8 research outputs found

    Optimal System Design of In-Situ Bioremediation Using Parallel Recombinative Simulated Annealing

    Get PDF
    We present a simulation/optimization model combining optimization with BIOPLUME II simulation for optimizing in-situ bioremediation system design. In-situ bioremediation of contaminated groundwater has become widely accepted because of its cost-effective ability to achieve satisfactory cleanup. We use parallel recombinative simulated annealing to search for an optimal design and apply the BIOPLUME II model to simulate aquifer hydraulics and bioremediation. Parallel recombinative simulated annealing is a general-purpose optimization approach that has the good convergence of simulated annealing and the efficient parallelization of a genetic algorithm. This is the first time that parallel recombinative simulated annealing has been applied to groundwater management. The design goal of the in-situ bioremediation system is to minimize system installation and operation cost. System design decision variables are pumping well locations and pumping rates. The problem formulation is mixed-integer and nonlinear. The system design must satisfy constraints on pumping rates, hydraulic heads, contaminant concentration at the plume source and at downstream monitoring wells. For the posed problem, the parallel recombinative simulated annealing obtains an optimal solution that minimizes system cost, reduces contaminant concentration and prevents plume migration

    Hybrid Genetic-simulated Annealing Algorithm for Optimal Weapon Allocation in Multilayer Defence Scenario

    Get PDF
    Simulated annealing is one of the several heuristic optimisation techniques, that has been studied in the past to determine the most effective mix of weapons and their allocation to enemytargets in a multilayer defence scenario. Simulated annealing is a general stochastic search algorithm. It is usually employed as an optimisation method to find a near-optimal solution forhard combinatorial optimisation problems, but it is very difficult to give the accuracy of the  solution found. To find a better solution, aji often used strategy is to run the algorithm byapplying the existing best solution from the population space as the initial starting point. Giving many passes of genetic algorithm can generate the best start-point solution. This paper describes a new hybrid optimisation method, named genetic-simulated annealing, that combines the global crossover operators from genetic algorithm and the local stochastic hill-climbing features from simulated annealing, to arrive at an improved solution with reduced computational time. The basic idea is to use the genetic operators of genetic algorithm to quickly converge the search  to a near-global minima/maxima, that will further be refined to a near-optimum solution by simulated anneling using annealing process. The new hybrid algorithm has been applied to optimal weapon allocation in multilayer defence scenario problem to arrive at a better solution than produced by genetic algorithm or simulated annealing alone

    Master of Science

    Get PDF
    thesi

    An adaptive hybrid genetic-annealing approach for solving the map problem on belief networks

    Get PDF
    Genetic algorithms (GAs) and simulated annealing (SA) are two important search methods that have been used successfully in solving difficult problems such as combinatorial optimization problems. Genetic algorithms are capable of wide exploration of the search space, while simulated annealing is capable of fine tuning a good solution. Combining both techniques may result in achieving the benefits of both and improving the quality of the solutions obtained. Several attempts have been made to hybridize GAs and SA. One such attempt was to augment a standard GA with simulated annealing as a genetic operator. SA in that case acted as a directed or intelligent mutation operator as opposed to the random, undirected mutation operator of GAs. Although using this technique showed some advantages over GA used alone, one problem was to find fixed global annealing parameters that work for all solutions and all stages in the search process. Failing to find optimum annealing parameters affects the quality of the solution obtained and may degrade performance. In this research, we try to overcome this weakness by introducing an adaptive hybrid GA - SA algorithm, in which simulated annealing acts as a special case of mutation. However, the annealing operator used in this technique is adaptive in the sense that the annealing parameters are evolved and optimized according to the requirements of the search process. Adaptation is expected to help guide the search towards optimum solutions with minimum effort of parameter optimization. The algorithm is tested in solving an important NP-hard problem, which is the MAP (Maximum a-Posteriori) assignment problem on BBNs (Bayesian Belief Networks). The algorithm is also augmented with some problem specific information used to design a new GA crossover operator. The results obtained from testing the algorithm on several BBN graphs with large numbers of nodes and different network structures indicate that the adaptive hybrid algorithm provides an improvement of solution quality over that obtained by GA used alone and GA augmented with standard non-adaptive simulated annealing. Its effect, however, is more profound for problems with large numbers of nodes, which are difficult for GA alone to solve

    Evolutionary computation applied to combinatorial optimisation problems

    Get PDF
    This thesis addresses the issues associated with conventional genetic algorithms (GA) when applied to hard optimisation problems. In particular it examines the problem of selecting and implementing appropriate genetic operators in order to meet the validity constraints for constrained optimisation problems. The problem selected is the travelling salesman problem (TSP), a well known NP-hard problem. Following a review of conventional genetic algorithms, this thesis advocates the use of a repair technique for genetic algorithms: GeneRepair. We evaluate the effectiveness of this operator against a wide range of benchmark problems and compare these results with conventional genetic algorithm approaches. A comparison between GeneRepair and the conventional GA approaches is made in two forms: firstly a handcrafted approach compares GAs without repair against those using GeneRepair. A second automated approach is then presented. This meta-genetic algorithm examines different configurations of operators and parameters. Through the use of a cost/benefit (Quality-Time Tradeoff) function, the user can balance the computational effort against the quality of the solution and thus allow the user to specify exactly what the cost benefit point should be for the search. Results have identified the optimal configuration settings for solving selected TSP problems. These results show that GeneRepair when used consistently generates very good TSP solutions for 50, 70 and 100 city problems. GeneRepair assists in finding TSP solutions in an extremely efficient manner, in both time and number of evaluations required

    A grammar-based technique for genetic search and optimization

    Get PDF
    The genetic algorithm (GA) is a robust search technique which has been theoretically and empirically proven to provide efficient search for a variety of problems. Due largely to the semantic and expressive limitations of adopting a bitstring representation, however, the traditional GA has not found wide acceptance in the Artificial Intelligence community. In addition, binary chromosones can unevenly weight genetic search, reduce the effectiveness of recombination operators, make it difficult to solve problems whose solution schemata are of high order and defining length, and hinder new schema discovery in cases where chromosome-wide changes are required.;The research presented in this dissertation describes a grammar-based approach to genetic algorithms. Under this new paradigm, all members of the population are strings produced by a problem-specific grammar. Since any structure which can be expressed in Backus-Naur Form can thus be manipulated by genetic operators, a grammar-based GA strategy provides a consistent methodology for handling any population structure expressible in terms of a context-free grammar.;In order to lend theoretical support to the development of the syntactic GA, the concept of a trace schema--a similarity template for matching the derivation traces of grammar-defined rules--was introduced. An analysis of the manner in which a grammar-based GA operates yielded a Trace Schema Theorem for rule processing, which states that above-average trace schemata containing relatively few non-terminal productions are sampled with increasing frequency by syntactic genetic search. Schemata thus serve as the building blocks in the construction of the complex rule structures manipulated by syntactic GAs.;As part of the research presented in this dissertation, the GEnetic Rule Discovery System (GERDS) implementation of the grammar-based GA was developed. A comparison between the performance of GERDS and the traditional GA showed that the class of problems solvable by a syntactic GA is a superset of the class solvable by its binary counterpart, and that the added expressiveness greatly facilitates the representation of GA problems. to strengthen that conclusion, several experiments encompassing diverse domains were performed with favorable results

    High-speed milling of titanium alloys: Modeling and optimization

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore