65 research outputs found

    Certifying the restricted isometry property is hard

    Full text link
    This paper is concerned with an important matrix condition in compressed sensing known as the restricted isometry property (RIP). We demonstrate that testing whether a matrix satisfies RIP is NP-hard. As a consequence of our result, it is impossible to efficiently test for RIP provided P \neq NP

    Parameterized Complexity of Conflict-Free Matchings and Paths

    Get PDF
    An input to a conflict-free variant of a classical problem Gamma, called Conflict-Free Gamma, consists of an instance I of Gamma coupled with a graph H, called the conflict graph. A solution to Conflict-Free Gamma in (I,H) is a solution to I in Gamma, which is also an independent set in H. In this paper, we study conflict-free variants of Maximum Matching and Shortest Path, which we call Conflict-Free Matching (CF-Matching) and Conflict-Free Shortest Path (CF-SP), respectively. We show that both CF-Matching and CF-SP are W[1]-hard, when parameterized by the solution size. Moreover, W[1]-hardness for CF-Matching holds even when the input graph where we want to find a matching is itself a matching, and W[1]-hardness for CF-SP holds for conflict graph being a unit-interval graph. Next, we study these problems with restriction on the conflict graphs. We give FPT algorithms for CF-Matching when the conflict graph is chordal. Also, we give FPT algorithms for both CF-Matching and CF-SP, when the conflict graph is d-degenerate. Finally, we design FPT algorithms for variants of CF-Matching and CF-SP, where the conflicting conditions are given by a (representable) matroid

    Compression via Matroids: A Randomized Polynomial Kernel for Odd Cycle Transversal

    Full text link
    The Odd Cycle Transversal problem (OCT) asks whether a given graph can be made bipartite by deleting at most kk of its vertices. In a breakthrough result Reed, Smith, and Vetta (Operations Research Letters, 2004) gave a \BigOh(4^kkmn) time algorithm for it, the first algorithm with polynomial runtime of uniform degree for every fixed kk. It is known that this implies a polynomial-time compression algorithm that turns OCT instances into equivalent instances of size at most \BigOh(4^k), a so-called kernelization. Since then the existence of a polynomial kernel for OCT, i.e., a kernelization with size bounded polynomially in kk, has turned into one of the main open questions in the study of kernelization. This work provides the first (randomized) polynomial kernelization for OCT. We introduce a novel kernelization approach based on matroid theory, where we encode all relevant information about a problem instance into a matroid with a representation of size polynomial in kk. For OCT, the matroid is built to allow us to simulate the computation of the iterative compression step of the algorithm of Reed, Smith, and Vetta, applied (for only one round) to an approximate odd cycle transversal which it is aiming to shrink to size kk. The process is randomized with one-sided error exponentially small in kk, where the result can contain false positives but no false negatives, and the size guarantee is cubic in the size of the approximate solution. Combined with an \BigOh(\sqrt{\log n})-approximation (Agarwal et al., STOC 2005), we get a reduction of the instance to size \BigOh(k^{4.5}), implying a randomized polynomial kernelization.Comment: Minor changes to agree with SODA 2012 version of the pape

    Speeding-up Dynamic Programming with Representative Sets - An Experimental Evaluation of Algorithms for Steiner Tree on Tree Decompositions

    Full text link
    Dynamic programming on tree decompositions is a frequently used approach to solve otherwise intractable problems on instances of small treewidth. In recent work by Bodlaender et al., it was shown that for many connectivity problems, there exist algorithms that use time, linear in the number of vertices, and single exponential in the width of the tree decomposition that is used. The central idea is that it suffices to compute representative sets, and these can be computed efficiently with help of Gaussian elimination. In this paper, we give an experimental evaluation of this technique for the Steiner Tree problem. A comparison of the classic dynamic programming algorithm and the improved dynamic programming algorithm that employs the table reduction shows that the new approach gives significant improvements on the running time of the algorithm and the size of the tables computed by the dynamic programming algorithm, and thus that the rank based approach from Bodlaender et al. does not only give significant theoretical improvements but also is a viable approach in a practical setting, and showcases the potential of exploiting the idea of representative sets for speeding up dynamic programming algorithms

    Finding Even Subgraphs Even Faster

    Get PDF
    Problems of the following kind have been the focus of much recent research in the realm of parameterized complexity: Given an input graph (digraph) on nn vertices and a positive integer parameter kk, find if there exist kk edges (arcs) whose deletion results in a graph that satisfies some specified parity constraints. In particular, when the objective is to obtain a connected graph in which all the vertices have even degrees---where the resulting graph is \emph{Eulerian}---the problem is called Undirected Eulerian Edge Deletion. The corresponding problem in digraphs where the resulting graph should be strongly connected and every vertex should have the same in-degree as its out-degree is called Directed Eulerian Edge Deletion. Cygan et al. [\emph{Algorithmica, 2014}] showed that these problems are fixed parameter tractable (FPT), and gave algorithms with the running time 2O(klogk)nO(1)2^{O(k \log k)}n^{O(1)}. They also asked, as an open problem, whether there exist FPT algorithms which solve these problems in time 2O(k)nO(1)2^{O(k)}n^{O(1)}. In this paper we answer their question in the affirmative: using the technique of computing \emph{representative families of co-graphic matroids} we design algorithms which solve these problems in time 2O(k)nO(1)2^{O(k)}n^{O(1)}. The crucial insight we bring to these problems is to view the solution as an independent set of a co-graphic matroid. We believe that this view-point/approach will be useful in other problems where one of the constraints that need to be satisfied is that of connectivity

    Intertwining connectivities in representable matroids

    Get PDF
    Let MM be a representable matroid and Q,R,S,TQ, R, S, T subsets of the ground set such that the smallest separation that separates QQ from RR has order kk, and the smallest separation that separates SS from TT has order ll. We prove that if MM is sufficiently large, then there is an element ee such that in one of M\eM\backslash e and M ⁣/eM\!/e both connectivities are preserved. For matroids representable over a finite field we prove a stronger result: we show that we can remove ee such that both a connectivity and a minor of MM are preserved
    corecore