
Evolutionary Computation Applied to

Combinatorial Optimisation Problems

by

George G. Mitchell

B.Sc. M.Sc.

Supervisor: Prof. Barry McMullin

Internal Examiner: Dr. Darragh O’Brien

External Examiners: Dr. Inman Harvey & Dr. Michael O’Neill

A thesis submitted to the School of Electronic Engineering

Dublin City University for the degree of

Doctor of Philosophy

September 2007

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DCU Online Research Access Service

https://core.ac.uk/display/11307977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 i

Declaration

I hereby certify that this material, which I now submit for assessment on the

programme of study leading to the award of Doctor of Philosophy (PhD.) is entirely

my own work and has not been taken from the work of others save and to the extent

that such work has been cited and acknowledged within the text of my work.

Signed: ________________________________ ID No.: 52149501

George G. Mitchell

Date: __________________

 ii

Abstract

This thesis addresses the issues associated with conventional genetic algorithms (GA)

when applied to hard optimisation problems. In particular it examines the problem of

selecting and implementing appropriate genetic operators in order to meet the validity

constraints for constrained optimisation problems. The problem selected is the

travelling salesman problem (TSP), a well known NP-hard problem.

Following a review of conventional genetic algorithms, this thesis advocates the use

of a repair technique for genetic algorithms: GeneRepair. We evaluate the

effectiveness of this operator against a wide range of benchmark problems and

compare these results with conventional genetic algorithm approaches. A comparison

between GeneRepair and the conventional GA approaches is made in two forms:

firstly a handcrafted approach compares GAs without repair against those using

GeneRepair. A second automated approach is then presented. This meta-genetic

algorithm examines different configurations of operators and parameters. Through the

use of a cost/benefit (Quality-Time Tradeoff) function, the user can balance the

computational effort against the quality of the solution and thus allow the user to

specify exactly what the cost benefit point should be for the search.

 Results have identified the optimal configuration settings for solving selected TSP

problems. These results show that GeneRepair when used consistently generates very

good TSP solutions for 50, 70 and 100 city problems. GeneRepair assists in finding

TSP solutions in an extremely efficient manner, in both time and number of

evaluations required.

 iii

Dedication

In memory of my Dad who taught me my first programming language. This thesis is

built on everything you taught me, your loving son.

Grellan J Mitchell.

1935-2007

Ar dheis Dé go raibh a anam dílis

 iv

Acknowledgements

First of all I would like to thank Pam, my wonderful wife, who has been a constant

unwavering ally. Pam has put up with a lot of late nights, the house being turned

upside down time and time again, along with bizarre and some times raving

discussions. Pam has brought our first born, Emma, into the world while I have been

completing this thesis. Emma has sat beside her father a number of times while he has

written this thesis. Pam thanks for being there, a willing ear for me and always

supporting me through thick and thin, this is your thesis as much as mine, I love you

so much.

I will forever be indebted to my supervisor Professor Barry M
c
Mullin. He has

impeccable supervisory skills, his clarity of thought is second to none and above all

Barry places unceasing confidence in people. It is these factors that have guided me

through this work. Barry thanks for all the advice on everything and it was a lot more

than just your job….

This thesis is the product of many conversations, thanks to Dr Diarmuid

O’Donaghue and Dr Adrian Trenaman in NUIM for starting me on the road of

evolutionary computation, thanks also to the guys in the ALife Lab DCU. To the

innumerable people who have left their mark on this thesis and ultimately on my

mind, a thank you to one and all. Thanks also to Dr Carlos Coello Coello and Dr

David Fogel for providing clarification, pointing out techniques I should investigate,

and also providing invaluable feedback on my early papers. Dr Susan Bergin, Dr

Diarmuid O’Donoghue, Tony Gillick and Tom O’Meara for proof reading this

thesis. To all those anonymous reviewers of my papers who have provided criticism

of the work, this thesis is intended to embody (and address) all these suggestions. The

 v

technicians both in DCU and NUIM, thanks for all the assistance, in this mammoth

computing task.

Finally I want to thank my friends (especially Jim, Maggie and Seamus), family and

parents. For my parents the last five years have been challenging, culminating in my

father’s passing away. My parents have supported and encouraged me throughout all

the years of my life right through to this my PhD thesis, thanks Mum and Dad.

 vi

TABLE OF CONTENTS

Declaration.. i

Abstract.. ii

Dedication ... iii

Acknowledgements .. iv

List of Figures.. xii

Chapter 1

Introduction... 1

1.2 Biologically inspired methods .. 1

1.3 The use of metaphor.. 2

1.4 Published research contributions .. 3

1.5 Layout of thesis... 4

Chapter 2

Searching for Solutions... 7

2.1 Artificial intelligence .. 7

2.2 Evolution in nature.. 9

2.3 Biologically inspired methods .. 10

2.4 Searching for optimal solutions – search optimisation 11

2.5 Search techniques.. 13

2.5.1 Depth first search .. 13

2.5.2 Branch and bound ... 15

2.5.3 Random Mutation Hill-Climbing.. 16

2.5.4 Simulated Annealing... 19

 vii

2.5.5 Tabu Search .. 21

2.6 Evolutionary Computation.. 22

2.6.1 Evolutionary Programming... 23

2.6.2 Evolutionary Strategies ... 24

2.6.3 Genetic Algorithm .. 25

2.7 Understanding evolutionary computation... 27

2.7.1 Schema and building blocks ... 28

2.8 Summary ... 31

Chapter 3

The Travelling Salesman Problem .. 32

3.1 The Travelling Salesman Problem.. 32

3.1.1 Real world examples of the TSP... 35

3.1.2 TSP related problems.. 36

3.2 The complexity of the TSP ... 38

3.2.1 Is the TSP an NP problem?... 40

3.3 Benchmark problems .. 43

3.4 Finding solutions for the TSP ... 45

3.4.1 The no free lunch theorems... 45

3.5 Summary ... 46

Chapter 4

Genetic Algorithms, Operators, Representations and Methods................................. 48

4.1 The Genetic Algorithm ... 48

4.2 Genetic algorithm populations.. 49

 viii

4.2.1 Fitness values .. 51

4.2.2 Selection operators.. 53

4.3 Genetic Algorithm representations ... 58

4.4 Crossover, mutation and representation.. 59

4.4.1 Binary Representation and reproduction .. 61

4.4.2 Path representation crossover operators.. 65

4.4.3 Adjacency Representation .. 78

4.4.4 The Mutation Operator ... 80

4.5 Summary ... 86

Chapter 5

Genetic Algorithm Techniques Specific to the TSP... 88

5.1 Adapting the Genetic Algorithm to solve TSP problems 88

5.2 Fogel’s Genetic Algorithm approach to the TSP.. 89

5.2.1 Other Genetic Algorithm approaches to the TSP 91

5.3 Repair operators and penalty functions for genetic algorithms 93

5.3.1 Early Repair Operators ... 96

5.3.2 2-Repair crossover and mutation repair .. 97

5.3.3 GENOCOP III... 98

5.4 Repair and replacement probabilities.. 100

5.5 Repair and natural evolution... 101

5.6 Summary ... 103

 ix

Chapter 6

GeneRepair.. 104

6.1 Introduction... 104

6.2 Exploratory work on repair operators ... 104

6.3 Why Examine Repair .. 105

6.4 The Repair method.. 106

6.5 Genetic Repair .. 110

6.6 Genetic Repair and a biological analogy .. 112

6.7 Genetic repair and possible side effects.. 113

6.8 Summary ... 113

Chapter 7

Preliminary Experiments on GeneRepair with Genetic Algorithms 114

7.1 Experimentation with GeneRepair.. 114

7.1.1 The mutation rate experiments.. 117

7.1.2 Selection and Mutation rate effect on experiments: 121

7.2 Operators and GeneRepair .. 123

7.3 GeneRepair and the TSP... 125

7.3.1 GeneRepair and variable rates .. 128

7.3.2 A feedback for adaptive mutation rate.. 129

7.3.2.1 Adaptive mutation... 130

7.4 Alternative GeneRepair techniques .. 133

7.4.1 Experimental results to determine the best GeneRepair technique 134

7.5 Does GeneRepair act as a special mutation operator? 137

7.6 Summary ... 140

 x

Chapter 8

Configuration Setting for GAs and the TSP... 142

8.1 Motivation... 142

8.2 Configuration setting of Genetic Algorithms ... 144

8.3 Another meta-evolutionary examination of the TSP… 147

8.3.1 The multi-level Genetic Algorithm framework 148

8.4 Tradeoff function .. 151

8.5 Meta-GA design.. 154

8.6 Experiments with the QTT multi- level evolutionary system......................... 158

8.6.1 50, 70 and 100 city TSP Experiments... 159

8.6.2 Comparison of QTT vs. literature defined configurations...................... 161

8.7 Discussion ... 163

8.8 Summary ... 164

Chapter 9

Conclusion & Future Work ... 166

9.1 Conclusions... 166

9.1.1 The Random GeneRepair approach .. 167

9.1.2 A Cost/benefit function (QTT) ... 168

9.1.3 Identifying good parameter settings for a GA applied to the TSP.......... 169

9.2 Future work... 170

9.2.1 Further experiments: ... 171

9.2.2 New repair approaches.. 171

9.2.3 New application areas ... 172

9.3 Summary ... 175

 xi

List of Publications ... 176

References .. 177

 xii

List of Figures

Figure 2-1 Depth First Search..14

Figure 2-2 1-D example search space..19

Figure 2-3 Simplified genetic algorithm..27

Figure 2-4 The crossover operator, two individuals are cut and spliced.30

Figure 3-1 Human approach to 20 point TSP..35

Figure 3-2 VRP example ...37

Figure 3-3 Cormen’s view of Classes P, NP and NP-complete41

Figure 3-4 Lawler’s special and general cases of the TSP illustration..................44

Figure 4-1 Genetic Algorithm structure. ...49

Figure 4-2 Roulette Wheel parent selection. ...55

Figure 4-3 Classical crossover operator. ...62

Figure 4-4 n-point crossover..63

Figure 4-5 Uniform crossover example...64

Figure 4-6 PMX example - crossover points. ..66

Figure 4-7 PMX- filling offspring. ..67

Figure 4-8 Completed offspring produced by PMX..67

Figure 4-9 CX - parents and cycle example. ...68

Figure 4-10 OX-Order Crossover step1 ..69

Figure 4-11 OX-Order Crossover completed offspring...70

Figure 4-12 ModX crossover...71

Figure 4-13 Voting recombination example..72

Figure 4-14 MPX three stage operation...73

Figure 4-15 Masked crossover...74

 xiii

Figure 4-16 Position crossover mappings..75

Figure 4-17 MPMX 4 stage process ..76

Figure 4-18 Example of Complete CSEX subtour exchange.77

Figure 4-19 Adjacency TSP tour ...78

Figure 4-20 Subtour Chunking ..79

Figure 4-21 2-opt mutation..82

Figure 4-22 Reciprocal Exchange Mutation – (SM) ...83

Figure 4-23 Inversion operator IVM ...84

Figure 4-24 Insertion Mutation example ...85

Figure 6-1 Example of TSP tour repair ...107

Figure 6-2 Repair implementation...111

Figure 7-1 GA with repair and GA without repair. ..116

Figure 7-2 Map of the data points for the Eil101 TSPLIB data set.119

Figure 7-3 The tour distance obtained at various mutation rates.........................119

Figure 7-4 Number of improvements at various mutation rates..........................120

Figure 7-5 Number of generations to find best solution......................................121

Figure 7-6 Mutation rate effect for extended set of operators with GeneRepair. 122

Figure 7-7 Most effective operators for eil51 problem data set.123

Figure 7-8 Most effective operators for st70 problem data set............................124

Figure 7-9 Most effective operators for eil101 problem data set.124

Figure 7-10 Effect of fixed mutation rate ..126

Figure 7-11 % of repairs for each problem..127

Figure 7-12 Effect of increased mutation rates..128

Figure 7-13 Effect of varying mutation rate with GeneRepair..............................130

Figure 7-14 Improvement and adaptive mutation parameters.131

 xiv

Figure 7-15 Adaptive mutation and the GeneRepair GA search131

Figure 8-1 Meta evolutionary algorithm to identify configurations settings.......145

Figure 8-2 The distributed multi-level genetic algorithm....................................148

Figure 8-3 Simplified class diagram..149

Figure 8-4 Cost benefit point tour length versus time ...152

Figure 8-5 Tradeoff graph - u shape graph and illustration of sliding window...152

Figure 8-6 A sample run of the fitness progress of a GA for eil-51 TSP.153

 xv

The gods did not reveal from the beginning
All things to us; but in the course of time

Through seeking, men found that which is better.

But as for certain truth, no man has known it,
Nor will he know it; neither of the gods,

Nor yet of all the things of which I speak.
And even if by chance he were to utter

The final truth, he would himself not know it;
For all is but a woven web of guesses.

Xenophanes (c. 570-c. 480 BC) Greek philosopher.

 1

Chapter 1

 Introduction

1.1 Overview

The work presented in this thesis examines the area of evolutionary optimisation, a

specialist field of the evolutionary computation domain. A new approach is presented

for applying evolutionary computation to the Travelling problem (TSP). Two new

techniques are examined: GeneRepair and QTT (the Quality-Time Tradeoff function).

Both of these techniques assist the users to find solutions for the TSP that meet their

individual requirements and constraints in an efficient and effective manner. The

GeneRepair technique enhances the current knowledge of repair when used in

conjunction with genetic algorithm to solve combinatorial optimisation problems. A

total of 21 differing repair paradigms have been developed or identified in the course

of this work (including previous repair approaches identified from the literature and

discussed in Chapter 5). The GeneRepair techniques provide an effective method to

address the TSP validity constraints (which will be highlighted in Chapter 3 and

Chapter 6). The QTT function provides a user with the ability to tradeoff the

computation time (cost) versus the quality of a TSP solution (benefit) (this function

will be explored in detail in Chapter 8).

1.2 Biologically inspired methods

A little over one hundred and fifty years ago this area of research would have been

unthinkable, because biological evolution (the inspiration of evolutionary

computation) was unknown. In 1859 Charles Darwin [1] presented his most forceful

 2

argument on biological natural selection. Darwin’s work together with that of

Chambers [2], Mayr [3] and Mendel [4] provide the now accepted mechanisms of

evolution by natural selection and specifically inheritance in species and the genetics

of man.

Computer Science and in particular Artificial Intelligence have exploited techniques

used in other domains. As is normal practice in many research areas, these techniques

have been adapted to work in their new adopted research environment. Similarly

those algorithms that have been inspired by nature including, Artificial Neural

Networks, Ant colony optimisation, Swarm technology and even Evolutionary

Computation range from full replications through to only limited similarities of the

natural phenomenon.

For example Fogel [5], Holland [6] and Goldberg [7] examined the fundamentals of

simulated Darwinian evolution and as a result proposed evolutionary programming,

genetic algorithms and other Darwinian inspired evolutionary algorithms.

1.3 The use of metaphor

The use of metaphors figures in this project as it does in many of the evolutionary

computation works, to enable the researcher to more fully illustrate his thesis. The

methods and operators applied in evolutionary computation are metaphorically linked

with their biological counterparts. Metaphors can be easy to make but their theoretical

support is difficult to prove. Others have encountered similar difficulties. As Depew

and Weber’s state:

…just because metaphors play roles in explanations, then one is not entitled to

say, ‘Oh, that’s just my way of putting it.’ Even when they perform little or no

explanatory work, moreover, metaphors carry a good deal of metaphysical and

 3

epistemological freight. Indeed, whenever there is a deficit between theoretical

reach and empirical support the difference is usually made up by invoking

ontology to do the missing work. Similarly, epistemological and methodological

ideas are sometimes used to intimate on highly general grounds that the theory

in question must be true. In such cases, Lewontin and Levins argue, we are

entitled at least to suspect that ideology may be involved…[8].

Rather than just using the metaphors in common usage in evolutionary computation

and in particular in genetic algorithms this research leads to the examining of

metaphors from the general area of biology. Examining, for example, if template

based repair is exhibited in nature in a similar format to GeneRepair. During the

development of the software for this project the author explored a number of differing

software processes which embody the dynamics of metaphors and which would also

work well with evolutionary computation. As a result the Agile software process was

selected [9].

1.4 Published research contributions

There are a number of publications that arose from or contributed (by way of

feedback received) to this thesis. The author’s very first publication was on a genetic

algorithm repair technique for the travelling salesman problem published in 2000

[10]. This publication was the first in a number of publications on this topic.

During the development of the software for this project the author explored a number

of different software techniques and methodologies, one of which was the Agile

software process. eXtreme Researching (XR) [9] was one of the by-products of

completing this project and was published in the Journal of Software Practice and

Experience. The development of differing software solutions required a software

 4

process which was flexible and embraced change. The ability to perform software

spikes (the exploring of new vistas during the research) was an important point for the

XR process. The development of a multi-level genetic algorithm benefited greatly

from experience of creating reliable communicating objects[11-13]. Some of the

techniques developed in this thesis were applied to industrial routing problems (real

world problems). This resulted in a best poster award at the Information Technology

& Telecommunications Conference- IT&T 2002.

The repair techniques that were developed and evaluated were principally applied to

the TSP. A paper examining the application of GeneRepair to the TSP was presented

at the Genetic and Evolutionary Computation Conference - GECCO 2003 [14].

The multi-level genetic algorithm was enhanced through the use of a cost/benefit

tradeoff function (QTT – Quality-Time Tradeoff) and this was published at the

Application of Artificial Intelligence Conference - AIA 2005 [15, 16], the Genetic and

Evolutionary Computation Conference - GECCO 2007 [17], and the IEEE Congress

on Evolutionary Computation - CEC 2007 [18]. Currently one paper is in review for

the European Conference on Complex Systems - ECCS 2007.

1.5 Layout of thesis

This thesis is divided into four parts. Part 1 (chapters 2-4) outlines Mendelian

evolution, optimisation problems, evolutionary computation and genetic algorithms.

This is followed by a review of different operators that have been developed for

genetic algorithms when applied to the TSP. Part 2 (chapters 5–6) examines

approaches that have been used to ensure TSP solution validity. Following this

review, repair is identified as an area for further research. Part 3 (chapters 7-8)

presents a number of experiments which are used to evaluate GeneRepair, and also to

 5

determine the optimal configuration setting for genetic algorithms applied to selected

TSP problems. This is accomplished using two different approaches, a handcrafted

approach and also an automated multi-level genetic algorithm approach which used

the QTT function. Part 4 (chapter 9) contains a summary of the work, the main

contributions of the thesis and future research avenues that have been identified.

Each chapter is summarised below:

Chapters 2: Searching for solutions

This chapter introduces searching and examines some of the well known

searching techniques. The chapter briefly examines Artificial Intelligence and the

concepts underlying evolutionary computation and genetic algorithms in particular.

Chapter 3: The Travelling Salesman Problem

This chapter provides both an informal and a formal description of the

travelling salesman problem. It also discusses some of the TSP benchmark problems.

Chapter 4: Genetic Algorithms, operators, representations and methods

This chapter presents a number of different genetic algorithm elements:

representation, population sizes, selection, crossover and mutation operators that have

been used with genetic algorithms when solving the TSP.

Chapter 5: Special Genetic Algorithm and Operators for the TSP

In this chapter, specific operators that have been designed to assist in the

computation of valid results for TSP problems are introduced. Specifically repair and

penalty functions that promote valid tours are examined.

Chapter 6: GeneRepair

 The GeneRepair operator is introduced in this chapter. The early motivating

factors and the initial design of the repair operator are presented. The components of

 6

GeneRepair are examined and following this a number of different GeneRepair

techniques are presented.

Chapter 7: Examining Genetic Algorithms with GeneRepair

In this chapter a number of handcrafted experiments evaluating GeneRepair

are presented. The performance of GeneRepair is evaluated. The chapter concludes

with a discussion of the appropriateness of a GeneRepair technique and what, if any,

benefits this may have.

Chapter 8: Multi-level genetic algorithm for configuration setting

In this chapter we present a novel cost/benefit function that assists multi-level

genetic algorithm searches. A multi-level genetic algorithm is introduced which

identifies configuration settings for genetic algorithm to solve the TSP.

Chapter 9: Conclusion & Future Work

In this chapter the thesis concludes, with an overview of the project, the main

contributions of the work and some directions for future work are identified.

 7

Chapter 2

Searching for Solutions

This chapter introduces searching and examines some of the well known searching

techniques. The chapter commences by introducing Artificial Intelligence (AI),

examines the early work on AI (the quest for computerised human intelligence)

including Searle’s, Turing’s and Fogel’s contributions to the field. Natural evolution

and how it has stimulated the development of other biologically inspired methods is

then presented.

Searching and more specifically searching for optimal solutions is then discussed. The

section on searching is divided between deterministic and stochastic based search

techniques. The remainder of the chapter is concerned with one particular stochastic

based search technique - the field of evolutionary computation. The section concludes

by examining genetic algorithms and also includes a brief introduction to the schema

theorem.

2.1 Artificial intelligence

The goal of artificial intelligence is to create machines that behave in an intelligent

manner similar to humans. Therefore as a starting point a clear definition of what

‘human intelligence’ actually is, is desirable. Unfortunately no such definition exists.

In the mid part of the 20th century Alan Turing acknowledged this and instead of

proposing a definition he proposed a test for human intelligence. He proposed that a

machine would be termed as intelligent, if it could respond (when interrogated) in a

 8

manner which would make it indistinguishable as to whether it was a human operator

or a machine that was responding [19]. This Turing Test has since been the subject of

much debate [20]. This area of research became embedded in debate, ‘could

computers truly embody human intelligence and perform tasks as a human would?’

In the mid 1960’s an alternative approach to artificial intelligence was gaining

ground. Instead of aspiring to match human intelligence, artificial intelligence could

focus on the fundamental aspects of intelligent behaviour. This was a pragmatic

departure point for artificial intelligence research, focussing on ways to create

machines to perform complex tasks.

“… intelligence can be viewed as the ability of any decision-making entity to

achieve a degree of success in seeking a wide variety of goals under a wide

range of environments.” L.J. Fogel [21]

This statement in 1966 offers a clear definition of intelligent behaviour, and thus

another starting point for artificial intelligence research. However again this has been

questioned by Searle. He argues that: the ability of a machine to mimic intelligence

does not imply that the machine is intrinsically intelligent. However in the absence of

a sufficient behavioural test for intelligence, the present situation will remain the only

viable position. The issue of intrinsic intelligence of a machine is set aside and instead

the mechanisms through which apparently intelligent behaviour can be effected are

investigated.

Fogels’ definition of intelligence above does not solely refer to a human intelligence

property. The movement of the artificial intelligence research community to this

standpoint away from the traditional anthropocentric view has been best illustrated by

Rodney Brooks [22] where he states:

 9

“I wish to build completely autonomous agents that coexist in the world with

humans, and are seen by those humans as intelligent beings in their own right.”

2.2 Evolution in nature

Darwin, drawing on the works of Paley and Lamark, proposed a concept of biological

evolution which consisted of five separate theories: naturalism, transmutation, descent

with modification, natural selection and causal pluralism [23]. These works provided

a firm basis for further scientific hypotheses.

Mendel’s laws of inheritance formed the basis for the current understanding of

evolution. Mendel’s obscure work on pea plants (where he investigated the

transmission of hereditary characteristics from parent organisms to their offspring)

was published some six years after Darwin’s Origin of Species. Unfortunately it

would not come to prominence until the early 20th century when discussions on

causation of variation were taking place in earnest.

Natural selection is the process through which biological populations change over

time as a result of the inheritance of traits which directly affect the reproduction and

the survival of the organisms. Natural selection is very significant as it is believed to

be responsible for organism adaptation to the surrounding environment.

Natural selection results from the genetic differences between individuals. These

differences are a result of random mutations of alleles which occur in successive

generations. Natural selection is divided into two types: ecological selection and

sexual selection. Sexual selection is the competition for mates between individuals of

the same sex.

 10

Ecological selection (or asexual selection) relates to natural selection that takes place

without the requirement for direct sexual selection. The survival of specific traits is

therefore determined solely by ecology alone i.e. the organism and the surrounding

environment.

Darwinian evolution has been an effective optimisation technique [23] and as a result

is a good basis for the development of artificial optimisation algorithms. From

evolutionary software development, where small modifications are made on a planned

basis, to optimisation search algorithms that will be presented later in this chapter

natural evolution has persisted as a strong design principle. A number of algorithms

have been inspired by these naturally occurring phenomena and these will be

examined in the next section.

2.3 Biologically inspired methods

“Biologically inspired methods” is a general term pertaining to computing which is

inspired by nature. Over the last thirty years many differing strategies have been

developed, ranging from Artificial Neural Networks, Evolutionary Computation,

Fuzzy Sets to Ant Colony Optimisation, Swarm Optimisation, etc. These differing

algorithms have been applied to a number of complex problems, such as: signal and

image processing, data visualization, data mining, and combinatorial optimisation.

In some literature these techniques are included in the suite of techniques termed

Artificial Intelligence [24]. However a key difference between bio-inspired methods

and artificial intelligence is that the former takes a more evolutionary approach to

learning, as opposed to what is possibly described as a creationist (or handcrafted)

methods approach which is used in traditional artificial intelligence [25].

 11

2.4 Searching for optimal solutions – search optimisation

In searching for an optimal solution for a given problem it is normal that a measurable

scalar function must either be maximised (fitness function) or minimised (cost

function) for some variable which represents the solution. In the following example y

is being minimised and the function would be represented as:

Equation 1 y = f(x)

subject to x ∈ X, X being the search space and where x = (x1, x2,…, xn) is a force

vector and its components termed decision variables. Candidate solutions are termed

decision vectors. If every possible solution were to be evaluated, then a set of

solutions would be created that represent the entire solution space for the given

problem.

When a search is performed that does not calculate every possible solution then the

set of solutions that is generated must be a proper subset of X.

The problem of optimising solutions exists in a wide variety of domains and can also

have a vast variety of dimensions in which problems can vary. In general, search

techniques can be classified into two distinct categories [26]: Deterministic (including

Exact approaches) and Stochastic (including Heuristic approaches). Examples of each

of these categories are shown in Table 2-1.

Deterministic search techniques have a pre-determined path that the search will take

and therefore the search is exactly repeatable. These search techniques are well suited

to problems with smaller sized solution spaces. They are less practical for larger scale

problems. Since many of the problems that require the use of artificial intelligence

based search algorithms are computationally complex (discussed in detail in section

3.2) it is necessary to limit the quality of the required solution from the entire search

 12

space or to limit the scope of the search space (or both) thereby allowing “acceptable”

solutions be found in “reasonable” amounts of time. Some of the deterministic

examples listed in Table 2-1 attempt to limit the size of the search space by

incorporating some domain specific information.

Deterministic Stochastic

Hill-Climbing Random Mutation Hill-
Climbing

Branch & Bound Tabu Search

Depth First Search Simulated Annealing

Breadth First Search Genetic Algorithms

Best First Search Monte Carlo Method

Greedy Algorithm

Table 2-1 Search category examples

Many of these deterministic search techniques are considered as graph and tree

searching algorithms. Examples of these are: depth first search, breadth first search,

best first search, branch & bound (Exact approach), hill-climbing, and greedy

algorithms [27-30]. All of these algorithms have been successfully applied to a wide

range of problems [28, 30, 31] which are typically termed regular problems [26].

