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In this paper, transfers from low Earth orbit (LEO) to so-called eight-shaped orbits at the collinear libration points 

in the circular restricted three-body problem are investigated. The potential of these orbits (both natural and sail 

displaced) for high-latitude observation and telecommunication has recently been established. The transfer is 

modelled by distinguishing between a near-Earth phase and an interplanetary phase. The near-Earth phase is first 

assumed to be executed with the Soyuz Fregat upper-stage, which brings the spacecraft from LEO to a highly elliptic 

orbit. From there, the interplanetary phase is initiated which uses low-thrust propulsion to inject the spacecraft into 

one of the eight-shaped orbit’s manifolds. Both solar electric propulsion (SEP), solar sailing and hybridised SEP and 

solar sailing are considered for this phase. The objective is to maximise the mass delivered to the eight-shaped orbit 

starting from a realistic Soyuz launch vehicle performance into LEO. Optimal trajectories are obtained by solving the 

optimal control problem in the interplanetary phase with a direct pseudospectral method. The results show that (over 

the full range of propulsion techniques) 1564 to 1603 kg can be injected into a natural eight-shaped orbit. Within this 

relatively small range, hybrid propulsion performs best in terms of mass delivered to the eight-shaped orbit, while 

SEP enables the fastest transfer times. With the interplanetary phase optimised, the upper-stage near-Earth phase is 

replaced by a multi-revolution low-thrust spiral. Locally optimal control laws for the SEP thruster and solar sail are 

derived to minimise the time of flight in the spiral. Both pure SEP and hybrid spiral show a significant reduction in 

the mass required in LEO to deliver the spacecraft to the eight-shaped orbits. While hybrid propulsion did not stand 

out for the use of an upper-stage near-Earth phase, it does for the use of a low-thrust spiral as it significantly reduces 

the spiral time with respect to the pure SEP case.  

 

 

I. INTRODUCTION 

Research in the field of novel concepts for space 

based polar observation is flourishing. The driving 

factor behind theses developments is the need to 

improve the data that can be obtained from current 

infrastructure such as highly inclined low Earth orbits 

and Molniya orbits. The first provide poor temporal 

resolution data as the spacecraft can only view a narrow 

swath of the polar regions during each orbital passage, 

while the second, despite having a better temporal 

resolution, have a too low inclination for high-latitude 

coverage. Improving the observation conditions is 

crucial for applications such as the identification of 

changes in the polar environment in terms of sea-ice 

coverage and thickness to support analyses of long-term 

climate trends. Other applications of polar data include 

high-latitude telecommunications, weather forecasting 

and ship navigations.
1
 These are of importance for 

ongoing research activities in the Antarctic and 

increased shipping activity which can be expected from 

Arctic oil and gas exploitation
2
 and the fact that the 

northern sea routes are opening up.
3 

In response to the need for improved polar 

observation, the literature shows a wealth of novel 

concepts, including polar Molniya orbits,
4
 pole-sitter 
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orbits,
5
 and concepts that rely on artificial equilibria 

such as non-Keplerian orbits displaced above the 

ecliptic.
6, 7

 Recently, to complement these concepts, a 

new concept for polar observation has been introduced 

that makes use of eight-shaped vertical Lyapunov 

orbits.
8
 These orbits exist in the vicinity of the collinear 

Lagrange points in the circular restricted three-body 

problem (CR3BP).
9, 10

 The name eight-shaped orbits 

comes from the fact that, viewed in the yz-plane of the 

CR3BP, the orbit resembles a figure of eight. Since the 

spacecraft spends most of its time at the apices of this 

figure of eight, which bend over the polar regions for a 

range of out-of-plane amplitudes, eight-shaped orbits 

can enhance future high-latitude Earth observation and 

telecommunication missions. 

The design of these eight-shaped orbits, both natural 

and solar sail displaced ones, as well as a polar visibility 

analysis and stability analysis was performed by Ceriotti 

and McInnes.
8
 This paper will complement that study 

by investigating optimal low-thrust transfers from low 

Earth orbit (LEO) to these eight-shaped orbits. For that, 

the work in this paper will build upon, and extend, 

previous work on low-thrust transfers to eight-shaped 

orbits by Senent and co-authors:
11

 like the work by 

Senent, this paper will exploit a combination of low-

thrust propulsion and the manifold structure of the 

eight-shaped orbits. However, while Reference 11 

considers minimum time transfers (for a fixed mass 

ratio), this paper investigates transfers that maximise the 

mass delivered to the eight-shaped orbits. Furthermore, 

rather than solving the optimal control problem with an 

indirect method, a direct method is employed. Also, by 

considering the launch capability of the Soyuz launch 

vehicle, realistic performances in terms of mass 

delivered to the eight-shaped orbit are obtained. Finally, 

a range of propulsion techniques will be considered, 

including solar electric propulsion (SEP) (as Reference 

11), but also solar sailing and hybridised SEP and solar 

sailing. The latter has shown promising results for a 

range of applications
12-15

 as it overcomes the limitations 

of the individual propulsion systems (e.g. the SEP 

thruster complements the solar sail by enabling a thrust 

in the direction of the Sun which the sail is unable to 

generate).  

The approach to the design of optimal low-thrust 

transfers to the eight-shaped orbits makes use of a 

decoupling of a transfer phase close to the Earth, which 

(for the use of low-thrust propulsion) results in a multi-

revolution spiral, and the interplanetary phase. The first, 

near-Earth, phase will initially be designed as a two-

body Soyuz Fregat upper-stage transfer from a fixed 

inclination, low Earth parking orbit up to insertion into 

the interplanetary phase. From there, the motion of the 

spacecraft is considered in the CR3BP and low-thrust 

propulsion is used to deliver the spacecraft to one of the 

manifolds of the eight-shaped orbit, which will 

subsequently ballistically deliver the spacecraft to the 

eight-shaped orbit. As noted, the objective is to 

maximise the mass delivered to the eight-shaped orbit, 

by making full use of the launch vehicle performance 

into LEO. The controls in this optimal control problem 

are the thrust profile in the interplanetary transfer phase 

as well as the particular manifold and the position along 

the manifold at which the spacecraft is inserted. This 

optimal control problem is solved using a direct 

pseudospectral method which links the near-Earth and 

interplanetary phases in an event constraint. To assess 

the performance of the different propulsion techniques 

and to provide an initial guess to solve the optimal 

control problem, ballistic transfers that exploit particular 

manifolds that closely pass by the Earth will also be 

considered. The second step in the approach is to 

replace the high-thrust upper-stage transfer from LEO to 

the interplanetary phase by a minimum time spiral 

trajectory. To model the multi-revolution, long duration 

spiral, locally optimal control laws for the SEP thruster 

and the solar sail are employed to efficiently increase 

the semi-major axis, eccentricity and inclination. The 

optimal control problem in the spiral is subsequently 

solved using the same direct pseudo-spectral method as 

used for optimising the interplanetary phase.  

