497 research outputs found

    Technology requirements of exploration beyond Neptune by solar sail propulsion

    Get PDF
    This paper provides a set of requirements for the technology development of a solar sail propelled Interstellar Heliopause Probe mission. The mission is placed in the context of other outer solar systems missions, ranging from a Kuiper Belt mission through to an Oort cloud mission. Mission requirements are defined and a detailed parametric trajectory analysis and launch date scan performed. Through analysis of the complete mission trade space a set of critical technology development requirements are identified which include an advanced lightweight composite High-Gain Antenna, a high-efficiency Ka-band travelling-wave tube amplifier and a radioisotope thermoelectric generator with power density of approximately 12 W/kg. It is also shown that the Interstellar Heliopause Probe mission necessitates the use of a spinning sail, limiting the direct application of current hardware development activities. A Kuiper Belt mission is then considered as a pre-curser to the Interstellar Heliopause Probe, while it is also shown through study of an Oort cloud mission that the Interstellar Heliopause Probe mission is the likely end-goal of any future solar sail technology development program. As such, the technology requirements identified to enable the Interstellar Heliopause Probe must be enabled through all prior missions, with each mission acting as an enabling facilitator towards the next

    Analytical control laws for interplanetary solar sail trajectories with constraints

    Get PDF
    An indirect method is used to obtain an analytical control law for a spacecraft with a low-thrust propulsion system which is constituted by a solar sail coupled with a solar electric thruster. Constraints on the control inputs for such as the system need to be taken into account for the design of a control law to avoid reducing control performance, even though the solar electric thruster is employed as an auxiliary system capable of increasing the thrust magnitude of the sailcraft. The aim of this paper is to derive an analytical control law for a system with input constraints. A barrier function is used to analytically obtain a control law without a computationally expensive iterative algorithm. Therefore, using the analytic method presented, a transfer orbit can be readily calculated with an onboard computer. Pontryagin's maximum principle is also used to obtain an optimal control law to compare with the proposed control law. The proposed control law is demonstrated as suitable for an example transfer problem between circular and coplanar orbits

    Hybrid low-thrust transfers to eight-shaped orbits for polar observation

    Get PDF
    In this paper, transfers from low Earth orbit (LEO) to so-called eight-shaped orbits at the collinear libration points in the circular restricted three-body problem are investigated. The potential of these orbits (both natural and sail displaced) for high-latitude observation and telecommunication has recently been established. The transfer is modelled by distinguishing between a near-Earth phase and an interplanetary phase. The near-Earth phase is first assumed to be executed with the Soyuz Fregat upper-stage, which brings the spacecraft from LEO to a highly elliptic orbit. From there, the interplanetary phase is initiated which uses low-thrust propulsion to inject the spacecraft into one of the eight-shaped orbit’s manifolds. Both solar electric propulsion (SEP), solar sailing and hybridised SEP and solar sailing are considered for this phase. The objective is to maximise the mass delivered to the eight-shaped orbit starting from a realistic Soyuz launch vehicle performance into LEO. Optimal trajectories are obtained by solving the optimal control problem in the interplanetary phase with a direct pseudospectral method. The results show that (over the full range of propulsion techniques) 1564 to 1603 kg can be injected into a natural eight-shaped orbit. Within this relatively small range, hybrid propulsion performs best in terms of mass delivered to the eight-shaped orbit, while SEP enables the fastest transfer times. With the interplanetary phase optimised, the upper-stage near-Earth phase is replaced by a multi-revolution low-thrust spiral. Locally optimal control laws for the SEP thruster and solar sail are derived to minimise the time of flight in the spiral. Both pure SEP and hybrid spiral show a significant reduction in the mass required in LEO to deliver the spacecraft to the eight-shaped orbits. While hybrid propulsion did not stand out for the use of an upper-stage near-Earth phase, it does for the use of a low-thrust spiral as it significantly reduces the spiral time with respect to the pure SEP case