These are problems which do not have characteristics which make them difficult to

search such as high dimensionality, NP Complete characteristics or multi – modality

[26].

Because the deterministic search techniques do not lend themselves to irregular

problems, the stochastic search techniques have been developed as the alternative

approach. The stochastic approaches include Random Mutation Hill-Climbing,

Simulated Annealing, Monte Carlo, Tabu (Heuristic) Search and Genetic Algorithms

 13

(GA). In keeping with other searches these techniques require a cost (objective)

function to drive the search and also an encoding and decoding mechanism to

facilitate the extraction of solution information from the search’s representation of the

solution. Generally the stochastic search techniques have proven very effective at

generating good solutions (taking into consideration the computational effort required

to generate these solutions) for problems where the deterministic search techniques

prove difficult [31].

2.5 Search techniques

In this section a selection of search techniques is presented. The search techniques

that are presented have been selected due to their long running relationship with

routing based problems including the travelling salesman problem. This section

commences by examining the deterministic search techniques of - depth first search

and branch and bound. These are two deterministic search techniques that have

spawned a number of different algorithms that have been applied with differing

degrees of success to routing based problems. This section concludes by examining

the stochastic based search techniques that have also been applied to routing based

problems.

2.5.1 Depth first search

The depth first search (DFS) is a deterministic search algorithm and typically is

designed to operate in an exhaustive search manner (systematically enumerating all

possible candidates for the solution and checking whether each candidate satisfies the

 14

problem’s statement). When the DFS is applied to the travelling salesman problem, all

possible combinations of tours must be generated thus allowing the optimal solution

to be determined. This has time complexity concerns as the number of possible tours

grows in a factorial fashion (see section 3.2). The DFS in the traditional (exhaustive

search) configuration [24] must store all previously examined data. From this stored

data the optimal solution can then be derived.

The representation of the search is typically in a tree structure as in Figure 2-1 and

when applied to the TSP all nodes are assigned to cities and the edges are the city-city

distances. The algorithm must then be coded so as to determine the actions e.g. left

traversal, where the first left node is selected and in an iterative manner the left-hand

sub-trees are examined first.

A

B

C D

E

F

G

Figure 2-1 Depth First Search

A number of modifications to the traditional DFS have been developed. These are

designed so as to improve the efficiency of the search whilst maintaining the

deterministic nature of the search. These improvements are traditionally heuristic in

nature and are embedded into the search so as to direct the search and therefore assist

 15

in reducing the search space that must be examined. Common heuristically enhanced

depth first searches include: the Best First Search and its closely related searches of

A* search and Dijkstra’s algorithm [32]. These search algorithms are particularly well

suited to combinatorial optimisation problems. They have been used extensively in

the area of route planning e.g. the TSP, the vehicle routing problem (VRP) and also to

routing problems in computer networks [33].

2.5.2 Branch and bound

Branch and Bound is a general search method which was formalised by Land and

Doig in 1960 [34]. In simple terms, the algorithm attempts to examine only the most

feasible areas of search space that would yield optimal solutions. Of course this is

more easily stated than implemented.

In an attempt to find the optimal solution for a given problem the search maintains as

a reference point the best solution found so far. When computing any alternative

solution, should a partial solution prove to be ‘worse’ than the present best solution

then that partial solution is abandoned and another potential solution is computed. The

search continues in a recursive manner until an optimal solution is defined.

The branch and bound search is typically visualised as a tree based search, similar in

format to the DFS, with the addition of pruning of the tree to identify those areas of

the tree which could yield better solutions. The determining of feasible and unfeasible

sub-trees is accomplished by generating an upper and lower bound for each sub-tree.

The creation of sub-trees represents a divide and conquer philosophy. Once a sub-tree

has been identified the lower bound is computed. This can be accomplished through a

 16

number of different methods, the best known of these lower bound methods being

Dantzig’s simplex method which is a linear programming technique [35].

The search tree is explored during the search in a dynamic fashion and initially

consists of only the root node. For a number of problems, the initial feasible solution

to the problem can be produced using some well know heuristic search method. This

solution can then be designated as the best solution found so far. With each iteration

of the algorithm, a node is selected for examination from the unexplored feasible sub-

tree of the problem. One of the most common selection strategies is the eager

selection strategy [36]. Exploration of a sub-tree is accomplished using branching in

the eager strategy. Two or more children of the node are constructed (this is done by

adding additional constraints to the sub-problem). In this manner the problem is

continually subjected to a divide-and-conquer technique. Bounds (potential solutions)

are then calculated for each sub-tree so that an optimal solution to the sub problem

can (possibly) be obtained. A hybrid Branch and Bound approach applied to Genetic

Programming (GP) has also been explored by Kostikas and Fragakis [37], this

technique has been found to be superior for their GP problem when compared to

Depth First Search and Breadth First Search.

2.5.3 Random Mutation Hill-Climbing

One of the simplest stochastic search methods is random mutation hill-climbing

(RMHC). The RMHC is a simple local-search algorithm. A local search algorithm

can be viewed as starting off with an initial solution. Then the neighbourhood of the

solution is continually examined to find a better solution [38]. The simplex algorithm

 17

for linear programming mentioned earlier in this chapter is another well used local

search algorithm.

The RMHC is examined in detail by Mitchell [39]. Initially the search generates a

random solution which is evaluated and then termed the current solution. The current

solution is then copied and the copy undergoes a mutation thus producing a new

candidate solution. The mutation is a random change to the solution and is typically

quite minor. The desired effect is to search the local neighbourhood for better

solutions. The candidate solution is then evaluated and compared to the stored current

solution. If the candidate solution is equal to or better than the current solution then it

becomes the new current solution. Failing that, the candidate is discarded and the

algorithm iterates until some stopping condition is met e.g. a set number of

evaluations have been performed. RMHC has been shown to work well for single

objective optimisation problems and it should prove possible to apply the search to

any problem [39] where an effective objective function can be identified (in keeping

with many search techniques). RMHC is however at best a locally optimal search

technique and this in itself is a significant limitation. Being locally optimal means that

when the search is allowed to run until the quality of the solution stagnates (also

known as convergence) no other solution in the searched neighbourhood is any better

(solutions equal in quality may exist). The RMHC search is built around a premise

that the search will evaluate a wide variety of possible solutions thus providing a well

distributed (scattered) analysis of the search space. The RMHC will then evaluate in

and around the neighbourhood of each of these scattered solutions.

The means by which the RMHC reaches a locally optimal solution however, does

have conditions such as – (1) what mutation method is applied, (2) what was the

quality of the initial random solution and (3) how well the objective function is

 18

defined. An example search space in Figure 2-2 depicts a 1-D search attempting to

determine the global minima for a problem. With the use of RMHC it would be

possible to reach point A, as this is locally optimal. Point B is the global optimal

solution point for some given problem. For the RMHC to reach this point in normal

operation one of the following would have to occur:

1. the initial solution generated at the start of the search process would have to lie

in the neighbourhood of point B,

2. a new condition would have to be created whereby the current solution could

be replaced by a solution with a poorer evaluation thereby enabling the

solution space between point A and point B to be traversed or

3. a sufficiently large mutation rate would have to be provided so as to generate a

candidate solution close to B.

This is an important consideration when using basic local search algorithms such as

hill-climbing. It is difficult to converge on global optimal solutions.

One technique which could be used to assist in reaching global optimal solutions

would be to generate a set of candidate solutions which would hopefully span the

solution space thus enabling at least one neighbourhood search to fall close to point B.

This technique is called multi start hill-climbing and is described by Yagiura [40].

Another technique to facilitate the searching for a global optimal solution is to allow

the algorithm to restart indefinitely. This then allows the algorithm to search the entire

search space and it will find the global optimal solution with a probability of 1 for all

optimisation problems as stated by Aarts [38]. This technique is computationally more

expensive than a deterministic enumerative process to evaluate the entire search

space.

 19

Figure 2-2 1-D example search space.

2.5.4 Simulated Annealing

The annealing process consists of materials firstly heated and then being gradually

cooled in a heat bath so as to achieve properties such as added toughness (by

increasing the size of its crystals), or the removal of defects. Simulated annealing

(SA) is an algorithm modelled on this annealing process. It is a probabilistic algorithm

for determining near optimal solutions in large search space problems. SA differs

from RMHC in a number of ways, one of which is the ability to allow the replacement

of the current solution with a weaker candidate solution. This enables simulated

annealing to search the search space for a global solution and on average it can

converge on a solution with a probability of 1 [41]. In simulated annealing the

probability function accepts a candidate solution j over the current solution i as

defined by (for a minimisation problem):

(A)

(B)

 20

),()(

)()(

)()(
exp

1

}{ ifjfif

ifjfif

c

jfifjacceptC >

≤

 −=Ρ

Where c ∈ ℜ + denotes a control parameter [41].

Simulated annealing sets the c value initially very high, and it is then reduced to zero

over time (c would represent temperature in real annealing), simulating the cooling

process in annealing. This initially means that transitions to inferior solutions are

accepted frequently, but as time progresses these transitions become increasingly less

likely to occur. This is termed the cooling schedule.

The cooling schedule as defined by Aarts [41] specifies:

− An initial value of the control parameter c0,

− a decrement function for lowering the value of the control parameter,

− a final value of the control parameter specified by a stop criterion,

− a finite number of transitions at each value of the control parameter.

Simulated annealing has been applied to a wide variety of different problems and has

also been applied to the TSP with some degrees of success [38]. The quality of the

solutions found for the TSP can be considerably improved by coupling the algorithms

with another searching technique typically DFS [42].

 21

2.5.5 Tabu Search

The philosophy of tabu search (TS) is to derive and exploit a collection of

principles of intelligent problem solving. In this sense, it can be said that tabu

search is based on selected concepts that unite the fields of artificial

intelligence and optimization.

Glover and Laguna 1998 [43]

The search process formalised as Tabu search was presented by Glover in 1986 [43].

The search is a meta-heuristic search technique, where newly created candidate

solutions are penalised (hence tabu) should they attempt to move the search back in

the direction of search space previously explored. As Glover points out, the resulting

tendency to deviate from a charted course might be regarded as a source of error but

can also prove to be source of gain. The Tabu method operates according to the

heuristic that new less optimal routes should not be explored, unless, in selecting the

less optimal route the search avoids re-examining an already investigated path. This

technique encourages the search to explore new regions of a problem’s solution space

whilst avoiding local minima and ultimately increasing the possibility of encountering

a desired solution.

The Tabu search avoids re-examining explored search space by maintaining a record

of the recent moves, in what are termed tabu lists. The role of the memory store for

the search changes as the search proceeds. Initially the search is concerned with

examining as much of the search space as is possible so as to provide a wide

examination of the search space. This is know as diversification. As the search

proceeds candidate locations are identified and the search enters a phase of more

focused searching in and around these locations so as to generate local optimal

solutions. This is termed intensification. The tabu search has been implemented in a

 22

number of different formats and it remains an active area of research. In many of

these cases the distinguishing factors for each of these implementations is associated

with the size, variability, and adaptability of the tabu memory to a particular problem

domain.

2.6 Evolutionary Computation

This thesis is particularly concerned with one particular form of stochastic search:

evolutionary computation. Evolutionary computation is a biologically inspired

method of computation and has been applied to a wide variety of problems. The

paradigm is inspired by the evolution exhibited by living organisms. It consists of a

population of individuals (solutions for a problem) on which reproduction,

recombination, mutation and selection are iteratively performed resulting in the

survival of the fittest solution occurring in the population of solutions. The

Evolutionary Computation techniques were proposed in the late 1950’s by a number

of different researchers [44]. However the research area did not begin to gather much

interest until the works by Fogel [5] proposing evolutionary programming, Holland

[6] proposing genetic algorithms and Rechenberg et al [44] proposing evolutionary

strategies were published.

Each of these strategies developed independently and it was not until the early 1990’s

that a generic term would itself evolve: evolutionary computation. The field of

evolutionary computation was proposed so as to unify efforts from each of the

evolutionary based search techniques. Prior to this uniting of the field, a significant

amount of cross collaboration had already occurred, specific operators were tried on

 23

differing evolutionary based methods, and a number of joint conferences were held to

highlight the area of evolutionary computation – PPSN, CEC, GECCO.

2.6.1 Evolutionary Programming

Lawrence J. Fogel while working in the artificial intelligence field identified

evolutionary programming (EP) as a computational technique. Fogel began to explore

a differing approach to the traditional AI. Principally he investigated the area of

intelligent behaviour which he felt exemplified real artificial intelligence.

A population of finite-state machines is exposed to the environment, that is, the

sequence of symbols that have been observed up to the current time. For each

parent machine, as each input symbol is offered to the machine, each output

symbol is compared with the next input symbol. The worth of this prediction is

then measured with respect to the payoff function (e.g. all-none, absolute

error, squared error, or any other expression of the meaning of the symbols).

After the last prediction is made, a function of the payoff for each symbol (e.g.

average payoff per symbol) indicates the fitness of the machine.

 Fogel [44].

 The concept of evolutionary programming consists of basically 3 steps:

1. A random set of solutions is generated to form the initial population. The

number of solutions that are present in the population varies, but requires a

sufficient number of solutions to provide the potential of a wide sample of the

solution space.

2. The solutions undergo asexual replication to form a new generation of the

population. Each parent produces offspring for the next generation. Each

 24

offspring is mutated according to a probability distribution of mutation types,

ranging from a small change to very large.

3. The fitness of each offspring is computed. This fitness is then used in a

competition between the individuals so as to decide which solutions will form

the parents of the next population. There is no requirement that the population

size must remain constant as it is permitted that parents may produce more

than one offspring.

Termination of the EP process occurs after a preset number of generations or when an

adequate solution is obtained.

There is a related field - genetic programming (GP). GP was proposed by Friedberg

[45, 46] in 1958 & 59 and was further explored by Cramer, Dickmans and Koza in the

1980’s [47-49]. Genetic Programming is a technique that evolves a population of

computer programs according to an objective function that is determined by a

program's ability to perform a given computational task. GP has been applied to a

wide range of problems [50].

2.6.2 Evolutionary Strategies

The technique of evolutionary strategies (ES) was devised by three students at the

Technical University of Berlin. They were developed as a result of the failure of

numerical techniques to solve complex problems [44, 51]. They have been applied to

a wide variety of problems, including network & routing problems, biochemistry,

optics and engineering design. They have remained a popular choice as they have

been shown to generate adequate solutions for users, in acceptable time frames.

 25

The individual solutions in the ES population are described as chromosomes, an

analogy with chromosomes that occur in biology. These chromosomes are fixed

length vectors of real numbers, and together populate the population in the ES.

The steps of the original ES algorithm were relatively simple:

1. The problem is defined as an optimisation problem: there is a cost function

f:R
n
→R, which when presented with a n-dimensional vector, returns a single

real number, the fitness. The goal is to find the n-dimensional vector for which

the fitness is maximised.

2. A population of p vectors, labelled xp is randomly generated.

3. An offspring vector x’p is created from each vector xp, by adding a Gaussian

error variable with zero mean and a pre-selected standard deviation to each

component of xp.

4. Fitness of parents and offspring are evaluated using: f(xp) and f(x’p).

5. A new population of chromosomes is created. The population consists of the

fittest chromosomes that are present in the population. A number of different

approaches are in use for the selection of the next population. Plus strategy

and comma strategy are two such techniques. Plus strategy takes into account

the parent generation when deciding the next generation, while comma

strategy only considers the offspring.

6. The process continues until the termination criteria are satisfied.

2.6.3 Genetic Algorithm

The genetic algorithm is another machine learning technique which derives its

behaviour from an evolutionary biology metaphor. A population of individuals

 26

(solutions) is created. The individual solutions are termed chromosomes but are in

essence character strings which are loosely based on DNA base-4 chromosomes. For

simplicity in the remainder of this thesis these solution chromosomes will be termed

solution strings. These solution strings are then exposed to simulated evolution.

In simple genetic algorithms, randomly generated solution strings are formed into a

population. These strings represent a variety of solutions for a given problem. These

solutions are typically encoded in some manner on the strings in some defined, and

usually fairly small, alphabet. The strings are decoded and then evaluated according to

a fitness/objective function. Following this, individuals are selected to undergo

reproduction to produce offspring (individuals for the next generation). Those parents

who are deemed to have higher fitness according to the fitness function are assigned a

higher probability of being selected to produce offspring. The process of producing

offspring consists of two operations. Firstly selected solution strings are recombined

using a recombination operator, where two or more parent solution strings provide

elements of their string to generate a new solution (see Figure 2-4). Secondly

mutation is applied to the offspring. The mutation operator changes only a small

amount of the genetic material in the offspring solution strings. The amount of

mutation can be set at the start of the search and is called the mutation rate. Following

the generation of a complete population of offspring solution strings, the offspring

population replaces the parent population. This process is repeated as depicted in

Figure 2-3.

Each iteration of the process is called a generation. The genetic algorithm is usually

run for a fixed number of generations, or until some criteria is met e.g.: no

improvement in solutions fitness for a number of generations.

 27

Figure 2-3 Simplified genetic algorithm

Genetic algorithms were formalised by Holland in 1975 [6] as a model of adaptation.

Holland’s approach to the representation of solutions strings was to create binary

strings of candidate solutions. As genetic algorithms gained popularity they have been

applied to a wider range of problems. Differing representation of the solution have

become necessary. A number of differing representation techniques have been

developed [52]. These representations can be used to represent candidate solutions of

a wide range of problems each with their own strengths and weaknesses [53],

(representations are discussed in detail in section 4.3 and later sections in chapter 4).

2.7 Understanding evolutionary computation

Understanding the operation of evolutionary computation has been a concern for

many researchers but most progress has been achieved in the area of genetic

algorithms. This is where this section will focus mostly.

Replace population

Evaluate

Select

Recombine

Mutate

 28

Over the years a number of different attempts have been made to understand how

genetic algorithms work in the formal sense. The earliest work in this area was with

Holland’s and later Goldberg’s work on schema theory [6, 7] . From this model the

building block hypothesis was developed by Goldberg [7].

The schema theorem states that “short, low-order, above-average schemata receive

exponentially increasing trials in subsequent generations" [7].

The building block hypothesis states that “A GA seeks near optimal performance

through the juxtaposition of short, low-order, high-performance schemata, called the

building blocks” [7].