The structure of this paper is as follows: first the 

system dynamics in the CR3BP, which will be used for 

the definition of the eight-shaped orbits as well as for 

the interplanetary transfer phase, will be provided. 

Subsequently, a definition of the eight-shaped orbits, the 

selection of two particular orbits that will be considered 

in this paper and the generation of manifolds winding 

onto these orbits will be presented. Then, the design 

approach will be outlined for the case of a Fregat upper-

stage near-Earth phase, the optimal control problem will 

be derived and the results for ballistic, SEP, solar sail 

and hybrid propulsion will be presented. Finally, the 

design approach for the case of a low-thrust near-Earth 

spiral phase will be discussed and the results will be 

presented. The paper finishes with conclusions. 
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II. SYSTEM DYNAMICS 

Both the eight-shaped orbit itself as well as the 

interplanetary transfer phase are defined in the circular 

restricted three body problem, which describes the 

motion of an infinitely small mass, m, (i.e. the 

spacecraft) under the influence of the gravitational 

attraction of two much larger, primary masses, m1 and 

m2. The gravitational influence of the small mass on the 

larger masses is neglected and the larger masses are 

assumed to move in circular orbits about their common 

centre of mass. In this paper, the primary masses are the 

Sun and Earth. Furthermore, the motion is described in 

a reference frame that has the origin in the centre of 

mass, the x-axis connects the larger masses and points in 

the direction of the smaller of the two, m2, while the z-

axis is directed perpendicular to the plane in which the 

two larger masses move. The y-axis completes the right-

handed reference frame. Finally, the frame rotates at 

constant angular velocity, ω, about the z-axis. See also 

Fig. 1. 

New units are introduced: the sum of the two 

primaries is taken as unit of mass, i.e. m1+m2 = 1. Then, 

with the mass ration µ = m2/(m1+m2), which equals 

3.0404×10
-6

 for the Sun/Earth system, the masses of the 

larger bodies become m1 = 1- µ and m2 = µ. As unit of 

length, the distance between the main bodies is selected, 

and 1/ω is chosen as unit of time, yielding ω = 1 and so 

one year is represented by 2π. In this reference frame, 

the motion of the mass m, i.e. the spacecraft, is 

described by:
16

 

 2 U+ × + ∇ =r ω r a�� �  (1) 

and 
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with r, r1 and r2 the position vectors with respect to the 

barycentre, the first primary and the second primary, 

and a is a thrust-induced acceleration. For a ballistic 

transfer or orbit, a is zero, while for an SEP, a solar 

sail
17

 or a hybrid system, the acceleration is given by: 

 
SEP

m
=

T
a  (3) 

 ( )
2

0 12

1

1
ˆ ˆ ˆ

s
r

µ
β

−
= ⋅a n r n  (4) 

  

 ( )
20

0 12

1

1
ˆ ˆ ˆ

h

m

m m r

µ
β

−
= + ⋅

T
a n r n  (5) 

In these equations, T is the SEP thrust vector and n 

is the normal vector of the solar sail. Both are defined in 

the reference frame defined in Fig. 1. Furthermore, β0 is 

the solar sail lightness number (which is proportional to 

the area-to-mass ratio of the sailcraft).
17

 For near-term 

systems an SEP thrust magnitude of 0.2 N can be 

assumed (e.g. the EADS/Astrium RIT-XT thruster)
18

 

and for the solar sail, lightness numbers of up to 0.05 

can be considered feasible in the near-term.
19

 Note that 

the solar sail is unable to generate a thrust component in 

the direction of the Sun. The angle between the normal 

vector of the sail and the Sun-sail vector can therefore 

not exceed 90°, or equivalently, ( )1
ˆ ˆ 0⋅ >n r . 

Due to the consumption of propellant in the hybrid 

propulsion case, the fraction m0/m is included in the 

solar sail acceleration in Eq. (5). Furthermore, for the 

hybrid case, as well as for the pure SEP case, the 

dynamics in Eq. (1) need to be augmented with the 

following differential equation for the mass: 

 
0sp

m
I g

= −
T

�  (6) 

with g0 the Earth standard gravitational acceleration and 

Isp the specific impulse of the SEP thruster, for which a 

value of 3200 s is assumed.
18

 

 
Fig. 1 Circular restricted three body problem reference 

frame. 

 

III. EIGHT-SHAPED ORBITS 

III.I Definition 

Defined in the CR3BP, eight-shaped orbits are 

periodic orbits symmetric both with respect to the xy-

plane and the xz-plane. The orbit crosses the xz-plane 

four times per period, and the x -axis twice, see Fig. 2. 

More specifically, the state vector at either the most 

northern or southern point of the orbit, indicated by the 

index ‘0’, is given through: 
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 [ ]0 0 0 0
0 0 0

T
x z y=x �  (7) 

 
Fig. 2 Schematic of eight-shaped orbit in CR3BP 

reference frame. 

One quarter of the orbit later, at the next intersection 

with the xz-plane, the state vector is: 

 [ ]1 1 1 1
0 0 0

T
x y z=x � �  (8) 

If the conditions in Eqs. (7) and (8) are satisfied, an 

integration of the equations of motion for one full 

period, guarantees that the orbit is closed and periodic.  

Once an eight-shaped orbit is found, families of 

eight-shaped orbits can be obtained by continuation 

using a predictor-corrector scheme. Then, the initial 

state vector defined in Eq. (7) is perturbed in a specified 

direction and the equations of motion are integrated 

forward until the first intersection with the xz-plane. The 

conditions at this intersection should satisfy Eq. (8), but 

most likely will not. A correction to the perturbation of 

the initial state vector is then applied and a further 

iterative approach will eventually ensure that Eq. (8) is 

satisfied. Further details on the generation of eight-

shaped orbits can be found in Reference 8.  

A selection of the orbits in the family of natural 

orbits around the L2-point of the Sun/Earth system is 

provided in Fig. 3. The figure also includes a cone 

which represents the motion of the polar axis during the 

year in the rotating CR3BP reference frame. The figure 

clearly demonstrates that for particular values of the z-

amplitude, the apices of the eight-shaped orbits bend 

over the polar regions and lie within the polar cone. 

Furthermore, considering the fact that the velocity is 

lowest at these parts of the orbits, the applications of 

these orbits for polar observation is clear.  

Although Fig. 3 only provides the family of natural 

eight-shaped orbits in the vicinity of the L2-point of the 

Sun/Earth system, a similar set of orbits can be found in 

the vicinity of the L1-point. However, the family close 

to the L2-point can take advantage of using a solar sail 

to displace the orbits towards the Sun (and therefore 

towards the Earth), similarly to the way that the 

collinear Lagrange points can be displaced towards the 

Sun.
20

 In particular cases this can lead to improved 

observation conditions.
8
 The new families of orbits that 

originate by orientating the solar sail perpendicular to 

the Sun-sail line and varying the sail lightness number 

are depicted in Fig. 4.  