    Potential effects of optical solar sail degredation on trajectory design

    Get PDF
    The optical properties of the thin metalized polymer films that are projected for solar sails are assumed to be affected by the erosive effects of the space environment. Their degradation behavior in the real space environment, however, is to a considerable degree indefinite, because initial ground test results are controversial and relevant inspace tests have not been made so far. The standard optical solar sail models that are currently used for trajectory design do not take optical degradation into account, hence its potential effects on trajectory design have not been investigated so far. Nevertheless, optical degradation is important for high-fidelity solar sail mission design, because it decreases both the magnitude of the solar radiation pressure force acting on the sail and also the sail control authority. Therefore, we propose a simple parametric optical solar sail degradation model that describes the variation of the sail film's optical coefficients with time, depending on the sail film's environmental history, i.e., the radiation dose. The primary intention of our model is not to describe the exact behavior of specific film-coating combinations in the real space environment, but to provide a more general parametric framework for describing the general optical degradation behavior of solar sails. Using our model, the effects of different optical degradation behaviors on trajectory design are investigated for various exemplary missions

    An earth pole-sitter using hybrid propulsion

    Get PDF
    In this paper we investigate optimal pole-sitter orbits using hybrid solar sail and solar electric propulsion (SEP). A pole-sitter is a spacecraft that is constantly above one of the Earth's poles, by means of a continuous thrust. Optimal orbits, that minimize propellant mass consumption, are found both through a shape-based approach, and solving an optimal control problem, using a direct method based on pseudo-spectral techniques. Both the pure SEP case and the hybrid case are investigated and compared. It is found that the hybrid spacecraft allows consistent savings on propellant mass fraction. Finally, is it shown that for sufficiently long missions (more than 8 years), a hybrid spacecraft, based on mid-term technology, enables a consistent reduction in the launch mass for a given payload, with respect to a pure SEP spacecraft

    High fidelity thrust model for solar photon sailing

    Get PDF
    Taking into consideration the importance of a detailed model in the trajectory propagation, three space missions using solar photon sailing has been studied with a different thrust model. Then, an equipment has been designed and built to measure the deformation of a real sample of solar sail on several work conditions. An analysis of the deformations and they distributions has been taken in account to extrapolate a more accurate model for thrust. A comparison between models in function of the sail parameters has been presented to compare the optimal time of travel to reach a circular-to-circular orbital change

    Attitude stability and altitude control of a variable-geometry Earth-orbiting solar sail

    Get PDF
    A variable-geometry solar sail for on-orbit altitude control is investigated. It is shown that, by adjusting the effective area of the sail at favorable times, it is possible to influence the length of the semi-major axis over an extended period of time. This solution can be implemented by adopting a spinning quasi-rhombic pyramidal solar sail which provides the heliostability needed to maintain a passive “sun-pointing” attitude and the freedom to modify the shape of the sail at any time. In particular, this paper investigates the variable-geometry concept through both theoretical and numerical analyses. Stability bounds on the sail design are calculated by means of a first-order analysis, producing conditions on the opening angles of the sail, while gravity gradient torques and solar eclipses are introduced to test the robustness of the concept. The concept targets equatorial orbits above approximately 5,000 km. Numerical results characterize the expected performance, leading to (for example) an increase of 2,200 km per year for a small device at GEO

    Optimal trajectories for planetary pole-sitter missions

    Get PDF
    No abstract available

    Generation of optimal trajectories for Earth hybrid pole sitters

    Get PDF
    A pole-sitter orbit is a closed path that is constantly above one of the Earth's poles, by means of continuous low thrust. This work proposes to hybridize solar sail propulsion and solar electric propulsion (SEP) on the same spacecraft, to enable such a pole-sitter orbit. Locally-optimal control laws are found with a semi-analytical inverse method, starting from a trajectory that satisfies the pole-sitter condition in the Sun-Earth circular restricted three-body problem. These solutions are subsequently used as first guess to find optimal orbits, using a direct method based on pseudospectral transcription. The orbital dynamics of both the pure SEP case and the hybrid case are investigated and compared. It is found that the hybrid spacecraft allows savings on propellant mass fraction. Finally, it is shown that for sufficiently long missions, a hybrid pole-sitter, based on mid-term technology, enables a consistent reduction in the launch mass for a given payload, with respect to a pure SEP spacecraft

    NASA Innovative Advanced Concepts (NIAC) Phase 1 Final Report: Venus Landsailer Zephyr

    Get PDF
    Imagine sailing across the hot plains of Venus! A design for a craft to do just this was completed by the COncurrent Multidisciplinary Preliminary Assessment of Space Systems (COMPASS) Team for the NASA Innovative Advanced Concepts (NIAC) project. The robotic craft could explore over 30 km of surface of Venus, driven by the power of the wind
    corecore