These techniques are the most widely accepted approaches to formalising the

operation and workings of the genetic algorithm. However, it will be some time

before a single theory is fully accepted by the genetic algorithm community [54].

2.7.1 Schema and building blocks

The schema theorem is Holland’s and Goldberg’s explanation as to how an adaptive

search using the generalised genetic operators applied to fixed-length chromosome

strings would eventually converge on highly fit individuals. The approach is based on

the idea of a schema or a pattern of alleles (a pair or more elements in a string)

associated with high or low fitness. A schema can be thought of as a string with

alleles fixed in certain positions and with “wild-cards” in the remaining positions. For

example in the crossover illustration in Figure 2-4, the schema a, b, #,#,#,#,#

describes all the strings with alleles a and b in the first two positions. The “#” symbol

is the wild-card, and is used to signify any valid entry for that position. The crossover

 29

and mutation operators then work to preserve those schema (patterns) which are

responsible for higher fitness, while introducing new schema to broaden the search.

The crossover operator is beneficial to the evolutionary process for two reasons:

firstly, crossover generates new instances of schemata already present in the pool of

individuals; and secondly, crossover introduces new schemata into the pool to be

evaluated for fitness. For example, the crossover illustration below created a new

instance of the schema a, b, #, #, #, #, # and #, #, #, #, #, m, n thus preserving the two

schema a, b, #, #,#, #, # and #, #, #, #, #, m, n. A new instance of the schema #, #, c, k,

#, #, #, a pattern not previously in the population has also been introduced.

Schemas are not preserved with mutation. In fact, mutation destroys some potentially

beneficial alleles, due to the random nature of the disturbance it makes in the strings.

One might then ask why should it be used? Holland notes that mutation should be

considered as a background process, which enables new schemata to be introduced

into the population so as to reduce the convergence on local maxima [6].

This simplified introduction to the schema theorem goes some of the way towards

explaining the workings of genetic algorithms. However, the validity of the schema

theorem was questioned in many variants of the genetic algorithm, particularly those

variants where the underlying string representation was variable in length. Poli [55,

56] presents schema theory that examines both variable length genetic algorithms and

also attempts to unify the EC field by examining the application of the theory to

genetic programming.

 30

Figure 2-4 The crossover operator, two individuals are cut and spliced.

The building block hypothesis (BBH) has changed since Goldberg presented his work

in 1989 [7]. Stephens and Zamora in 2003 [57] note how the theory of BBH has

altered in the intervening years. The original version of the BBH expected all

variations of genetic algorithms (see Chapter 4) to behave in a similar manner when

attempting to find an optimum. This is now known to be incorrect in its strictest form,

and is more an engineering-rule-of-thumb and has only limited validity. Present

research in the area of evolutionary computation theory attempts to outline which

types / classes of GAs and problems lead to similar outcomes and behaviours. Again

Stephens and Zamora outline these research developments [57].

hijdefg

abcdefg

abcklmn

abcklmn

hijklmn

discard

crossover

 31

2.8 Summary

In this chapter searching and searching techniques have been examined. The chapter

commenced by examining how AI has motivated the early work and also the

techniques that can be incorporated into deterministic search techniques so as to

enable them to make a more informed search of complex problems, such as the TSP.

Following this biologically inspired methods were examined, with evolutionary

computation being introduced in more detail. The chapter concluded by briefly

introducing how formal computing methods have been applied to genetic algorithms.

It can be concluded from this chapter that none of the search techniques can be

applied universally and that they all have limitations either in their application,

accuracy or validity. The focus of this thesis is on improving the present position in

relation to genetic algorithms.

 32

Chapter 3

The Travelling Salesman Problem

This chapter provides both an informal and formal description of the travelling

salesman problem (TSP). Initially the problem is presented and an examination as to

why it is computationally intensive to solve is provided. Then a number of related

problems are introduced. These related problems show the TSP to have many real

world applications. Following this a formal description of the TSP (examining the

time complexity issues that the problem has) is presented. The chapter concludes

with an introduction to benchmark problems for the TSP.

3.1 The Travelling Salesman Problem

The travelling salesman problem is stated as follows: given a number of cities with

associated city to city distances, what is the shortest round trip tour that visits each

city exactly once and returns to the start city [58]. The problem sounds quite simple

and it is. However as the number of cities in the problem increases so too does the

number of permutations of valid tours e.g. for 5 cities 12, 7 cities 360 and for 9

cities 20160 possible permutations (for a 60 city problem it is possible that the

number of permutations is of the same order of magnitude as the total number of

atoms in the universe). Thus attempting to find the minimal distance tour in

anything but very small problems is computationally expensive.

The TSP has a long history, and this history can help in the understanding of the

problem and in understanding why it remains a significant problem. The TSP on

 33

examination is firmly placed in the field of mathematics, specifically graph theory.

It has influenced many differing problems in a wide range of areas: engineering,

geography, transportation and computer science.

In graph theory, a Hamiltonian cycle is a path in an undirected graph which visits

each node exactly once and also returns to the starting node. The Hamiltonian cycle

problem can easily be extended to form an optimisation problem. “If the graph were

to have weights on its edges, and suppose that the problem is to find a Hamiltonian

cycle with the minimum weight, where the weight of a cycle is defined to be the sum

of the weights on its edges”, then this would be the travelling salesman problem.

A complete history of the TSP is difficult to compile. The problem was originally

known by a number of different names. The most important of these was the

messenger problem (Karl Menger). During the 1930’s, Menger and his colleagues

published a number of papers on the messenger problem. The earliest of these

papers was published in Ergebnisse eines Mathematischen Kolloquiumsan where

Menger (an economist) stated the messenger problem [58].

Following this Hassler Whitney used the term at a seminar talk in Princeton

University in 1934 [59]. Merrill Flood, who also attended Princeton during the

1930’s, later popularised the problem during the 1940’s and 50’s. This greatly

enhanced the TSP’s status as a benchmark problem for many optimisation

algorithms.

George Dantzig, Ray Fulkerson and Selmer Johnson in their paper “Solution of a

large-scale travelling salesman problem” [35] (1954) proposed a novel method for

solving instances of the TSP using linear programming. They used this technique to

solve a problem containing 49 cities in the USA. This problem used a mileage chart

for 49 US cities. Distance between cities was defined as road distance. Dantzig et

 34

al., while working at the Rand Corporation, developed a technique to optimise

solutions for combinatorial problems called the Simplex Algorithm [35]. Dantzig

found that through the inclusion of a number of additional inequalities, or cuts, to an

optimal or near-optimal solution, optimality of a solution could be shown. This

technique was successfully applied to small problems. It was then applied to a 42-

city subset of the 49-city problem. This algorithm was refined and later named the

cutting-plane method. The cutting-plane method has been successfully applied to a

wide range of problems in the combinatorial field [60].

During the 1960’s the cutting plane method was adapted by Land and Doig to form

the Branch and Bound searching technique (see section 2.5.2). The branch and

bound technique was applied to the TSP by Little et. al in 1963 [58].

During the 1960’s and 70’s further advancements were made principally with

computers which had more computational power. Heuristic methods and further

experiments with the cutting plane techniques made it possible to find optimal

solutions for problems up to 100 cities in size [61].

Since the late 1980’s the Centre for Research on Parallel Computation (CRPC) at

Rice University has examined the travelling salesman problems. David Applegate,

Robert Bixby and William Cook have examined a number of very large scale TSP

problems. The problems evaluated were TSP problems in the region of 3000 -

15000 cities and were evaluated on super computers and large parallel computer

systems. The technique that was implemented was the cutting-plane method, as

described in [60, 62, 63]. This method found an optimal solution for a 15112 city

TSP problem. The experiment was carried out on a distributed system of 110

processors. The total computer time used to find this solution was in the region of

23 years when scaled to a single Compaq EV6 Alpha processor.

 35

Figure 3-1 Human approach to 20 point TSP.

An interesting approach has been taken in the field of Psychology where human

subjects are asked to identify routes for TSP problems. This technique has been

shown to produce very good solutions on small problems. It would also appear that

a common approach or set of processes underlies the human approach to solving

graphical representations of the TSP. MacGregor and Ormerod [64] have published

results for solutions of 10-20 city TSP problems obtained through this technique.

These were relatively small sized problems in comparison to those examined with

computer techniques. An example of their problems and solutions is depicted in

Figure 3-1.

3.1.1 Real world examples of the TSP

Practical examples of the TSP can be observed in transport, network routing and

logistical problems. There are many reasons why people wish to solve the TSP. One

 36

reason is the abundance of day to day problems. Flood for example, was motivated

to work on the TSP problem so as to reduce the costs for school bus routes in his

district. The motivation of economic savings has driven a number of examples. One

of the oldest reported of these was the attempt to solve problems in the agriculture

and the construction industries by Mahalanobis and later Jessen [58] in the 1940’s.

Both researchers examined how movements of farm and construction equipment

could be reduced. These early examples were more statements of the problems

rather than proposals of particular algorithms to find more cost effective solutions.

New forms of the TSP problem are being identified in many fields. In the

electronics manufacturing field, component placement problems, robotic arm tour

problems and similar manufacturing logistical problems are being addressed with

techniques first developed for the TSP. One industrial example is the Printed Circuit

Board problem which has been examined by Wang et. al [65, 66]. The PCB has as

one of its sub-problems to minimise the movements of a surface mount placement

machine, a form of TSP. Lawler and others [58, 65-67] have compiled a list of

related real world problem instances, including call scheduling, delivery of meals on

wheels, container movements in a port and warehouse automated fork-lift truck

movements.

3.1.2 TSP related problems

The Vehicle Routing Problem (VRP) [68] is typically bundled with the TSP.

However it differs from the TSP in a number of different ways. The VRP is a

combinatorial optimisation problem that can be viewed as a combination of two

well known NP- Hard (see section 3.2) problems - the TSP and the Bin Packing

 37

Problem. The Bin packing problem is stated as: objects of different sizes must be

packed into a finite number of bins of specified capacity V, to minimise the number

of bins used to pack all the objects [69].

Figure 3-2 VRP example

The VRP is based on the problems associated with a fleet of vehicles supplying

customers in different cities across a country. These vehicles each have a certain

capacity and each customer has a certain set of requirements. The vehicles all

operate from a depot(s). For each delivery to the customer there is a depot(s) and a

distance (length, cost, time). The VRP sets a task to find the optimal vehicle routes

(minimum distance or number of vehicles). All of the itineraries for the vehicles

start and end at a depot, and each must be constructed so that each customer is

visited once and by only one vehicle. An illustration of such an itinerary is given in

Figure 3-2.

The Quadratic Assignment Problem (QAP) can also be considered a form of TSP

problem [70]. The QAP consists of a set of n facilities and a set of n locations. For

Depot

8
6

4

7

1
5

10

6

3

2

 38

each pair of locations a distance is specified. For each pair of facilities a weight is

specified (this might represent the amount of goods to be transported between the

facilities). QAP is an optimisation problem where weights and the distance for all

the locations and facilities are minimised to find an optimal solution.

3.2 The complexity of the TSP

As introduced earlier in this chapter, it is possible to think of the TSP as a complete

graph with n nodes where each edge e of the graph is assigned a weight. These

weights represent the distance or cost of moving from one node to another. The

objective is to find a minimum distance Hamiltonian Cycle of the graph. From a

combinatorial view point one might ask how many Hamiltonian Cycles must be

examined in order to find a minimum cost circuit. Computing a possible tour of the

graph, it is required to start at a particular node, from this node it is possible to visit

any one of n-1 other nodes, and following the next move, any of n-2 other nodes,

etc., the total number of circuits is therefore (n-1)!. However as it is possible to visit

any circuit in the reverse cyclic order, then it would require (n-1)!/2 examinations of

different circuits to compute (in the worst case) the minimum distance Hamiltonian

Circuit. It is this factorial growth that makes the task of solving the TSP immense

even for modest n sized problems. An example of this immense size is that for a 20

city TSP problem the total number of possible routes is over 16106x . This factorial

growth makes using “exhaustive” search techniques impracticable for anything but

the smallest of TSP problems. For example should it be possible always to compute

a valid TSP tour in a millisecond, then with an 8 city TSP all possible tours could be

computed in 2.52 seconds, 12 city tour in 5.54 hours, a 16 city tour in just over 20

 39

years and a 20 city tour in just less than 2 million years. This explosion in the

number of potential tours has been one of the motivating factors that has driven the

search for fast near optimal search algorithms.

Combinatorial optimisations problems including the TSP are generally classified in

accordance with their relationship with the two complexity classes P and NP

(Polynomial and Non Polynomial). The TSP is believed to be so called NP-

complete. Researchers in the 1960’s accepted that there existed a difference between

easy problems (see for example the Maxflow problem [71]) and hard problems like

the TSP. This difference was the growth of the algorithm’s time consumption as the

size of the problem increased. A preference for polynomial time algorithms has

resulted. Low order polynomial algorithms are efficient and the asymptotic

behaviour that they exhibit is preferable to that of exponential or factorial

behaviour. It is convention in the literature of complexity theory [58] to consider

problems as yes/no questions. It is therefore necessary to reformulate the TSP into

such a question. Johnson and Papadimitriou [58] when examining the complexity of

the TSP, phrase the problem in different terms. They phrase the TSP as ‘Given a

bound B and a Hamiltonian graph G which has associated edge weight distances, is

it possible to find a cycle that has less cost than B?.’

Such problems are described as decision problems and the time estimate in

determining an answer to the question is the deciding factor as to the problem being

classed as easy or hard. The group of decision problems where the answer will be

computed in polynomial time P (i.e. O(nk) where k is a constant) are termed easy

and those that can not be answered in polynomial time NP (Non-deterministic

Polynomial time) are classed as hard (e.g. O(2n)). This then raises the question is “P

 40

= NP”? This is a question that has persisted for some time. It is widely believed that

P≠ NP, however this is not proven. In fact the Clay Mathematics Institute is offering

a prize of $1,000,000 should an answer be proven to this question. It has been

shown that a number of problems are in NP and equally it has been shown that a

number of problems lie in P. However it is possible that a problem is in NP and in P

but it has not been proven. With regard to the TSP, the question arises whether the

TSP lies in P or in NP?

Lawler et al [58] state that a decision problem can be classed as NP should there

exist a nondeterministic algorithm1 that solves the problem. Cormen et al [73] later

stated that it is possible to verify that an algorithm belongs to the NP class if there

exists a polynomial time algorithm that verifies that a solution is feasible. P class

problems are therefore those that can be solved quickly and the NP class problems

are those that can be verified quickly.

3.2.1 Is the TSP an NP problem?

Taking the earlier rephrased decision problem of the TSP (by Johnson and

Papadimitriou), it is necessary to design an algorithm to verify a solution for this

problem. The nondeterministic algorithm guesses a random permutation and checks

that it is less than or equal to B. Once this is verified then NPTSP ∈ .

In practice the complexity class of a problem X is normally achieved by reducing

the problem to a problem X’ that is already a member of a particular complexity

1the theoritical “nondeterministic algorithm is like an ordinary algorithm, except that it is equipped with one additional,

extraordinarily powerful instruction: goto both label 1, label 2. Executing this divides the computation into two parallel

processes, one continuing from each of the two instructions, indicated by “label 1” and “label 2”. By encountering more and

more such instructions, the computation will branch like a tree into a number of parallel computations that potentially can

grow as an exponential function of the time elapsed. If any of these branches answer yes then we say the overall

nondeterministic algorithm has answered yes, and answer no if none of the braches answer yes”.[72] D. S. Johnson

and C. H. Papadimitriou, "Computational complexity," in The Traveling Salesman Problem. Chichester: Wiley, 1985, pp. 37-

85.

 41

class. It is necessary to perform reductions for every instance that exists of X’. If

these reductions can be made in polynomial time then it is said that X is

polynomial-time reducible to X’- therefore X can be no harder to solve than X’. This

introduces another class of problems - those that are NP-complete. A problem X is

NP-complete if NPX ∈ and every problem in NP can be polynomial-time reduced

to X. The NP-complete class therefore has the property that if any one of its

problems can be solved in polynomial time, then all problems in NP can be solved

in polynomial time. The NP-complete problems are the most difficult problems in

the NP class. In essence they can be considered as the problems most likely not to

be in P. Cormen [73] depicts the relationship between the classes as shown in Figure

3-3.

Figure 3-3 Cormen’s view of Classes P, NP and NP-complete

The complexity of the TSP is shown by reducing the problem iteratively until one

reaches a problem with a known complexity, in this case the Hamiltonian path

problem. Initially the TSP is reduced to a Hamiltonian cycle problem. This can be

stated as being a cycle of a graph G = (V, E) that visits each vertex (node) exactly

once. In other words, if n=|V|, then a Hamiltonian cycle is a permutation of φ(1),…,

NP

P NP-complete

 42

φ(n) of V such that (φ(i), φ(i+1))∈E. Then the question can be posed, does the

graph G have a Hamiltonian cycle?

 Initially the Hamiltonian cycle (ham-cycle) is identified as being NP-complete.

This is done by verifying that the ham-cycle is in NP. A nondeterministic algorithm

is developed that guesses a random permutation of the nodes and checks that this

permutation is a cycle in G. Ham-cycle can also be shown to be reducible to ham-

path (Hamiltonian path) that is a known NP-hard problem which can be proven by

the Cook-Levin theorem (see [74]).

In keeping with the ham-cycle, initially the TSP is presented formally. A distance

function d:[n]2
a ℜ +, and D∈ ℜ +

 is identified and the question posed. Does there

exist a permutation φ of {1,….,n} such that

∑
−

=

≤++
1

1

))1(),(())1(),((
n

i

Dndiid ϕϕϕϕ ?

It can be shown that the TSP∈NP. A nondeterministic algorithm is developed that

guesses a permutation of the nodes and checks that this permutation’s total distance

is D or less. Following this the TSP can be shown to be NP-hard. Initially ham-

cycle ≤p TSP is shown. Let G = (V,E) be an instance of ham-cycle, and assume that

V = {1,….,n}. The reduction maps G to Dd , , where d:[n]2
a ℜ + is defined by

otherwise

Ejiif

n
jid

∈

=
=

),(

,1

,1
),(

and let D = n.