 
Fig. 3 Family of natural eight-shaped orbits at L2 with 

selected natural orbit in red.  

III.I Orbit selection 

For the analyses in this paper, two particular eight-

shaped orbits will be selected. The first belongs to the 

category of natural eight-shaped orbits and is 

highlighted in red in Fig. 3. This particular orbit 

appeared to be advantageous from a trajectory design 

point of view as will become clear later on in the paper. 

The second orbit belongs to the class of sail displaced 

eight-shaped orbits and is highlighted by the solid blue 

marker in Fig. 4. This orbit, with a sail lightness number 

of 0.026, appeared to be highly suitable for polar 

observation: it's period is π (i.e. half a year) such that 

the same visibility conditions are repeated throughout 

the year. Furthermore, the apices reach the sunward 

edge of the polar cone, which means that both Poles can 

be imaged under highly favourable lighting conditions 

during the Arctic and Antarctic summers. Using three 

spacecraft, latitudes above 77°N and 75°S can be 

observed continuously throughout the year.
8
 Details for 

both selected orbits can be found in Table 1.  

L1 E 

L2 

x  

y

z
0

y�

1 1
,y z� �
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Fig. 4 Families of solar sail displaced eight-shaped 

orbits at L2 for different sail lightness numbers, β0, 

represented by the most northern point of the orbit. 

The solid blue marker is the selected sail displaced 

orbit. 

 Natural orbit Sail displaced orbit 

 β0 0 0.026 

 x0  1.006470 0.994319 

 z0 0.009812 0.011383 

0
x�  0.002818 0.010571 

 Period 1.1059π π 

Table 1 Details of eight-shaped orbits selected in this 

paper for the design of optimal transfers. 

 

III.III Manifolds 

For the design of transfers that maximise the mass 

delivered to the eight-shaped orbits, the manifolds that 

wind onto these orbits are of particular interest. The 

theory of invariant manifolds and the approach to find 

these manifolds is described extensively in the 

literature.
21

 Summarising, the manifolds, W, of a 

periodic orbit can be found by perturbing the state 

vector at any point along the orbit in a particular 

direction. This direction is given by the eigenvalues and 

eigenvectors of the Jacobian of the linearised system. 

The eigenvector associated with the real eigenvalue of 

magnitude larger than 1, v
u
, provides the unstable 

direction, while the eigenvector associated with the real 

eigenvalue of magnitude smaller than 1, v
s
, provides the 

stable direction, see Fig. 5. At a state x0 in the periodic 

orbit, the initial state vector of the unstable and stable 

manifolds are then given by: 

  ( )
( )

( )
0

0 0

0

u

u

W u
ε= ±

v x
x x x

v x
 (9) 

 ( )
( )

( )
0

0 0

0

s

s

W s
ε= ±

v x
x x x

v x
 (10) 

where the ±-sign indicates the two directions in which 

the state vector can be perturbed. Furthermore, ε is the 

actual perturbation and is set equal to 200 km, which is 

small enough such that the linear approximation of the 

system still holds, but large enough so that the time to 

wind onto or depart from the periodic orbit is not too 

large due to the asymptotic nature of the manifolds.
21, 22

 

By forward and backward integration of the initial state 

vectors in Eqs. (9) and (10), respectively, the unstable 

and stable manifolds can be generated. 

For the orbits in this paper a total of 80 manifolds 

are generated per eight-shaped orbit. 

 

 
Fig. 5 Schematic of method to generate the two 

branches of the unstable, W
u
, and stable, W

s
, 

manifolds of a periodic orbit.  

IV HIGH-THRUST LAUNCH DESIGN 

APPROACH 

A schematic of the design approach when using a 

Soyuz Fregat upper-stage to depart from LEO is 

provided in Fig. 7. The figure indicates that the upper-

stage delivers the spacecraft to a highly elliptic orbit 

(hereafter referred to as "target orbit") which marks the 

end of the near-Earth phase and the start of the 

interplanetary phase. In the interplanetary phase, low-

thrust propulsion is used to deliver the spacecraft to one 

of the manifolds of the eight-shaped orbits selected in 

Section III.I, which ensures that the spacecraft will be 

injected into the eight-shaped orbit. Both phases, the 

near-Earth and interplanetary phases, will be discussed 

in more detail in the next two subsections, after which 

the optimal control problem to be solved in the low-

thrust interplanetary phase will be derived.  

ε 
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W
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W
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IV.I Near-Earth phase 

While the interplanetary phase and the eight-shaped 

orbit itself are modelled in the CR3BP (see Section III), 

the near-Earth phase is modelled using a two-body 

approximation and in the Earth inertial reference frame 

shown in Fig. 6: the xEyE-plane lies in the equatorial 

plane, the xE-axis always points to the winter solstice 

and the zE-axis is directed along the Earth's polar axis.  

Previous work has developed an accurate model to 

compute the mass that can be delivered by the Fregat 

upper-stage to a general target orbit starting from 

LEO.
23

 The model was validated by showing that its 

results match the launch vehicle performance provided 

by the Soyuz launch manual.
24

  

The model starts from the fact that the spacecraft, 

upper-stage and an adapter are launched into a 200 km 

altitude circular LEO with one of four reference 

inclinations, where the launch vehicle performance is 

largest for the lowest inclination of 51.8°: 7184 kg. The 

upper-stage is subsequently used to perform a 

Hohmann-type transfer to the target orbit where any 

required inclination change is distributed over the first 

Fregat burn at LEO (15% of required inclination 

change) and the second Fregat burn at the apogee of the 

target orbit (85% of required inclination change). Using 

well-known Hohmann transfer formulas and the rocket 

equation, the mass delivered to the target orbit can be 

computed. Additional information required for these 

computations is provided in Table 2. The only limitation 

of the model is the fact that the eccentricity of the target 

orbit (and consequently the state vector at the start of 

the interplanetary phase, see Fig. 7) cannot exceed 

unity. This has implications for the optimal control 

problem as will be discussed in Section IV.III. 

 
Fig. 6 Schematic of Earth inertial reference frame (in 

black) used to define the near-Earth phase. The 

CR3BP frame is depicted in grey for reference. 

LEO altitude, km 200 

LEO eccentricity 0 

LEO inclination, deg 51.8 

Soyuz performance into LEO, kg 7185 

Fregat mass, kg 1000 

Adapter mass, kg 100 

Fregat specific impulse, s 330 

Table 2 Soyuz parking orbit and launch vehicle 

specifications. 

 

 
Fig. 7 Schematic of design approach for optimal transfers to eight-shaped orbits employing a high-thrust near-Earth 

phase.  
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IV.II Interplanetary phase 

The interplanetary phase consists of a low-thrust arc 

and a manifold arc. The first starts from the target orbit 

which defines the end of the near-Earth phase, and 

connects to the manifold arc. The point of connection is 

defined by two parameters, p1 and p2, as indicated in 

Fig. 7. The first parameter is measured along the eight-

shaped orbit and defines the particular manifold that is 

used for the transfer. The second parameter is used to 

indicate the length of the manifold arc. It is measured 

from the point of connection up to injection into the 

eight-shaped orbit. 

 

IV.III Optimal control problem 

As indicated previously, the objective is to maximise 

the mass injected into the eight-shaped orbit. This is 

equivalent to optimising the mass delivered to the start 

of the manifold. To accomplish this objective, the 

optimal control problem in the low-thrust arc needs to 

be solved. The time domain in the optimal control 

problem therefore spans the time between the start and 

end of this low-thrust arc, which are defined as t0 and tf 

in Fig. 7. The idea is that the initial state vector of the 

low-thrust arc fully determines the near-Earth phase as 

the only design variable in the near-Earth phase is the 

target orbit, which in its turn is defined by the low-

thrust arc initial state vector. For this, the initial state 

vector is transformed from the CR3BP reference frame 

to the reference frame defined in Fig. 6, and 

subsequently to Keplerian elements. Clearly, the closer 

these Keplerian elements are to the Keplerian elements 

of the LEO, the more mass can be injected into the 

interplanetary phase. Furthermore, the final state vector 

of the low-thrust arc is defined by the choice for the 

parameters p1 and p2. The optimal control problem will 

thus search for a thrust profile in the low-thrust arc and 

for a combination of p1 and p2 such that the initial 

conditions are as favourable as possible. 

Simultaneously, for a pure SEP or hybrid transfer, the 

required thrust profile to achieve this should be feasible 

and should not be too demanding such that a maximum 

portion of the mass at the start of the low-thrust arc is 

delivered to the start of the manifold. This optimal 

control problem is solved using a direct method based 

on pseudospectral transcription, implemented in the tool 

PSOPT.
25

 

In mathematical form, the optimal control problem 

is defined as follows. First, the objective function is 

given by the mass at the end of the low-thrust arc: 

 
penalty f

J f m= −  (11) 

The penalty, 
penalty

f , is introduced to penalise the 

objective function in case the eccentricity at the start of 

the low-thrust arc (and thus of the target orbit in the 

near-Earth phase) is larger than 1. As indicated 

previously, the model used in the near-Earth phase only 

holds for eccentricities smaller than unity. However, it 

is possible that in its search for the optimal solution, 

PSOPT tries a solution with eccentricity larger than 1. 

In order to evaluate the near-Earth phase even in this 

case, the eccentricity is artificially set to a value smaller 

than 1 using a smooth step function. However, to ensure 

that PSOPT discards this option, the penalty is 

introduced into the objective function by using an 

additional smooth step function. 

The state vector is given by the Cartesian 

coordinates in the CR3BP reference frame and (in the 

case of SEP or hybrid propulsion) the mass of the 

spacecraft: 
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The dynamics of the spacecraft in the low-thrust arc 

are provided by Eqs. (3) to (6).  

The control vector also depends on the type of 

propulsion used: 

 

1 2

1 2

1 2
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x y z
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T
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T T T p p

n n n p p
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 =  

  

u (13) 

where p1 and p2 are static control variables, while the 

SEP thrust vector and sail normal vector components 

are dynamics control variables. Bounds on these 

controls can be set as follows: 

 

max max

1

2

0

0 2

op P

p π

− ≤ ≤

− ≤ ≤

≤ ≤

≤ ≤

T T T

1 n 1
 (14) 

with Tmax equal to the previously determined value of 

0.2 N (see Section II). The period of the eight-shaped 

orbit, Po, can be found in Table 1 and from the bound on 

p2, it becomes clear that the 'length' of the manifold 

cannot exceed a transfer time of 2π (i.e. 1 year). 
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Due to the choice for the controls as the Cartesian 

coordinates, the following path constraints need to be 

taken into account: 

 

( )

max

1

SEP/Hybrid

1 Sail/Hybrid

ˆ ˆ 0 Sail/Hybrid

T≤

≤

⋅ ≥

T

n

n r

 (15) 

Finally, the following event constraints need to be 

satisfied that link the start and end of the low-thrust arc 

to the near-Earth phase and the manifold, respectively. 

The events on the initial state vector are: 

 

0

0

1

500 000 km

7185 kg
LEO

e

a

m

<

<

≤

 (16) 

where the first two constraints (on the eccentricity and 

semi-major axis) ensure the validity of the near-Earth 

phase model, while the last event ensures that the mass 

in LEO does not exceed the maximum mass of 7185 kg 

(see Table 2).  

The event constraints on the final state vector are: 

 
( )

( ) ( )
,0 1 2

,0 1 2 1 2

,

, 2

f M

f M

p p

t t p p p pπ

=

= = − −

x x
 (17) 

The state vector and time at the end of the low-thrust 

arc should thus coincide with the state vector and time 

at the start of the manifold, which depend on the values 

assigned to the two static control variables. The actual 

value of xM,0 is computed through an interpolation of 

large state matrices that provides the position and 

velocity vectors for a range of values for p1 and p2, i.e. 

for a discrete number of locations along each of the 

manifolds.  

V. RESULTS – HIGH-THRUST LAUNCH 

V.I Ballistic trajectories 

In order to provide an initial guess for the optimal 

control solver, the option of a ballistic transfer is 

investigated. In that case, no low-thrust arc exists and 

the near-Earth phase is directly patched to the manifold 

at the location where it most closely passes to the Earth. 

The state vector at that location in the manifold is 

transformed to the reference frame of Fig. 6 and 

subsequently into Keplerian elements. Then, the mass 

that can be injected into the corresponding Keplerian 

orbit is computed assuming full use of the available 

7185 kg in LEO. 

Previously it was mentioned that the red highlighted 

orbit in Fig. 3 (i.e. the natural orbit in Table 1) was 

selected as it appeared to be most favourable for 

designing optimal transfer trajectories. This becomes 

clear from Fig. 8 which shows the maximum mass that 

can be injected into any of the 80 manifolds of each of 

the orbits of the family of L2 natural eight-shaped orbits. 

The figure also includes the minimum distance that is 

reached by any of the manifolds to clearly indicate the 

relation between the minimum approach distance and 

the mass that can be injected.
8
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mass injected into any manifold of the natural L2 

family of eight-shaped orbits. 
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Fig. 9 Mass injected into the manifolds of the selected 

natural (blue round markers) and solar sail displaced 

(red cross markers) eight-shaped orbits.  

Furthermore, for large enough z-amplitudes no 

solutions can be found as each of the manifolds of the 

eight-shaped orbits approach the Earth with an 

eccentricity larger than unity. 
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The best performing orbit in Fig. 8 has a z-amplitude 

of 0.0098 (the red highlighted orbit in Fig. 3) and allows 

for 1561 kg to be injected into the manifold. It must be 

noted however, that the target orbit of the near-Earth 

phase corresponding to this trajectory has a semi-major 

axis of 1.5 million km. The two-body approximation in 

the near-Earth phase is therefore not accurate. However, 

it can serve as a good initial guess. 

