except for the axioms P1, P2 and the idempotence law A4. 

Axioms Al, A2, A3 are used implicitly throughout. As usual, we proceed by 

case analysis. 
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1) NIL is a normal form. 

p = a: q. If i= NIL, welet 	= (a: NIL) .NIL. Then, using the laws 

Hi, A3 and induction, we get: 

p = jV a: 4 =M  (a: NIL) • NIL + NIL =x P  

If 	= EiEI u • qi 54 NIL, let: D = (a: NIL) • 4 + > jEJ (a: u) • qi . 

We then obtain, using axiom Hi and induction: 	- 

P = a: = a: ( E u.q) = (a: NIL •q + E (a: u2 ) • qj = 
iEI 	 iEI 

p = q I r. If P = NIL, we set 	= . Then we may use induction, as 

well as axioms 112, A3 and P3, to get: 

P = 	I P = (u.q)NIL =E 	Ui • ( q INIL) + NIL + NIL= 

	

IEI 	 iEI 

Otherwise, if both 0 = EiEl ui• q 	NIL and P = >JEJ v • r, 	NIL, 

let: P = 	iEI Ui • ( q1  10 . +  iEI,jEJ (u1 I v,) • (q1  I r,) + EjEJ j•  ( 	r3 

We may then deduce: 

	

P =;j 	= ( 1: u j oqj ) I (1: viorj) =)1 
iEI 	 jEJ 

using induction and axiom 112. 

p = q + r. If 4 = NIL, set 	= P and use A3. Similarly if P=NIL. 

Otherwise define 	= 4 + P. We have then p =j by simple induction. 

This concludes the proof of our lemma. 	 D 

We may now state our characterisation result: 

Theorem 6.13 The equivalence 	is the E . - congruence =)I generated by 

the axioms E. 

Proof. The soundness of the axioms is easy to show. The proof of completeness 

is at this point completely standard. 	 0 
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Axioms .1 

(Al) 	x + (y  + z) = (x + y ) + z 

x+ y  = y +x 

x+NIL = x 

x+x = x 

x (iI z) = (x I ) I 
xy = ylx 

XINIL = 

(Hi) 	a: (iEJ  ui  • pi ) = (a: NIL) • (>€ u • p) + >j (a: u) • p1 

(H2) 	(>1E1 	• ') I (Ej v• • q5) = > iEI 	• ( Pi I EjEJ v• • q,) + 

1EI,JEJ (u1  I v3) • 	I q,) + 

EjEJ Vi • ( E iEI Ui • A I q,) 

Figure 6.1: Axiomatisation of x 
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6.4 Comparison with other equivalences 

We want now to relate our new equivalence x to Milner's strong bisimulation 

and to the distributed bisimulation 	of chapter 4. 

Let us start with the easiest task, the comparison with --. Note that all 

CCS transitions, whose label is an atomic action, are also transitions in our 

calculus. Moreover, since the equality on Act reduces to identity when 

actions are atomic, the bisimulation x uses atomic transitions exactly in the 

same way as does -. 

We thus have the implication: p q == p q. On the other hand we 

saw examples in the preceding section, and notably the interleaving one, where 

p—'q but p q. We conclude that x C '. 

The relation between 	and the distributed equivalence 	is less evident 

to work out. To settle the question raised at the end of the previous section, 

we immediately give a counterexample to 

Example 8) a I (b + c) 	C 	a: (b + c) + (a I b) + (a I c) 

One may easily check that any transition of the left member is matched by some 

transition in the right member. 

Now the same absorption is not valid for 	, since the left member has 

a distributed transition -- <NIL, b + c> that the right member cannot 

produce. 

We will show on the other hand that 	C 	(and thus 'd C 	). To 
do this, we prove that x satisfies the axioms P (given in figure 4.1 of chapter 

4) which characterise 	. 

This involves introducing the new operator V in our calculus, and extending 

correspondingly our equivalence 

Let then E l  denote the enlarged syntax: 

= A u{NIL,+, 1, I"} 
and P1 be the set of processes on E 1 . 
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The operator V is specified by the two rules: 

, 	p' 	implies 	p 1' q u, p' I q 

p 	p' , q 	q' imply p r q ulu j1 I 

We prove next that the axioms P are sound for 	(extended to the new 

calculus). 

Theorem 6.14 If p,q E P , then p =p q implies p >< q. 

Proof: Since x is a congruence, it is enough to show that p x q for any 

instance p = q of an axiom of P. 

Now A1—A4 are already axioms of M. Thus the only laws we have to consider 

are CPE and LP1—LP4. For each of these laws, we will produce a c—bisimulation 

that contains the pair (p, q) (if p = q is an instance of the law). 

Let p = q be an instance of CPE. Then the required c—bisimulation is: 

I?o  = {(r I s, r V s + s yr), (r' I d, s' I r') I r,s,r',s' e Pi I U Id 

Let now p = q be an instance of LPi, for i E {1, 2, 3, 41. Then it is easy to 

check that the relation R, where: 

Ri={((r+s) t,r V  t  + s V t) Jr,s,tE P1 }u Id 

R2={((r F's) F't,r Y(slt)) Ir,s,tE P1 } U Id 

= {(r I'NIL, r) , (r I NIL, r) I r E P1} 

R4={(NIL I'r,r)jrEPi } 

is a c-bisimulation containing (p, q). 

We may thus conclude that our new equivalence is weaker than the distributed 

equivalence of chapter 4. Intuitively - looking back at example 8) - this is 

because distributed equivalence captures the dependence between actions and 

choices (the action a and the choice (b + c) in the example), whereas pomset 

equivalence does not have this capacity. 
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Chapter 7 

Conclusions 

This work has been concerned with behavioural aspects of concurrent systems. 

