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Abstract

Genetic  algorithms (GAs) and simulated  annealing (SA) are two important

search methods that have been used successfully in solving difficult problems such as

combinatorial  optimization  problems.  Genetic  algorithms  are  capable  of  wide

exploration of the search space, while simulated annealing is capable of fine tuning a

good solution.  Combining both techniques  may result  in achieving the benefits  of

both and improving the quality of the solutions obtained.

Several attempts have been made to hybridize GAs and SA. One such attempt

was to augment a standard GA with simulated annealing as a genetic operator. SA in

that case acted as a directed or intelligent mutation operator as opposed to the random,

undirected mutation operator of GAs. Although using this technique showed some

advantages  over  GA used alone,  one problem was  to  find  fixed  global  annealing

parameters that work for all solutions and all stages in the search process. Failing to

find optimum annealing parameters affects the quality of the solution obtained and

may degrade performance.

In this research, we try to overcome this weakness by introducing an adaptive

hybrid GA - SA algorithm, in which simulated annealing acts as a special case of

mutation. However, the annealing operator used in this technique is adaptive in the

sense  that  the  annealing  parameters  are  evolved  and  optimized  according  to  the

requirements of the search process. Adaptation is expected to help guide the search

towards optimum solutions with minimum effort of parameter optimization. 
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The algorithm is tested in solving an important NP-hard problem, which is the

MAP  (Maximum  a-Posteriori)  assignment  problem  on  BBNs  (Bayesian  Belief

Networks). The algorithm is also augmented with some problem specific information

used to design a new GA crossover operator.

The results obtained from testing the algorithm on several BBN graphs with

large numbers of nodes and different network structures indicate  that  the adaptive

hybrid algorithm provides an improvement of solution quality over that obtained by

GA used alone and GA augmented with standard non-adaptive simulated annealing.

Its  effect,  however,  is  more profound for  problems with large numbers  of  nodes,

which are difficult for GA alone to solve.
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Chapter 1

1 Introduction

1.1 Algorithm and Complexity Analysis

In computer science, researchers are often faced with the problem of comparing

two  algorithms  in  terms  of  their  efficiency  and  in  terms  of  speed  and  resource

consumption.  The field  of  algorithm analysis  helps  scientists  to  perform this  task by

providing  an  estimate  of  the  number  of  operations  performed  by  the  algorithm,

irrespective of the particular implementation or input used.

Exact  analysis  of  algorithm  complexity  is  usually  hard  to  achieve.  As  a  result,

approximation is usually the alternative approach used. The O notation is usually used to

provide an upper bound of the complexity of an algorithm. We say that an algorithm is of

O(n) (Order n), where n is the size of the problem, if the total number of steps carried out

by the algorithm T(n) is at most a constant times n, with the possible exception of a few

small values of n.

T(n) is O(f(n)) if T(n)   kf(n) for some k, for all n>n0 

Where k is some constant and n0 is a small possible value of n

The O notation is a measure of asymptotic analysis. Using it, we can be certain

that as n approaches infinity, an algorithm of O(n) is better than an algorithm of  O(n2).

In addition to analyzing the efficiency of a particular algorithm, we sometimes need to

know whether there exist better algorithms for solving a particular problem. The field of

complexity analysis analyzes problems rather than algorithms.
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Two major classes of problems can be identified: 

1. Problems that can be solved in polynomial time.

2. Problems that cannot be solved in polynomial time, irrespective of the type of the

algorithm used.

The first  class of problems is  called  P,  polynomial  time problems. It  contains

problem with running times like  O(n), O(log n)  and  O(n1000). They are relatively easy

problems.

Another important class of problems is  NP,  non-deterministic polynomial  time

problems. This class includes problem for which there exists an algorithm that can guess

a solution and verify whether the guessed solution is correct or not in polynomial time. If

we have an unbounded number of processors that each can be used to guess and verify a

solution to this problem in parallel, the problem can be solved in polynomial time.

One of  the  big  open questions  in  computer  science  is  whether  the  class  P is

equivalent  to the class  NP.  Most scientists  believe that  they are not equivalent.  This,

however, has never been proven.

Researchers also distinguish a sub class of NP, called the NP-complete class. In a

sense, this class include the hardest problems in computer science, and is characterized

by the fact that either all problems that are NP-complete are in P, or not are in P. Many

NP-complete problems  require  arrangement  of  discrete  objects,  like  the  traveling

salesman problem (TSP), and the job shop scheduling problem. These problems belong to

combinatorial optimization problems.

An  optimization  problem  for  which  the  associated  decision  problem  is  NP-

complete is  called  an  NP-hard problem.  For  example,  if  the  problem  is  a  cost
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minimization  problem,  such that  it  is  required  to  find  a  solution  with  the  minimum

possible  cost,  the  associated  decision  problem would  be  formulated  as:  “  is  there  a

solution to the problem whose cost is  B, where B is a positive real number?”

Solving  combinatorial  optimization  problems  has  been  a  challenge  for  many

researchers in computer science. Exact methods used to solve regular problems cannot be

used to solve combinatorial optimization problems given current resources. The natural

alternative  would  be to  use  approximate  methods  that  give  good rather  than  optimal

solution to the problem in a reasonable amount of time.

1.2 Heuristic Search Methods

Many  heuristic  search  methods  have  been  designed  and  used  in  solving

combinatorial and NP-complete problems (Haralick & Elliot, 1980; Pearl, 1984; Stone &

Stone,  1986;  Glover,  1989).  Genetic  algorithms  and  simulated  annealing  are  two

successful methods in this area.

Genetic algorithms, referred to thereafter by GAs, are search methods based on

the principles of natural selection and survival of the fittest. The algorithm operates on a

population of individuals representing solutions to the required problem. Each generation,

a new set of solutions is generated using bits and pieces of good solutions in the previous

generation, using an operator called crossover. Occasionally new parts are tried to allow

for  better  exploration  of  the  search space.  This  is  performed using  the  GA mutation

operator.

GAs have been developed by John Holland in the 1970s (Holland, 1975). The

main idea was the attempt to develop a system that simulates nature in its robustness and

adaptation; a system that operates consistently well on a variety of problems and can
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survive many different environments. These algorithms are computationally simple yet

powerful  in  their  ability  to  improve  and  obtain  good  solutions.  They  are  also  less

sensitive than other search methods to assumptions made about the search space like

continuity, existence of derivatives, number of local optima...etc.

Simulated annealing (SA) is another well-known heuristic search method that has

been used successfully in solving many combinatorial optimization problems (Chams et

al.,  1987; Connolly,  1988; Wright,  1989). The term is adopted from the annealing of

solids where we try to minimize the energy of the system using slow cooling until the

atoms reach a stable state. The slow cooling technique allows atoms of the metal to line

themselves up and to form a regular crystalline structure that has high density and low

energy.  The initial  temperature and the rate at  which the temperature is  reduced are

called the annealing schedule.

In solving a combinatorial optimization problem we start with a certain feasible

solution to the problem. We then try to optimize this solution using a method analogous

to the annealing of solids. A neighbor of this solution is generated using an appropriate

method, and the cost (or the fitness) of the new solution is calculated. If the new solution

is better than the current solution in terms of reducing cost (or increasing fitness) the new

solution is accepted. However, if the new solution is not better than the current solution,

it is accepted with a certain probability, which decreases exponentially with the badness

of the move. Thus, the procedure is less likely to get stuck in a local optimum since bad

moves still have a chance of being accepted.

GAs are capable of wide exploration of the search space, since they operate on a

population of individuals and combine good solution using a recombination operator. SA
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on the other hand operates by producing several small moves on one solution, and thus is

capable of fine tuning a good solution obtained in search of a better solution.

Combining GAs and SA is an attractive area of research, since the hybridization

has the potential of achieving the benefits of both techniques.  SA in this context can be

used as part of the genetic engine to improve the solutions obtained by a GA.

1.3 Goal and Motivation

In the current research we try to augment a standard GA with SA which acts as a

directed or intelligent mutation operator. Unlike previous research, the SA used in this

technique is adaptive in the sense that its parameters evolve and optimize themselves

according to the requirements of the search process. Using adaptation is intended to make

simulated  annealing  parameter  adjustment  an  easy  and  automatic  task.  In  addition,

adaptation  should  help  guide  the  search  towards  optimal  solutions,  and  improve  the

quality of the search.

The algorithm is  tested on an important  problem in the field of inference and

acting under uncertainty, which is the MAP (maximum a-posteriori) assignment problem,

also  known  as  the  Most  Probable  Explanation  problem  (MPE)  on  Bayesian  Belief

networks. This problem is NP-hard and it has many applications in the fields of medical

diagnosis, computer vision and natural language understanding.

1.4 Organization

The rest of this thesis is organized as follows:
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Chapters 2, 3, and 4 provide a review of background information about the main

topics  used in the research.  These are Genetic  Algorithms,  Simulated  Annealing,  and

Bayesian Belief Networks, respectively.

Chapter 5 is a survey of the most important previous research in the literature.

Chapter 6 explains research goal and motivation, and compares the technique with other

hybridization techniques. Chapter 7 provides implementation details, and chapter 8 is a

discussion of  the  results  obtained from experimentation.  Finally,  chapter  9  concludes

with a direction for future research.  Appendix A is  a listing of the source code,  and

Appendix B contains the topology of some BBN networks used in testing.
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Chapter 2

2 Genetic Algorithms

2.1 Overview

Genetic  algorithms  are  intelligent  search  methods  that  have  been  used

successfully  in  solving  many  difficult  problems  such  as  combinatorial  optimization

problems. The principles of GAs were founded by John Holland (1975). The theme of a

GA is to simulate the processes of biological evolution, natural selection and survival of

the fittest in biological organisms. In nature individuals compete for the resources of the

environment, they also compete in selecting mates for reproduction. Individuals who are

better or fitter  in terms of their  genetic traits  survive to breed and produce offspring.

Their offspring carries their parents’ basic genetic material, which lead to their survival

and breeding. Over many generations this favorable genetic material  propagates to an

increasing number of individuals. The combination of good characteristics from different

ancestors can some times produce “super fit” offspring who out perform their parents. In

this way species evolve to become more and more suited to their environment.

GAs  operate  in  exactly  the  same  manner.  They  work  on  a  population  of

individuals representing possible solutions to a given problem. Each individual is usually

represented by a string of bits analogous to chromosomes and genes, i.e. the parameters

of the problem are the genes and are joined together in a solution chromosome. A fitness

value is assigned to each individual in order to judge its ability to survive and breed. The

highly fit individuals are given a chance to breed by being selected for reproduction, i.e.

the selection process usually favors the more fit individuals. Good individuals may be
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selected several times in a generation, poor ones may not be selected at all. By favoring

the “most fit” individuals, favorable characteristics spread throughout the population over

several  generations,  and  the  most  promising  areas  of  the  search  space  are  explored.

Finally,  the  population  should  converge  to  an  optimal  or  near  optimal  solution.

Convergence means that the population evolves toward increasing uniformity,  and the

average fitness of the population will be very close to the highest fitness.

During the reproduction phase of a GA, two individuals breed by combining their

genes  in  an  operation  called  crossover.  Not  all  selected  pairs  undergo  crossover;  A

random choice is applied where the likelihood of crossover is some given probability. If

crossover is not performed, offspring are produced simply by duplicating their parents.

Crossover allows the basic genetic material of the parents to pass to their children who

form the  next  generation.  Another  operation  that  is  performed  by  GAs  is  mutation.

Mutation  is  applied  to  each  child  generated  from  crossover.  With  a  certain  small

probability each gene may be altered. Thus, Crossover allows a rapid exploration of the

search space by producing large jumps, While mutation allows a small amount of random

search and helps ensure that no point in the search space have a zero probability of being

explored.

In summary, the basic principles of GAs  are: Coding or representing the problem

as a set of parameters (genes), assigning a Fitness or objective value indicating the utility

or the goodness of the chromosome, and finally Reproduction by performing crossover

and mutation over selected chromosomes.

The basic outline of a GA is as follows:
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1. 1.Initialize and encode a random population of solutions called chromosomes.

2. Decode and evaluate the fitness or the objective of each chromosome.

3. Create  a  new generation  by  stochastically  selecting  some chromosomes  from the

current population as parents that will breed and produce new offspring. The selection

criterion depends on the fitness of the selected parents.

4. Apply crossover between the selected parents to produce new children.

5. Apply Mutation with some small probability to some genes of the newly produced

offspring, or to some selected members of the population.

6. Repeat steps 2-5 as needed until a certain stopping criterion is achieved.

Figure 2. 1 : Outline of a GA

Example of crossover (one-point crossover):

Parent1:  1100111|000

Parent2:  0101010|111

Child1:   1100111|111

Child2:   0101010|000

Example of Mutation

Parent: 1100111000

Child:  1110111000
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2.2  Basic Terminology

In  biological  systems,  a  chromosome  represents  the  genetic  material  of  an

individual. The chromosome is composed of genes carrying hereditary features. The total

genetic package is called the genotype, and the organism formed by the interaction with

the total genetic package is called the phenotype.

In artificial systems a chromosome is a string or a structure. The structure decodes

to a solution or a point in the space. The genes of the structure can take their values from

a set of different values called the alleles. The position of the gene in the structure is

called its locus.

2.3 Crossover Types

2.3.1 One-Point Crossover

The traditional GA uses one-point crossover, where the two mating chromosomes

are each cut once at corresponding points, and the sections after the cuts are exchanged.

However, many different crossover algorithms have been devised, often involving more

than one cut point. 

2.3.2 Two-point crossover

In this technique, two cut points are chosen randomly in the parent chromosome.

The section between the selected cut points is exchanged between the two children.

Example:

Parent1:  1100|111|000

Parent2:  0101|010|111

Child1:   1100|010|000

10



Child2:   0101|111|111

One-point crossover can be seen as a special case of a two-point crossover with

one of the cut points fixed at the start of a string.

2.3.3 Uniform crossover

In this technique a random mask of bits is created. Each gene in the offspring is

created by copying the corresponding gene from one of the parents. The parent is selected

according to the value of the corresponding bit in the mask.

Example:

Mask:     0010101010

Parent1:  1100111000

Parent2:  0101010111

Child1:   1100010010

Child2:   0101111101

2.3.4 Partially Matched Crossover(PMX):

This technique is useful in order-based problems, such as the traveling salesman

problem, where gene values are fixed and the fitness depends on the order in which they

appear. In PMX it is not the genes that are crossed, but the order in which they appear.

Offspring have genes that inherit order information from each parent. This avoids the

problem of  generating  offspring  that  violate  the  problem constraints,  such as  having

duplicate cities in a chromosome that represents a solution to the TSP problem.

Example:

Parent1:  9 8 4 |5 6 7  | 1 3 2 10

Parent2:  8 7 1 |2 3 10| 9 5 4 6
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Child1 :  9 8 4  |2 3 10| 1 6 5 7

Child2 :  8 10 1|5 6 7  | 9 2 4 3

In this example cities 5,6,7 exchange their positions with 2, 3 and 10 respectively.

2.4 Why use GAs in solving problems?

There are a number of successful search techniques that have been proposed for

use  in  search  and  optimization  problems.  Random search,  hill  climbing  and  Iterated

search are examples of such techniques. Although these techniques usually perform well

on functions with only one peak (Unimodal functions), they perform poorly on functions

with many peaks (Multimodal), because they can be easily trapped in a local optimum

and never locate a global optimum solution. In addition, all these techniques operate by

modifying one single solution, and thus are poor in exploring the search space.

GAs, on the other hand,  represent an intelligent method for solving problems,

because they operate on a random population of solutions and allocate trials to promising

areas of the search space. In fact, they usually succeed in solving problems that many

other  techniques  have  failed  to  solve.  These  are  problems  that  require  an  adaptive

algorithm as opposed to a fixed one, and in this case the best use is made of one of the

great features of GAs which is their  Robustness or their ability to perform consistently

well on a broad range of problem types. GAs are not easily affected by the change of the

input  or  the  presence  of  noise  as  the  conventional  AI  systems,  depth-first,  breadth-

first...etc. They are also appropriate for searching large or multi-dimensional spaces. 

Another  advantage of GAs is  that  they do not  depend heavily on information

available  from the problem at  hand,  they  are remarkably  easy  to  connect  to  existing
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simulations and models, and they have a clean interface that just requires the ability to

propose a solution and then evaluate it.

GAs are  also  easy  to  hybridize  to  generate  knowledge  augmented  GAs.  This

could be done in cases where the best answer requires applying some problem-specific

techniques of search that can be combined with the general features of GAs. Using the

operations  of  selection  of  the  fittest,  mutation,  and  crossover,  GAs  quickly  reach

extremely  fit  individuals  (not  always  the  most  fit),  but  who  are  fit  enough  to  solve

problems of very large magnitude. 

2.5 How GAs work?

The Schema Theorem and the Building Block Hypothesis

In order to understand how a GA works its important to shift our attention from

strings to what actually a string represents, and how it is similar to other strings in the

population  at  certain  string  positions.  According  to  Holland  (1975),  a  schema  is  a

similarity  template  describing  a  subset  of  strings  with  similarities  at  certain  string

positions.  Considering that  a string is  represented by the alphabet  {0,1,#},  where a  #

means don’t care, a schema matches a string if at every location in the string a 1 matches

a 1 in the string, 0 matches a 0, and a # matches either. For example, the schema 11#10#

matches the strings {110100,111100,110101,111101}.

The length of the schema is the distance between the outer most non # symbols.

The length of the schema in the previous example is 5. The order of the schema is the

number of non # symbols it contains, the previous schema is of order 4.

A string of length l is a member of  2l different schemata, because each position

may take its actual value or  #. A population of size  n will have a number of schemata
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ranging from 2l to n2l (where n2l corresponds to the case that each string in the population

represents a unique schema). Holland (1975) showed that the optimum way to explore the

search space is to give opportunities of reproduction for individuals in proportion to their

fitness  with  respect  to  the  rest  of  the  population.  And  since  it  is  assumed  that  an

individuals high fitness is due to the fact that it contains good schemata, in this way good

schemata receive an exponentially increasing number of trials in successive generations.

By passing some of the good schemata to next generations,  the likelihood of finding

better solutions exists. This theorem is called the Schema Theorem (Holland, 1975).

Holland  also  showed  that  since  each  individual  belongs  to  many  different

schemata, a GA while operating on individual strings, actually processes a large number

of schemata. This number is of order n3, where n is the population size. This property of

GA is called Implicit Parallelism and one of the good explanations of the power of GAs.

The effect of the different genetic operators on a particular schema can also be

examined. As mentioned above, reproduction favors highly fit schemata by giving them

an increasing number of samples. Crossover may disrupt the schema if it was    cut by the

crossover operator. Schemata of long length are more likely to be disrupted by crossover,

while schemata of short defining length are less likely to be destroyed due to crossover.

For  example,  the  schema 1####0 is  more  likely  to  be  cut  than  the  schema  #10##.

Mutation with its usual small rate does not disrupt the schema very frequently. 

The building block hypothesis puts these observations in formal terms by stating

that: highly fit, short defining length schemata (called building blocks) are propagated

generation to generation by giving exponentially increasing samples to the observed
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best ones.(Goldberg, 1989; Holland, 1975). The bits of good building blocks work well

together and tend to lead to improved performance when incorporated into an individual. 

To encourage the formation of building blocks, a good coding scheme should try

to place related genes close to each other and also attempt to avoid interaction between

genes. Interaction between genes (known also as Epistasis) means that the contribution of

a gene to the fitness depends on the presence of other genes in a chromosome.

Unfortunately,  meeting  the  two  recommendations  of  the  building  block

hypothesis  is  not  usually  easy.  Multimodal  functions,  which  are  the interest  of  GAs,

always  have  parameters  that  interact  together.  A  good  coding  scheme  should  try  to

minimize the interaction between genes.

2.6 Advanced Issues in GAs

2.6.1 Genetic Drift and Premature Convergence

A  good  search  method  should  combine  both  exploration  and  exploitation.

Exploration is the ability to locate and investigate new areas in the search space, while

exploitation  is  the  ability  to  make  use  of  previous  knowledge  of  visited  points.  For

example,  random  search  is  good  at  exploration,  while  hill  climbing  is  good  at

exploitation. Holland (1975) showed that if the following simplifying assumptions are

made, a GA will combine both exploration and exploitation. First, the population size is

infinite. Second, the fitness function accurately reflects the utility of the solution. Third,

the genes in a chromosome do not interact significantly. 

Of course, assumption one can never be met in practice. The effect of a limited

population size is the accumulation of stochastic errors, which leads to the problem of

genetic drift.  This problem occurs when a gene becomes predominant and its spreads to
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the whole population from one generation to the next. Once a gene has converged in this

way, crossover will not be able to change its value, and as generations go by all genes

will converge in the same way. The rate of genetic drift can be reduced by increasing the

rate  of  mutation.  However,  a very high mutation  rate  makes  the search more or less

random.

Another closely related problem is premature convergence. This happens when

the genes of a highly fit (but not optimal) individual rapidly dominate the population,

causing it to converge to a local maximum. When this happens, crossover will produce

identical  copies  of  individuals  and  no  further  improvement  can  be  achieved  unless

mutation was very lucky in locating some new promising search areas. This problem is

highly  related  to  selecting  the  more  fit  individuals  for  reproduction.  To  overcome

premature convergence the selection strategy could be modified. 

In principle, individuals are selected from the population for reproduction form

what is called a “mating pool”. Highly fit individuals could be copied into the mating

pool more than once, while lower fit individuals may not receive any copies in the mating

pool.  The  mating  pool  is  usually  the  same  size  as  the  original  population.  Pairs  of

individuals are then selected from the mating pool at random and combined to form new

offspring.  The process  is  repeated  until  the  mating  pool  is  exhausted.  The following

strategies can be used to select parents for reproduction and the choice among them is

highly application dependent:

1- Uniform Selection:

This  selection  method  picks  randomly  from  the  population.  Any  individual  has  a

probability of selection that is equal to 1 divided by the population size.
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2- Rank Selection:

In  this  selection  method,  individuals  are  sorted  according  to  their  objective  function

values, and each individual is assigned a number of offspring that is a function of its rank

in the population

3- Roulette Wheel Selection:

This selection method picks an individual based on the magnitude of the fitness score

relative to the rest of the population. The higher the score, the more likely an individual

will be selected. The probability of the individual being chosen is equal to the fitness of

the individual divided by the sum of the fitnesses of each individual in the population.

4- Tournament Selection:

This method uses the roulette wheel method to select two individuals then picks the one

with  the  higher  score.  The  tournament  selection  typically  chooses  higher  valued

individuals more often than the roulette wheel selection.

5- Deterministic Remainder Sampling Selection.

This  selection  scheme uses  a  two-staged selection  procedure.  In  the  first  stage,  each

individual’s  expected  representation  is  calculated.  A temporary  population  is  created

using the individuals with the highest expected numbers. Any remaining positions are

filled  by  first  sorting  the  original  individuals  according  to  the  decimal  part  of  their

expected  representation,  then  selecting  those  highest  in  the  list.  The  second stage  of

selection is uniform random selection from the temporary population.
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6- Stochastic Remainder Sampling Selection.

This method uses a two-staged selection procedure. In the first stage, each individual’s

expected  representation  is  calculated.  A  temporary  population  is  filled  using  the

individuals with the highest expected numbers, Any fractional expected representations

are used to give the individual  more likelihood of filling  the space.  For example,  an

individual with an expected number of 1.4 will have one position and a 40 percent chance

of having a second position. The second stage selection is uniform random selection from

the temporary population.

Besides  choosing  an  appropriate  selection  strategy,  a  GA  should  choose  an

appropriate  replacement  strategy.  Replacement  refers  to  the  method  by  which  new

offspring  are  inserted  in  the  population.  To  keep  the  population  size  fixes,  the  new

offspring generated in one generation should replace other individuals in the previous

generation. The replacement strategy may also affect convergence towards an optimal or

a sub-optimal solution.

In traditional GAs  the whole population is replaced by the generated offspring in

each generation. This type of GAs is called the Simple Genetic Algorithm (Goldberg,

1989). Other types of GAs prefer a steady state replacement, where the population of

parents and children overlap. In each generation only a few individuals from the original

population are replaced. The percentage of population that is replaced each generation is

called the generation gap. This replacement scheme is more like the living organisms in

which  parents  and  children  coexist  in  each  generation,  and  competition  is  allowed

between them. Steady state replacement requires a strategy for choosing some unlucky

individuals  to  be  replaced.  For  example,  a  newly  generated  offspring  may  replace  a

18



parent, a random individual, or the worst individual in the population. Although steady

state GA is relatively computationally expensive, since some statistics of the population

have to be calculated after each mating, it has the advantage of making new offspring

available once they are generated,  which allows more areas of the search space to be

explored immediately.

2.6.2  Epistasis and Deception

Epistasis is the interaction between different genes in the chromosome. It is the

extent to which the contribution of fitness of one gene depends on the values of other

genes. If a small change is made in one gene, the fitness of the chromosome will also

change. This resultant change may vary according to the values of other genes. 

The level of interaction between genes may be mild or profound depending on the

extent  to  which  the  chromosome fitness,  resulting  from a small  change in  one gene,

varies according to the values of other genes.   The hardest case is when a particular

change in a gene produces a change in fitness that varies in both sign and magnitude

depending on the values of other genes. Epistasis usually refers to this hard case.

If  the interaction  between genes is  mild,  the problem can be generally  solved

using various simple techniques like hill climbing. However, GAs  can outperform other

simple techniques in solving problems with significant epistsis. Unfortunately, however,

the building block hypothesis mentioned above requires that a successful GA should be

designed with a minimum interaction between genes. This suggests that a GA will not be

effective on precisely those cases in which it is mostly needed.

Another very related problem is deception, which is a special case of epistasis. A

problem is  referred to as deceptive  if  the average fitness of schemata,  which are not
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contained in the global optimum, is greater than the average fitness of those which are. A

problem is  referred to  as  fully  deceptive  if  all  low order  schemata  containing  a  sub-

optimal solution are better than other competing schemata (Beasley et al., 1993). 

In a deceptive problem, schemata, which are not contained in the global optimum,

increase more rapidly than those which are. As a result, the GA will be mislead away

from the global optimum instead of towards it.

The problem of epistasis may be tackled by changing the coding scheme, such

that the interaction between the genes is minimized, and by using appropriately designed

crossover and mutation operators. In some problems the effort to do that is not trivial.

Traditional GA theory, based on the schema theory, relies on low epistasis. If genes in a

chromosome have  high  epistasis,  a  new theory  may  have  to  be  developed,  and new

algorithms developed to cope with this (Beasley et al., 1993).

2.6.3  Operators Probabilities

As mentioned above, the basic operators of GAs are Crossover and Mutation.

Crossover is the main source leading to a thorough search of the search space, because of

its  ability  to produce large jumps and generate  new solutions very rapidly.  Mutation,

however,  is  also  very  critical  because  it  is  the  only  way  of  restoring  diversity  and

avoiding genetic drift and premature convergence. As the population converges mutation

usually becomes more productive than crossover.

The chosen probability for both operators is very important in leading the GA

towards  the  optimum  solution.  The  optimum  mutation  probability  is  more  critical,

however,  than  that  of  crossover.  Usually  crossover  is  performed with a  much higher
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probability than mutation. The task of choosing appropriate probabilities is application

dependent, and it is best achieved with trial and error.

Some  researches  tried  to  develop  dynamic  operator  probabilities,  where  the

optimal value for each operator probability may change during the run. Davis (1985) tried

linear variations in crossover and mutation probability, with crossover decreasing during

the run and mutation increasing. Booker (1985) uses a dynamically variable crossover

rate depending on the spread of fitnesses. When the population converges, the crossover

rate is reduced to give more opportunity for mutation to find new variations.

Another adaptive technique developed by Davis (1989,1991) depends on giving

credit to each operator if produces a chromosome better than any other in the population.

During the course of a run, operator probabilities vary in an adaptive problem dependent

way. An operator that consistently looses weight is probably less effective than other

operators.  This  technique  has  the  advantage  of  alleviating  the  problem  of  choosing

operator probabilities. Its drawback is that credit may be sometimes given to operators

that simply locate local optima, rather than helping to find the global optimum( Beasley

et al., 1993).

Other  researches  like  Ackley  (1987) tried varying the mutation  probability  by

decreasing it exponentially during a run. No clear analysis is given to explain why this

approach  should  lead  to  an  improvement.  One  possible  explanation  is  that  mutation

probability is analogous to the temperature of SA, which must be reduced during the run

to aid convergence. Increasing Mutation probability near convergence may introduce a

large degree of diversity that could lead the GA away from convergence.
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2.6.4  Niche and Speciation

In  natural  systems,  a  niche  may  be  viewed  as  the  organism’s  role  in  the

environment and a species is a class of organisms with common characteristics. Inducing

a niche like  and speciation  behavior  in  a GA can help its  search towards the  global

optimum. 

In a GA, niches are analogous to maxima in the fitness function. A multimodal

function have several peaks, and it might be desirable to locate all peaks. Unfortunately, a

traditional GA will not do that because eventually all the population will converge on a

single peak, this is due the genetic drift problem introduced above. The basic techniques

used to overcome this problem and to encourage a niche like behavior in a GA are: 

1. Maintaining Diversity

2. Sharing the Payoff associated with a niche.

Maintaining  diversity  can  be  achieved  by  several  techniques.  For  example,  a

technique called pre-selection (Grefenstette, 1987) a newly produced offspring replaces

its parent only if its fitness is higher than the fitness of its parent. This helps maintaining

diversity because individuals replace others that are similar to them. 

Another  technique  called  crowding  (Dejong,  1975)  diversity  is  maintained  by

allowing  an  offspring  to  replace  the  most  similar  individual  from a  set  of  randomly

chosen individuals in the population, using hamming distance as a similarity measure, i.e.

an individual replaces another individual in the same niche. A multiple sub-population

approach  with  migration  has  also  been  used  to  simulate   niching  and  speciation

(Grefenstette,  1987).  Goldberg  and  Richardson  (Grefenstette,  1987)  describe  the

advantage of sharing, several individuals which occupy the same niche are made to share
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the fitness payoff among them. Once a niche has reached its full capacity it no longer

seem rewarding in comparison with other unfilled niches.

Another important technique to encourage speciation and reduce the formation of

lethals is restricted mating. A lethal is an unfit child that is produced by two highly fit

individuals.  Nature  avoids  the  formation  of  lethals  by  preventing  mating  between

different species. Restricted mating only allows individuals from the same niche (similar

to each other in their phenotypes) to mate. 

2.7 Applications of Genetic Algorithms

GAs have been used successfully in a wide range of problems. Some of these

problems have been used in practice and others still remain in the research area. The most

important applications are:

Numerical Function Optimization: GA techniques were found to outperform others on

difficult, discontinuous, multimodal and noisy optimization problems.

Image Processing: This includes the task of aligning two images of the same area taken

at different  times,  such as x-ray or satellite  images.  Another application is producing

pictures of criminal suspects where the witness operates as the objective function for each

picture.

Combinatorial Optimization Problems: which include tasks that require arrangements

of  discrete  objects.  Such  as  the  traveling  salesman  problem,  bin  packing,  job  shop

scheduling or time tabling. 

Design Tasks: which can be a mixture of combinatorial and function optimizations. For

example,  designing  bridge  structures,  optimal  routing  in  multiprocessor  systems,

construction of neural networks, and many other design tasks.
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Machine Learning: the classical example is classifier systems developed by 

(Holland et  al.,  1989) for learning a set of  “if..  then” rules to deal with a particular

situation. This has been applied to game playing and maze solving as well as political and

economic modeling.

2.8 Knowledge Based and Hybrid Techniques.

The  above  discussion  shows  that  GAs  have  a  great  potential.  They  are  not

limited to solving one class of problems,  but  many different  classes.  Moreover,  their

potential increases if they were tailored and modified to suit the particular application

under  consideration.  Knowledge-based  techniques  try  to  combine  problem  specific

information  with  genetic  algorithms.  Although  this  approach  will  make  the  GA less

robust,  because  it  will  be  more  problem  specific,  it  may  improve  performance

significantly. For example, chromosome representation is not restricted to bit strings. A

chromosome can be represented by a vector, a graph, a string of characters, or even a

complete  object.  This  latest  technique  has  been  used  for  minimum cost  routing  and

wavelength  allocation  in  a  network  of  nodes.  The  chromosome  in  this  case  was

represented as a C++ object, composed not only of nodes, links and ordered sequences of

paths, but also objects representing the network adjacency matrix, connection matrix, and

the  traffic  requirements.  Network  objects  are  themselves  the  structure  undergoing

adaptation (Sinclair, 1989).

Problem  specific  knowledge  can  be  also  incorporated  into  the  crossover  or

mutation operators. For example, a crossover operator may be modified in a way that

prevents the formation of poor or invalid chromosomes. This will reduce the amount of

time  wasted  during  the  evaluation  of  such  poor  chromosomes.  Problem  specific

24



knowledge can also be used for heuristic initialization in which the initial  population

contains a set of reasonably good points instead of a completely random set of points.

Hybrid  techniques  have  been also  used  in  many applications  to  improve the

performance of genetic algorithms. For example,  a GA can be combined with a local

search technique such as simulated annealing or hill climbing techniques, in which a GA

can be used to find the hills, and a local search technique is used to climb the hills and

improve the solution obtained. A particular advantage of this technique is that a GA can

spend excessive time refining an acceptable solution, while a simulated annealing search

for example has an adjustable parameter – the cooling rate- that can be fine tuned to

minimize  the  time  to  a  reasonable  bound.  Combining  both  techniques  offers  the

advantages of both.

2.9 Parallel Genetic Algorithms

Parallel  processing  is  the  current  trend  of  computer  science,  and  genetic

algorithms are attractive for application on parallel machines. As mentioned above, GAs

are not guaranteed to find an optimal  solution; however as the size of the population

increase, the chances of finding more efficient solution become better. Unfortunately, this

increases computation time and cost of the solution.

However,  since GAs operate  on a  population  of  individuals,  this  makes  them

parallel  in nature.  Parallel  genetic  algorithms (PGAs) can be used to  process  a  large

number of individuals in parallel and produce better solutions in less time, because they

better explore the search space. PGAs maintain multiple separate sub-populations that are

allowed  to  evolve  independently  in  parallel,  and  this  allows  each  sub-population  to
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explore  different  parts  of  the search space,  each  maintaining  its  own individuals  and

controlling how mixing occurs with other sub-populations.

PGAs also help to overcome the problem of premature convergence, in which a

sub-optimal solution dominates the population and leaves no chance for improvement.

The children chromosomes produced thereafter will be very similar to each other and to

their parents, thus causing the crossover operation to be largely ineffective.

Another advantage of parallel GAs is to help find solutions for multi-objective

functions, i.e. each sub-population can emphasize a different objective.

There are different ways to parallelize GAs, but they can be divided into three

main categories:  Global Parallelization,  Coarse Grained Parallel GAs, and the  Fine

Grained Parallel GAs.

2.9.1  Global parellization (Micro-Grain GAs)

This technique is characterized by having a single population while the evaluation

of individuals is performed in parallel. A speedup that is proportional to the number of

processors is expected, although probably sub-linear. This technique is most suited for

applications in which the fitness function is very costly.

Each processor is assigned a subset of the population, and it is responsible for

evaluating the fitness of each of its members. The best case is when each processor is

assigned only one individual, making evaluation time equivalent to the time needed to

evaluate the most costly individual. There is no communication between the processors,

because fitness evaluation is an independent process. 

There are two models to be considered here:
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2.9.1.1 The Shared Memory model

In this model each processor can read individuals assigned to it from the shared

memory, and write the results back in the shared memory without conflict.  However,

synchronization between generations is needed, such that each processor must wait for all

others to finish evaluating individuals belonging to one generation, before processing the

next generation.

2.9.1.2 The Distributed Memory Model

 In this  model there is a “master” processor that is responsible for storing the

population, and sending the individuals to the “slave” processors that will evaluate their

fitness. Then, the master collects the results and applies the genetic operators (mutation

and crossover) to produce the next generation.

Global  parallelization  can  be  used  to  perform  genetic  operators  (selection,

mutation  and  crossover)  in  parallel  as  well.  However,  operators  that  require  global

statistics such as population average fitness are not suitable in this case, because they will

cause  serious  performance  bottleneck.  Also,  communication  between  processors  and

message passing, in case of distributed memory, is a serious drawback that might degrade

performance.

2.9.2 Coarse Grained Parallel GAs

The grain size in parallelism refers to the ratio of the time spent in computation

and the time spent in communication. When this ratio is high the processing is called

coarse  grained,  and  is  suitable  for  implementation  on  MIMD  (Multiple  Instruction

Multiple Data) machines.
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In  this  model  the  population  is  divided  into  several  sub-population,  each  is

assigned  to  one  processor  and  is  allowed  to  evolve  independently  from  the  others.

Occasionally  some individuals  migrate  between sub-populations  in  order  to introduce

new genetic material that will allow a better exploration of the search space and avoid

premature convergence.

The parameters that affect this model can be categorized along three dimensions:

migration method, connection scheme, and processor node homogeneity.

2.9.2.1 Migration Method

Migration  is  controlled  by two parameters:  migration rate,  which  determines

how many individuals are migrated between sub-populations, and  migration interval,

which determines when migration occurs. 

As mentioned above, migration is important to allow for introducing new genetic

material  in  a  sub-population  (also  called  a  deme).  This  is  based  on  the  theory  of

“Punctuated Equilibria”,  which states that  new spices are  likely to form quickly in

relatively small isolated populations after some change in the environment occurs. 

Previous research has shown that there is a critical migration rate below which the

performance of the algorithm might degrade as a result of the isolations of demes, and

above which the partitioned population behaves as a one large population.

There are basically three methods of migration:

Isolated Island GAs: in which there is no migration between sub-populations.

Synchronous Island GAs: in which all sub-populations evolve at the same rate, after

which  migration  can  occur,  for  example,  migration  occurs  after  a  certain  number  of
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generations.  Of course,  different  machine  speeds  and different  loads  can cause some

processors to stay idle while others are still processing their sub-populations.

Asynchronous  Island  GAs: in  which  migration  occurs  irrespective  of  the  state  of

evolution  across  all  of  the  system’s  sub-population.  This  kind  of  migration  is  more

suitable for the different loads and diverse machine architectures  as well  as the large

number of processors found in the parallel machines of today. However, in this approach

there is a possibility that a relatively high-fitness individual from a fast-evolution node is

inserted in low-fitness population on a slow-evolution node. This might cause the genetic

material of this individual to dominate the sub-population, possibly resulting in premature

convergence.

Some variations of these migration methods exist, such as sending a copy of the

best individual found in each deme to all its neighbors after every generation to ensure

good mixing. Another migration method performs migration after the sub-population has

converged. And a third one uses a master processor to which all processors executing the

GAs  periodically  send  their  best  individuals.  Then  the  master  processor  chooses  the

fittest individuals among those it received, and broadcasts them to all the nodes.

2.9.2.2 Connection Schemes

The  connectivity  of  the  processing  nodes  is  also  very  important  in  the

performance  of  parallel  GAs,  because  it  determines  how fast  (or  how slow)  a  good

solution  disseminates  to  other  demes.  If  the  topology  has  high  connectivity  or  short

diameter or both, good solutions will spread very fast, and may quickly dominate the

population,  possibly  causing  premature  convergence.  On  the  other  hand,  if  the

connectivity is low or the diameter of the network is large, good solutions will spread
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slowly,  allowing  for  better  exploration  of  the  search  space.  There  are  two  main

connection schemes:

Static Connection Scheme: the network topology is static and does not change over

time.  There  are  various  topologies,  such  as  a  rings,  meshes,  n-cubes,  etc.,  but  the

topology determines which nodes are allowed to exchange individuals.

Dynamic Connection Scheme: here the topology of the network is mutable during run

time. This allows for changing the migration scheme based on the current state of the

evolutionary process. For example, individuals can migrate only to other sub-populations

that are similar (or dissimilar) to them in terms of hamming distance, which can make the

migration process more effective.

There  are  also  some  variations  of  the  migration  schemes,  such  as  sending

individuals to random destinations,  rather than destinations that are determined by the

topology or the similarity between individuals.

2.9.2.3 Node Homogeneity

Node homogeneity is a measure of how similar the GA processes are on different

processing nodes. We can distinguish the following categories:

Homogeneous  Island GAs: in  which  all  nodes  use  the  parameters  (population  size,

crossover rate, mutation rate, migration interval, etc.)

Heterogeneous Island GAs: sub-populations evolve with different parameters, genetic

operators,  objective  functions  and  encoding  methods.  Of  course,  interchanging

individuals  between  sub-populations  in  this  case  will  be  more  difficult,  but  these

problems can be addressed.
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2.9.3  Fine Grained Parallel GAs 

In this model, the population is divided into a large number of very small demes,

the ideal case is to have one individual for every processing element. This model calls for

massively  parallel  computers,  and  is  suitable  for  implementation  on  SIMD  (Single

Instruction Multiple Data) machines.

Here  also,  selection  and mating  occur  within  a  single  sub-population,  but  the

demes  overlap  providing  a  way  to  disseminate  good  solutions  across  the  entire

population;  i.e.,  selection  and  crossover  are  performed  between  a  processor  and  its

neighbors. For example, a processor may borrow some individuals from the neighboring

processors, perform genetic operations on them, and discard the worst ones.

The danger of a sub-optimal state being reached in this model is greater than any

other model for two reasons. First, there is a greater degree of migration between sub-

populations. Secondly, the number of chromosomes in each sub-population is less than

any other PGA model. In order to address these problems, the size of the network and the

degree of overlap must be controlled.

It  is  common  to  place  the  individuals  of  a  fine-grained  PGA in  a  2-D grid,

because in many parallel  computers, the processing elements are connected using this

topology. However, most of these computers have a global router that can send messages

to any processor in the network (at a higher cost) and other topologies can be simulated

on top of the grid. Some research show that the performance of the fine grained PGA is

affected by the topology of the interconnection network, and it seems that the topology

with a medium diameter gives good results.
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2.9.4 Hybrid Algorithms

A few researchers have tried to combine two of the methods to parallelize GAs.

For example, we can use global parallelization on each of the demes of a coarse grained

GA.  Migration  occurs  between  demes  as  in  the  coarse  grained  algorithm,  but  the

evaluation of individuals is handled in parallel.

2.9.5 Underlying Problems

Although parallel  GAs promise a lot in terms of both speed up and quality of

solutions, there is a number of underlying problems that are not fully addressed, two of

these problems are population size and migration

Population Size: this is related to the deming issue. That is, to how many demes should

the population be divided? And what is the size of each deme?

Migration: after determining the number and the size of each deme, we need to establish

the way they are going to communicate (migration). The parameters affecting migration

are  migration  interval  and  migration  rate.  Migration  interval  is  related  to  when

individuals  should be migrated.  Intuitively,  migration  should occur after  the expected

number of building blocks in each individual  is  relatively high,  i.e.  when it  covers a

reasonable  part  of  the  search  space.  Migration  before  that  is  a  waste  of  resources.

Migration rate is the number of individuals that must migrate. If the migrated individuals

are rich in their building blocks, then it is enough to migrate just a few.

Topology: which is the best way to connect demes. In a topology with a long diameter,

good solutions will take longer to reach all demes. On the other hand, in a topology with

a  small  diameter,  good  solutions  will  spread  very  fast  and  possibly  dominate  the

population. 
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Chapter 3

3 Simulated Annealing

3.1 Overview

Simulated annealing is a well-known heuristic search method that has been used

successfully in solving many combinatorial optimization problems (Chams et al., 1987;

Connolly, 1988; Wright, 1989). It is a hill-climbing algorithm with the added ability to

escape  from local  optima  in  the  search  space.  However,  although  it  yields  excellent

solutions it is very slow. It is mostly used for solving problems that are not very well

understood.

The term simulated annealing is adopted from the annealing of solids where we

try to minimize the energy of the system using slow cooling until the atoms reach a stable

state. The slow cooling technique allows atoms of the metal to line themselves up and to

form a regular crystalline structure that has high density and low energy.  The initial

temperature and the rate at which the temperature is reduced are called the annealing

schedule.

In solving a combinatorial optimization problem using SA, we start with a certain

feasible solution to the problem. We then try to optimize this solution using a method

analogous to the annealing of solids. A neighbor of this solution is generated using an

appropriate method, and the cost (or the fitness) of the new solution is calculated. If the

new solution is better than the current solution in terms of reducing cost (or increasing

fitness) the new solution is accepted. However, if the new solution is not better than the

current solution, the new solution is accepted with a certain probability which is usually
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set to exp(- /T) Where  ∆ is the change in cost between the old and the new solution and

T is the current temperature, i.e. the probability decreases exponentially with the badness

of the move. Thus the procedure is less likely to get stuck in a local optimum since bad

moves still have a chance of being accepted.

The annealing temperature is first chosen to be high so that the probability of

acceptance will also be high, and almost all new solutions are accepted. The temperature

is then gradually reduced so that the probability of acceptance will be very low and the

algorithm  works  more  or  less  like  hill  climbing,  i.e.  high  temperatures  allow  better

exploration of the search space, while lower temperatures allow fine tuning of a good

solution.  The process  is  repeated  until  the temperature  approaches  zero or  no further

improvement can be achieved. Which is analogous to the atoms of the solid reaching a

crystallized state.

3.2 Theoretical Foundation

The  theoretical  foundation  of  SA was  lead  by  Kirkpatrick  et  al.  (1983).  The

theory is based on statistical mechanics of physical systems.

Consider a physical system with many degrees of freedom that can reside in any

one of a large number of possible states. The probability of occurrence of state  i is  pi,

such that:

  pi>=0 (1)

 pi = 1  (2)
i
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Let Ei denote the energy of the system when it is in state i. A fundamental result

in statistical mechanics tells us that when the system is in thermal equilibrium with its

surrounding environment, state i occurs with probability defined by

Pi = 1/Z exp (-Ei/KbT)   (3)

Where T is the absolute temperature in Kelvins, Kb is Boltzmann’s constant, and Z

is a constant that is independent of all states. One degree Kelvin corresponds to –273

degrees Celsius, and Kb=1.38  10-23 jouls/kelvin.

Imposing the condition for the normalization of probabilities defined by equation

(2) on equation (3) gives us the normalization constant Z

Z=  exp (-Ei/KbT) (4)
      i

Z is  called  the  partition  function  and  the  factor  exp  (-Ei/KbT) is  called  the

Boltzmann  factor.  The  distribution  given  by  equation  (3) is  called  The  Boltzmann

distribution. Two important properties of the Boltzmann distribution are:

1. States  of  low energy have  a  higher  probability  of  occurrence  than  states  of  high

energy.

2. As the temperature T is reduced, the probability is concentrated on a smaller subset of

low energy states.

For example, growing a single crystal from a melt, require that the atoms reach a

stable  low  energy  state  at  a  low  temperature.  However,  achieving  a  perfect  crystal

requires  lowering  the  temperature  slowly  enough,  and  spending  a  long  time  at

temperatures in the vicinity of the freezing point. If cooling proceeds two fast, the atoms

will be allowed to get out of equilibrium and the resulting crystal will have many defects.
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Kirkpatrick  makes  the  connection  between  statistical  mechanics  and

combinatorial  optimization  by  stating  that:  ”Finding  the  low-temperature  state  of  a

system when a prescription for calculating its energy is given is an optimization problem

not unlike those encountered in combinatorial optimization...” (Kirkpatrik et al., 1983)

Kirkpatrick  et  al.  (1983)  applied  the  Metropolis  algorithm  from  statistical

mechanics to combinatorial optimization problems. The Metropolis algorithm introduced

in (Metropolis et al., 1953) provides an efficient simulation of atoms in equilibrium at a

given  temperature.  The  algorithm provides  a  generalization  of  iterative  improvement

where controlled uphill moves (moves that do not lower the energy of the system) are

probabilistically accepted in the search for obtaining better solutions and escaping local

optima.

In  each  step  of  the  Metropolis  algorithm  an  atom  is  given  a  small  random

displacement.  If  the  displacement  results  in  a  decrease  in  the  system  energy,  the

displacement is accepted and used as a starting point for the next step. If on the other

hand the energy of the system is not lowered, the new displacement is accepted with a

certain probability  exp(-E/kbT) where  E is the change in energy resulting from the

displacement,  T is  the  current  temperature,  and kb is  a  constant  called  a  Boltzmann

constant  .  Depending  on  the  value  returned  by  this  probability  either  the  new

displacement is accepted or the old state is retained. For any given T, a sufficient number

of  iterations  always  lead  to  equilibrium,  at  which  point  the  temporal  distribution  of

accepted states is stationary (this distribution is called the Boltzman distribution).

The SA algorithm has also been shown to possess a formal proof of convergence

using the theory of  Markov chains  (Eglese,  1990).   A sequence  of  random variables
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X1,X2,...,Xn,Xn+1 forms a Markov chain if the probability that the system is in state Xn+1 at

time n+1 depends exclusively on the probability that the system is in state Xn at time n.

We may think of a Markov chain as a model consisting of a number of states linked

together on a pair-wise basis by possible transitions. If the transition probabilities are

fixed and do not change with time, the Markov chain is said to be homogeneous in time.

In  case  of  a  system  with  finite  possible  sates  K the  transition  probabilities

constitute a K –by- K matrix, where pij represents the probability of transition from state i

to state j.

In the above system, the transition from one state to another takes place in some

fixed number of steps.

In  an  SA  algorithm,  if  the  temperature  parameter  T is  kept  constant,  the

probability  of  moving  from any state  i to  any other  state  j is  independent  from the

iteration number. Representing these probabilities in a transition matrix, it may be shown

that it is possible to get from any state i to any other state j in a finite number of moves,

which corresponds to a homogeneous Markov chain. This Markov chain has a unique

stationary  distribution,  which  does  not  depend  on  the  initial  state.  This  distribution

corresponds to the Boltzmann distribution in statistical mechanics.

The Limit as T 0 of this stationary distribution is a uniform distribution over the

set  of  optimal  solutions,  i.e.  the SA algorithm converges  asymptotically  to  the  set  of

globally  optimum  solutions.  This  convergence  property  is  a  very  important  and
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encouraging  result.  The  question,  however,  is  how  many  iterations  are  sufficient  to

guarantee convergence?

In an attempt to solve this question we can try to describe the SA algorithm as a

sequence of Markov chains of finite length, using decreasing values of the temperature T.

This  can  be  considered  as  a  single  non-homogenous  Markov chain,  as  the  transition

probabilities  are  now not  independent  of the number of iterations,  which violates  the

homogeneity  condition  of  a  Markov  chain.  This  model  of  SA  does  not  require  the

stationary distribution to be reached at any non-zero temperature. 

Using this assumption, Hajek provides a necessary and sufficient condition for

convergence (Hajek, 1988). He showed that if T(k)=c/log(1+k), where k is the number of

iterations, the condition for convergence is that the constant c be greater than or equal to

the depth of the deepest local minimum which is not a global minimum. This temperature

function represents very slow cooling. It has also been shown in (Mitra et al., 1986) that

attempting  to  approximate  the  uniform  distribution  on  the  set  of  optimal  solutions,

typically leads to a number of iterations,  which is larger than the size of the solution

space, and so results in exponential running time for most problems.

3.3 Implementing SA

Implementing SA requires many choices that must be considered. These choices

include both general SA parameters and problem specific decisions. The choice of the

general parameters of the SA operator is critical  to the performance of the algorithm.

Following (Eglese, 1990) These parameters are:

1. The value of the initial temperature T.
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2. A temperature function T(t) that determines how the temperature will change with

time.

3. The number of iterations N(t) to be carried at each temperature

4. A stopping criterion to terminate the algorithm.

The initial temperature  T(0) is generally chosen high enough so that almost any

move  is  accepted  regardless  of  its  fitness.  This  choice  is  adopted  from the  physical

analogy  and  corresponds  to  heating  up  a  substance  until  all  particles  are  randomly

arranged in a liquid. 

The  temperature  function  is  usually  a  proportional  temperature  function

T(t+1)= T(t) where   is a constant close to 1. Typical values of  used lie between 0.8

and 0.99. Using such value provides very small decrements of temperature values, which

corresponds to a very slow cooling of the substance until  the temperature approaches

zero.

The number of iterations carried out at each temperature value should be large

enough to bring the system to a  stable  state  analogous to  thermal  equilibrium in the

physical  analogy.  Some  applications  may  choose  N(t) to  be  constant  for  each

temperature.  The  stopping  criterion  of  the  algorithm is  usually  the  stagnation  of  the

system when no change in the result can be obtained for a specified number of iterations

or temperature changes.

The choice of a cooling schedule is a subject of controversy among researchers.

Some choose N(t) to be large enough at each value of T such that the system approaches

“a stationary distribution ” at that value of  T. However, as mentioned above, the result

achieved by Hajek in (Hajek,1988) indicates  that  if  the cooling process is  performed
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sufficiently slowly, there is no need to attain equilibrium at each temperature. There is a

trade-off  between  a  large  reduction  of  temperature  values  and  a  small  number  of

iterations  at  each  temperature.  Some  researches  even  suggest  only  one  iteration  per

temperature  value  (Lundy  &  Mees,  1986),  while  providing  very  slow  reduction  of

temperature values. Others suggest that the majority of iterations should be conducted at

suitably fixed temperature (Connolly, 1988).

Whatever cooling schedule is chosen, it is important not to spend to long at high

temperatures, where most neighborhood moves are accepted. It is also important not to

spend too long at the end of the algorithm where most moves are rejected. These two

situations  can  waste  much  processing  time.  At  the  end  of  the  algorithm  it  is  worth

checking that at least a local optimum has been obtained (Eglese, 1990).

Implementing SA also requires a set of problem specific decisions. These include:

defining the set of feasible solutions to the problem, define a clear objective function,

generating an initial solution, and defining a neighborhood operator that generates moves

using current solution.

The topology of the neighborhood structure is critical to the performance of SA

algorithm. This is clearly indicated by the result obtained by Hajek (1988) as mentioned

above, which states that the rate of cooling required for asymptotic convergence depends

on the depth of the deepest of the local minima, i.e. the topology of the neighborhood

structure.  In general,  a smooth topology with shallow local  optima is  favored over a

bumpy topology with many deep local minima.

A  neighborhood  function  is  easy  to  implement  for  discrete  problems.

Implementing  a  neighborhood function  for  continuous  problems is  more  challenging.
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Continuous SA should choose a point on the unit hyper-sphere at random about the point

representing the current solution. This selection gives the search direction. The algorithm

would then choose a random length to step in that direction.

Constrained  problems  also  raise  some  difficulties.  A  choice  must  be  made

between restricting the solution space to solutions  that  conform to the constraints,  or

allowing solutions that break the constraints at the expense of a suitably defined penalty

function. The generic simulated annealing algorithm is described in Fig 3.1.

1- Start with some state S.

2- T= T0

3- Repeat{

4-     While (not at equilibrium){

5-         Perturb S to get a new state Sn

6-         E = E(Sn)-E(S)

7-         if E < 0

8-               replace S with Sn

9-         Else with probability e -E/T

10-              replace S with Sn

11-      } 

12- T = c  T   // c<1

13- } until frozen

Figure 3. 1 The SA Algorithm
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3.4 Modifications to SA

A  major  problem  in  applying  the  SA  algorithm  is  the  trade-off  between  the

quality of the solution and a very long computational time imposed by the requirement of

slow cooling to achieve convergence. 

In an attempt to solve this problem some modifications to the basic SA algorithm

have been suggested. These modifications are easy to implement and have provided an

improvement of the quality of the solution and/or processing time (Eglese, 1990).

One attempt was to store the best solution found so far. Since the SA algorithm

accepts solutions probabilistically, it may accept solutions that are worse than the current

solution. A good solution found during the run may be discarded because it was not lucky

during the acceptance attempt.  Storing the best solution found so far prevents the SA

algorithm from returning a solution that is worse than the best solution ever found. In

addition, Glover and Greenberg (1989) argue that with this modification there is less need

for the SA algorithm to rely on a strong stabilizing effect over time. Connolly (1989)

support this idea by showing that using this modification it is possible to find a suitable

fixed temperature and to carry out all remaining iterations at that temperature. In the final

phase, a descent algorithm can be employed to find the local optimum containing the best

solution encountered in earlier phases.

Another modification is  sampling the neighborhood without replacement. At

the end of SA run, the temperature drops to very small values making the probability of

accepting a new move very low. If only a few moves improve the current situation, the

algorithm will waste a lot of time trying to locate these moves. The modification tries to

generate neighborhood moves in such a way that all possible moves in the neighborhood
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of a solution are attempted before repeating a move, unless a new solution is accepted.

For example, the neighborhood may me searched in a sequential manner as in (Connolly,

1988) or in random manner as in (Jhonson et al., 1987).

Some researches  also  modify  the  basic  SA algorithm using  problem specific

information. For  example,  Grover  (1986)  showed  that  significant  speedups  can  be

obtained by calculating the change in objective value   using approximate rather than

exact methods. These approximations were found to yield solution quality compatible

with  exact  methods,  provided the  error  is  kept  less  than  a  particular  function  of  the

temperature T. 

Tovey (1988) suggested an adaptive method for approximately calculating  . The

approximate method is not used every iteration, but it is applied with a certain probability

which is updated as the algorithm proceeds, so that the resulting algorithm will simulate

the results of the basic SA approach.

Tovey  (1988)  also  suggests  a  neighborhood  operator  that  is  able  to  identify

promising areas in the neighborhood, and gives a greater probability to generate moves

that fall in the promising areas. It is not clear, however, whether this technique performs

significantly better than sampling the neighborhood without replacement. 

In an attempt to reduce the amount of time spent in the latter  part  of the SA

algorithm  when  the  majority  of  the  moves  are  rejected,  Green  and  Supowit  (1986)

proposed a rejection-less method. In this scheme a probability distribution is constructed

over the set of all moves to show the relative probability of a move being accepted if it is

chosen. A move is then generated at random according to this distribution and accepted

automatically.  Applying this  algorithm to different  problem types  requires  finding an
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efficient way to update the probability distribution, and this depends on problem specific

information.

3.5 Hybrid Techniques

There are two basic approaches to combine SA with other techniques

1. Using another technique to generate a good initial solution that SA can improve.

2. Using  SA  to  generate  a  good  solution  that  can  be  used  by  another  search

technique.

An example of the first technique is found in (Chams et.al.1987) in solving the

graph coloring problem, and in (Jhonson et.al., 1987) in solving the graph partitioning

problem. A good starting solution obtained using another search method was found to

improve both the quality of the solution as well as the processing time. When using this

technique the initial temperature chosen should be reduced, in order not loose the benefits

gained by having a good starting solution. They also show that using problem specific

information to generate a good starting solution is preferable to using general heuristics.

The second approach is exemplified by using SA as a way of obtaining a good initial

solution for a branch and bound, an integer programming, or an evolutionary algorithm.

3.6 Parallel SA

Although parallelizing SA is not an easy task because the algorithm is inherently

sequential, several approaches have been developed to implement parallel versions of the

algorithm with the aim to speed up the search process.

According  to  Eglese  (1990),  two  main  strategies  of  paralleliziation  are  used:

single-trial parallelism and multiple-trial parallelism. In the first strategy, the calculations
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to evaluate a single trial are divided among a number of processors. The implementation

of this  strategy and the speed up that can be achieved is problem dependent,  since it

depends on the how the serial portion is processed in parallel.

In the second strategy, several SA trials are evaluated in parallel. Three variations

of this strategy exist:

1. The division algorithm: in which the number of iterations at each temperature is

divided among the processors. After a change in temperature, each processor may

start from the final solution obtained by that processor at the previous temperature.

The best solution found among all processors is then taken to be the final solution

returned by the algorithm. Another variant of this approach is to transfer the best

solution found among all processors after each stage of temperature change.

2. The clustering algorithm: In this algorithm, two or more processors are used to

generate  one sequence  of  accepted  moves.  Processors  evaluate  possible  moves

independently  until  one  is  accepted.  This  move  is  then  communicated  to  all

processors in the cluster, which abort their current calculations and resume with

the accepted solution. The algorithm should be more efficient towards the end of a

run than at the beginning. This is due to the reduced number of accepted solutions

at the later phase of the algorithm.

3. The error algorithm: In which several processors are used to investigate potential

neighborhood moves in parallel. Any accepted move updates the current solution.

The name of the algorithm is derived from the fact that that some calculations

made by a processor of the change in objective value for a potential move may be

calculated wrongly if another processor has just  accepted a move of which the
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processor is unaware. The performance of the algorithm is thus dependent on the

neighborhood structure and the amount of error resulting from two moves being

accepted simultaneously. 

3.7 SA Performance

Assessing the performance of SA requires considerable testing and comparison

with other search methods.  In general  the same remarks can be made concerning the

performance of SA if compared with other techniques.

First,  a comparison of SA with an iterative descent  algorithm that  starts  from

several random starting positions indicates that SA can give significantly better results in

the same amount of computing time. The result,  however, is not general because it is

highly dependent on the problem type and the neighborhood structure. For example, a

problem with a search space that has one global optimum and no local optima is easily

solved using a descent algorithm faster than SA.

Second,  in  comparison  with  problem  specific  techniques,  Jhonson  et  al.

(1987,1988) found that SA outperformed some classical graph partitioning algorithms, in

both quality and speed for certain types of random graphs. The same result was obtained

for solving the traveling salesman problem. For graph coloring problems, SA was able to

find very good solutions but with increased processing time. Again, this result cannot be

generalized since it is obvious that SA as a general algorithm may not be able to compete

with some techniques designed specifically for certain problems.

Finally, a comparison of SA with other heuristic methods is still inconclusive. For

example, a comparison with Tabu search for graph coloring problem done by Hertz and

de Werra (1987) indicated that Tabu search was superior to SA. However, in another
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research done by Bland and Dawson (1989), SA was found to obtain better results for the

layout optimization problem than Tabu search. More research is still needed in this area

to find the best way of implementing these algorithms.

3.8 Advantages of SA

SA has several attractive features, especially in difficult optimization problems in

which a good solution with a  reasonable computational  effort  and processing time is

preferred to an optimal solution with much greater programming or computing effort.

The basic advantages of SA are:

1- It is very easy to implement, since it just requires a method for generating a move

in the neighborhood of the current solution, and an appropriate annealing schedule.

2- It  can  be  applied  to  a  wide  range  of  problem  types.  For  example,  any

combinatorial  optimization  problem can be tackled  using  SA if  an  appropriate

neighborhood structure has been devised.

3- High quality solutions can be obtained using SA if a good neighborhood structure

and a good annealing schedule have been chosen. This, however, may be at the

expense of a long processing time.
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Chapter 4

4 Uncertainty and Belief Networks

4.1 Knowledge Based Agents and  First Order Logic

The most important task of any AI (Artificial Intelligent) system is to build agents

that act rationally. An agent is anything that can be viewed as perceiving its environment

through sensors and effectors. A rational or logical action is an action that causes the

agent to be most successful, i.e. an action that maximizes the performance measure of the

agent. A rational action is highly dependent on the agents knowledge of the world and the

environment in which its operates, i.e. its knowledge base. 

One technique used in AI to represent the knowledge base of the agent uses first

order  logic,  which  is  a  general  purpose  representation  language  that  is  based  on  an

ontological  commitment  to the  existence of  objects  and properties  or  relations  in  the

world. Some of these relations are functions in which there is only one value for a given

input. The following are examples of objects, properties, relations and functions:

Objects: people, houses, numbers, theories, colors, wars, countries …

Relations: brother of , bigger than, inside, part of, has color ….

Properties: red, round, bogus, prime …

Functions: father of, best friend, one more than …

First order logic can express any thing that can be programmed. It has sentences,

which  represent  facts,  terms  which  represent  objects.  It  also  has  constant  symbols,

variables, and function symbols that are used to build terms, and quantifiers and predicate
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symbols that are used to build sentences.  Knowledge representation using first order

logic is the most studied and best understood knowledge representation scheme used in

AI (Russel and Norvig, 1995).

4.2 Acting Under Uncertainty

One problem with first order logic, and thus with the logical agent approach, is

that the agent always never have access to the whole truth about its environment. There

are  always some questions  that  the agent  cannot  answer,  and there  are  always some

incorrectness  or  incompleteness  in  the  agents  understanding  of  his  environment.  The

agent  must  therefore  act  under  uncertainty.  First  order  logic  cannot  correctly  and

completely represent all facts about the domain, because there are too many conditions to

be explicitly enumerated, or because some of the conditions are unknown.

For Example, trying to use first order logic to cope with a domain like medical

diagnosis will fail for several reasons:

1. Difficulty: It is too much work to list the complete set of antecedents or consequents

needed to represent a complicated rule, and too hard to use the enormous rules that

result.

2. Incomplete theoretical knowledge: Medical science has no complete theory for the

domain.

3. Incomplete practical knowledge: Even if all theoretical knowledge is available, we

may not be certain about a particular patient’s case because all the necessary tests

have or cannot be done.

Knowledge in the medical domain, as well as many other domains such as low,

business, design, automobile repair, and many others, can best be represented by only a
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degree  of belief  as opposed to a  fact.  Dealing  with a degree  of belief  is  done using

probability  theory,  which  assigns  a  numerical  degree  of  belief  between  0  and  1  to

sentences. A probability of 0 corresponds to a definite belief that the sentence is false. A

probability of 1 corresponds to a definite belief that the sentence is true. Probabilities

between 0 and 1 correspond to intermediate degrees of belief in the truth of a sentence.

When  deciding  upon  actions,  an  agent  assigns  probabilities  to  certain

propositions. The agent assigns probabilities to propositions depending on the percepts

that  it  has  received  from  its  environment.  In  uncertain  reasoning  this  is  called  the

evidence. As the agent receives new percepts, its probability assessments are updated to

reflect  the  new  evidence.  Before  the  evidence  is  obtained  we  talk  about  prior  or

unconditional  probability.  After  the  evidence  is  obtained  we  talk  about  posterior  or

conditional probability. In most cases, the agent will have collected some evidence from

its percepts, and is interested in determining the conditional probabilities of the outcomes

given the evidence it has.

4.2.1 The joint probability distribution

One  important  notion  in  dealing  with  probabilities  is  the  joint  probability

distribution,  which  completely  specifies  an  agent’s  probability  assignments  to  all

propositions in the domain. A probabilistic model of a domain consists of a set of random

variables that can take on particular values with certain probabilities. Let the variables be

X1,X2,…Xn. An atomic event is an assignment of particular values to all the variables, i.e.

a complete specification of the state of the domain.

P(Xi)  is a one dimensional vector of probabilities for the possible values of the

variable  Xi.  The joint probability distribution  P(X1,X2,…Xn)  assigns probabilities to all
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possible atomic events. Thus, the joint probability is an n-dimensional table with an entry

for every possible state that gives the value of the probability of the occurrence of this

state. 

The joint probability distribution can answer any question about the domain, but

as  the  number  of  variables  increases,  the  joint  probability  distribution  increases

exponentially.  In  addition,  the  task  of  assigning  probabilities  to  variables  is  usually

difficult  and may be infeasible unless a sufficient amount of statistical  information is

available.

4.2.2 Baye’s Rule

One  important  rule  that  allows  unknown  probabilities  to  be  calculated  from

known stable ones is Bay’s rule. Its general form is:

P(B/A) = P(A/B)P(B) / P(A)

Its  application  in  a field like medical  diagnosis is  very useful.  In  many cases

statistical data provides information about some prior or unconditional probabilities, as

well  as  some conditional  probabilities  on  cause  and effect  relationships  (disease  and

symptoms), which helps in calculating the values of other unknown probabilities.

4.3 Probabilistic Reasoning Systems

In most cases there is no enough information in the environment to prove that any

given  action  will  work.  In  this  case  logical  reasoning  will  not  be  of  much  help  in

achieving rational decisions. The agent should be able to use probabilistic reasoning to

achieve the decisions that will maximize its success.

As mentioned above, the joint probability distribution can answer any problems

about the domain. The problem, however, is that it is not practical to use in cases that
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have a large number of variables. It is also a very difficult task to specify probabilities of

all atomic events.

Using  Bay’s  rule  simplifies  the  computations  required  to  answer  specific

questions  about  conditional  probability  values,  because  it  incorporates  conditional

independence  relationships  among  variables.  One  tool  used  to  capture  uncertain

knowledge and represent dependence between variables in an efficient way consistent

with Bay’s rule is Bayesian Belief Networks (BBNs). 

4.3.1 BBNs

Bayesian Belief networks (BBN) are used to represent and reason about complex

systems  under  uncertainty  and  combine  the  advantages  of  an  intuitive  visual

representation with a sound mathematical basis in Bayesian Probability. They have been

applied  to  many  scientific  applications  such  as  medical  diagnosis,  diagnosis  of

mechanical failures and computer language understanding.  

BBNs are DAG (Directed Acyclic Graphs) graphs that represent the probabilistic

dependence  and  the  conditional  independence  among  variables.   Each  variable  is

represented as a node and each variable can assume a number of discrete values with a

certain conditional probability, given the values of its parents.

According to Russell and Norvig (1995), the following properties hold for a BBN. 

1. A set of random variables makes up the nodes of the network.

2. A set of directed links connect pairs of nodes. A link between two nodes indicates

that there is a direct influence from the first to the second, the first is the parent and

the second is the child.
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3. Each  node  has  a  conditional  probability  table  that  quantifies  the  effects  that  the

parents have on the node.

4. The graph has no directed cycles.

Pearl  (1988)  provides  a  more  formal  definition.  Let  D = (V,E) be  a  directed

acyclic graph whose nodes are identified with the random variables v1,v2,…vn from the set

of random variables V.  D is said to be a minimal independency map of P (where P is the

probability distribution over V), if and only if every v  V is conditionally independent,

given its parents ∏ (v), of all its non-descendents; in other words, 

Probability of v given its parents and non-descendents = probability of v given its parents

only.

“A Bayesian belief network of P is a DAG (V,E), such that (V,E) is a minimal

independency map of P, augmented with a set  of conditional  probability  distributions

{Pv :  v V}  where  each  Pv is  a  local  probability  distribution  which  specifies  the

probability of each possible instantiation of v given every possible instantiation of its

parents.” Pearl (1988)

However, if we assume only binary valued random variables (boolean variables),

it is enough to specify for each variable the probability of TRUE, since the sum of both

probabilities must be 1.

An instantiation or a full assignment  A of a binary-valued belief network, is an

assignment that assigns a truth value to each member of V. A partial assignment ℮ is an

assignment to a subset of the nodes.
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Based on the assumption that the belief network is an independency map of the

network variables, the joint probability of any given full assignment can be computed as

the product of the probabilities of every variable given its parents, i.e.

                           n
P(v1,v2,…vn) =   ( P (vi |  (vi))
                         i = 1

The following example follows (Russell & Norvig, 1995).

You have a burglar alarm that goes off when it detects a possible burglary, and

also occasionally when an earthquake happens. Two neighbors John and Mary promise to

call  you at  work  when they here  the  alarm.  John may sometimes  confuse  telephone

ringing with the alarm, and Mary may some time miss the sound of the alarm because she

likes to listen to loud music. This information can be represented in the following BBN

graph.

    Burglary          P(B)            Earthquake           P(E) 
                      0.001                0.002

                          Alarm                                    B   E   P(A)
                                                                        T   T   .95
                                                                         T   F   .94                                                     
                                                                         F   T   .2
  John Calls            Mary Calls        F    F   .001     

   A  P(A)                                       A  P(M)
     T  0.9                                          T   0
    F  0.05                                         F   0.01

Figure 4. 1 Belief Network Example
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4.3.2 Inference in BBNs

A BBN is a natural way to represent conditional independence information. The

links between nodes represent the qualitative aspects of the domain, and the conditional

probability tables represent the quantitative aspects. It is a complete representation for the

joint probability distribution for the domain, but it is often exponentially smaller in size.

Inference in BBNs means computing the probability distribution of a set of query

variables, given a set of evidence variables, i.e. P(Query/Evidence). For example, we can

use the previous BBN graph to infer the probability of burglary knowing that both John

and  Mary  had  called.   Any  variable  in  the  network  can  serve  as  either  a  query  or

evidence.

BBNs are capable of several types of inferences. They can be used for diagnostic

inference, which allows calculating the probability of a cause given the effect, such as

P(Burglary/JohnCalls).  They  can  also  be  used  in  causal  inference  which  allows

calculating the probability of an effect given the cause, such as P(JohnCalls/Burglary).

They are also capable of making inter-causal inference between causes of a common

effect,  such  as  P(Burglary/Alarm  ^  Earthquake),  and  finally  it  is  capable  of  mixed

inference where two or more types of the above are combined.

Besides answering query variables,  BBNs can help in making decisions based

upon the probabilities of the variables in the network. For example, a decision about a

certain treatment method can be made based on a diagnostic network, which identifies

probabilities of certain related diseases and symptoms. They can also be used to decide

what additional evidence should be observed in order to reach more useful inferences

from the network. In addition, they can aid in sensitivity analysis in order to identify what
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variables of the domain are more important than others in calculating query probabilities,

and thus should be more accurate.  Finally,  they also help in explaining the results of

probabilistic inference to the user.

Complexity of inference in belief networks depends on the network structure. In

general, computation time for inference in singly connected networks, in which there is at

most one directed path between any two nodes in the network, is linear in the size of the

network. 

A Multiply connected network, on the other hand, is a graph in which two nodes

are connected by more than one path. This could happen when there are two or more

possible causes for some variable, and the causes share a common ancestor, i.e. when one

variable influences another through more than one causal relationship.

In general, exact inference in multiply connected networks is  NP-hard. This is

easy  to  prove  by  observing  that  that  a  general  belief  network  can  represent  any

propositional  logic  problem  (if  all  probabilities  are  1  or  0),  and  propositional  logic

problems are known to be NP-complete.

4.3.3 The MAP Problem

Explanation  or  finding  causes  for  observed  facts  (evidence),  is  frequently

encountered  in  the  field  of  artificial  intelligence.  For  example,  natural  language

understanding may be seen as finding the facts that would explain the existence of the

given text. In medical diagnosis if certain symptoms were observed, we would like to

find the disease or diseases that explain the observed symptoms. In computer vision or

image understanding, we would like to find the objects that explain the given image.
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Cost based abduction attempts to find the best explanation for a set of facts by

finding the minimal cost proof for the facts. The costs are computed by summing the

costs of the assumptions  necessary for the proof plus the cost  of the rules.  Charniak

(1994) proved the equivalence of the cost minimization problem to the Bayesian Belief

Network MAP (Maximum a-posteriori) assignment solution of the system. also known as

the  Most  Problem  Explanation  problem  (MPE).  As  the  name  indicates,  solving  this

problem helps us to find the most probable or logical explanation for a set of observed

evidence, by finding appropriate values for variables in the network.

More Formally, in the MAP problem we are given a bayesian belief network B

and a partial assignment e of B, which represents a set of evidence for which we seek an

explanation.  It  is  required  to  find  the  instantiation  A with  the  maximum  probability

P (A | e) . This is equivalent to maximizing P(A) under the constraint  e. If the evidence

set  is  empty,  then  we  want  to  find  an  instantiation  with  a  maximum  unconditional

probability.  

In  the  MAP problem  we  try  to  find  an  assignment  that  maximizes  the  joint

probability. In case that we have a certain evidence set then some variables have certain

fixed assignment, and the instantiation that we choose must respect this assignment. For

example, in the previous BBN graph one instantiation could be:

B = T,  E = F,  A = T,  J = T,  M = F

And the joint probability would be:
P(B=T)  P(E=F) P(A=T/B=T&E=F) P(J=T/A=T) P(M=F/A=T) =

0.0010.998.940.90.3= 2.5329 e-4.

According  to  the  above  discussion  of  multiply  connected  BBNs,  the  MAP

problem is NP-hard. Moreover, approximating it with a bounded degree of accuracy have
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been proven to be  NP-hard (Abdelbar  & Hedetniemi,  1998)  The complexity  of  the

problem increases with the number of variables in the system, the number of states per

variable and the number of undirected cycles in the network. Exact inference in such

complex  cases  may  not  be  feasible,  and  approximate  methods  become  the  natural

alternative.

4.3.3.1 Applying Genetic Algorithms to the MAP Problem

GAs  is  one  technique  that  can  be  used  to  provide  approximate  solutions  to

combinatorial  optimization problems. The first  attempt to use GAs to solve the MAP

problem on BBNs seems to be the work done by Rojas-Guzman & Kramer (1993). The

aim of the research was to examine the potential of using GAs in obtaining near optimal

solutions for large and multiply connected BBNs.

The  genetic  algorithm  presented  in  this  work  uses  non-binary  alphabet  to

represent individual solutions. Each chromosome is represented as a graph instead of a

string. This is because it is desirable to encode node neighborhood in the chromosome.

Each node in the graph represents a gene that corresponds to one variable in the belief

network. Each gene can take a number of discrete values that a variable can assume in the

network.

 The fitness  function  of  each chromosome is  the absolute  probability  of  each

possible solution. The fitness is a product with one factor for each node, each factor is

either a prior probability (for root nodes), or a conditional probability (for internal and

leaf nodes).

Crossover  is  achieved  when  new  individuals  are  created  by  combining  the

chromosomes of their parents. Parents are selected among the best found in the previous
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generation. Since individuals are represented as graphs, a cluster, which is a subset of

nodes is interchanged. A cluster is defined by choosing a random node as the center of

the cluster, and then choosing all nodes that fall less than N links away from the center,

where N is a user defined constant.

Mutation is  performed by changing the value of one gene,  which represents a

value that a certain node can assume. However, variables that are assigned known values

at  instantiation  time,  do  not  change  their  value  by  mutation,  to  guarantee  that  all

individuals  retain  legal  and  meaningful  representation.  These  variables  represent  the

evidence set for which we seek an explanation.

To test  the performance of the algorithm four networks of different  sizes and

connectivity were used. The first network BBN1 is a 13-node singly connected network.

The second network is a 20-node multiply connected network with 5 undirected cycles.

The third network BBN3 is a simplification of BBN2 with only one cycle. The fourth

network has no links among variables but has the same search space size as BBN3.

The optimal solution for the first 3 networks was found using exhaustive search of

all  possible  combinations  of  values.  The  optimal  solution  of  the  fourth  network  was

calculated as the largest prior probability of each node.

The results  obtained by the running the GA on each network 135 times were

promising. For the most difficult network (BBN2) the optimal solution was obtained 30%

of the runs. A solution among the 10 best was obtained 60% of the time, and a solution

among the best 50 was obtained in 100% of the runs. Each GA run took less than one

minute, as opposed to 70hrs for obtaining the optimal solution by exhaustive search. For
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the simple network BBN4 with no arcs, the optimal solution was found in 100% of the

runs.

The effect of the network structure on the results was also interesting. According

to the authors, theoretically,  the GA should not be affected greatly by the number of

cycles in the network. The more profound effect is expected to come from the degree of

connectivity of the network. This is not surprising if one recalls that the most difficult

problems for GAs are the ones that have large variable (gene) interaction, called Epistasis

in GA terminology. This expectation was supported by the results obtained. It was clear

that the extreme case of 0 arcs (BBN4) was easy to solve and a greedy algorithm would

be probably more efficient than a GA. Zero epistasis would occur in a network without

links,  while  high  epistasis  with  each  node  directly  connected  with  all  other  nodes.

Fortunately,  a  BBN  is  seldom  fully  connected,  and  gene  interaction  is  limited  to

immediate neighbors. This characteristic supports the notion of small compact blocks that

helps to guide the search towards the optimal solution, and thus making a GA approach

attractive over a greedy algorithm.

Theoretically, it appears that gene location in the string may have an effect on the

results. It may be desirable to locate neighboring genes in the network close to each other

in the chromosome representation. Experiments are required, however, to test the effect

of this representation.

According to the authors, further research is required to determine whether the

proposed  approach  will  prove  practically  useful  to  build  decision  support  tools  to

diagnose and manage complex systems. Future research should concentrate on coupling

the GA with another local search technique that can be used to refine the near optimal
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solutions  obtained  by  the  GA.  In  addition,  the  approach  should  be  tested  on  larger

networks  with  different  degrees  of  connectivity,  and should  be  compared  with  other

approximate methods. 
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Chapter 5

5 Literature Review

5.1 A Comparison between GA and SA

Simulated annealing and genetic algorithms are two very similar techniques. The

concept of both is borrowed from nature. They both work well on a variety of problems

and  require  little  problem specific  information.  They  both  require  some  criterion  of

determining the fitness or the cost of a solution, and they both create random solutions in

the search space, and move from one solution to another probabilistically.

Both techniques are not guaranteed to give optimal results. SA possesses a formal

proof of convergence. The convergence of a SA algorithm can be controlled using the

annealing schedule to produce a sufficient number of iterations that will lead to slow

cooling and finally to asymptotic convergence. GAs, on the other hand, do not possess

such proof of convergence. Their convergence cannot be easily controlled since they are

heavily dependent on random operators, and they work on a large number of individuals.

In both algorithms good solutions may be discarded. In SA, this happens when a

new structure is accepted and the old one is discarded even in the case that the old one is

better. In GAs, this happens because a GA always accepts new solutions resulting from

genetic  operations.  This characteristic  may cause disruption where good solutions  are

discarded or damaged preventing optimal performance.

Another important difference between SA and GA is the ease with which each

method  can  be  parallelized.  GAs  are  easy  to  parallelize  because  they  operate  on  a
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population of individuals that can be evaluated and processed in parallel. SA, on the other

hand, works on a single solution at a time. It moves from one solution to the next in a

sequential  manner;  thus  it  is  not  easy  to  parallelize.  In  addition,  the  population  of

individuals  gives  GAs  useful  redundant  information  about  what  it  has  learned  from

previous  searches.  Critical  components  of  past  good  solutions  can  be  captured  and

combined together  via crossover to give better  solutions and better  exploration of the

search space. On the other hand, SA does not posses such memory of the past since it

operates  on  only  one  solution  at  a  time  and  exploration  is  limited  to  the  immediate

neighborhood.

Besides  explicit  parallelism  mentioned  above,  GAs also  possess  an  important

feature called implicit parallelism. In short, this means that while a GA operates on an

individual encoded by a string, this string actually represent a group of individuals who

share  with  the  string  its  schemata,  or  its  basic  features.  Both  Implicit  and  explicit

parallelism help to achieve super linear speedups when GAs are parallelized. (Chen et al.,

1998;  Goldberg & Mahfoud, 1993)

5.2 Previous Work

Combining  GAs and SA is  an attractive  area of  research.  GAs are naturally

capable  of  exploring  wide  areas  of  the  search  space,  since  they  operate  on  a  large

population  of  solutions  in  parallel.  The  crossover  operator  allows large  jumps  in  the

solution space by combining two solutions.  The mutation  operator  on the other  hand

performs one small move on one individual. As a result, GAs are not capable of fine

tuning a good solution, because they have no method of performing several small moves

on a solution. SA, on the other hand, possesses this characteristic. SA is capable of fine
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tuning a good solution because it produces a sequence of small moves that usually result

in an improvement of the current solution.

Thus, a combination of GAs and SA may allow the benefits of both to be realized

especially in solving difficult problems such as combinatorial optimization problems. In

fact,  there are several attempts in the literature to hybridize GAs and SA. In general,

research in this area can be classified into four main categories.

The first category tries to use simulated annealing to improve the quality of the

solutions obtained by genetic algorithms. This category tries to carry over to the basic

genetic algorithm the fine tuning features of SA, thus a good solution obtained by GAs

can be further refined to obtain better and closer to the optimal solution. examples of such

research are the Boltzmann Darwin Strategy (Boseniuk & Ebling,  1988 ), the SAGA

algorithm (Brown et al., 1989), the UFO algorithm (Abdelbar & Hedetniemi, 1997), and

SA as a genetic operator (Abdelbar & Attia, 1999).

The second category tries to carry over to  simulated  annealing  the population

oriented feature specific to GAs. Some research belonging to this class strives to carry

over to GAs the asymptotic convergence properties of SA, by having a population of

solutions which have a distribution that is provably near Boltzmann (Goldberg, 1990;

Mahfoud & Goldberg, 1993). Other research is more concerned with finding the optimal

annealing  parameters  in  a  population  oriented  fashion.  In  (Lin  et  al.,  1991)  The

population serves as parallel Markov chain, while in (Cho & Choi, 1998) the population

is a just collection of solutions, each has its own annealing temperature that is adjusted

according to its rank in the population.
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The third category tries to augment the basic simulated annealing algorithm with

the GA recombination or crossover operator. The main idea is that when SA reaches

stagnation, a large jump in the solution space is introduced using the GA recombination

operator. This will help the algorithm to perform a better exploration of the search space,

which is a characteristic of the GA not usually enjoyed by regular SA. This category

includes the work by (Koakutsu et al., 1996) 

The fourth category includes research that tries to introduce the SA acceptance

probability,  based on the annealing  schedule,  to  the genetic  algorithm operators.  The

main idea is convert the usual replacement strategy of GAs, in which offspring replace

parents irrespective of their fitness, to a SA controlled replacement strategy. Doing so,

superior children have a higher chance of replacing their parents, while inferior children

still have a non-zero chance of replacing their parents. This category includes the work

by (Esbensen, 1992) , (Adler, 1993) and (Chen et al., 1998).

Following, a summery of the research done in each category is provided.

5.2.1 Using SA to Improve Solutions obtained by GAs

5.2.1.1 Boltzmann-Darwin strategy (Boseniuk & Ebling, 1988 )

This research solves the traveling salesman problem using a mixed Boltzmann-

Darwin strategy; i.e. it combines SA with GA while introducing the idea of life cycles.

 The general scheme depends on having N tours each one can be represented in

the population by one or more copies of itself. Each tour can change its internal structure

by Boltzmann type mutations with temperature Tk, where k is the current stage of the

tour. Each tour has a lifetime consisting of at least two stages, childhood and maturity.

The child hood stage starts at a high temperature, and the maturity stage is reached when
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the temperature reaches zero, i.e. the life cycle of a tour is similar to a short annealing

procedure.  When a tour  reaches  maturity  it  is  able  to  reproduce  itself  by making an

identical copy of itself that replaces of the worst tour in the system.

Experimental  results  showed  that  the  mixed  strategy  yields,  in  special  cases,

better results than pure simulated annealing. In addition, the algorithm is well suited for

parallel implementation.

5.2.1.2 The SAGA algorithm (Brown et al., 1989)

The research introduced here tries to solve the Quadratic Assignment Problem

using  a  hybrid  SA-GA  approach.  The  QAP  is  an  NP-hard problem,  that  is  usually

represented by two N*N matrices C & D. The matrix C is called the structure or the cost

matrix, with entries  cij. The matrix  D is called the distance matrix with entries  dij. We

want to find a permutation P of the N indices, such that

 N      N

     cij  dij   is minimized
            i=1  j=1

The TSP is a special case of the QAP in which the desired structure is a cyclic

permutation of the cities. The QAP is a good candidate for the application of the adaptive

concepts employed by both genetic algorithms and simulated annealing. The idea was

that after identifying the promising regions of the search space by the GA, SA is invoked

to optimize members of the final population.  The hybrid Simulated Annealing – Genetic

Algorithm approach is called (SAGA). This technique is useful for improving the quality

of the solution obtained by GAs, using a local search method such as SA, which will

perform a fine tune of the solution. In other words, each offspring is required to “mature”

before it is allowed to reproduce.
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The following are the steps performed by the SAGA algorithm

1. Initialize the parameters of the GA.

2. Generate an initial population of solutions for the GA.

3. Use the GA to produce k good solutions.

4. For each of the k solutions, do the following

a. initialize the parameters of SA

b. improve  the  “good”  solutions  using  SA,  and  return  to  the  GA

population

5. Repeat steps 3 and 4 as needed.

The  algorithm  was  better  improved  by  applying  step  4  in  parallel  for  the  k

solutions. 

In SAGA the selection operation is a greedy operator that selects the first parent

from the best s structures where s is a user defined constant, while the second parent is

selected at random

Crossover is  similar  to  partially  matched crossover,  in which a  portion  of  the

structure of one parent is copied directly to the offspring, and the rest is copied from the

second parent resolving conflicts.

Ex:          P1:     1 2 3 4 5 6 7 8            P2:     6 4 8 3 7 2 1 5

Step 1:    O: -   -  |  -  -  -  |  -  -  -

Step2:     O: -   -  | 3  4 5  |  -  -  -

Step3:     O: 6   -  | 3  4 5  |  2 1 -

Step4:     O: 6  8  | 3  4 5  |  2 1 7 
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To find an  appropriate  annealing  schedule  for  the  SA operator,  the  following

heuristic was applied.

1- An average change in cost () was calculated by applying random pair wise

interchange of the terms of the solution, and computing the corresponding change

in cost. This method is one of the most commonly used heuristics for solving the

QAP. The mean absolute  deviation  (MAD) of  100 pair  wise  interchanges  was

calculated.

2- To calculate the initial temperature T0, a certain initial probability of acceptance

 was assumed. T0 was then set to T0 =   MAD.

3- The decrement constant   used to decrement the temperature value was set to

 = [T*/ T0 ] 1/ where T0 is the initial temperature, T* is the final temperature and 

is the number of temperatures in the schedule.

The algorithm was tested with two standard problem sets found in the literature.

Results indicated that SAGA was superior in solution quality to steepest descent pair-

wise interchange method, which is the most important heuristic search method to solve

the  QAP.   However,  the  run  time  of  the  SAGA  algorithm  was  not  as  good  as  its

competitor for small problems. This situation is reversed for large problems. Based on

these results, SAGA has excellent potential for solving large-scale QAP applications.

According to the authors, future research should be directed to solving the real

problems  with  the  algorithm.  In  addition,  more  tests  should  be  done to  improve  the

quality of the SA and GA parameters used in the algorithm.
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5.2.1.3 The UFO algorithm (Abdelbar & Hedetniemi, 1997)

In this paper a hybrid of GA and SA was used to solve the MAP problem on

BBN’s.  The  algorithm  is  similar  to  the  SAGA  algorithm,  but  it  is  more  “loosely-

coupled”,  since not all  newly produced offspring from the genetic  algorithm undergo

simulated annealing.

 The algorithm was implemented on a multiprocessor system where one processor

-called the kernel- was used to run a regular genetic algorithm. The other processors are

called satellite processors, and each one is used to apply simulated annealing on a chosen

individual from the population. The idea is that periodically some individuals undergo a

process  of  genetic  improvement  for  whatever  reason  before  being  returned  to  the

population, as if it was abducted by UFOs who improve its traits and then return it to the

population. 

The difference  between this  algorithm and the SAGA technique  is  that  in  the

SAGA algorithm every new offspring resulting from a crossover operator undergoes a

SA process. In the UFO algorithm whenever an SA processor finishes its current search,

it requests another individual from the satellite kernel processor.

The  algorithm  was  implemented  on  PVM a  public  domain  SW package  that

allows a network of heterogeneous Unix machines to be used as a single large parallel

Computer.

The results indicate that the hybrid method performs better that either GA or SA

alone, even disregarding the effect of parallelism. The problem in the algorithm is that

SA has a much higher cost in terms of processing time, when compared with the regular

random mutation operator.  A single application of the annealing operator can take as
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much time as one or two hundred generations of applying simple random mutation and

crossover  operators.  Thus,  the algorithm is  particularly  suited for  parallel  processing.

Since a satellite processor does not need to communicate with the master processor while

it  is  performing  the  annealing  procedure,  the  hybrid  algorithm  is  more  suited  for

application  on loosely coupled,  distributed  multi-computers  with high communication

cost.

5.2.1.4 Simulated Annealing as a Genetic Operator (Abdelbar & Attia, 1999)

The focus of this research was on the potential for obtaining better solutions by

supplementing  a  genetic  algorithm with  a  simulated  annealing  operator  as  a  type  of

intelligent or directed mutation operator, as distinguished from the random or undirected

regular mutation operator.

The  regular  mutation  operator  is  very  cheap  computationally.  It  introduces

diversity in the population and allows slow evolution to be achieved in a large number of

generations. Simulated annealing as a genetic operator allows occasional modification of

some individuals in the population in an intelligent and directed manner. Thus, it can be

seen as modeling a situation where selected members of the population undergo “fast-

track” evolution for whatever reason, before being admitted to the population.

The problem that was solved using this technique is the MAP problem on BBNs

(Maximum A Posteriori  Assignment  Problem).  The  implementation  used  the  popular

MIT class library GALIB. The genetic  algorithm used was a steady state  GA with a

population  replacement  factor  of  10%. The chromosome representation  was  a  binary

string representing a candidate truth assignment to the underlying BBN.
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The  crossover  operator  was  a  standard  one-point  crossover  operator  with

probability Pcross of being performed, and the mutation operator selected a random bit to

flip  with  probability  Pmut.  Selection  for  reproduction  was  based  on  uniform  random

distribution. The objective function is the joint probability of the underlying BBN, given

the truth assignment and the conditional probability table of each node in the network. 

Simulated annealing was implemented as a special  case of mutation.  A call  to

mutation may cause simulated annealing to be performed on the individual with a certain

predefined probability PSA. The solution resulting from SA is inserted in the population as

the  result  of  mutation.  If  SA  is  not  performed,  regular  mutation  is  performed  with

probability  1-PSA.  The  SA  operator  used  a  fixed  initial  temperature  T0, and  the

temperature was reduced by a certain factor  f. The neighborhood operator used to find

neighboring states for annealing was the regular mutation operator of the GA.

The  algorithm  was  tested  on  30,  40  and  50-node  networks  with  random

probabilities  uniformly  distributed  between  [0,1].  First,  A  regular  GA  was  run  to

convergence 200 times, with different randomly generated values of  Pcross and Pmut. The

best 10 parameters pairs were used to test the Genetic algorithm augmented with SA. For

each pair, 200 PSA values were tested. Results indicate that for every one of the genetic

parameter  pairs,  simulated  annealing  produced  an  improvement  in  the  quality  of  the

solution returned. However, the effect of mutation seems to be positively related to the

ratio of Pcross to Pmut. When this ratio was highest, the effect of simulated annealing was

more profound. In addition, the performance of the algorithm was better for the 50-node

network than for the other smaller networks. 
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5.2.2 Population Oriented Simulated Annealing

5.2.2.1 Boltzman Tournament selection for Genetic algorithms (Goldberg, 1990)

In  this  research  a  Boltzmann  tournament  selection  procedure  is  derived  and

implemented  to  give  stable  distributions  within  a  population  of  structures  that  are

provably near Boltzmann. This is basically a means to carry over Boltzmann distributions

and  cooling  schedules  to  GAs,  thereby  guaranteeing  asymptotic  convergence  to  a

population oriented structure as well. 

The algorithm depends on selecting an individual  from the current population.

Two other individuals are then selected to compete with the first individual. The selected

individuals are chosen according to the differences between their objective functions and

the objective function of the first individual. A tournament like competition in two stages

is  held  between  the  three  individuals.  This  competition  uses  logistic  acceptance

probability  exp(-Ei/T)/  (exp(-Ei/T)+exp(-Ej/T)),  where  i &  j  are  the  two  competing

individuals. The winner of the tournament finds its way to the new population, and the

process is repeated until the new population is full.

The algorithm is strait forward except that in the first stage of selection between

two individuals an anti-acceptance probability is used, which favors poorer individuals.

The objective of this is to help the population achieve a Boltzmann distribution stably. If

the better individual is always favored, as in the usual acceptance probability, the best

individual will ultimately fill the population with copies of itself, in a manner similar to

other GA selection scheme. This is particularly true in case of repeatedly comparing an

individual to a copy of itself. Using the anti-acceptance probability helps the population
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equivalent of generating a neighbor uniformly at random. Choosing competitors that have

different function values also helps to achieve this objective.

One advantage of the above technique is that it is easily implemented on parallel

hardware, unlike the regular SA procedure which is difficult to parallelize. 

5.2.2.2 Parallel Recombinative Simulated Annealing (Mahfoud & Goldberg, 1993)

This research provides a parallel  version of simulated annealing that strives to

retain  the  desirable  asymptotic  convergence  properties  of  SA,  while  adding  the

population approach and the regular GA crossover and mutation operators. It is a parallel

version of the research summarized in the previous section.

In  this  algorithm  several  copies  of  SA  run  in  parallel  with  mutation  as  the

neighborhood  operator  and  crossover  combining  individual  solutions.  Alternative

solutions in PRSA, unlike Boltzmann tournament selection, do not come purely from the

current population, but from applying both crossover and mutation. 

In  PRSA,  cooling  is  synchronized  across  processors.  Thus  a  Boltzmann

distribution is approached on every processor. The combined distribution also approaches

Boltzmann. Crossover reconciles independent solutions, and together with mutation play

the role of an extended population-level neighborhood operator between independent SA.

Slow cooling and diversity maintaining operators help PRSA to avoid genetic drift and

premature convergence.

The following algorithm is run on every processor:

1- Set initial temperature to a sufficiently high value.

2- Initialize a random population.

3- Repeatedly generate each new population from the current population as follows:
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Do n/2 times (n is the size of the population)

a. Generate two children using crossover.

b. Mutate every newly generated child.

c. Hold one or two Boltzmann trials between children and parents.

d. Overwrite the parents with the trial winners

e. Periodically lower T.

A  Boltzmann  trial  refers  to  using  the  logistic  probability  1/(1+exp(E/T)) to

select  between an old and a  new solution.  One possible  way to perform competition

between two parents and two children is to allow both parents to compete as one unit

against the two children, this is called double acceptance/rejection. A second approach

called  single  acceptance/rejection  allows  a  parent  to  compete  against  the  child  that

inherited its right end.

The research proves the asymptotic convergence property for two versions of the

algorithm. The two versions differ in the selection and replacement criteria, and in the

way a competition is carried out between parents and children. The proof depends on

proving the two conditions that suffice to guarantee asymptotic convergence

1- The ability to move from any state to the optimal solution in a finite number of steps.

2- The probability at any given temperature for generating state y from state x, is the

same as the probability of generating state x from y.

Applying  PGSA  on  two  deceptive  test  problems,  showed  that  the  algorithm

consistently converged to the global optimum at all population sizes. In addition, both

serial  speedup and combined speedup (from implicit  and explicit  parallelism)  can be

polynomial.
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5.2.2.3 The Annealing Genetic Approach (Lin et al., 1991)

The main purpose of this research is to design an efficient annealing schedule for

simulated annealing. Genetic algorithm’s parameters were applied to find good annealing

parameters.

In  designing  a  simulated  annealing  operator,  the  following  factors  must  be

carefully analyzed and optimized:

1. The optimum initial temperature value.

2. The length of the Markov chain at each temperature, which implies the number of

iterations that should be carried out at each temperature.

3. Detecting the equilibrium condition of the system at each temperature.

4. Finding methods to help the system escape local optima.

5. Finding a suitable temperature reduction factor.

6. Detecting  that  the  system has  reached  stagnation,  and no further  improvement  is

possible.

In order to find a good initial temperature, the annealing genetic approach

performed  preprocessing calculations of the over all algorithm. The following steps were

conducted:

1. Create an initial random population P0

2. Apply regular genetic operators on the population once to produce an intermediate

population.

3. Take the worst individual in the intermediate population and apply a Markov chain

on it. If the resulting individual is better, insert it into a new population called P1, and

continue to generate other individuals using the same Markov chain. If the new state is
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worse than the initial state, stop this Markov chain, select another individual from the

intermediate population and repeat the same process.

4. Stop when the new population P1 has been completely generated.

In  order  to  calculate  the  initial  temperature  value,  the  researches  assumed  an

initial  acceptance  probability  of  0.6.  The  change  in  cost  (C) was  taken  to  be  the

difference  between  the  highest  and  lowest  cost  of  the  final  population.  The  initial

temperature can thus be calculated from the formula: Paccpet = exp (-C/T) as

T= -C/ ln 0.6  2C. The initial temperature was then taken to be

               T0= C / (pop_size/2).

The second important  parameter  is  the length of  the Markov chain.  From the

above  procedure  it  is  clear  that  the  length  of  the  Markov  chain  is  bounded  by  the

population size, because the chain was generated from multiple states of the population.

For the new population to achieve a quasi-equilibrium state at each temperature,

regular  genetic  operators  (crossover  and mutation)  were applied  on the population to

create a new population.

In order for the system to reach convergence, the average cost of the population at

each generation should not exceed that of the population in the previous generation. The

condition for achieving convergence was determined by keeping the cost of the best so

far solution at each generation. When 80% of a new population in a certain generation

have their costs equal to the best solution found so far, convergence is declared and the

genetic annealing algorithm stops.

The  value  of  the  best  decrement  factor  was  calculated  adaptively.  When  the

difference in cost between two successive generations is high,   was taken to be 0.5,
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which represents fast annealing. When the difference in cost is low,   was set to 0.95,

which represents slower annealing.

The annealing genetic approach was tested on the traveling salesman problem.

The results  indicated  that  the  algorithm could  actually  find  results  closer  to  the  best

known solution than SA alone. The authors also proved that their algorithm is of O(n2).

Their  proof,  however,  is  problem  specific  and  difficult  to  be  applied  to  different

problems. Although the experimental results did not show a great enhancement in the

solution  quality  when  compared  to  the  best  known  solution,  the  algorithm  actually

reduced the amount of time needed to find an approximate solution.

5.2.2.4 NPOSA  A New Population Oriented SA (Cho & Choi, 1998)

This is a new algorithm that introduces the evolutionary concept to SA. The idea

is  to  have  a  population  of  solutions  each  has  its  own  local  temperature.  The  local

temperature is used as usual to improve the solution using SA. The temperature is also

adjusted according to the individual’s rank in the population. If an individual finds that its

cost is high compared to others in the population, it raises its temperature to give itself a

chance to  improve through uphill  moves.  Otherwise it  drops its  temperature  to avoid

uphill moves and allow more fine search, i.e. higher temperature is assigned to an inferior

individual with a high cost and vice versa.

The advantage here is that the temperature need not be defined explicitly by the

user, since it is adjusted implicitly using the individuals rank. This also has the advantage

of making the algorithm less sensitive to the initial temperature value as is the case in

regular SA in which the cooling schedule parameters have to be carefully determined,

usually by trial and error, because they highly affect the final solution.
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The algorithm was applied to the 100-city TSP problem and compared with the

regular  SA  results  on  the  same  problem.  It  was  found  that  NPOSA  obtains  better

solutions closer to the optimum than SA. 

5.2.3 Augmenting SA with GAs Recombination Operator

5.2.3.1 Genetic Simulated Annealing GSA (Koakutsu et al., 1996)

This technique is an SA-oriented hybrid approach which tries to incorporate the

GA based crossover operator into SA in order to produce large jumps in the solution

space and enlarge the search region. GSA generates the seeds of SA sequentially, i.e. the

starting solution of a SA local search depends on the best so far solutions of all previous

SA local searches. This sequential approach seems to generate better child solutions than

a its parallel counterpart in which the seeds of SA local search are generated in parallel,

and the order of applying each SA local search is independent.

Initially a population is created at random and then three operations are repeatedly

applied on the population.  SA-based local  search, GA based crossover operation,  and

population update.

While performing SA search, GSA keeps the best so far solution found. At the

end of each SA based local search GSA replaces the current solution with the best so far

solution. 

When the system reaches a frozen state, a jump in the search space is introduced

by  performing  GA  based  crossover  on  two  randomly  chosen  individuals  from  the

population.  The  new  solution  produced  by  the  crossover  operator  undergoes  a  full

annealing process before being inserted into the population. At the end of the SA search,
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the new solution replaces the worst solution in the population. The process repeats for a

predefined CPU time.

The algorithm was applied to the non-slicing floor plan design problem which is

defined  as  “given  a  set  of  arbitrary  shaped and fixed  sized  modules  and connection

information,  find  a  minimum  area  placement  with  the  shortest  wire  length”.  By

comparing the results with SA, it was found that that GSA improved the average chip

area by 12.4% and the average wire length by 2.95%.

5.2.4  Introducing SA Acceptance Probability to GA operators

5.2.4.1 Parallel Genetic Simulated Annealing (Chen et al., 1998)

This  technique  is  a  parallel  version  of  GSA.  It  tries  to  combine  the  parallel

features of genetic algorithm with the selection criterion and the convergence property of

SA. It is a massively parallel algorithm suited for implementation on MIMD (Multiple

Instruction Multiple Data)  machines.

The algorithm works by setting a temperature value for each processor, and then

having  each  PE (Processing  Element)  create  a  random solution.  Then,  for  a  certain

number of iterations the following is performed: this processor receives a new individual

from another processor. The second processor is determined using two random values

(direction and distance) created by the first processor at random. Mutation is performed

on the resident individual and crossover is performed between the resident individual and

the new one to create two children.

The  SA  part  now  comes  to  work.  Selection  is  performed  between  three

individuals,  the resident and the two children,  in a tournament  fashion. The selection

criterion works in a manner similar to SA, in which a new candidate is accepted if the
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cost  increase  is  less  than  or  equal  to  the  current  temperature.  The  winner  of  the

tournament replaces the resident individual, and finally the temperature is reduced.

The basic contribution of this method is exploiting the parallel nature of GA by

having each individual reside on a different processor. At the same time no parallelization

of  any serial  or  problem specific  portion  of  GA or  SA is  required.  The calculations

required for the objective function, mutation, crossover, and the selection criterion are

replicated  on  each  processor.  Thus,  communication  and  synchronization  between

processors is minimized.

Another new idea introduced here is the random temperature approach as opposed

to the fixed temperature approach. For each PE, the initial temperature is computed in a

function, which samples the effect of operators in the domain to calculate an expected

change  in  cost.  Initial  temperature  value  is  calculated  such  that  the  probability  of

accepting an uphill move is between 0.5 and 1. The   parameter is calculated from a

randomly generated final temperature, the initial temperature, and the maximum number

of iterations required for SA.

The PGSA algorithm was tested on two problems: the traveling salesman problem

(TSP), and the error correcting code design problem (ECC). 

The  results  obtained  indicated  that  the  random  approach  to  create  initial

temperature  values  for  each PE separately  produces  results  similar  or  better  than the

uniform approach regardless of the population size. The advantage in the random case is

that the progress is apparent immediately after the algorithm starts, unlike the uniform

temperature case in which little progress is achieved during the initial period due to the

high  temperature  at  the  beginning  of  the  run.  Another  advantage  is  that  using  this
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approach, there is hardly a need for fine tuning the SA parameters. Obtaining the optimal

parameters is a critical and very tedious task in traditional SA, because these parameters

highly affect the results obtained by the algorithm.

In  addition,  the  random temperature  approach allows  the  algorithm to  keep a

diversity  of  annealing  schedules.  At  PEs  where  the  initial  temperature,  the  final

temperature and  are high, inferior solutions are accepted at a greater probability. This

helps to maintain diversity in the population, which is critical to the performance of the

algorithm.  On  the  other  hand,  PEs  with  lower  temperatures  and   accept  inferior

solutions  with  a  much  lower  probability.  Thus  good  solutions  are  protected  from

disruption. Keeping a balance between diversity and disruption is one of the key features

that lead to the success of the algorithm.

The second striking result was that the performance of the algorithm scales up

linearly  with  the  increase  in  processing  elements.  In  TSP  domain,  the  constant  of

proportionality  approaches  one for  finding a  solution within 2% of  the optimal.  This

means  that  we  can  reduce  the  execution  time  by  half  if  we  double  the  number  of

processing elements. 

Another important finding was that the performance was improved with increased

population  size.  This  result  appears  to  be unique to the PGSA technique,  because in

standard GA systems the performance usually degrades if the population size exceeds a

few  hundred.  A  traditional  GA  uses  roulette  wheel  selection  criterion  for  selecting

parents. This approaches allows above average solutions to replicate themselves in the

new generation, and low fitness solutions gradually die during evolution. Diversity may

be lost very quickly, leading to fast and premature convergence. Increasing population
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size does not help in solving the problem. On the other hand, PGSA technique helps to

maintain diversity by using SA-type annealing schedule in place of selection,  when a

choice must be made between parents and their offspring. 

5.2.4.2 Adaptive SAGA (Esbensen & Mazumder, 1994)

In this research a mixture of GA and SA is introduced and applied to the Macro

cell placement problem. The idea was to bring the fine tuning feature of SA to the genetic

algorithm after stagnation, thus combining the benefits of both algorithms. By nature, in a

GA the cost of the solution improves rapidly in the initial phase. In the later phase of the

process, improvements become very slow, and most run time is wasted trying to achieve

very small improvements. SA, on the other hand, does not converge as fast as the GA in

the initial phase, but it is usually capable of obtaining improvements faster in the later

phase. Combining both algorithms attempts to gain the benefits of both.

The basic GA has been modified in two ways

1- the mutation performed on an individual is accepted with a certain probability as in

SA. This  probability  is  determined by the temperature of the individual  and each

individual has its own annealing schedule.

2- Initially the algorithm behaves as a regular GA. As time goes on ,however, the GA is

switched to SA as a result of stagnation

The algorithm keeps track of the best individual ever found. It performs regular

crossover on two individuals chosen from the population according to their fitness values.

Mutation, as said previously, is SA controlled. A mutation that increases the individual

fitness  is  always accepted,  while  a mutation  that  decreases fitness is  accepted with a
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probability proportional to the change in fitness. The temperature of the individual is then

modified according to its own annealing schedule.

A step towards SA is taken whenever no improvement has been accomplished for

a number of generations.  This  is  achieved by gradually reducing population size and

increasing  the  probability  of  mutation,  i.e.  more  SA  controlled  mutations  will  be

performed on a smaller number of individuals. Finally the algorithm will behave as a

pure SA when the population size reaches one.

The algorithm was tried on the macro cell placement problem. The problem can

be defined as follows: Given

 A set of rectangular cells, each with a number of terminals at fixed positions along

the edges of the cell.

 A net list specifying the interconnections of all terminals, and

 An approximate horizontal length W of the chip under construction.

It is required to find

 The position of each cell.

 The orientation and possible reflection(s) of each cell.

 A rectangle B defining the shape of the chip. The objective is to find B,  such that

B has the minimum possible area, satisfying the following constraints:  

1- No pair of cells overlap each other

2- The rectangle B encloses all cells and has approximate horizontal length W. 

3- The  area  within  B,  which  is  not  occupied  by  cells,  is  sufficiently  large  to

contain all routing needed to implement the inter-connections.
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The genotype was encoded using a binary tree in which the ith node corresponds to

cell i. Two types of edges were used, top edges and right edges. All edges are directed

and oriented away from the root.  Crossover  and mutation  operators  were specifically

designed for the problem such that the resulting offspring should not violate the problem

constraints.

 The algorithm was tested on Apte, Xerox and Hp benchmarks from the 1992

MCNC  International  Workshop  on  Placement  and  Routing  described  in  (Esbensen,

1992). It was found that the combined approach actually performs better than a pure GA,

in  terms  of  solution  quality,  on  the  first  two  test  cases.  For  the  Hp  benchmark,  no

significant improvement was obtained. A comparison with other systems used to solve

the same problem also indicated that the SAGA technique was superior.

5.2.4.3 Simulated Annealing Mutation and Recombination (Adler, 1993)

This technique augments the mutation and recombination operators of GAs with a

SA-like  acceptance  probability  scheme.  The  basic  idea  is  to  use  the  SA  stochastic

acceptance function internally to limit adverse moves. 

The simulated annealing mutation operator (SAM) performs regular mutation on a

candidate  solution.  The SA part  is  introduced by applying an acceptance  trial  with a

temperature schedule between the parent and the child produced by mutation. 

The  simulated  annealing  recombination  operator  (SAR)  works  in  a  similar

manner.  The acceptance  trial  is  held between the two parents,  and then  between the

winner  and each of the two children  resulting  from recombination.  The winning two

individuals from this acceptance trial is inserted in the population.
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The  SAM  and  SAR  operator  do  not  affect  the  GA  convergence,  since  the

schemata theorem does not assume any specific behavior on the genetic operators. The

hybrid technique can also be seen as introducing the population notion to the regular SA

operator. In addition, the convergence properties of SA are also not affected by the hybrid

algorithm, since each individual in any generation is the successor of another member in

the previous generation, which maintains the Markov chain model within GA domain.

The  algorithm  was  tested  on  the  problem  of  training  a  feed  forward  neural

network.  The objective  function  was the mean squared error  of  running the  network

forward with the given weights. The performance of the hybrid technique outperformed

pure GA by an order of magnitude.

5.3 A Note on Adaptive Simulated Annealing

The  researches  summarized  above  include  many  attempts  to  adapt  the  basic

simulated annealing algorithm. The main objective is to optimize the SA parameters in an

adaptive manner, without the need for the manual adjustment of operators through trial

and error.  For example,  the work done by Esbensen & Mazumder (1994) uses a SA

controlled mutation, in which each individual has its own annealing schedule. The initial

temperature  is  calculated  for  each  individual  using  a  probability  of  acceptance  that

changes adaptively during the course of evolution depending on the number of mutations

performed on the individual.

The work by Cho et al. (1998) also uses a different annealing schedule for each

individual. The temperature value is adjusted for each individual depending on its rank in

the  population.  This  will  give  poorer  individuals  more  chance  of  improving  through

simulated annealing.
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The PGSA approach (Chen et al., 1996)  uses different annealing schedules for

each processing  element.  In  addition,  the initial  temperature  value  is  created  using a

randomly generated probability of acceptance. The reduction factor   is also calculated

adaptively using a randomly generated final temperature, the initial temperature, and the

desired  number  of  iterations.  As  explained  above,  varying  the  annealing  schedule

between processors and using adaptively generated parameters allow the balance between

disruption and diversity to be maintained.

Finally, the annealing genetic approach (Lin et al., 1991) also utilizes a heuristic

method to calculate  the initial  temperature value,  using a certain initial  probability of

acceptance, an expected change in cost, and the current population size. In addition, the

reduction factor   is set adaptively such that fast annealing is performed when only a

quick  and  dirty  solution  is  required,  while  slow  annealing  is  performed  when

convergence is approached and more fine search is needed.

Adaptation in simulated annealing seems to be an attractive area of research. The

reason is that SA suffers from a major drawback, which is its sensitivity to the annealing

parameters.  Finding  optimal  annealing  parameters  is  by  no  means  an  easy  or  strait

forward task. Therefore, adaptive simulated annealing, in which the annealing parameters

are  optimized  during  processing  depending  on the  current  situation,  seems to  be  the

natural alternative.
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Chapter 6

6 Adaptive Simulated Annealing as a Genetic Operator

6.1 Motivation 

The technique presented in this research can be described as a hybrid genetic-

annealing  technique,  in  which  simulated  annealing  acts  as  a  directed  or  intelligent

mutation operator.  Although the feasibility of this  approach has been established in a

previous work (Abdelbar & Attia, 1999), there were still many open questions that need

further investigation.

The theory behind the hybrid GA-SA technique, in which SA plays the role of an

intelligent  or directed mutation operator,  is based on the idea that  SA in this  context

represents a situation in which some individuals in the population undergo “fast track”

evolution  for  whatever  reason.  This  can  also  be  thought  of  as  helping  some  newly

generated  offspring  to  reach  maturity  before  being  inserted  in  the  population.

Theoretically,  this  should allow better solutions to be obtained as a result of directed

mutation. The presence of superior children in the population should help the evolution of

genetic  algorithms,  through  the  regular  mutation  and  crossover  operators,  towards

optimal or closer to the optimal solutions.

The results obtained in the previous thesis work (Abdelbar & Attia, 1999) support

this theoretical observation. It was actually found that the hybrid technique yields better

results than GA alone when the technique was tested on large size belief networks. It was

found, however, that the best results were obtained when the annealing parameters were

specifically tailored for the network under consideration. This observation may limit the
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use of the technique, since manual adjustment of parameters is by no means easy or strait

forward, although it is very critical for the final results obtained.

Designing  a  simulated  annealing  algorithm,  in  which  the  parameters  adapt

themselves  according  to  the  current  situation  in  the  search  process,  seems  to  be  an

attractive alternative that will remedy the defects of the regular static simulated annealing

algorithm. 

Traditionally, if we were to use GAs to optimize the parameters of any algorithm,

we  would  think  of  a  Meta-genetic  algorithm,  or  a  genetic  algorithm  within  another

genetic  algorithm.  The  primary  GA  will  have  each  individual  consisting  of  the

parameters that should be optimized. To determine the fitness of each set of parameters

(each individual), we would run another secondary complete GA using the parameters of

this  particular  individual.  The  best  result  obtained  by  the  secondary  GA  would  be

returned to the primary GA as the fitness of that particular set of parameters. This process

is repeated for all individuals in the primary genetic algorithm. Of course, applying such

technique is very difficult and time consuming. 

The concept of GAs and SA are both borrowed from nature. Nature again may

provide the solution to our problem. In nature the genotype of an individual may contain

genes  that  do  not  directly  affect  the  individuals  phenotypic  characteristics  or  its

performance  in  life.  Nevertheless,  these  genes  affect  the  offspring  produced  by  that

individual.  Some genes transmitted from the parent to the child may result in inferior

offspring that have some phenotypic defect. Other genes may result in superior children if

they were carried over from a parent to a child. Defective offspring do not usually live

long enough to transmit the defective genes from one generation to another. These genes
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thus have a short life span. On the other hand, superior offspring continue to live and

reproduce, and their genetic material spreads and propagates from one generation to the

next.

This situation is exactly what we are trying to mimic in this research. The analogy

in this case is that the SA parameters play the role of hidden genes that do not directly

affect the solution in terms of its fitness. Their role comes to play when offspring of this

individual  are  produced  using  these  parameters.  Good  parameters  result  in  superior

offspring  that  continue  to  survive  from  one  generation  to  another.  Bad  parameters

produce inferior offspring that quickly die out together with their bad genes, parameters

in our case.

6.2 Thesis Contribution

The  discussion  in  chapter  5  (section  5.3)  shows  that  several  attempts  in  the

literature, concerning hybrid GA-SA techniques, tried to introduce adaptation in the SA

operator. These include (Lin et al., 1991; Esbensen & Mazumder 1994; Chen et al. 1996

and Cho et al.  1998). The adaptation of parameters  in all  these cases depended on a

heuristic adjustment of parameters using randomization, or by checking the existence of

certain conditions in the search process, such as approaching convergence, number of

mutations, rank of individual...etc. Non of these attempts introduced self-adaptation of

parameters  that  evolve  and  learn  from experience  without  any  external  guidance  or

supervision. 

Thus, the first contribution of this thesis is that the SA operator will be self -

adaptive, and its parameters will evolve and change according to the current situation and

the requirements of the search process. This should eliminate the problem of having to
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find fixed global annealing parameters that should be general enough to give good results

for all individuals in the population, yet specific enough to suit each  and every stage of

the search. As mentioned above, this task is very difficult and may be infeasible in many

practical applications. For example, in some cases, especially at the beginning of a run,

we may just need a quick and dirty solution, which means having fast annealing schedule

with  high  reduction  parameter  .  In  other  cases,  especially  when  we  approach

convergence, we might need much slower cooling, in order to achieve better fine tune of

the good solutions obtained. 

The  role  of  adaptation  in  this  research  is  not  restricted  to  finding  optimal

parameters easily, but it also offers a great contribution to the quality of the solutions

obtained. In a sense, the optimization of parameters as well as optimizing the solution to

the problem will go hand in hand. From the analogy with nature, we can see that as the

parameters  evolve  with  time,  they  can  directly  affect  the  quality  of  the  solutions

produced.  Bad  solutions  resulting  from bad parameters  will  not  live  long  enough  to

degrade performance, while good parameters will produce good results that will continue

to live and produce other superior solutions.

The second important contribution of this thesis is that the genetic algorithm used

is  augmented  with  problem  specific  knowledge.  The  problem  selected  to  test  the

algorithm  is  the  MAP problem on  BBNs,  described  in  chapter  4.  Utilizing  problem

specific  information  is  achieved  by having a  crossover  operator  that  is  aware  of  the

structure of the BBN graph. This crossover operator is similar to the one used in (Rojas

Guzman & Kramer, 1993). In this technique a random node is selected as a center of the

cluster. All nodes that fall within N links away from the center node, where N is a user-
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defined parameter, are selected. This subset of nodes is then interchanged between the

two children produced from crossover (see chapter 7 for details).

The advantage of the cluster based crossover operator over the regular one point

crossover used in (Abdelbar & Attia 1999), is that the cluster based crossover allows

nodes that are directly affected by each other, because they are directly connected, to be

transferred together.  This should have a better  effect on the resulting fitness, because

nodes are transferred according to their location in the graph, and not according to their

location in the chromosome representation. 

Finally, the previous thesis work (Abdelbar & Attia 1999) tested the algorithm on

randomly generated large size belief networks, with no particular structure. In this thesis

we try to test the performance of the algorithm on graphs that have specific structures.

We aim to test the features of the network that directly affect the GA performance. In the

work by (Rojas Guzman & Kramer, 1993) it was thought that connectivity has a more

profound effect than the number of cycles in the network. The truth of this observation

has  not  yet  been established.  In  this  work we try to  provide  an answer to  this  open

question  by  testing  several  networks  with  different  structures.  Specifically,  we

concentrate on networks with a large number of undirected cycles, large connectivity, and

large number of nodes.

6.3 A Comparison between Adaptive GASA and other Techniques

In this section a comparison between the new technique introducing adaptive SA

as a genetic operator, with the most famous techniques in the literature. The new adaptive

technique is referred to as ADP-GASA.
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Table 6. 1 A Comparison Between ADP-GASA and SAGA

SAGA
(Brown et al., 1989)

ADP-GASA

1- The entire SA algorithm is called by

the GA to improve current solution.

2- The SA algorithm is called for every 

newly created child, i.e. the 

hybridization is tightly coupled.

3- The annealing parameters are fixed 

for all individuals, and do not change 

during evolution.

4- Regular crossover and mutation 

operators performed by the GA.

1- The entire SA algorithm is called by

the GA to improve current solution.

2- The SA algorithm is called for some 

newly created children, i.e. the 

hybridization is loosely coupled.

3- The annealing parameters are unique 

for each individual, and evolve with 

time.

4- Cluster-based crossover operator 

performed by the GA. Mutation is 

diverted to SA with some probability 

attached to each individual.
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Table 6. 2 A Comparison Between ADP-GASA and Adaptive SAGA

Adaptive SAGA
(Esbensen & Mazumder,

1994)

ADP-GASA

1- Mutation is altered by applying SA 

acceptance probability to newly 

generated offspring.

2-  Each individual has unique annealing

parameters. The annealing parameters

change according to the number of 

mutations performed on the 

individual.

3- The algorithm starts with a certain 

population size, and gradually 

decreases this population each time 

the GA goes through a stagnation 

period.

4- The algorithm starts with pure GA 

and gradually shifts to pure SA.

1- Mutation is altered by applying SA 

with a certain probability to some 

generated offspring.

2-  Each individual has unique annealing

parameters. The annealing parameters

are adaptive and evolve with time.

3- The population size is fixed and does 

not change over time.

4- The amount of SA performed each 

generation is adaptive, and changes 

according to the requirement of the 

search process.
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Table 6. 3 A Comparison Between ADP-GASA and GSA

GSA
(Koakutsu et al., 1996)

ADP-GASA

1- The entire SA algorithm is called by 

the GA to improve current solution.

2- The annealing parameters are global 

among all individuals in any 

generation.

3- Regular crossover operator performed

by the GA. The mutation operator is 

removed and replaced with SA. The 

SA operator is called for every child 

resulting from crossover.

1- The entire SA algorithm is called by 

the GA to improve current solution.

2- Each individual has unique annealing 

parameters. The annealing parameters

are adaptive and evolve with time.

3- Regular crossover operator performed

by the GA. Mutation is diverted to SA

with some probability attached to 

each individual.

94



Table 6. 4 A Comparison Between ADP-GASA and PGSA

PGSA
(Chen et al., 1998)

ADP-GASA

1- A  massively  parallel  hybrid

SA/GA  technique  with  one

individual  residing  on  each  PE

(Processing Element)

2- The SA acceptance probability is 

applied to the selection operator. 

Selection is performed, after 

regular mutation and crossover, 

between three individuals: the 

resident one, the visiting one and 

the two newly created children. 

The winner  becomes the resident

3- Each PE has a different initial 

temperature, final temperature and 

cooling factor.

4- The initial temperature is 

calculated from random initial 

probability of acceptance between 

10 –10 and 1.0.

1- Purely sequential algorithm where the

whole population resides on one 

processor.

2- SA is a special case of mutation. 

Selection is regular GA selection 

method.

3- Each individual has a different initial 

temperature, final temperature and 

cooling factor.

4- The initial temperature is calculated 

from a large change in fitness and a 

small initial probability like 0.01.
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5- Final temperature is set with 

random final acceptance 

probability between 0 and 10 –10.

6- The cooling factor is calculated 

from the initial and final 

temperature of each PE.

5- No final temperature, the SA 

algorithm stops when stagnation is 

reached.

6- The cooling factor is taken from a 

predefined range in the initialization 

of the algorithm.

Table 6. 5 A Comparison Between ADP-GASA and PGSA- cont’d
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Table 6. 6 A Comparison Between ADP-GASA and SAM/SAR

SAM/SAR
(Adler,1993)

ADP-GASA

1- The crossover and mutation operators

use  the  SA  acceptance  probability,

based  on  a  global  temperature  to

select between parents and children.

2- All individuals have the same initial 

temperature, and the same annealing 

reduction factor.

3- The parameters of SA are fixed, and 

do not change during processing.

1- Crossover  and  mutation  work  like

regular  GA  crossover  operators.

Children replace the worst individuals

in  the  population  without  checking

any probability.  Mutation  is  diverted

to  SA  with  a  certain  probability

attached to the individual.

2- Each individual has its own initial 

temperature, its own reduction factor, 

and its own probability of performing 

SA.

3- The parameters of SA are adaptive, 

and evolve with time.
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Table 6. 7 A Comparison Between ADP-GASA and NPOSA

NPOSA
(Cho et al., 1998)

ADP-GASA

1- A population oriented SA. No GA

operators are used.

2- Each individual has its own 

temperature.

3- No reduction of temperature values.

Temperature changes according to 

the rank of the individual in the 

population. The temperature is 

increased if the individual’s rank is 

low. The temperature is decreased 

if the individual’s rank is high.

4- A new solution replaces the 

original one with a probability of 

acceptance that depends on the 

current temperature.

1- A hybrid GA/SA approach. Regular

GA  mutation  and  crossover  are

used.  Mutation  is  diverted  to  SA

with a certain probability.

2- Each individual has its own initial 

temperature, its own reduction 

factor, and its own probability of 

performing SA.

3- The parameters of SA are adaptive,

and evolve with time.

4- Full annealing process is performed

on the selected individual, until 

stagnation is reached.
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Chapter 7

7 Algorithm Design and Implementation 

7.1 GAlib overview

The  implementation  of  the  technique  described  in  the  previous  chapter  uses

GAlib, which is a C++ library of genetic algorithm objects produced by MIT laboratory

of  genetic  algorithms  (Wall,  1999).  With  GAlib  we  can  add  evolutionary  algorithm

optimization to almost any program using any data representation and standard or custom

selection, crossover, mutation, scaling, and termination methods.

An evolutionary program developed with GAlib will  work primarily  with two

classes:

1- The genome class: each genome instance represents a single solution to the problem

under consideration.

2- The genetic algorithm class: which defines how the evolution should take place.

A  problem  solved  using  genetic  algorithms  with  the  help  of  GAlib  must  be

represent a single solution in a single data structure, this is called a genome in GAlib. The

genetic algorithm will create a population of solutions based on a sample genome that is

provided.  The  genetic  algorithm  will  then  evolve  the  population  to  obtain  the  best

solution.

7.1.1 Genome Types

GAlib  provides  four  genome  types:  binary  string  genome,  list  genome,  array

genome and tree genome. The user can also create genomes with multiple dimensions of

these types. For example, by creating a 2-d array genome, or a 3-d binary string genome.
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After  defining  the  type  of  the  genome,  the  objective  function  of  the  genome

should be defined. This is completely up to the user, and is not created with the help of

the library.  The objective  function  should return a positive real  value that  is  used to

evaluate the genome.

In addition to the objective function,  the genome has three primary operators:

initialization,  mutation and crossover. These operators are defined differently for each

type of genome. The user has the option to use built in operators, or to write his own

operators. A genome may also have a comparator that is used to compare two genomes

together.

7.1.2 Genetic Algorithms Types

The library also provides different types of genetic algorithms: the simple GA, the

steady state GA, the incremental GA, and the deme GA. These types differ in the way

that they create individuals and replace old individuals in the course of an evolution.

The simple GA, defined by Goldberg (1989), uses non overlapping populations

and optional elitism. Each generation of the algorithm creates an entirely new population

of individuals. If elitism is used, the best individual(s) is carried from one generation to

the next.

The  steady-state  GA uses  overlapping  populations.  In  this  technique  the  new

population is added to the old one, and the worst individuals are then destroyed. The

degree of overlap, which is the percentage of population that should be replaced each

generation, is user defined.
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In the incremental GA, only one or two children are created each generation. The

user  can  specify  what  individuals  should  be  replaced  in  each  generation,  such  as

replacing parents, replacing worst or random individuals in the population.

The last  type,  the  deme GA,  evolves  multiple  populations  in  parallel  using  a

steady state GA. Each generation, the algorithm migrates some of the individuals from

each population to one of the other populations.

The library also provides several termination methods. These include terminate-

upon-generation, in which the user specifies a certain number of generations for which

the algorithm should run, and terminate-upon-convergence in which the user specifies a

value to which the best of generation score should converge. The termination function

can also be customized depending on the problem type.

The  library  has  several  selection  strategies  that  are  used  to  select  parents  for

mating.  For  example,  roulette  wheel  selection  picks  an  individual  depending  on  the

magnitude  of  the  fitness  score  relative  to  the  rest  of  the  population,  while  uniform

selection picks individuals randomly from the population.

GAlib is thus very easy to use and connect to existing optimization problems. The

user has the ability to customize any component in the library to suit the current problem.

In addition, the library provides useful statistical information about the population that

will help the user to easily analyze the performance of the algorithm.
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7.2 Implementation Details of the Adaptive GASA algorithm

The adaptive hybrid GA and SA technique was tested on the MAP problem on

BBNs  described  in  chapter  4.  The  objective  is  to  find  a  network  assignment  that

maximizes the overall joint probability.

Without loss of generality, the following simplifying assumptions were made:

1- All nodes in the network are binary valued, i.e. each node can assume either True or

False only.

2- The evidence set is empty, i.e. no nodes are pre-instantiated.

3- The maximum number of parents for each node in the network is 15 parents.

7.2.1 Genome Representation

The genome in our problem represents a candidate solution to the MAP problem.

In our representation, the genome consists of two parts:

1- BBN part: which is a binary string consisting of truth assignments to all nodes in the

network. Each gene in this part can have a value of either 0 or 1.

2- SA part: consisting of the parameters of SA that will be optimized during the search.

The selected parameters are the annealing reduction factor  , and the probability of

performing SA on that individual PSA. Each of these two genes is a real valued gene

taken  from  a  specific  range  determined  by  the  user.  For  example,  The  gene

corresponding to the parameter   can take values in the range [0.990,0.999], while

the gene corresponding to the parameter PSA can take values in the range [0.0,1.0], or

any other suitable probability range.

The following is an example of a genome in our implementation
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        PSA

BBN part   SA part

Figure 7. 1 The Genome Representation

7.2.2 Objective Function

The  objective  function  is  the  joint  probability  corresponding  to  the  truth

assignment of the nodes as they appear in the current genome. To calculate the objective

function, the conditional probability for each node in the network is calculated by finding

the combined “truth values” of the parents of this node. This combined “truth values” is

transformed to a binary value that corresponds to the entry in the conditional probability

table (CPT) of the required node. The joint probability is then found by accumulating the

product of all conditional probability values of all nodes.

For example, assume we want to calculate the conditional probability of node x,

given that x has three parents whose truth assignments are T F F.  The binary value “100”

is calculated from the truth assignments of the parents, and entry number 4 of the CPT of

node x is retrieved. If x has a truth assignment of F rather than T, the probability value is

negated before being multiplied with other conditional probabilities.

Observe that the extra genes, which correspond to SA parameters, do not have a

direct role in the calculation of genome objective.  Instead, they play an indirect role,

because their presence affects the offspring created by an annealing operator that uses

these parameters. 
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7.2.3 Initialization

GAlib  initializes  a  population  of  genomes  (solutions),  by  creating  several

genomes of the predefined structure. The initialization uses random gene values with a

uniform  distribution.  The  user  can  specify  a  seed  for  randomization.  Doing  so,  the

processing will be exactly the same every time the program is run.

7.2.4  The Genetic Algorithm

The genetic algorithm selected was a steady state GA (described in section 7.1.2), 

with overlapping populations. Each generation, 20% of individuals in the population, 

which are the worst among the population, are replaced by new offspring. 

Selecting  parents  for  mating  is  based  on  Roulette  Wheel  selection,  in  which

selection is based on the fitness of the individual, i.e. higher fitness individuals have a

higher chance of being selected.

The  termination  criterion  was  to  terminate  upon  convergence,  i.e.  when  the

maximum fitness has not changed for a specified number of generations.

7.2.5 Outline of the Hybrid GA-SA Algorithm

1- Read the BBN network, from an input file.

2- Create all data structures needed for processing.

3- Define a genome representation.

4- Define the objective function.

5- Define GA parameters and functions: probability of mutation (Pmut), probability of

crossover (Pcross), population size (n), termination criterion, initialization method,

mutation method, and crossover method.

6- Initialize a population of individuals by cloning the required number of genomes.
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7- Initialize the number of generations.

8- Do n/2 times

{

 Select two individuals parent1 & parent2 for mating

 With  probability  Pcross,  perform  crossover  between  parent1 and  parent2 to

produce two children.

 child1 = Crossover(parent1,parent2) 

 child2 = Crossover(parent1,parent2)

 If  crossover is not performed

 child1=parent1 

 child2=parent2

 Perform mutation on child1 with probability Pmut.

 Perform mutation on child2 with probability Pmut.

 Insert  resulting  children  in  the  population  according  to  the  predefined

replacement strategy

}

9- If termination is reached, terminate the algorithm.

10- Otherwise, increment number of generations and return to step 8.

7.2.6 Crossover Method:

The crossover method used is the cluster-based crossover, described in (Rojas-

Guzman & Kramer, 1993). In this technique, a random node is selected as the center of a

cluster, and then all nodes that fall within a certain number of links away from the center
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node are exchanged between the two children. The required number of links is a user-

defined parameter called ClusterLimit.

A 2-d array, called  Cost array, is created from the network under consideration.

This array contains the shortest path between each pair of nodes in the network, in terms

of number of links between them. The Cost array is created only once at the beginning of

the run.

The following steps are performed during crossover for the BBN part.

1- child1= parent1   // child1 becomes a copy of parent1

child2= parent2  // child2 becomes a copy of parent2

2- Select a random node as the center of the cluster, call this node the Root.

3- Do the following for every node i in the network.

If (Cost [Root][i]   Cluster_Limit)  // if  node i falls within the cluster 

 child1 inherits gene i from parent2

  child2 inherits gene i from parent1

For the SA part, which consists of two genes corresponding to  and PSA, regular one

point crossover is performed with probability PSAcross

7.2.7 Mutation Method

The mutation function is the part in which SA comes to play. The following steps

are performed during mutation:

1. Check the value of the gene corresponding to PSA in the individual to be mutated.

2. Perform SA on the current individual (solution) with probability PSA specific to this

individual.

3. If SA is not performed call regular mutation operator.
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7.2.8 Regular Mutation Operator

The regular mutation operator is called in two cases: first,  to create  a random

move during annealing, and second, when SA is not performed and regular GA mutation

operator is to be performed on the current individual.

The regular mutation operator is the flip bit mutation defined in (Goldberg, 1989).

Each bit in the BBN part of the genome is flipped with probability Pmut. The SA part, on

the other hand, is mutated,  with probability  PSAmut,  by adding or subtracting a random

fraction of the range from which the gene is  defined to the original  gene value.  The

maximum  allowed  change  is  20%  of  the  current  range,  i.e.  the  new  gene  value  is

calculated as follows:

New gene value = old gene value +  { r  (MaxValue-MinValue)  0.2}

Where r is a random real number between 0 and 1, MaxValue is the maximum allowed

gene value, MinValue is the minimum allowed gene value.

7.2.9 Simulated Annealing Operator

The  simulated  annealing  operator  performs  a  full  annealing  schedule  on  the

current solution. The neighborhood operator used to generate a random neighbor of the

current solution is identical to the regular mutation operator of GA, except that only the

BBN part of the genome is mutated, the SA part is left unchanged, when a random move

is  created.  The  idea  is  that  while  SA  is  performed,  we  do  not  want  to  change  the

annealing schedule used to initialize SA at the beginning, i.e. it makes no sense to change

the  annealing  parameters  (PSA and  )  that  we started  with.  In  addition,  we want  all

random solutions created during SA to have the same annealing parameters as their seed

(starting solution). When the final solution replaces the initial solution, the SA part will
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be the same as the initial solution, while the BBN part will be different. The fitness of the

resulting solution reflects whether the annealing parameters used were good or bad.

As mentioned above, the probability of performing SA, and the reduction factor 

are taken from the current solution. It remains to determine the initial temperature value.

One of the options that were considered when the algorithm was designed was to include

the initial temperature among the SA parameters that will evolve. It was found, however,

that  it  is  very  difficult  to  define  a  suitable  temperature  range  that  will  work  for  all

solutions and for all phases of the run. The initial temperature is very problem specific

and  very  greatly  affects  the  final  result.  The  alternative  was  to  calculate  the  initial

temperature adaptively during the run. When SA is performed, a large change in fitness

() is calculated as: 

 = Objective (current solution) – smallest possible fitness.

The smallest possible fitness was set to the extreme case of zero.

Thus   = Objective (current solution) (1)

From the equation of calculating the probability of acceptance

Paccept = exp (-/T) (2)

We can calculate the initial temperature T0 as

T0 = - / ln(Paccept) (3)

The initial probability of acceptance Paccept was then set using trial and error to some small

value like 0.05 or 0.1.

Calculating  the  initial  temperature  using  the  above  method  gives  initial

temperature values that are smaller than usual. This in fact what we need in the current

algorithm. The initial solution with which SA starts is usually a good solution, because it
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has gone through several modifications by GA operators. Starting the annealing process

with high temperature values may destroy the good starting solution, because any bad

move may be accepted.  On the other  hand,  when the initial  temperature  is  relatively

small, the good starting solution is protected, since the probability of accepting a very bad

move becomes lower.

The SA operator performs the following steps:

1- Initialize the initial temperature value T0 using the above method.

2- Set current temperature T = T0

3- Determine the annealing reduction factor  from the corresponding gene in the

current solution.

4- While stagnation is not reached do the following.

 Create a new solution using regular GA mutation.

 If the new solution improves fitness replace current solution

 Otherwise, replace current solution with probability exp (-/T)

 Decrement current temperature by setting T=   T 

Observe  that  the  algorithm performs  only  one  iteration  per  temperature.  This

choice was made because the cooling factor   is chosen sufficiently high to guarantee

very slow cooling, which is equivalent to performing several iterations per temperature

with faster cooling.   The termination criterion of the algorithm is reaching stagnation

when  the  fitness  of  the  current  solution  does  not  change  for  a  specific  number  of

iterations. 
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Chapter 8

8 Results and Discussion

8.1 How the Algorithm was Tested

The technique was tested by comparing three versions of the algorithm:

1- GA-alone: A regular genetic algorithm without simulated annealing.

2- Non-adaptive  GASA:  A  fixed  genetic-annealing  algorithm  without  evolving

parameters.

3- Adaptive GASA: a hybrid GA-SA algorithm with evolving SA parameters.

Problems Faced During Testing

One of the problems faced during implementation and testing of the program was

the premature convergence problem, which is one of the classical problems in GAs. It

was found that  the  algorithm converges  very  rapidly  to  a  sub-optimal  solution.  This

problem had a more profound effect on the adaptive version than the other two versions

of the program. This is due to the fact the adaptation and the learning process requires an

adequate number of generations to demonstrate its effect. Premature convergence would

stop the learning process before the parameters reach their optimal values. 

The cause of the problem was the large number of duplicates that result during

processing.  A  sub-optimal  solution  could  easily  dominate  the  whole  population,  and

diversity  is  lost  as  a  result.  To  overcome  the  problem and  increase  diversity  in  the

population we did the following: an individual resulting from crossover was first checked

for having a duplicate in the population. If this was the case, that individual is forced to

undergo mutation before being inserted in the population. The process is repeated as long

as the individual still have copies in the population.
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The  second  problem  was  the  task  of  parameter  adjustment.  The  algorithm

contains so many parameters,  some of them are related to the GA like probability  of

mutation, probability of crossover, population size...etc. Other parameters are related to

SA like initial  temperature,  reduction factor  , probability of performing SA, and the

number of iterations required for declaring stagnation. Other parameters are related to the

BBN problem like the cluster limit parameter.  Finally, other parameters are related to

adaptation like probabilities  of performing crossover  and mutation for SA parameters

(genes), and the rate with which these parameters should change during mutation.

During experimentation,  it  was possible to identify the critical  parameters  that

affect  performance.  These parameters  are:  population  size,  the number of generations

required for declaring convergence, probability of GA mutation, initial SA temperature,

SA  reduction  factor  ,  and  probability  of  performing  SA.  These  parameters  were

adjusted for each data file separately. All other parameters were fixed for all data files

after approximately finding the best possible parameters, since they do not have much

effect on performance.

8.2 Data Files

Each of the three versions was tested on three different data sets. Each data set

represented a different BBN characteristic.

Set  A: consists of three BBNs, each with a large number of cycles. Three data files were

created manually and were called:

“50a”: which consists of a 50-node subset chosen from the 80-node network shown in

Appendix B.
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“60a”: which consists of a 60-node subset from the original 80-node network shown in

Appendix B.

 “70a”: which consists of a 70-node subset from the original 80-node network shown in

Appendix B.

Set B: consists of three BBNs, each is a layered network and each node in the network

has 3 to 5 parents. These three networks correspond to network structures with a large

number of cycles as well, but in a layered structure. The first data file, which contains 70

nodes, is called “70b” and is shown in Appendix B,  the second data file is a subset form

the first file with 60 nodes, and is called “60b”. The third data file is a subset from the

second file with 50 nodes, and is called “50b”. The files in this set were also created

manually.

Set C: consists of four BBNs, each is characterized by having nodes with a very large

number  of  parents.  The  maximum  number  of  parents  was  15  nodes.  These  files

correspond to network structures with heavy connectivity. The files were created using a

program that creates random BBN files. The files were a 60-node network called “60c”, a

70-node network called “70c”, a 90-node network called ”90c”, and a 100-node network

called “100c”. 

8.3 The Testing Process

The following steps were carried out to test the algorithm on each of the above mentioned

data files.

1.  The  same  random  seed  was  selected  for  all  three  versions.  This  will  make  the

processing identical each time the program is run.

2. The following GA parameters were fixed for all data files
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Crossover rate = 0.99

Percentage of population overlap = 0.2

The number of links defining a cluster = 1

3.  Other  parameters  of the GA-alone version were adjusted to  give the best  possible

result.  These  parameters  are  population  size,  mutation  rate and  the  number  of

generations required for declaring convergence.

4. The best set of GA parameters was used in both the GASA adaptive and non-adaptive

versions.

5. For the non-adaptive version, the following parameters were adjusted to give the best

possible result: 

Initial SA temperature: which was calculated heuristically from a large  and a small

initial probability of acceptance.

SA reduction factor  : which was set to some value between 0.992 and 0.996

SA rate (Probability of performing SA): which was set to some value between 0.002

and 0.2 depending on the population size.  A large population size required a smaller SA

rate to avoid very large processing time.

6.  for  the  adaptive  version  the  following  parameters  were  adjusted  for  best  possible

result: 

The reduction factor range: which was set to [0.990,0.999] for all data files.

The SA probability range: which was set differently for each date file depending on

the population size, as in the non-adaptive version, to avoid large processing time.

The largest range was [0.005, 0.05]
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The task of adjusting parameters for the adaptive version was much easier than

for the non-adaptive version. The non-adaptive version required finding one optimum

value for each parameter, while the adaptive version only required suggesting a suitable

range of parameter values. In addition, the adaptive version did ot require adjusting the

initial temperature value, because this value was calculated heuristically from the fitness

value of the current solution as explained in the implementation chapter (chapter 7).

8.4 Crossover Effect

The effect of crossover was tested by comparing three types of crossover

1- Regular one-point crossover

2- Cluster-based crossover, explained in section 7.2.6

3- A  modified  version  of  cluster-based  crossover,  in  which  a  child  that  has  a

duplicate in the population is forced to undergo mutation before being inserted in

the population. We call this type of crossover “modified cluster-based crossover”.

The GA alone version was tested, using each type of crossover, on 6 data files: 50a, 50b,

60b, 60c, 70a, and 70b.
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8.5 Summary of results

The results obtained my be summarized as follows

8.5.1 Results for Set A

Maximum Fitness

 All three versions obtained the same result in 2/3 cases (50a,70a)

 The GA alone version and the adaptive version reached the same result while the

non- adaptive GASA obtained a slightly less value in 1/3 cases (60a).

Average Fitness

 GA alone obtained the best final average in 3/3 cases (50a, 60a, 70a), although the

average fitness grew faster in the adaptive version than in the other two versions.

However, since the adaptive version converged in a less number of generations, it did

not reach the same final average value as GA alone. See for example average fitness

chart 60a (figure 8.5)

 The non-adaptive version performed better than GA alone, in terms of the rate of

average fitness improvement but not the final average value, in 1/3 cases (70a).

Evolving Parameters

 The average SA factor tends towards decreasing in all 3/3 cases (50, 60a, 70a),

with more fluctuations in 1/3 cases (60a).

 The average  SA probability  shows a slight  tendency towards  increasing  at  the

beginning of the run, and then stabilizes throughout the run in 3/3 cases (50a, 60a,

70a), with more fluctuations noticed in 1/3 cases (70a).
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8.5.2 Results for Set B

Maximum Fitness

 All three versions obtained the same result in 2/3 cases (50b,60b)

 The adaptive version obtained better result than the other two versions in 1/3 cases

(70b).

 The non-adaptive version obtained better result than GA alone in 1/3 cases(70b)

Average Fitness

 GA alone obtained the best final average in 1/3 cases (50b)

 Non-adaptive GASA obtained the best final average in 1/3 cases (60b)

 Adaptive GASA obtained the best final average in 1/3 cases (70b)

 The average fitness grew much faster in the adaptive version than in the other two

versions (See for example average fitness chart 70b figure 8.21). However, since the

adaptive version converged in a less number of generations, it did not reach the same

final average value as GA alone. 

 The average fitness grew faster in the non-adaptive version than GA alone in 2/3

cases (50b, 60b).

Evolving Parameters

9 No specific pattern can be observed for the SA factor, In case 50b, it started by 

increasing and then started to decrease. In case 60b, the tendency was towards 

increasing. In case 70b, the tendency was towards slight decreasing.

 The average SA probability showed a slight tendency towards increasing at the

beginning of the run and then stabilizes throughout the run in all three cases (50b,

60b, 70b).
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9.1.1 Results for Set C

Maximum Fitness

 The adaptive version obtained the same result as GA alone, but better than non-

adaptive GASA, in 1/4 cases (60c).

 The adaptive version obtained better result than both GA and non-adaptive GASA

in    ¾ cases (70c, 90c, 100c).

 The non-adaptive version obtained better result than GA alone in  ¾ cases (70c,

90c, 100c).

 GA alone obtained better result than non-adaptive version in ¼ cases (60c).

Average Fitness

 The adaptive GASA obtained much better average fitness, in terms of both the

final value and the rate of improvement, in 4/4 cases (60c, 70c, 90c, 100c).

 The non-adaptive version obtained better results than GA alone, in terms of final

average fitness, in ¾ cases (70c, 90c, 100c). The rate of average fitness improvement

was similar for both versions in these three cases.

 GA alone obtained better result than non-adaptive GASA, in terms of both final

average fitness value and rate of average fitness improvement, in ¼ cases (60c).
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Evolving Parameters

 In ¾ cases (60c, 70c, 100c), the average SA factor started by fluctuation between

increasing  and  decreasing  at  the  beginning  of  the  run,  and  then  tended  towards

increasing at the end of the run.

 In ¼ cases (90c), the average SA factor started by increasing and then started to

decrease until the end of the run.

 The average SA probability showed a slight tendency towards increasing at the

beginning of the run and then stabilized throughout the run in all four cases (60c, 70c,

90c, 100c).

9.1.2 Effect of Crossover

 The cluster modified crossover operator performed better  than the other two

types of crossover in 4/6 cases (60b, 60c, 70a, 70b). It gave the same result as the

cluster-based crossover operator in 1/6 cases (50a), and the same result as the one-

point crossover operator in 1/6 cases (50b).

 The cluster-based crossover operator performed better than one-point crossover

in 3/6 cases (50a, 60c, 70a).

 One-point crossover performed better than cluster-based crossover in 3/6 cases

(50b, 60b, 70b).
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9.2 Experimental Results

SET A

Data File 50_a

Figure 8. 1 Average Fitness Chart 50a

Figure 8. 2 Maximum Fitness Chart 50a
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Figure 8. 3 Evolving Average SA factor 50a

Figure 8. 4 Evolving Average SA Probability 50a
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Data File 60_a

Figure 8. 5 Average Fitness Chart 60a

Figure 8. 6 Maximum Fitness Chart 60a
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Figure 8. 7 Evolving Average SA Factor 60a

Figure 8. 8 Evolving Average SA Probability 60a
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Data File 70_a

Figure 8. 9 Average Fitness Chart 70a

Figure 8. 10 Maximum Fitness Chart 70a
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Figure 8. 11 Evolving Average SA Factor 70a

Figure 8. 12 Evolving Average SA Probability 70a
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SET B

Data File 50_b

Figure 8. 13 Average Fitness Chart 50b

Figure 8. 14 Maximum Fitness Chart 50b
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Figure 8. 15 Evolving Average SA Factor 50b

Figure 8. 16 Evolving Average SA Probability 50b
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Data File 60_b

Figure 8. 17 Average Fitness Chart 60b

Figure 8. 18 Maximum Fitness Chart 60b
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Figure 8. 19 Evolving Average SA Factor 60b

Figure 8. 20 Evolving Average SA Probability 60b
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Data File 70_b

Figure 8. 21 Average Fitness Chart 70b

Figure 8. 22 Maximum Fitness Chart 70b
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Figure 8. 23 Evolving Average SA Factor 70b

Figure 8. 24 Evolving Average SA probability 70b
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SET C

Data File 60_c

Figure 8. 25 Average Fitness Chart 60c

Figure 8. 26 Maximum Fitness Chart 60c
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Figure 8. 27 Evolving Average SA Factor 60c

Figure 8. 28 Evolving Average SA Probability 60c
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Data File 70_c

Figure 8. 29 Average Fitness Chart 70c

Figure 8. 30 Maximum Fitness Chart 70c

133



Figure 8. 31 Evolving Average SA Factor 70c

Figure 8. 32 Evolving Average SA Probability 70c
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Data File 90_c

Figure 8. 33 Average Fitness Chart 90c

Figure 8. 34 Maximum Fitness chart 90c

135



Figure 8. 35 Evolving Average SA Factor 90c

Figure 8. 36 Evolving Average SA Probability 90c
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Data File 100_c

Figure 8. 37 Average Fitness Chart 100c

Figure 8. 38 Maximum Fitness Chart 100c
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Figure 8. 39 Evolving Average SA Factor 100c

Figure 8. 40 Evolving Average SA Probability 100c
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Figure 8. 41 Crossover Effect 60c

Figure 8. 42 Crossover Effect 70a
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Figure 8. 43 Crossover Effect 70b

Figure 8. 44 Crossover Effect 60b
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Figure 8. 45 Crossover Effect 50a

Figure 8. 46 Crossover Effect 50b
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9.3 Discussion

The results obtained from comparing the three versions of the algorithm on the

three data sets indicate that the adaptive GASA algorithm gives the same results as the

best  of  the other  two versions  for  sets  A and B,  while  it  outperforms the  other  two

versions for set C.

For sets A and B, adding SA to the basic genetic algorithm did not offer much in

terms of improving maximum fitness. In fact, in some cases the GA used alone was able

to obtain better  results. There could be several reasons for this  observation.  First,  the

structure of the BBN data files used in these two sets, which includes a large number of

cycles, may offer more difficulty for annealing than for GA. Singly connected BBNs, in

which the graph is also acyclic in the undirected sense, are easy to solve in linear time.

The  complexity  generally  increases  with  the  number  of  cycles  in  the  graph.  More

specifically, the complexity increases with the number of nodes that if removed would

transform the graph to a singly connected graph. This set of nodes is called the node cut-

set. Traditional algorithms are highly affected by the number of nodes in the node cut-set.

We would expect GA to be affected similarly. However, there is no evidence that this is

actually the case. Traditional GA is highly affected by gene interaction, called epistasis in

GA  terminology.  Gene  interaction  in  the  BBN  representation  corresponds  to  high

connectivity between nodes and not to the large number of cycles. 

The above results, for sets A and B, indicate that having a large number of cycles

did not affect the genetic algorithm in a way that would be expected. The GA alone was

able  to  obtain  results  better  or  equal  to  the  other  two  versions.  Adding  simulated

annealing  did  not  help  in  obtaining  better  results.  In  fact,  in  some  cases  degraded
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performance.  Adding adaptation to annealing helped to remedy the defects of annealing,

and also helped a great deal in improving annealing performance in terms of improving

average fitness rapidly. It did not help though in improving the final result (maximum

fitness). This may indicate that the GA alone in these two sets performed so well that

annealing as well as adaptation did not have much to offer.

The second possible reason that the non-adaptive GASA did not perform well in

these two sets is the annealing parameters. The search space and the population size are

very large in these problems. In addition, the range of fitness values changes very rapidly

from  one  generation  to  another.  All  these  factors  make  it  difficult  to  find  optimal

annealing parameters that work well for all individuals in the population and all stages of

the search process. It is inevitable that the chosen annealing parameters will not lead to

improvement for some individuals and some particular situations of the search. In fact,

annealing may degrade performance in these cases.

This observation is supported by noticing the improvement provided by adding

adaptation to the algorithm. Besides being much easier to adjust, the adaptive parameters

offered a great help in improving the performance of annealing.  This improvement is

clear in average fitness and also in maximum fitness to a lesser extent.

The results obtained for set C indicate that adding annealing to the basic genetic

algorithm helped in obtaining better final results. Adding adaptation in this case had a

very impressive effect in terms of improving both average and maximum fitness. This is

particularly true for the data files with very large number of nodes (70c, 90c, 100c).

This behavior is more or less what we had expected when we started the research.

Adding annealing would improve the quality of the search, and adding adaptation would
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help even better.  The fact  that  the performance met  our expectations  only in this  set

indicates that this particular data set offers a challenge for the GA alone version. The

genetic  algorithm alone  was not  able  to  reach results  as  good as  the  GA-SA hybrid

algorithm, especially the adaptive version of it.

Data set C has two distinctive characteristics. First, the files in this set have a very

large number of nodes. Second, each node has a very large number of parents. Which of

these two features represented a difficulty for the GA alone?

Observing the results obtained for the first data file in this set (60c), we can see

that both GA alone and adaptive GASA versions obtained the same result, while the non-

adaptive GASA obtained an inferior result. This indicates that this data file did not offer

much difficulty for GA alone similar to the case for sets A and B.  This happened despite

the fact that each node has a very large number of parents.

The other three data files (70c, 90c, 100c) are in fact the ones that were very

difficult for the genetic algorithm alone. Adding annealing helped to improve the quality

of the solution, but adding adaptation was really the magic spell that resulted in a great

improvement in terms of both average and maximum fitness.

We can conclude from these results that, after all, the factor that actually affected

the performance of GA is the number of nodes in the network. Of course, this is not

surprising, since the MAP problem is NP-hard. What is surprising is that a large number

of nodes in our case did not mean 30, 40, 50 or even 60 nodes, it meant something like

70, 80, 90 and 100 nodes. This number of nodes far exceeds the number of nodes tested

in any previous research like (Rojas-Guzman & Kramer, 1993), (Abdelbar & Hedetniemi,

1997), and (Abdelbar & Attia, 1999).
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The result obtained by Abdelbar & Attia (1999) indicated that the hybrid GASA

algorithm performed better than GA alone when tested on a 50-node network. While the

results obtained on 30-node and 40-node networks did not show significant improvement.

Although no clear reasons were given for obtaining these results, we can now see that

they do not contradict with the results obtained in this research. The fact that our results

favored GA alone in many cases might be due to the improvements that had been added

to the basic GA-alone algorithm in this research. We have given GA alone all the tools

needed  for  optimal  performance  like  large  population  size,  an  improved  crossover

operator, and a tool to increase diversity and avoid premature convergence.

It  is  very essential,  however,  to make an important  distinction.  When we talk

about GA performance here we do not mean its performance in terms of obtaining the

optimal result. All what concerns us here is the result obtained in comparison with the

hybrid and adaptive hybrid techniques.  Whether the GA is able to obtain the optimal

result is still an open question. 

We can thus summarize our observations by saying that for smaller networks the

GA alone can do the required job of obtaining good solutions in a small amount of time.

Adding annealing or adaptation in this case does not have much to offer, especially with

the  added  processing  time  that  they  impose  on  the  algorithm.  On  the  other  hand,

obtaining good solutions for larger networks is a difficult  task for GA alone.  Adding

annealing  in  this  case  may  help  in  improving  the  quality  of  the  solution.  However,

simulated annealing itself suffers from the problem of parameter adjustment. The solution

that will alleviate this problem and at the same time improves the quality of the solution

further is to add adaptation to the annealing parameters.
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Before we finish this discussion it is important to provide some analysis for the

behavior of the adaptive annealing parameters. For sets A and B the average SA factor in

general tended towards decreasing in most cases. This may indicate that slower annealing

in this case did not help in improving the solutions. For set C the tendency was towards

increasing  especially  at  the  end  of  the  run,  which  means  that  as  we  approach

convergence, slower annealing gave better results, possibly because more fine search is

needed. An exception was the case 90c in which the average SA factor started to decrease

and continued to do so until the end of the run. One possible reason is that the process of

obtaining good solutions was slow at the beginning of the run (see average fitness chart

90c  figure  8.33).  Faster  annealing  at  the  end  of  the  run  was  sufficient  to  obtain  an

improvement of the relatively poor quality solutions obtained so far.

The average SA probability in all cases did not show a significant change. This

may indicate  that adaptation in this case did not have much to offer.  Having a fixed

annealing probability may achieve similar results.

It  is  also important  to  remember  that  adaptation is  not  restricted  to these two

parameters.  The initial  temperature  value also changed adaptively for each individual

solution, as explained in chapter 7. This of course also contributed to the improvement

achieved in the adaptive version. Calculating the initial temperature value heuristically

for each individual produces smaller initial temperature values that help to protect good

solutions from disruption. Although the side effect of this is reducing diversity in the

population,  the  task  of  maintaining  diversity  is  left  to  the  mutation  and  crossover

operators of GA. Maintaining a balance between disruption and diversity is very critical

for the performance of the algorithm.
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Finally, the comparison of the different crossover operators was inconclusive. In

some cases  the  cluster-based  crossover  operator  performed  better  than  the  one  point

crossover  operator.  This,  however,  was  not  always  the  case.  One  point  crossover

performed  better  in  set  B.  One  possible  reason  is  that  the  cluster  limit  may  need

adjustment  for  each  individual  case.  The  modified  cluster  based  crossover  operator

performed better than both operators in most cases, which indicates the importance of

increasing diversity in the population.
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Chapter 9

10 Conclusions and Future Research

In  this  research  we  examined  the  potential  of  adding  adaptation  to  a  hybrid

genetic-annealing approach to solving the MAP problem on Bayesian Belief Networks.

In this context, annealing was used as a special case of GA mutation operator, which is

intended to improve the quality of the solutions obtained by the basic genetic algorithm.

Adaptation was introduced with the aim of facilitating the task of parameter adjustment

for annealing, in addition to guiding the search towards better solutions.

The technique was tested by comparing three versions of the algorithm, GA alone,

non-adaptive GASA and adaptive GASA, on a different BBNs with different structures.

The results  obtained indicate  that the factor that  highly affects  solution quality  is the

number of nodes in the network. For smaller size networks GA alone can obtain good

solutions in a small amount of time. Adding annealing does not help in obtaining better

solutions  in  this  case.  Adding  adaptation  may  speed  up  the  rate  of  average  fitness

improvement, but does not help in obtaining better final results.

On  the  other  hand,  networks  with  a  very  large  number  of  nodes  represent  a

difficulty for GA alone. Adding annealing helps to improve the quality of the solution

obtained. Adding adaptation provides a very significant improvement in terms of both

average and maximum fitness.

It is thus clear that introducing adaptation has a great potential. It has offered a

remedy  for  the  defects  of  having  fixed  annealing  schedule  for  all  individuals  in  the

population and all stages of the search. Its effect is more profound for difficult problems

that GA alone cannot do much about.
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Many areas in the research still need further investigation as well as improvement.

First,  processing time is still  a major drawback for the hybrid GASA algorithm. One

possible  solution is  to  optimize the calculations  used in the objective  function of the

solution, or to calculate the objective value for a solution only once. It is also possible to

limit the maximum number of iterations performed by annealing without affecting the

quality of the solution.

Second, we still need to know how far the solutions obtained are from the optimal

solution. Although this task will not be easy, since it requires performing an exhaustive

search for all these large networks, it will help to judge whether the solutions obtained are

fair enough.

The factors that affect the performance of the GA still need further investigation.

Although in our research the greatest effect was to the number of nodes in the network,

there is still no sufficient evidence to eliminate the effect of other factors. Specifically,

the effect the number of nodes in the node cut-set needs further testing.

The effect of problem specific crossover operators is still not clear. We need to

test whether the extra cost of performing such operators is justified. 

Finally, it remains to test the adaptive algorithm on other problem types. This will

help in judging the robustness of the algorithm, and in deciding whether to adopt and

apply it to other difficult combinatorial optimization problems.
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APPENDIX A:  Source Code

Source Code for GA alone

The declaration file “declaration.h”

#ifndef DECLARATION_H
#define DECLARATION_H
const int MAXNODES = 70;
const int   MAXPARENTS= 15;
const int   MAXPROB  = 1<<MAXPARENTS;
#define     NETFILE "60_a_nod.net"
#define     SCOREFILE "scorefile_60a.out"
#define RESFILE "myres_60a.out"
#define     TRUE  1
#define     FALSE 0

typedef int ParentArray[MAXPARENTS];
typedef float ProbArray[MAXPROB];
typedef struct NodeType
{

int NumParents;
ParentArray Parents;
ProbArray   Prob;

};
typedef NodeType BeliefNetType[MAXNODES];

typedef int CostArray [MAXNODES][MAXNODES];
CostArray Cost;

int PopSize=1000;
int GenToConverge=500 // declare convergence after this number of 
generations
float ProbMutation = 0.02;
float ProbCrossover=0.99;
float PercentReplace=0.2; //replace 20% of population each generation
float Cluster_Limit =1;

int   GenNum=0;
int   Infinity;
float FitArray[1000];

#endif
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The main program for the GA alone version “GA.cpp”

#include <stdio.h>
#include "iostream.h"
#include <fstream.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include"ga.h"
#include"GARealGe.h"
#include"GARealGe.cpp"
#include "declaration.h"

int NumNodes;

BeliefNetType Net; 
void ReadNet();
void FindCost();
void FindShortPaths();
float Objective(GAGenome&);
void MyInitializer(GAGenome&);
int FlipMutator(GAGenome& ,float );
int  MyCrossover(const  GAGenome& , const GAGenome& , GAGenome* , 
GAGenome* );
GAAlleleSetArray<float> allelset;
ofstream ScoreFile(SCOREFILE);

int main()
{  

unsigned int seed=5;
GARandomSeed(seed);
ReadNet();
FindCost();
FindShortPaths();

for (int k=0; k<NumNodes; k++) 
allelset.add(FALSE,TRUE,1);  

//define the genome as a 1d array of real with the values
// of genes derived from the allelset array
GA1DArrayAlleleGenome<float> genome(allelset,Objective);

//define the GA methods and parameters
genome.initializer(MyInitializer);
genome.mutator(FlipMutator);
genome.crossover(MyCrossover);
GASteadyStateGA ga(genome);
ga.populationSize(PopSize)  ;
ga.nConvergence(GenToConverge);
ga.terminator(GAGeneticAlgorithm::TerminateUponConvergence);
ga.pMutation (ProbMutation);
ga.pCrossover(ProbCrossover);
ga.pReplacement(PercentReplace);

//get current CPU time
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clock_t CPU_time;
CPU_time=clock();
ScoreFile<<"generation \t mean \t max \t min \t deviation \t
diversity \n";
ga.scoreFilename(SCOREFILE);
ga.scoreFrequency(1); //keep the scores of every 
//generation
ga.flushFrequency(1); //flush scores every generation
ga.selectScores(GAStatistics::AllScores);
ga.initialize();
while (!ga.done())
{

GenNum= ga.statistics().generation();

GAPopulation current_pop = ga.population();

for (int num1=0;num1<PopSize;num1++)

{ 
FitArray[num1]=Objective(current_pop.individual(
num1));

}
ga.step();

}
ga.flushScores();

CPU_time=clock() - CPU_time;
cout<<" \n\n THE GA FOUND : " 
<<ga.statistics().bestIndividual() << "\n";
cout<<ga.statistics().bestIndividual().score() << "\n\n";
cout<<"Processing Time=  "<<(CPU_time/1000)/60<<"  mins\n";

//write results to file
ofstream ResultFile;
ResultFile.open(RESFILE,ios::app);//append the results
ResultFile<<"PopSize   = "<<PopSize<<"\t";
ResultFile<<"NumGenerations= "<<GenNum+1<<"\t";
ResultFile<<"ProbMutation= "<<ProbMutation<<"\t"; 
ResultFile<<"ProbCrossover= "<<ProbCrossover<<"\n";
ResultFile<<"ClusterLimit= "<<Cluster_Limit<<"\t";
ResultFile<<"GenToConverge= "<<GenToConverge<<"\t";
ResultFile<<"Bestindividual = 
"<<ga.statistics().bestIndividual()<<"\n"; 
ResultFile<<"Processing Time=  "<<(CPU_time/1000)/60<<"  
mins\n";
ResultFile<<"BestScore  = 
"<<ga.statistics().bestIndividual().score()<<"\n"; 

ScoreFile.close();

return 0;
}
///////////////////////////////////////////////////

GABoolean MyTerminator(GAGeneticAlgorithm & ga)
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{
  if(ga.statistics().current(GAStatistics::Maximum) ==
     ga.statistics().current(GAStatistics::Minimum)  )
    return gaTrue;
  else
    return gaFalse;

}
///////////////////////////////////////////////
void MyInitializer(GAGenome& g)
{

GA1DArrayAlleleGenome<float>& genome 
=(GA1DArrayAlleleGenome<float>&)g;

for (int i=0;i<NumNodes;i++)
genome.gene(i, float(GARandomInt(0,1)));

}
////////////////////////////////////////////////////
void ReadNet()
{
ifstream InFile(NETFILE);
if (!InFile)
    {

 cout<<"Could Not Read Input File"<<NETFILE<<"\n";
 exit(1);

    }
InFile>>NumNodes; //read number of nodes
for (int node=0; node<NumNodes; node++)
{

InFile>>Net[node].NumParents; // read number of parents for this 
node

for (int p=0; p<Net[node].NumParents;p++) // read parent numbers 
for this node

{
InFile>>Net[node].Parents[p];
Net[node].Parents[p]--; // decrement parent number to start 

from 0 instead of 1
}//end for p
int probs = (1<< Net[node].NumParents) ; // calculate number of 

entries in prob table
  for (int pr=0; pr<probs; pr++)  //read probabilities

    InFile>> Net[node].Prob[pr]; 
    
} //end for node
InFile.close();

}// end ReadNet

///////////////////////////////////////////////////
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void FindCost()
{

Infinity=NumNodes;
//initialize Cost Array
for(int i=0;i<MAXNODES;i++)

for(int j=0;j<MAXNODES;j++)
{

if(i==j) Cost[i][j]=0;
else Cost[i][j]=Infinity;

}

for (int node=0;node<NumNodes;node++)
{

for(int p=0;p<Net[node].NumParents;p++)
{

int this_parent =Net[node].Parents[p];
      Cost[this_parent][node]=1;
     

}
}

}

///////////////////////////////////////////////////
int min (int val1, int val2)
{

int minimum;
if(val1<=val2) minimum=val1;
else    minimum=val2;

return minimum;
}
///////////////////////////////////////////////////

void FindShortPaths() //find the shortest path between all nodes in the 
net 
{

for (int k=0;k<NumNodes;k++)
for (int i=0;i<NumNodes;i++)
 for (int j=0;j<NumNodes;j++)

Cost[i][j]=min(Cost[i][j],Cost[i][k]+Cost[k][j]);

}

//////////////////////////////////////////////////
//////////////////////////////////////////////////

float Objective(GAGenome& g) //calculate the objective value of the 
genome
{

float score=1.0;
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GA1DArrayAlleleGenome<float> genome =(GA1DArrayAlleleGenome<float>&) g;

for (int node=0; node<NumNodes;node++)
{   
    int power=1;

int index=0;
int node_truth = (int) genome.gene(node);
for(int p= Net[node].NumParents -1; p>=0 ; p--)
{

            int parent_num= Net[node].Parents[p];
int parent_truth = int (genome.gene(parent_num));
 index = index + parent_truth*power;
 power = power*2;

}//end for p
    

if (node_truth== TRUE)
score = score*Net[node].Prob[index];

else score = score* (1- Net[node].Prob[index]);
}//end for node

return score;
}

////////////////////////////////////////////////////

////////////////////////////////////////////////////

int FlipMutator(GAGenome& g, float pmut)
{

GA1DArrayAlleleGenome<float>& child 
=(GA1DArrayAlleleGenome<float>&)g;

if (pmut<=0.0) return(0);
int nMut=0;
for (int i=0; i<NumNodes; i++)
{

if (GAFlipCoin(pmut))
{
  child.gene(i, ((child.gene(i) == 0) ? 1 : 0));
  nMut++;
}

}

return(nMut);
}

////////////////////////////////////////////////

int  MyCrossover(const  GAGenome& g1, const GAGenome& g2, GAGenome* c1, 
GAGenome* c2)
{

GA1DArrayAlleleGenome<float>& mom =(GA1DArrayAlleleGenome<float>&)g1;
GA1DArrayAlleleGenome<float>&dad=(GA1DArrayAlleleGenome<flo)g2;
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GA1DArrayAlleleGenome<float>& child1=(GA1DArrayAlleleGenome<float>&)*c1;
GA1DArrayAlleleGenome<float>& child2 

=(GA1DArrayAlleleGenome<float>&)*c2;
//select a random root
int root=GARandomInt(0,NumNodes-1);
child1.copy(mom); //child1 is a copy of parent1
child2.copy(dad); //child2 is a copy of parent2
// now exchange the cluster the random root betweeen
// the children

for (int i=0;i<NumNodes;i++)
{

if (Cost[root][i]<=Cluster_Limit)
  {

  child1.gene(i,dad.gene(i));
  child2.gene(i,mom.gene(i));

  }//end if

}//for 

// if the children have duplicates in the population , force a change in
them
float fit1=Objective(child1);
float fit2=Objective(child2);

for (int count=0;count<PopSize;count++)
{

if (fit1==FitArray[count])
FlipMutator(child1,ProbMutation*2);

if (fit2==FitArray[count])
FlipMutator(child2,ProbMutation*2);

}//for 

return 1;
} 

/////////////////////////////////////////////////

////////////////////////////////////////////////
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Source Code for Non-Adaptive GASA

Declaration File “declaration.h”

#ifndef DECLARATION_H
#define DECLARATION_H
const int MAXNODES = 70;
const int   MAXPARENTS= 15;
const int   MAXPROB  = 1<<MAXPARENTS;
#define     NETFILE "60_a_nod.net"
#define     SCOREFILE "scorefile_60a.out"
#define RESFILE "myres_60a.out"
#define     TRUE  1
#define     FALSE 0
#define     MAXSTAGNATION   500 // no. Of iterations required to  

declare stagnation in SA
#define PROB_SA 0.005 // probability of   performing SA
#define SAFACTOR      0.993 // reduction factor for SA
#define     INIT_TEMP 0.00005 // initial temperature for SA
typedef int ParentArray[MAXPARENTS];
typedef float ProbArray[MAXPROB];
typedef struct NodeType
{

int NumParents;
ParentArray Parents;
ProbArray   Prob;

};
typedef NodeType BeliefNetType[MAXNODES];
typedef CostArray [MAXNODES][MAXNODES];
typedef int DescendArray[MAXNODES][MAXNODES] ; 
CostArray Cost;
CostArray Children;
int Child_Count[MAXNODES];
int Processed[MAXNODES];
DescendArray Descend;
DescendArray GrandParents;
int PopSize=1000;
int GenToConverge=500; // to converge look back this number of 
generations
float ProbMutation = 0.02;
float ProbCrossover=0.99;
float PercentReplace=0.2; //replace 20% of population each generation
float Cluster_Limit =1;
float Psam= 0.01; // probability of flipping a bit when creating a 
random move during SA
int   GenNum=0;
int   Infinity;
int NMut;
float FitArray [1000];
#endif
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The main program for the GASA non adaptive version “GASA.cpp”

#include <stdio.h>
#include "iostream.h"
#include <fstream.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include"ga.h"
#include"GARealGe.h"
#include"GARealGe.cpp"
#include "declaration.h"
int NumNodes;

BeliefNetType Net; 
void ReadNet();
void FindCost();
void FindShortPaths();
float Objective(GAGenome&);
void MyInitializer(GAGenome&);
int MyMutation(GAGenome& ,float );
int  MyCrossover(const  GAGenome& , const GAGenome& , GAGenome* , 
GAGenome* );

GAAlleleSetArray<float> allelset;
ofstream ScoreFile(SCOREFILE);

int main()
{  

unsigned int seed=5;
GARandomSeed(seed);
ReadNet();
FindCost();
FindShortPaths();

for (int k=0; k<NumNodes; k++)
allelset.add(FALSE,TRUE,1); 