To show the performance of the individual 

manifolds of the selected orbit, Fig. 9 is included (blue 

round markers), where the manifold number runs from 

the northern apex of the eight-shaped orbit, to = 0 and 

along the orbit until to = Po (with to the time in the eight-

shaped orbit measured from the northern apex). The 

figure shows a rather large dependency of the 

performance on the particular manifold selected and the 

best performance for manifold number 17. 

V.II SEP trajectories 

Using the ballistic trajectories of the previous 

section as initial guess, the results for the use of SEP in 

the low-thrust arc can be generated. Those results are 

presented in Fig. 10 and detailed results can be found in 

Table 3. The results show that the use of SEP allows for 

a mass of 1564 kg to be injected into the natural eight-

shaped orbit. This is only 3 kg more than the ballistic 

option. However, the SEP solution satisfies the 

boundary conditions defined in Eq. (16), which ensure 

the validity of the near-Earth model, while the ballistic 

solution does not.  

Table 3 furthermore shows that the total transfer 

time from LEO is 478 days, which is substantial. An 

improvement of this time of flight could possibly be 

obtained by including the time of flight in the objective 

function using a weighted sum approach. However, this 

will clearly result in a decrease of the mass delivered to 

the eight-shaped orbit. 
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Fig. 10 Optimal SEP trajectory to natural eight-shaped 

orbit in a) the CR3BP reference frame and b) the 

Earth inertial reference frame. 

Near-Earth phase  

Semi-major axis target orbit, km 488,641 

Eccentricity target orbit 0.986 

Inclination target orbit, deg 51.7 

Time spent in near-Earth phase, days 39 

Mass injected into interplanetary phase, kg 1583 

Interplanetary phase  

Time spent in low-thrust arc, days 256 

Mass injected into manifold, kg 1564 

Manifold number 46 

Time spent in manifold arc, days 183 

Time in eight-shaped orbit at injection, to 0.624π 

Table 3 Details of optimal SEP trajectory to natural 

eight-shaped orbit. 
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V.III Solar sail trajectories 

Again, using the ballistic trajectories of Section V.I 

as initial guess, pure solar sail trajectories can be 

generated. Since for the solar sail trajectory the mass is 

constant throughout the low-thrust arc, the objective 

defined in Eq. (11) can be changed into 
0penalty

J f m= −  

with m0 the mass at the start of the low-thrust arc or 

equivalently at the end of the near-Earth phase. The 

objective thus becomes to minimise the Fregat upper-

stage propellant consumption in the near-Earth phase 

that is required to transfer the spacecraft from LEO to 

the target orbit. For that, the target orbit should be as 

similar as possible to LEO. This especially means 

driving the semi-major axis down and making sure that 

the inclination of the elliptic target orbit is equal to the 

LEO inclination (which the pure SEP trajectory already 

established, see Table 3).  

To generate the results for the pure solar sail case, a 

range of sail lightness numbers are considered from 

β0 = 0.01 to β0 = 0.05. A continuation method is adopted 

to use the results from the previous value for β0 as initial 

guess for the next value of β0. The results are shown in 

Fig. 11 for β0 = 0.03 and in Table 4 for other values of 

the sail lightness number. 

Comparing the solar sail trajectory in Fig. 11 with 

the pure SEP trajectory in Fig. 10 shows a clear 

difference. In order to satisfy the constraint on the 

direction of the sail normal (see the third equation in Eq. 

(15)) and to maximise the use of the solar sail, the 

trajectory is directed away from the Sun, rather than 

towards the Sun as is the case for the pure SEP transfer. 

Furthermore, for increasing values of the lightness 

number, the mass injected into the eight-shaped orbit 

increases as can be expected, see Table 4. The reason 

for that is that a larger sail lightness number can 

establish a smaller semi-major axis and eccentricity of 

the target orbit and thus a larger mass injected into the 

interplanetary phase. 

When computing the maximum thrust magnitude 

that the sail generates throughout the trajectory, it 

becomes clear that a lightness number of 0.02 is almost 

equivalent to the previously assumed SEP thrust 

magnitude of 0.2 N (for the considered spacecraft 

mass). A similar performance between the two types of 

propulsion should therefore be expected. However, this 

is not the case: 1589 kg for the solar sail case and 1564 

kg for the SEP case. This can be explained by the 

propellant consumption by the SEP thruster since the 

mass at the start of the interplanetary phase is 

comparable for both cases: 1589 kg (solar sail) and 

1583 kg (SEP). Still, a much better performance for the 

SEP case was expected as it is not limited in thrust 

direction like the solar sail. But apparently, this 

constraint does not have a limiting effect on the 

performance of the solar sail in this particular case. 

Then, the only advantage of SEP over solar sailing is 

the shorter time of flight: 478 days for the SEP case 

versus 570 days for the solar sail case, which is a 

decrease of 19 percent.  

Finally, an estimation of the size of the solar sail 

required to deliver the optimised masses to the eight-

shaped orbit is added to Table 4. Clearly, by increasing 

β0 (and therefore also increasing the injected mass) the 

size of the solar sail increases. For the smallest value for 

β0 of 0.01 a square sail with a side-length of 101 m is 

required, which increases to more than twice that size 

for a lightness number of 0.05. 
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Fig. 11 Optimal solar sail trajectory to natural eight-

shaped orbit for β0 = 0.03 in a) the CR3BP reference 

frame and b) the Earth inertial reference frame. 
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β0 

Injected  

mass,           

kg 

Equivalent       

thrust 

magnitude,             

N 

Time of 

flight, 

days 

Sail       

side-length,          

m 

0.01 1574 0.068 592 101 

0.02 1589 0.188 570 144 

0.03 1593 0.280 492 176 

0.04 1598 0.378 407 204 

0.05 1602 0.473 432 229 

Table 4 Details of optimal solar sail trajectory to  

natural eight-shaped orbit.  

V.IV Hybrid propulsion trajectories 

Using the pure solar sail trajectories as initial guess, 

but adding an SEP thruster to the optimal control 

problem, the results for the use of hybrid propulsion can 

be obtained. The main outcomes are provided in Table 

5. Comparing the results with those for pure solar 

sailing in Table 4 shows only a very small increase in 

the performance for the hybrid case. This also becomes 

clear from comparing the actual optimal hybrid 

trajectory for a lightness number of 0.03 in Fig. 12 with 

the solar sail case in Fig. 11. 

The slightly better performance of hybrid propulsion 

can be attributed to the contribution of the SEP thruster, 

for which the thrust profiles are provided in Fig. 13. 

These thrust profiles indicate that the SEP thruster is 

used only very limited. Apparently, using the SEP 

thruster cannot establish a significant gain in injected 

mass that outweighs the SEP propellant consumption.  
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Fig. 12 Optimal hybrid trajectory to natural eight-

shaped orbit for β0 = 0.03 in the CR3BP reference 

frame. 
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Fig. 13 SEP thrust profiles for optimal hybrid 

trajectories to natural eight-shaped.  

β0 0.01 0.02 0.03 0.04 0.05 

Injected     

mass,  kg 
1579 1590 1595 1599 1603 

Time of 

flight, days 
516 547 465 400 365 

Sail side-

length, m 
102 144 177 204 229 

Table 5 Details of optimal hybrid trajectories to natural 

eight-shaped orbit. 

Although the improved performance in terms of 

mass delivered to the eight-shaped orbit is not 

significant, the hybrid trajectories do allow for a shorter 

transfer time with respect to the pure solar sail case. On 

average, the transfer time is 40 days shorter, which is a 

decrease of 8 percent.  

V.V Solar sail displaced eight-shaped orbits 

A similar approach as used for the design of optimal 

low-thrust transfers to the selected natural eight-shaped 

orbit can be used to design optimal transfers to the 

selected sail displaced eight-shaped orbit (indicated by 

the blue round marker in Fig. 4). The ballistic results, 

where the near-Earth phase is patched to the point of 

closest approach of each of the 80 manifolds, are 

presented in Fig. 9 by the red cross markers. The 

maximum mass that can be injected into the eight-

shaped orbit is 1473 kg by making use of manifold 

number 38. 

Since a solar sail (with lightness number equal to 

0.026) is available to generate the displaced eight-

shaped orbit, the transfer is investigated for the same 

value for the lightness number. The results are provided 
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in Fig. 14 and Table 6. Comparing the injected mass 

with the mass injected into the natural eight-shaped 

orbit for a similar value of the lightness number shows 

that the transfer to the displaced eight-shaped orbit 

performs slightly less.  

For comparison purposes, the transfer is also 

optimised for the use of SEP propulsion and hybrid 

propulsion. The results are shown in Table 7, which 

show a similar outcome as for the transfers to the 

natural eight-shaped orbit: the injected mass for the pure 

SEP case is smaller than for the pure solar sail case, 

while the hybrid case shows a very small improvement. 

Considering the time of flight, the pure SEP option 

performs best.  
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Fig. 14 Optimal solar sail trajectory to sail displaced 

eight-shaped orbit in a) the CR3BP reference frame 

and b) the Earth inertial reference frame. 

β0 

Injected  

mass,           

kg 

Equivalent       

thrust 

magnitude,             

N 

Sail       

side-length, 

m 

Time of 

flight, 

days 

0.026 1576 0.171 164 510 

Table 6 Details of optimal solar sail trajectory to sail 

displaced eight-shaped orbit.  

Type of propulsion SEP Solar sail Hybrid 

Injected mass, kg 1538 1576 1578 

Time of flight, days 383 510 475 

Table 7 Optimised mass injected into the sail displaced 

eight-shaped orbit and time of flight for different 

propulsion options.  

VI LOW-THRUST LAUNCH DESIGN 

APPROACH 

The next step in the design of optimal low-thrust 

transfers to (displaced) eight-shaped orbits is replacing 

the high-thrust near-Earth phase with a low-thrust spiral. 

For this it is assumed that the optimal interplanetary 

phase obtained with the high-thrust near-Earth phase 

does not change. The objective thus becomes to find the 

optimal low-thrust steering law in each revolution of the 

spiral such that the spiral starts from LEO and ends at 

the target orbit defined by the initial state vector of the 

interplanetary phase. Since it can be expected that it will 

take many months to complete this spiral, the objective 

is to minimise the time of flight. To this end, locally 

optimal steering laws for the SEP thruster and solar sail 

are derived. Furthermore, an orbital averaging technique 

is employed to significantly reduce the computational 

cost for the integration of the equations of motion in the 

spiral.  

VI.I SEP locally optimal steering law 

The locally optimal control profile in the spiral for 

the SEP thruster is illustrated in Fig. 15 and assumes the 

following three steering laws in each revolution of the 

spiral:
26

 

- To change the semi-major axis, a tangential steering 

law is applied around perigee over an angle 2psπ 

using an in-plane acceleration, fin. 

- To change the eccentricity, an inertial steering law is 

applied where the spacecraft thrusts perpendicular to 

the line of apsides around apogee over an angle 2peπ 

using an in-plane acceleration, fin. 

- To change the inclination, an out-of-plane steering 

law is applied around the nodal crossings over an 
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angle piπ with opposite thrusting direction along the 

ascending and descending nodes. An out-of-plane 

acceleration, fout, is used to enable this law. 

The controls in each revolution of the spiral are thus 

the in- and out-of-plane thrust accelerations, fin and fout, 

and the size of the tangential, inertial and out-of-plane 

thrusting arcs, ps, pe and pi. Starting from Gauss’ 

variational equations,
16

 the effect of a particular steering 

law on the Keplerian elements after one orbital 

revolution can be computed by expressing the applied 

accelerations in radial, transversal and out-of-plane 

directions and integrating the resulting differential 

equations over the orbit period. Subsequently dividing 

by the orbit period (or 2π) provides the averaged 

equations of motion in the spiral. For conciseness, the 

full derivation is omitted, but can be found in the 

literature.
23, 26

 Only the result is presented in Eq. (18).  
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Fig. 15 Schematic of locally optimal SEP steering laws 

in near-Earth phase spiral. 

Equation (18) makes use of the conventional 

Keplerian elements a, e, i, Ω, ω and the eccentric 

anomaly E, all defined in the Earth inertial reference 

frame of Fig. 6. µE is the gravitational parameter of the 

Earth and the subscripts ‘0’ and ‘f’ indicate the initial 

and final value of the eccentric anomalies Es, Ee and En,i 

during which the tangential, inertial and out-of-plane 

steering laws occur, respectively. Finally, the sign of the 

control parameters ps, pe and pi indicate whether the 

respective orbital element is increased or decreased. 

VI.II Solar sail locally optimal steering law 

Due to the constraint that the sail cannot generate an 

acceleration component in the direction of the Sun, the 

steering law adopted for the SEP thruster cannot be 

applied for the solar sail. Instead, a locally optimal 

energy-gain control strategy is applied.
17, 27, 28

 The idea 

is to maximise the projection of the solar sail normal 

vector onto the instantaneous velocity vector, thereby 

maximising the energy rate of change along the 

trajectory. The control law that describes this is given 

by:
17, 28
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with α the optimum cone angle of the solar sail normal 

vector, n, and α�  the cone angle of the velocity vector, 

v. The cone angle is defined as the angle between n or v 

and the instantaneous Sun-sail line, ˆ
s

r , see Fig. 16. The 

latter is defined in the reference frame of Fig. 6 as: 
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with iobl the obliquity of the ecliptic and t the 

dimensionless time during the year measured from the 

winter solstice. Besides satisfying Eq. (19), the sail 

normal should be contained in the plane spanning ˆ
s

r  

and v. Finally, the ± sign should be employed in such a 

way that the sail normal vector always points in the 

direction of the velocity vector, rather than opposite to it 

in order to ensure a maximum change in the orbital 

energy.  