I hope it might provide some contribution to the search for execution models 

that account for the causal and parallel structure of processes. In recent years 

there has been a convergence of interest upon non interleaved models for con-

currency (AD 86, BC 86, DDM 85, GR 83, Gra 81, NT 84, Rei 85, GV 87, 

Win 82, Win 871 

Our different semantics have been applied, throughout the thesis, to an 

elementary subset of pure CCS. We discuss here some possible extensions of 

our approaches to a more comprehensive language (or to different formalisms). 

We point to a few technical problems and suggest connections with some recent 

work in the field, which might be worth investigating. 

We proceed in a rather schematic way, dwelling on the relevant chapters. 

Chapter 3. We did not develop the study of the abstraction equivalence 'ab3 

for LES's as far as we did for NDP's in chapter 2, mainly because we found a 

mismatch with the operational description (given by the distributed transitions 

of chapter 4). We could have adjusted our definition of abstraction homomor-

phism so as to obtain a single—valued d—bisimulation. However the only way we 

could devise for doing this was to introduce a recursive clause in the definition 

of homomorphism (to replace clause iv)), which would have taken off much of 

the attractiveness of the morphism itself. 

Chapter 4. The next step would be to extend the distributed bisimulation 

to finitary CCS with restriction and renaming. However we encounter an 

obvious problem here, since our distributed transitions (at least in the original 
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formulation of our semantics) split the potentially communicating components 

of a process. Thus for example we cannot adopt the rule: 

p -L <p',p"> =. p\a -L <p'\a, p"\a> 

since this would preclude any communication on a between p'\a and p"\a. 

A similar problem arises with renaming. As a matter of fact, the second for-

mulation of our semantics - where transitions yield a local and a global residual 

- would be probably better suited for defining these operators. However, be-

fore adopting this formulation for further study, we would need to understand 

it better in our present calculus (with communication), where we still lack an 

algebraic characterisation for the corresponding equivalence (—d). 

In fact it may be that operators like CCS restriction are tailored towards a 

sequential interpretation of parallelism. Although some kind of encapsulation 

operator is essential in a language, to allow for different levels of description, it 

might be that a completely new operator is needed to deal with true concur-

rency. 

Concerning the relation of our distributed semantics to other semantics, we 

noted already its similarity with Montanari & Degano semantics by histories 

(at least in its later formulation given in [DDM 851 ). However a study of the 

exact relation between the two semantics still needs to be done. 

We would like to suggest also a possible correlation with the generalised 

pornset bisimulation proposed in [GV 871 for Petri nets (which may be easily 

transferred to labelled event structures). Essentially, [GV 871 require that for 

any equivalent computations of two LES's, also their decompositions in smaller 

computations be equivalent. This allows them to express the dependency be-

tween actions and choices, which seems to be also a distinguishing capacity of 

our semantics. When considered on the characteristic examples of chapters 4 

and 6, their equivalence seems to coincide, on event structures, with our dis-

tributed equivalence on the corresponding terms. Whether the two semantics 

actually agree is certainly an interesting question to investigate. 

Chapter 5. It would be nice here to have a generalisation of our simplification 

result to the calculus with communication. This would enable us to continue 

the study of d  using the second formulation of our semantics, when this is 

preferable. 
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Chapter 6. Our pomset semantics is applied to a very simple language, with 

no communication and no r—transitions. In fact this semantics was originally 

elaborated (in [CB 861 ) for a more general language, where prefixing is replaced 

by general sequentialisation. Moreover, we give in [CB 861 a characterisation 

of the class of event structures needed to model the language, thus generalising 

a result of Gischer [Ci 841 

An extension of pomset semantics to the entire pure CCS is delineated in 

[CB 87b] . There it is shown that both distributed and pomset transitions 

may be derived from a more intensional semantics, where transitions are la-

belled with proof terms, and sequences of transitions are considered up to a 

permutation of concurrent transitions. 

As is to be expected, the introduction of communication (in the standard pat-

tern of CCS) complicates considerably the interpretation of terms as event struc-

tures. Event structures with an ordering relation of causality are not sufficient 

here. We therefore adopt a variant of one of Winskel's later definitions for 

LES's, where the causality relation is replaced by an enabling relation. 

We do not have an axiomatisation in this general setting, (nor does it seem 

easy to derive one). Also, we lack here a characterisation of the class of event 

structures that model the language. 

Our pomset semantics for LES's has been extended to Petri nets by van 

Glabbeek & Vaandrager in [GV 871 . It is suggested by U. Goltz that for 

some class of Petri nets the definition of this semantics could be simplified by 

considering computations of bounded length. 

Having a description of concurrent processes as pomset transition systems 

(or even step transition systems), one may use it as a basis to define a more re-

fined version of different notions of equivalence. In [ADF 861 pomset transitions 

are used to define testing equivalence on event structures, while 

[TV 871 presents a failure semantics for CSP processes interpreted as step tran-

sition systems. 
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CCS semantics on the syntax: >' = A,. u {NIL, + I }. 

	

1) 	a:t--3t 

t 	t' implies (t + s) --+ t', (s + t) 
a 

 -) t 

implies 	(tls) --+ (t'Is), (sit) --) (sit') 

t --* t', s 

	

	s' imply (t I s) --* (t' I s') 

Axioms 

Al. x+x'=x'+x 

sum — laws 	A2. x + (x' + x") = (x + x') + x"  

A3. x+NIL=x 

absorption law 	A4. x + x = x 

P1. xlx'=x'Ix 

par — laws 	P2. xl(X' l x") = (x l x')Ix 
it  

P3. XINIL=x 

interleaving 	IN. If x = &EI ax1, y = > 5EJ by1, then 

xy= 	iEI a(x1Iy) + EjEJ b,(xiya) + 

T (Xi  yj) 

01 = 
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