//define the genome as a 1d array of real with the values
// of genes derived from the allelset array
GA1DArrayAlleleGenome<float> genome(allelset,Objective);

genome.initializer(MyInitializer);
genome.mutator(MyMutation);
genome.crossover(MyCrossover);
GASteadyStateGA ga(genome);
ga.populationSize(PopSize)  ;

//stop when the score of the best genome has
//not changed for the specified number of generations
ga.nConvergence(GenToConverge);

ga.terminator(GAGeneticAlgorithm::TerminateUponConvergence);
ga.pMutation (ProbMutation);
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ga.pCrossover(ProbCrossover);
ga.pReplacement(PercentReplace);

//get current CPU time
clock_t CPU_time;
CPU_time=clock();
ScoreFile<<"generation \t mean \t max \t min \t deviation \t

diversity \n";

ga.scoreFilename(SCOREFILE);
ga.scoreFrequency(1); //keep the scores of every generation
ga.flushFrequency(1); //flush scores every generation
ga.selectScores(GAStatistics::AllScores);
ga.initialize(seed);
//ga.evolve(); //start processing
while (!ga.done())
{
  GenNum= ga.statistics().generation();

GAPopulation current_pop = ga.population();

for (int num1=0;num1<PopSize;num1++)

{ 

FitArray[num1]=Objective(current_pop.individual(num1));
}

  ga.step();

}
ga.flushScores();

CPU_time=clock() - CPU_time;
cout<<" \n\n THE GA FOUND : " 

<<ga.statistics().bestIndividual() << "\n";
cout<<ga.statistics().bestIndividual().score() << "\n\n";
cout<<"Processing Time=  "<<(CPU_time/1000)/60<<"  mins\n";

//write results to file
ofstream ResultFile;
ResultFile.open(RESFILE,ios::app);//append the results
ResultFile<<"PopSize   = "<<PopSize<<"\t";
ResultFile<<"InitTemp= "<<INIT_TEMP<<"\t"; 
ResultFile<<"NumGenerations= "<<GenNum+1<<"\t";
ResultFile<<"ProbMutation= "<<ProbMutation<<"\t"; 
ResultFile<<"ProbCrossover= "<<ProbCrossover<<"\n";
ResultFile<<"MaxStagnation= "<<MAXSTAGNATION<<"\t";
ResultFile<<"ProbSA= "<<PROB_SA<<"\t";
ResultFile<<"SAFactor= "<<SAFACTOR<<"\n";
ResultFile<<"ClusterLimit= "<<Cluster_Limit<<"\t";
ResultFile<<"GenToConverge= "<<GenToConverge<<"\t";
ResultFile<<"Psam= "<<Psam<<"\n";
ResultFile<<"Bestindividual = 
"<<ga.statistics().bestIndividual()<<"\n"; 
ResultFile<<"Processing Time=  "<<(CPU_time/1000)/60<<"  
mins\n";
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ResultFile<<"BestScore  = 
"<<ga.statistics().bestIndividual().score()<<"\n"; 

  ScoreFile.close();
return 0;

}
///////////////////////////////////////////////////
void MyInitializer(GAGenome& g)
{

GA1DArrayAlleleGenome<float>& genome 
=(GA1DArrayAlleleGenome<float>&)g;

for (int i=0;i<NumNodes;i++)
genome.gene(i, float(GARandomInt(0,1)));

}

/////////////////////////////////////////////////////
void ReadNet()
{
ifstream InFile(NETFILE);
if (!InFile)
    {

 cout<<"Could Not Read Input File"<<NETFILE<<"\n";
 exit(1);

    }
InFile>>NumNodes; //read number of nodes
for (int node=0; node<NumNodes; node++)
{

InFile>>Net[node].NumParents; // read number of parents for this 
node

for (int p=0; p<Net[node].NumParents;p++) // read parent numbers 
for this node

{
InFile>>Net[node].Parents[p];
Net[node].Parents[p]--; // decrement parent number to start 

from 0 instead of 1
}//end for p
int probs = (1<< Net[node].NumParents) ; // calculate number of 

entries in prob table
  for (int pr=0; pr<probs; pr++)  //read probabilities

    InFile>> Net[node].Prob[pr]; 
    
} //end for node
InFile.close();

}// end ReadNet

///////////////////////////////////////////////////

void FindCost()
{

Infinity=NumNodes;
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//initialize Cost Array
for(int i=0;i<MAXNODES;i++)

for(int j=0;j<MAXNODES;j++)
{

if(i==j) Cost[i][j]=0;
else Cost[i][j]=Infinity;

}

for (int node=0;node<NumNodes;node++)
{

for(int p=0;p<Net[node].NumParents;p++)
{

int this_parent =Net[node].Parents[p];
      Cost[this_parent][node]=1;

     
}

}

}

///////////////////////////////////////////////////
int min (int val1, int val2)
{

int minimum;
if(val1<=val2) minimum=val1;
else    minimum=val2;

return minimum;
}
///////////////////////////////////////////////////

void FindShortPaths()
{

for (int k=0;k<NumNodes;k++)
for (int i=0;i<NumNodes;i++)
 for (int j=0;j<NumNodes;j++)

Cost[i][j]=min(Cost[i][j],Cost[i][k]+Cost[k][j]);

}

//////////////////////////////////////////////////
void FindChildren()
{

for(int i=0;i<MAXNODES;i++)
for(int j=0;j<MAXNODES;j++)
Children[i][j]=-1;

for( i=0;i<MAXNODES;i++)
Child_Count[i]=0;

for (int node=0;node<NumNodes;node++)
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{

for(int p=0;p<Net[node].NumParents;p++)
{

int this_parent =Net[node].Parents[p];
int location= Child_Count[this_parent];

      Children[this_parent][location]=node;
        Child_Count[this_parent]++;
}

}
}

//////////////////////////////////////////////////

float Objective(GAGenome& g)
{

float score=1.0;

GA1DArrayAlleleGenome<float> genome =(GA1DArrayAlleleGenome<float>&) g;

for (int node=0; node<NumNodes;node++)
{   
    int power=1;

int index=0;
int node_truth = (int) genome.gene(node);
for(int p= Net[node].NumParents -1; p>=0 ; p--)
{

            int parent_num= Net[node].Parents[p];
int parent_truth = int (genome.gene(parent_num));
 index = index + parent_truth*power;
 power = power*2;

}//end for p
    

if (node_truth== TRUE)
score = score*Net[node].Prob[index];

else score = score* (1- Net[node].Prob[index]);
}//end for node

return score;
}
////////////////////////////////////////////////////
void FlipMutator(GAGenome& g, float pmut)
{ //regular GA mutation

GA1DArrayAlleleGenome<float>& child 
=(GA1DArrayAlleleGenome<float>&)g;

if (pmut>0.0) 
{
for (int i=0; i<NumNodes; i++)
{

if (GAFlipCoin(pmut))

  child.gene(i, ((child.gene(i) == 0) ? 1 : 0));
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}//for

}//if
}//flipmutator

////////////////////////////////////////////////////

int MyMutation(GAGenome& g,float pmut)
{  // mutation diverted to SA if needed

cout<<"\n\n"<<GenNum<<"\n\n";
GA1DArrayAlleleGenome<float>& genome 
=(GA1DArrayAlleleGenome<float>&)g;
GA1DArrayAlleleGenome<float> newgenome(allelset,Objective);
//GA1DArrayAlleleGenome<float> bestgenome(allelset,Objective);
float oldfitness;
float newfitness;
//float bestscore;

 if(GAFlipCoin(PROB_SA))
{

 
float T0 = INIT_TEMP;
float factor  = SAFACTOR;
float T= T0;
int stagnation=0;

 while( (stagnation< MAXSTAGNATION))
{

stagnation++;
newgenome.copy(genome);
FlipMutator(newgenome,Psam);
oldfitness= Objective(genome);
newfitness= Objective(newgenome);
if (newfitness<=oldfitness)
{

float paccept= exp (- (oldfitness-newfitness)/T);
paccept= paccept/(1.0+paccept);
if (GAFlipCoin(paccept))

{

genome.copy(newgenome);
if (newfitness!=oldfitness)

stagnation=0;  

} //inner if
}// outer if

else { 
genome.copy(newgenome);
stagnation=0;

     } //end else
    

 T= T*factor;
} // end while

} // end if
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else // if SA not performed
 FlipMutator(genome,pmut);
return 1;
}

////////////////////////////////////////////////

int  MyCrossover(const  GAGenome& g1, const GAGenome& g2, GAGenome* c1, 
GAGenome* c2)
{

GA1DArrayAlleleGenome<float>& mom 
=(GA1DArrayAlleleGenome<float>&)g1;

GA1DArrayAlleleGenome<float>& dad 
=(GA1DArrayAlleleGenome<float>&)g2;

GA1DArrayAlleleGenome<float>& child1 
=(GA1DArrayAlleleGenome<float>&)*c1;

GA1DArrayAlleleGenome<float>& child2 
=(GA1DArrayAlleleGenome<float>&)*c2;
//select a random root
int root=GARandomInt(0,NumNodes-1);
child1.copy(mom); //child1 is a copy of parent1
child2.copy(dad); //child2 is a copy of parent2
// now exchange the decendents of the random root betweeen
// the children

for (int i=0;i<NumNodes;i++)
{
     

if (Cost[root][i]<Cluster_Limit)
  {

  child1.gene(i,dad.gene(i));
  child2.gene(i,mom.gene(i));

  }//end if

}//for 
  
//if children have duplicates, force a change in them
float fit1=Objective(child1);
float fit2=Objective(child2);
for (int count=0;count<PopSize;count++)
{

if (fit1==FitArray[count])
FlipMutator(child1,ProbMutation*2);

if (fit2==FitArray[count])
FlipMutator(child2,ProbMutation*2);

}//for

return 1;
} 

/////////////////////////////////////////////////
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Source Code for Adaptive GASA

Declaration File “declaration.h”

#ifndef DECLARATION_H
#define DECLARATION_H
const int MAXNODES = 70;
const int   MAXPARENTS= 15;
const int   MAXPROB  = 1<<MAXPARENTS;
#define     NETFILE "60_a_nod.net"
#define     STATISFILE "statis_60a.out"
#define RESFILE "myres_60a.out"
#define SCOREFILE "scorefile_60a.out"
#define     TRUE  1
#define     FALSE 0
#define MINFACTOR 0.990 //min SA factor
#define     MAXFACTOR 0.999 //max SA factor
#define     MINSAPROB   0.005 //min SA probability
#define     MAXSAPROB   0.05  //max SA probability 
#define     MAXSTAGNATION 500 // no. Of iterations needed to declare    
stagnation
#define PERCENT_CHANGE  0.2 //max change in SA parameters during    

mutation.
typedef int ParentArray[MAXPARENTS];
typedef float ProbArray[MAXPROB];
typedef struct NodeType
{

int NumParents;
ParentArray Parents;
ProbArray   Prob;

};
typedef NodeType BeliefNetType[MAXNODES];
typedef int CostArray [MAXNODES][MAXNODES];
CostArray Cost;
int PopSize=1000;
int GenToConverge=500; 
float ProbMutation = 0.02;
float ProbCrossover=0.99;
float PercentReplace=0.2; 
float Cluster_Limit =1;
float ProbSACross=0.1; //probability of performing crossover of SA 
parameters
float ProbSAMut= 0.05; // probability of performing mutation of SA 
parameters.
float Psam=0.01; // probability of flipping a bit when creating a random
move for SA
float InitProb=0.01;// initial probability of acceptance used to 
calculate T0 for SA
int   GenNum=0;
int   Infinity;
float FitArray[1000];
#endif
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The main program for the GASA adaptive version “GASA_adpt.cpp”

#include <stdio.h>
#include "iostream.h"
#include <fstream.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

#include"ga.h"
#include"GARealGe.h"
#include"GARealGe.cpp"

#include "declaration.h"

int NumNodes;

BeliefNetType Net; 
void ReadNet();
void FindCost();
void FindShortPaths();
float Objective(GAGenome&);
void MyInitializer(GAGenome&);
int MyMutation(GAGenome& ,float );
int  MyCrossover(const  GAGenome& , const GAGenome& , GAGenome* , 
GAGenome* );

GAAlleleSetArray<float> allelset;
ofstream ScoreFile(SCOREFILE);

int main()
{  

unsigned int seed=5;
GARandomSeed(seed);
ReadNet();
FindCost();
FindShortPaths();
float results [10000][4];

for (int k=0; k<NumNodes; k++)
allelset.add(FALSE,TRUE,1); //the BBN part has binary values
only
allelset.add(MINFACTOR,MAXFACTOR);     // range of  cooling 

factor
allelset.add(MINSAPROB,MAXSAPROB); // range of Prob of SA 

//define the genome as a 1d array of real with the values
// of genes derived from the allelset array
GA1DArrayAlleleGenome<float> genome(allelset,Objective);

genome.initializer(MyInitializer);
genome.mutator(MyMutation);
genome.crossover(MyCrossover);
GASteadyStateGA ga(genome);
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ga.populationSize(PopSize) ;
ga.nConvergence(GenToConverge);
ga.terminator(GAGeneticAlgorithm::TerminateUponConvergence);
ga.pMutation (ProbMutation);
ga.pCrossover(ProbCrossover);
ga.pReplacement(PercentReplace);
ScoreFile<<"generation \t mean \t max \t min\n";
ga.scoreFilename(SCOREFILE);
ga.scoreFrequency(1); //keep the scores of every generation
ga.flushFrequency(1); //flush scores every generation
ga.selectScores(GAStatistics::Mean|GAStatistics::Minimum|
GAStatistics::Maximum);

//get current CPU time
clock_t CPU_time;
CPU_time=clock();
ga.initialize();

while (!ga.done())
{

float sum1=0;
float sum2=0;

GenNum= ga.statistics().generation();
GAPopulation current_pop = ga.population();
GA1DArrayAlleleGenome<float> 
tempgenome(allelset,Objective);
// the following loop is used to calculate the average
of the genes representing SA parameters.
for (int indiv=0; indiv<PopSize; indiv++ )
{
  tempgenome= current_pop.individual(indiv);
  FitArray[indiv]=Objective(tempgenome);
  sum1+= tempgenome.gene(NumNodes);
  sum2+= tempgenome.gene(NumNodes+1);

  }

results[GenNum][0]= sum1/PopSize;
  results[GenNum][1]= sum2/PopSize;
  results[GenNum][2]= current_pop.ave();
  results[GenNum][3]= current_pop.max();

  ga.step();

}
ga.flushScores();
ScoreFile.close();

CPU_time=clock() - CPU_time;
cout<<" \n\n THE GA FOUND : "   
<<ga.statistics().bestIndividual() << "\n";
cout<<ga.statistics().bestIndividual().score() << "\n\n";
cout<<"Processing Time=  "<<(CPU_time/1000)/60<<"  mins\n";

//write results to file
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ofstream ResultFile;
ResultFile.open(RESFILE,ios::app);//append the results
ResultFile<<"MINFACTOR = "<<MINFACTOR<<"\t";
ResultFile<<"MAXFACTOR = "<<MAXFACTOR<<"\t"; 
ResultFile<<"MINSAPROB = "<<MINSAPROB<<"\t";
ResultFile<<"MAXSAPROB = "<<MAXSAPROB<<"\t";
ResultFile<<"MAXSTAGNATION = "<<MAXSTAGNATION<<"\t";
ResultFile<<"PopSize   = "<<PopSize<<"\t";
ResultFile<<"NumGenerations= "<<GenNum<<"\n";
ResultFile<<"GenToConverge= "<<GenToConverge<<"\t";
ResultFile<<"ProbMutation= "<<ProbMutation<<"\t"; 
ResultFile<<"ProbCrossover= "<<ProbCrossover<<"\n";
ResultFile<<"ProbSAMut= "<<ProbSAMut<<"\t";
ResultFile<<"Psam = "<<Psam<<"\t";
ResultFile<<"InitProb = "<<InitProb<<"\t";
ResultFile<<"ProbSACross= "<<ProbSACross<<"\t";
ResultFile<<"ClusterLimit= "<<Cluster_Limit<<"\n";
ResultFile<<"Bestindividual = 
"<<ga.statistics().bestIndividual()<<"\n"; 
ResultFile<<"Processing Time=  "<<(CPU_time/1000)/60<<"  
mins\n";
ResultFile<<"BestScore  = 
"<<ga.statistics().bestIndividual().score()<<"\n"; 
ResultFile.close();

ofstream StatisFile;
StatisFile.open(STATISFILE,ios::app);//append the results
StatisFile<<"Statistics for File : "<<NETFILE<<"\n\n";
StatisFile.width(3);
StatisFile<<"Gen"<<"\t";
StatisFile.width(15);
StatisFile<<"avg_SAf"<<"\t";
StatisFile.width(15);
StatisFile<<"avg_probSA"<<"\t";
StatisFile.width(15);
StatisFile<<"fit_avg"<<"\t";
StatisFile.width(15);
StatisFile<<"fit_max"<<"\n\n";

for (int gen=0; gen<GenNum; gen++)
{

StatisFile.width(3);
StatisFile<<gen<<"\t"; 

for (int r=0;r<4;r++)
{
StatisFile.width(15);
StatisFile<<results[gen][r]<<"\t"; 
}

StatisFile<<"\n";
}
StatisFile.flush();
StatisFile.close();

return 0;
}
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///////////////////////////////////////////////////
void MyInitializer(GAGenome& g)
{

GA1DArrayAlleleGenome<float>& genome 
=(GA1DArrayAlleleGenome<float>&)g;

for (int i=0;i<NumNodes;i++)
genome.gene(i, float(GARandomInt(0,1)));

genome.gene(NumNodes,GARandomFloat(MINFACTOR,MAXFACTOR));
genome.gene(NumNodes+1,GARandomFloat(MINSAPROB,MAXSAPROB));

}

//////////////////////////////////////////////////////
void ReadNet()
{
ifstream InFile(NETFILE);
if (!InFile)
    {

 cout<<"Could Not Read Input File"<<NETFILE<<"\n";
 exit(1);

    }
InFile>>NumNodes; //read number of nodes
for (int node=0; node<NumNodes; node++)
{

InFile>>Net[node].NumParents; // read number of parents for this 
node

for (int p=0; p<Net[node].NumParents;p++) // read parent numbers 
for this node

{
InFile>>Net[node].Parents[p];
Net[node].Parents[p]--; // decrement parent number to start 

from 0 instead of 1
}//end for p
int probs = (1<< Net[node].NumParents) ; // calculate number of 

entries in prob table
  for (int pr=0; pr<probs; pr++)  //read probabilities

    InFile>> Net[node].Prob[pr]; 
    
} //end for node
InFile.close();

}// end ReadNet

///////////////////////////////////////////////////

void FindCost()
{

Infinity=NumNodes;
//initialize Cost Array
for(int i=0;i<MAXNODES;i++)

for(int j=0;j<MAXNODES;j++)
{

176



if(i==j) Cost[i][j]=0;
else Cost[i][j]=Infinity;

}

for (int node=0;node<NumNodes;node++)
{

for(int p=0;p<Net[node].NumParents;p++)
{

int this_parent =Net[node].Parents[p];
      Cost[this_parent][node]=1;

     
}

}
}

///////////////////////////////////////////////////
int min (int val1, int val2)
{

int minimum;
if(val1<=val2) minimum=val1;
else    minimum=val2;

return minimum;
}
///////////////////////////////////////////////////

void FindShortPaths()
{

for (int k=0;k<NumNodes;k++)
for (int i=0;i<NumNodes;i++)
 for (int j=0;j<NumNodes;j++)

Cost[i][j]=min(Cost[i][j],Cost[i][k]+Cost[k][j]);

}

float Objective(GAGenome& g)
{

float score=1.0;

GA1DArrayAlleleGenome<float> genome =(GA1DArrayAlleleGenome<float>&) g;

for (int node=0; node<NumNodes;node++)
{   
    int power=1;

int index=0;
int node_truth = (int) genome.gene(node);
for(int p= Net[node].NumParents -1; p>=0 ; p--)
{

            int parent_num= Net[node].Parents[p];
int parent_truth = int (genome.gene(parent_num));
 index = index + parent_truth*power;
 power = power*2;
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}//end for p
    

if (node_truth== TRUE)
score = score*Net[node].Prob[index];

else score = score* (1- Net[node].Prob[index]);
}//end for node

return score;
}

 void mutate_regular(GAGenome& g,int mutSAparams, float pmut)
{ //regular GA mutation

GA1DArrayAlleleGenome<float>& child 
=(GA1DArrayAlleleGenome<float>&)g;
int nMut=0;
if (pmut>0)
{

for (int i=0; i<NumNodes; i++)
{

if (GAFlipCoin(pmut))
{
  nMut++;
  child.gene(i, ((child.gene(i) == 0) ? 1 : 0));
}

}// for

}// if

float randval,geneval,new_geneval,minval,maxval;

if ((mutSAparams==TRUE) ) //if mutation of SA parameters is 
required
{

for (int location=NumNodes;location<=NumNodes+1; location+
+ )
{
if (GAFlipCoin(ProbSAMut))
{

if (location==NumNodes)
{
minval=MINFACTOR;
maxval=MAXFACTOR;

}
else 
{
minval=MINSAPROB;
maxval=MAXSAPROB;
}

 randval= GARandomFloat(-1.0,1.0);
 geneval= child.gene(location);
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new_geneval= 
float(geneval+randval*PERCENT_CHANGE*(maxval-
minval)*geneval);
 if(new_geneval>maxval) new_geneval=maxval;
 else if (new_geneval< minval) new_geneval=minval;
child.gene(location,new_geneval);

}// if GAflipcoin(ProbSAMut)

}// for

} // if mutSAparams
}

////////////////////////////////////////////////////
int MyMutation(GAGenome& g,float pmut)
//mutation diverted to SA if needed
{

cout<<"\n\n"<<GenNum<<"\n\n";
GA1DArrayAlleleGenome<float>& genome 
=(GA1DArrayAlleleGenome<float>&)g;
GA1DArrayAlleleGenome<float> newgenome(allelset,Objective);
GA1DArrayAlleleGenome<float> bestever(allelset,Objective);

float pSA= genome.gene(NumNodes+1); //take PSA from the specified 
gene in the current genome
float oldfitness;
float newfitness;

if(GAFlipCoin(pSA))
{

float T0=-1*Objective(genome)/(log(InitProb));   
float factor= genome.gene(NumNodes);
float T= T0;
int stagnation=0;

 while( stagnation< MAXSTAGNATION)
{

stagnation++;
newgenome.copy(genome);
mutate_regular(newgenome,FALSE,Psam);

oldfitness= Objective(genome);
newfitness= Objective(newgenome);
if (newfitness<= oldfitness)
{

float paccept=exp (- (oldfitness 
newfitness)/T);
paccept= paccept/(1.0+paccept);
if (GAFlipCoin(paccept))
{

 genome.copy(newgenome);
  if (newfitness != oldfitness)

stagnation=0;  
}//inner if (flipcoin)
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}//  if (newfitness < oldfiyness)
else { // if newfitness>oldfitness accept new 

solution
genome.copy(newgenome);
stagnation=0;

     } //end else
    

 T= T*factor;  //reduce temperature
} // end while

} // end if GAFlipCoin(pSA)
else // if SA not performed
 mutate_regular(genome,TRUE,pmut);

return 1;
}

////////////////////////////////////////////////////
////////////////////////////////////////////////

int  MyCrossover(const  GAGenome& g1, const GAGenome& g2, GAGenome* c1, 
GAGenome* c2)
{

GA1DArrayAlleleGenome<float>& mom 
=(GA1DArrayAlleleGenome<float>&)g1;

GA1DArrayAlleleGenome<float>& dad 
=(GA1DArrayAlleleGenome<float>&)g2;

GA1DArrayAlleleGenome<float>& child1 
=(GA1DArrayAlleleGenome<float>&)*c1;

GA1DArrayAlleleGenome<float>& child2 
=(GA1DArrayAlleleGenome<float>&)*c2;
//select a random root
int root=GARandomInt(0,NumNodes-1);
child1.copy(mom); //child1 is a copy of parent1
child2.copy(dad); //child2 is a copy of parent2
// now exchange the decendents of the random root betweeen
// the children

for (int i=0;i<NumNodes;i++)
{
     

if (Cost[root][i]<Cluster_Limit)
  {

  child1.gene(i,dad.gene(i));
  child2.gene(i,mom.gene(i));

  }//end if

}//end for
// if children have duplicates, force a change in them
float fit1=Objective(child1);
float fit2=Objective(child2);
for (int count=0;count<PopSize;count++)
{

if (fit1==FitArray[count])
mutate_regular(child1,TRUE,ProbMutation*2);

if (fit2==FitArray[count])
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mutate_regular(child2,TRUE,ProbMutation*2);
}//for

// now perform crossover for the SA parameters
if (GAFlipCoin(ProbSACross))
{

int cutpoint=GARandomInt(NumNodes-1,NumNodes);
for (int i=cutpoint+1;i<= NumNodes+1;i++)
{
  child1.gene(i,dad.gene(i));
  child2.gene(i,mom.gene(i));

}
}

return 1;
} 
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 Appendix B: BBN Topologies
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