Since the cone angle of the velocity vector varies 

along the orbit, so does the optimal sail cone angle and 

the solar sail acceleration. The acceleration in the 

reference frame of Fig. 6 is given by: 
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with µS the gravitational parameter of the Sun and rs the 

Sun-sail distance, which is approximated by a constant 

value of 1 Astronomical Unit. By subsequently 

converting the acceleration in Eq. (21) from the 

Cartesian reference frame in Fig. 6 to a reference frame 

in radial, transversal and out-of-plane directions, the 

acceleration can be substituted into Gauss’ variational 

equations. The instantaneous rate of change of the 

orbital elements due to the solar sail acceleration is then 

known. By finally discretising the orbit in a number of 

nodes, computing the instantaneous rate of change of 

the orbital elements at each node and using trapezoidal 

integration, the change in orbital elements after one 

orbital revolution can be obtained. The averaged 

equations of motion due to the solar sail are thus given 

through: 

 ( ) ( )
1 1

1
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2 2

N
oe oe oe

oe s oe s

k k k

d d dE

dE dE dEπ = +

  ∆
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∑

x x x
x r x r (22) 

with xoe the state vector of orbital elements in the Earth 

inertial reference frame of Fig. 6, N the number of 

discretisation nodes and ∆E = 2π/(N-1). Equation (22) 

furthermore shows that the instantaneous rate of change 

of the orbital elements is only a function of the current 

state vector and the direction of the Sun-sail line. Note 

that the orbital elements are assumed constant 

throughout one revolution as is done for the locally 

optimal SEP steering law in the previous section. 

 

Fig. 16 Definition of velocity cone angle and optimal 

solar sail cone angle in reference frame of Fig. 6. 

 

VI.III Optimal control problem - SEP 

Although the optimal control problem to be solved 

in the low-thrust spiral is quite similar for both the use 

of pure SEP and for hybrid propulsion, some essential 

differences exist. Therefore, first the optimal control 

problem for the pure SEP case will be provided and 

subsequently the required adaptations for the hybrid 

case will be discussed.  

As stated before, the objective is to minimise the 

time of flight in the spiral: 

 
0f

J t t= −  (23) 

where the time is the seventh state in the state vector: 

[ ] [ ]
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oe
m t a e i m tω= = Ωx x  (24) 

The time variable is thus not the independent 

variable. Instead, the eccentric anomaly is taken as 

independent variable. This is done because PSOPT uses 

a Lagrange-Gauss-Lobatto distribution to discretise the 

interval of the independent variable, which results in a 

larger concentration of nodes at the start and end of that 

interval. With the orbital period in the last few 

revolutions expected to be very long, choosing time as 

the independent variable could give rise to multiple 

nodes per revolution. Theoretically this means that the 

control profile can change over these last few nodes, 

leading to different steering laws, and consequently 
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different equations of motion, within the same 

revolution. When using the eccentric anomaly as time 

variable, this problem does not occur since each 

revolution of the spiral takes an equal portion of the 

independent variable interval and with hundreds of 

spiral revolutions, the chance of multiple nodes in the 

last few spiral revolutions becomes negligible. 

The control vector consists of the controls 

determining the SEP steering laws: 

 [ ]
T

s e i in out
p p p T T=u  (25) 

with bounds as follows: 
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with Tmax = 0.2 N.  

The equations of motion are given by Eq. (18) and 

an additional equation that accounts for the change in 

the time variable. Since the assumption is made that the 

orbital elements do no change within one orbital 

revolution, the differential equation for the time can be 

computed as the averaged orbital period: 

 
3

2
E

dt P a

dE π µ
= =  (27) 

The event constraints can be defined as: 
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with the initial right ascension of the ascending node, 

argument of perigee, time and mass free. The subscript 

‘LEO’ indicates the conditions in the 200 km altitude 

LEO (see Table 2) and the subscript ‘i,0’ indicates the 

conditions at the start of the optimised interplanetary 

transfer. Note that the mass at the start of the spiral is 

free, but that the mass at the end of the spiral should 

equal the mass at the start of the interplanetary transfer 

phase as determined in Section V.  

Finally, two path constraints need to be taken into 

account: 

 
2 2
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1s e

in out

p p

T T T

+ ≤

+ ≤
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where the first path constraint ensures that the thrust 

arcs for tangential and inertial steering do not overlap. 

Initial guesses for the pure SEP spiral can be found 

by assuming constant values for the elements of the 

control vector, integrating the averaged equations of 

motion and updating the control values through an 

iterative approach to satisfy the event constraints on the 

final state vector.  

VI.IV Optimal control problem – hybrid propulsion 

In order to incorporate the solar sail in the optimal 

control problem, the following two changes have to be 

made. First, the dynamics of the solar sail (see Eq. (22)) 

need to be added to the dynamics of the SEP thruster in 

Eq. (18). Second, the constraint on the inclination at the 

start of the hybrid spiral has to be removed, which 

means that the inclination can be different from the 

51.8° as used for the LEO so far. The reason for this is 

the fact that the solar sail cannot generate an 

acceleration that is purely in the plane of the LEO and 

the start of the interplanetary phase (which is very close 

to 51.8°, see for example Table 3). This means that an 

out-of-plane component exists which has to be 

cancelled by the SEP thruster if the constraint on the 

initial inclination is included. The result is a longer 

spiral time (as less SEP thrust can be used for increasing 

the orbital energy) and a higher propellant consumption. 

If instead the initial inclination is free, the out-of-plane 

component of the solar sail does not need to be 

counterbalanced by the SEP thruster but can be used to 

eventually wind onto the 51.8° plane. The only 

disadvantage of this approach is that the Fregat upper-

stage will have to change the LEO inclination of 51.8° 

to the new inclination at the start of the hybrid spiral. 

This can be quite costly. However, the Soyuz launch 

vehicle can also launch the spacecraft into three 

different LEO inclinations, namely 64.9°, 70.4° and 

95.4° with performances of 6449 kg, 6294 kg and 6275 

kg, respectively.
24

 As will become clear later on, 

launching into one of these alternative parking orbits 

can be advantageous. 

Besides these two changes, the optimal control 

problem as defined for the use of SEP remains 

unchanged, including the definition of the controls. This 

means that no controls need to be added in the case of 

hybrid propulsion as the steering law of the solar sail is 

given by the current state vector only. The contribution 

of the solar sail to the optimal control problem can thus 

be seen as a constant perturbing term in the equations of 

motion.  
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Finally it is noted that for the hybrid case, the 

optimal SEP spiral serve as initial guess.  

VI.V Results 

This section presents the results of both SEP and 

hybrid spirals for the SEP and hybrid interplanetary 

phases. Only the transfers to the natural eight-shaped 

orbit is considered as similar results can be expected for 

the transfers to the sail displaced eight-shaped orbits.  

SEP spirals 

The results for using a pure SEP spiral to connect 

the LEO with either the SEP or hybrid interplanetary 

phase are provided in Table 8 and in Fig. 17 for a pure 

SEP interplanetary phase. The table shows that through 

the use of an SEP spiral the mass required in LEO is 

only approximately 3100 kg compared to 7185 kg for 

the case of a Fregat upper-stage near-Earth phase. 

Clearly, this reduction comes at the cost of an increase 

in the time of flight. While the near-Earth phase takes 

tens of days for the Fregat upper-stage to complete, it 

takes over 800 days for the SEP spiral. A method to 

significantly reduce this transfer time would be by 

clustering multiple SEP thrusters. For example, by using 

two thrusters, increasing the maximum thrust magnitude 

to 0.4 N, the spiral time can be halved without a penalty 

on the mass required in LEO.  

β0 in 

inter-

planetary 

phase 

Mass required 

in LEO                

(incl. Fregat + 

adapter), kg 

Mass end 

spiral/start 

interplanetary 

phase, kg 

Time of 

flight in 

spiral, 

days 

0 (SEP) 3104 1583 1060 

0.01 3109 1582 1012 

0.02 3129 1593 918 

0.03 3131 1597 893 

0.04 3137 1602 882 

0.05 3140 1606 862 

Table 8 Details of optimal SEP near-Earth spiral phase 

for the SEP and hybrid interplanetary phases.  
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Fig. 17 Optimal SEP transfer to natural eight-shaped 

orbit in Earth inertial reference frame including the 

low-thrust SEP spiral from LEO. a) Full transfer. b) 

Close-up of spiral. Note that not all revolutions of 

the spiral are depicted for clarity. 

 

 Hybrid spirals 

To show the advantage of using hybrid propulsion in 

the spiral over the use of pure SEP, this subsection 

shows the result of a hybrid spiral for the case of β0 = 

0.03. An overview of the results is provided in Table 1, 

Fig. 18 and Fig. 19, which include the results for the 

pure SEP spiral of Table 8 for comparison.  

The table shows that, by removing the constraint on 

the inclination at the start of the spiral, an initial spiral 

inclination of 72.5° results. This larger inclination also 

becomes clear from the evolution of the orbital elements 

in Fig. 18a and from Fig. 19b-c which show the spiral 

when viewed parallel to the 51.8° plane. The latter 

figure shows that the SEP spiral is fully contained in the 

51.8° plane while the hybrid spiral starts from a much 
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larger inclination and slowly winds onto the 51.8° plane. 

The consequence is that the Fregat upper-stage has to 

change the LEO inclination from 51.8° to 72.5°. For a 

spacecraft mass of 1928 kg (see Table 9), this requires 

the maximum available mass of 7185 kg in the 51.8° 

LEO. This is significantly larger than the 3129 kg 

required for the SEP spiral and does not provide an 

improvement over the use of the Fregat upper-stage. 

However, as indicated previously, the Fregat upper-

stage can also launch the spacecraft into a 70.4° LEO. In 

that case, the mass required in LEO is only 3306 kg. 

Compared to the SEP spiral this is an increase of only 

175 kg, but enables a saving in the spiral time of 174 

days: 893 days for an SEP spiral and 744 days for a 

hybrid spiral. Additionally, the hybrid spiral allows for a 

saving in propellant consumption of 103 kg, which is 

also evident from the shorter thrust profiles in Fig. 18b.  

 
SEP 

spiral 

Hybrid 

spiral 

Inclination start spiral, deg 51.8 72.5 

Mass required in 51.8° LEO, kg 3129 7185 

Mass required in 70.4° LEO, kg n.a. 3306 

Time of flight in spiral, days 893 744 

Mass start spiral, kg 2031 1928 

Propellant consumption in spiral, kg 434 330 

Table 9 Details of optimal hybrid (β0 = 0.03) near-Earth 

spiral phase compared to a pure SEP spiral. 
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Fig. 18 Evolution of orbital elements (a) and in- and 

out-of-plane SEP thrust magnitudes (b) for optimal 

hybrid spiral (β0 = 0.03) towards the natural eight-

shaped orbit.  
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Fig. 19 a) Optimal hybrid spiral (β0 = 0.03) towards the 

natural eight-shaped orbit in the Earth inertial 

reference frame. b-c) Close-up view parallel to LEO 

of SEP (b) and hybrid (c) spiral. 
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VII CONCLUSIONS 

In this paper, optimal low-thrust transfers to eight-

shaped orbits in the circular restricted three body 

problem have been investigated. These orbits are of 

special interest for high-latitude Earth observation and 

telecommunications. Different propulsion technologies, 

including solar electric propulsion (SEP), solar sailing 

and hybridised SEP and solar sailing have been 

investigated. Using both a high-thrust Fregat upper-

stage launch phase and a low-thrust spiral launch, the 

mass injected into the eight-shaped orbit has been 

optimised. For this, the manifolds that wind onto the 

eight-shaped orbits are exploited. Finally, transfers to 

both natural and a solar sail displaced eight-shaped 

orbits have been considered.  

Regarding the case of using the Fregat upper-stage, 

the mass injected into the natural eight-shaped orbit is at 

least 1564 kg. The pure SEP case (1564 kg) provides 

the smallest mass delivered, but allows for the shortest 

transfer times (478 days). Hybrid propulsion can 

establish a slightly better performance (1579-1603 kg, 

depending on the sail lightness number). The 

performance of hybrid propulsion is very similar to the 

performance of the pure solar sail transfers, but require 

shorter transfer times: 365-547 days for hybrid transfers 

versus 407-592 days for solar sail transfers. Overall, 

slightly smaller masses can be injected into the sail 

displaced eight-shaped orbit (a maximum of 1578 kg for 

the hybrid case) but for similar time of flights. 

Regarding the low-thrust spiral launch, an SEP or 

hybrid spiral can significantly reduce the mass required 

in low-Earth orbit for injecting the same amount of 

mass into the eight-shaped orbit: while the use of the 

Fregat upper-stage requires 7185 kg in LEO, the use of 

an SEP spiral requires only 3104-3140 kg. Clearly, this 

comes at the cost of an increase in the time of flight: 

while the Fregat takes only tens of days to deliver the 

spacecraft to the interplanetary phase of the transfer, the 

SEP spiral requires at least 862 days. This can be 

reduced significantly by considering a hybrid low-thrust 

spiral. A reduction in the time of flight of 17 percent can 

be established for only a 3 percent increase in the mass 

required in LEO. 
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