Now it can be shown that G ∈ ham-cycle, which is so, iff Dd , ∈ TSP. Assume

that G has a Hamiltonian cycle, i.e. a permutation φ(1),…, φ(n) of V such that (φ(i),

φ(i+1))∈E for 1 ≤ i < n and d(φ(n),φ(1)) ∈E. Then, by construction, one would

have d(φ(i), φ(i+1))=1 for 1 ≤ i < n and d(φ(n),φ(1)) = 1.

 43

Therefore ∑
−

=

==++
1

1

))1(),(())1(),((
n

i

Dnndiid ϕϕϕϕ

Thus, if G has a Hamiltonian cycle, then d has a TSP tour with a total distance of D.

Now assume that a TSP tour d with a total distance D is a permutation φ(1),…, φ(n)

such that

 ∑
−

=

=≤++
1

1

))1(),(())1(),((
n

i

nDndiid ϕϕϕϕ

Since d (i, j) ≥ 1 for all i and j, with n terms, it follows that d(φ(i), φ(i+1))=1 for 1 ≤

i < n and d(φ(n),φ(1)) = 1. Therefore by construction, this implies that (φ(i),

φ(i+1))∈E for 1 ≤ i < n and d(φ(n),φ(1)) ∈E, i.e. φ(1),…, φ(n) is a Hamiltonian

cycle in G.

Hence, the TSP is shown to be at least NP-hard.

3.3 Benchmark problems

The TSP can be viewed as a generalised problem; there are a number of specialised

TSP problems (see Figure 3-4 for Lawler’s [58] illustration). The symmetric TSP is

highlighted because it is this type of TSP that is experimented with in this thesis

principally. A library of TSP data sets is maintained at the University of Heidelberg

by Professor Gerhard Reinelt [75].

This library of problems contains both problem data and also the best known

solutions along with the tour and algorithm which generated the solution. TSPLIB

contains the following problem data sets, some of which are related to the TSP:

− Symmetric travelling salesman problem (TSP)

 44

− Hamiltonian cycle problem (HCP)

− Asymmetric travelling salesman problem (ATSP)

− Sequential ordering problem (SOP)

− Capacitated vehicle routing problem (CVRP)

In section 5.2.1 of this thesis, we will see how a number of researchers have solved

instances of the TSP. We will also encounter comparison difficulties that arise out

of the large number of TSP variants

Figure 3-4 Lawler’s special and general cases of the TSP illustration.

k-Salesman

TSP

symmetric

TSP

General

asymmetric

TSP

Mixed

Chinese postman

Rectilinear

TSP

Hamiltonian Cycle for

grid graphs

Euclidean

TSP

Dial-a-

Ride
Stacker crane

Hamiltonian

Cycle

Symmetric

triangle

inequality

TSP

Asymmetric

Triangle

inequality

TSP

Directed

Hamiltonian

cycle

Hamiltonian Cycle for

bipartite planar graphs

 45

3.4 Finding solutions for the TSP

Every problem has unique search space features. As it is currently not practical to

determine the optimal solution for many TSP problems, it is also not possible to

determine the landscape of the search with any high degree of confidence. As a

result it is prudent to consider problems as possibly exhibiting multimodality.

Multimodality is a feature where the search space of a problem contains multiple

points with equal near-optimal solutions (these typically occur in what is termed

rugged fitness landscapes). Goldberg has examined genetic algorithms applied to

massively multimodal landscapes. He has found them to provide a good means of

examining search spaces that are multimodal in order to find near-optimal solutions

[76]. The level of modality is important and should be considered when selecting a

search technique, as inability to traverse the space well can result in poor solutions.

3.4.1 The no free lunch theorems

…all algorithms that search for an extremum of a cost function perform

exactly the same, when averaged over all possible cost functions.

Wolpert and Macready [77]

The no-free-lunch theorems (NFLT) state that all search algorithms have equal

performance when averaged over all possible search spaces. This indicates that it

would be utterly futile to search for a general-purpose search algorithm. The NFLT

does not preclude one algorithm performing better than another algorithm when the

algorithms are restricted to a particular set or class of problem. The NFLT has been

used as an argument against using generic searching algorithms such as

 46

evolutionary inspired searches, based on what is perceived to be a lack of domain

specific knowledge being utilised in the search. These arguments are principally

centred on a distinction being made on the types of problems (real world versus non

real world) to which generalised Genetic Algorithms can be applied. Sharpe [78]

investigated this area in some detail and his views can be summarised as:

The real world problems (RWP) are sometimes thought of as a set of problems unto

themselves. However if the RWP really is a set unto itself then this has yet to be

proven. Sharpe[78] notes that the search for a general purpose algorithm would

truly be the holy grail for the real world problem set. Probably for this reason he

denotes this general purpose algorithm as HGRWP (Holy Grail real world

problem).The real world problem set is not well defined so neither a proof nor a

refutation of a possible HGRWP is available.

Examination of differing search techniques alongside evolutionary computation

remains a topic of particular research interest with little sign of any consensus on

the subject of generalised evolutionary search techniques appearing [79].

3.5 Summary

This chapter presented the travelling salesman problem. Initially the problem was

presented and it was shown to be a computationally intensive problem to solve.

Following this a number of related problems were introduced. These were presented

showing how the TSP can have real world applications. Following this a formal

description of the TSP examining the time complexity issues that the problem has

was presented. The chapter concluded with an introduction to benchmark problems

for the TSP.

 47

It can be concluded (based on work by Johnson and Papadimitriou) that the TSP is a

complex problem and that there is little consensus on generalised evolutionary

search techniques. The research work of this thesis is focused on improving this

situation in relation to the TSP.

 48

Chapter 4

Genetic Algorithms, Operators, Representations and Methods

Each type of knowledge needs some form of “representation” and a body of skills adapted to

using that style of representation…

 Marvin Minsky. Society of Mind

This chapter examines genetic algorithms in detail by focusing on their components,

examines how constraint satisfaction has affected their design and analyses their

possible behaviour under manipulations. Initially the fundamentals of genetic

algorithms are introduced. This is then followed by an examination of each of the

principal components of a genetic algorithm: representation, population size, fitness

function, selection, crossover and mutation. This chapter provides the necessary

understanding of the genetic algorithms operators which are later experimented with

in detail in Chapter 7 and Chapter 8.

4.1 The Genetic Algorithm

Chapter 2 introduced evolutionary computation along with a brief examination of

genetic algorithms. To fully understand a genetic algorithm it is necessary to examine

each of its components. In Figure 4-1, an outline of the structure of a genetic

algorithm is presented. Initially a population of candidate solutions is generated. The

candidate solutions are encoded and a number of different encoding representations

are possible.

 49

Figure 4-1 Genetic Algorithm structure.

Fitness values are then generated for the candidate solutions. Theses values are used

by the selection operator to identify parents of offspring that are produced following

the application of crossover. Mutation is then applied (depending on the mutation

rate) to the new offspring. Once each of these steps is completed, the entire process

starts again and this iteration continues until a termination criterion is met and the

search ends.

4.2 Genetic algorithm populations

The decision as to what is an appropriate population size has undergone significant

amounts of research. This research has lead to two mutually exclusive approaches.

Some researchers believe that genetic algorithms should be constructed with

sufficiently large populations so as to enhance the search diversity [7]. Others believe

Fitness Function

Selection operator

Crossover

Mutation

Replace population of solutions

Candidate solutions

Repeat until termination criterion

 50

that small populations (sometimes with re-seeding) combined with higher numbers of

generations allows for a more controlled search for optimal solutions [80].

This is not the only avenue of research in the area of genetic algorithms populations.

Other research questions that have been investigated include:

1. How should the population be initialised?

2. Should the population be seeded with new candidate solutions (strangers)

during the search?

3. Would an adaptive population size improve the efficiency of the search?

Goldberg has evaluated the role of population size extensively (specifically to the area

of linkage learning and the building block hypothesis [81])and has produced a number

of models to evaluate the effect of differing population sizes [82]. For a period of time

Goldberg advocated the use of a sufficiently large population size [82]. Goldberg

noted that with the increased size of the population the chances of initialising to an

optimal solution are greatly improved. However this has the less desirable effect of

increasing the length of time for each generation to be computed and with problems

such as the TSP the probability of initialising with an optimal solution is very small.

In more recent research Goldberg [83] has investigated adaptive population sizes,

which are population sizes that change constantly during the search. This is an

approach that they have used to direct the genetic algorithm should it not be

performing well with a particular population size.

Differing approaches to the initialisation of the candidate solution population has also

been a common factor for genetic algorithms. Some problems lend themselves to the

initialisation of the population using some heuristic (e.g. shortest path first), so as to

seed the population with better solutions. Other approaches have utilised the best

 51

solutions found during previous searches to form the initial population of a new

search.

The choice of size, structure, migration, and initialisation etc. of the population for a

genetic algorithm is also affected by the type of framework that the genetic algorithm

will work within. Distributed, parallel and hierarchical genetic algorithms all require

populations that are suitable for their respective frameworks. For example it is

possible for a parallel genetic algorithm to employ strangers [84] (where candidate

solutions from one population are transported to another genetic algorithm’s

population).

The effect of population size on computation time of a generation can be reduced

through the use of the island approach [85]. In this case the population is distributed

over a number of computers increasing the computation power whilst maintaining the

genetic algorithm methodology of searching.

4.2.1 Fitness values

The selection of parents to undergo crossover involves initially the fitness function,

which is a function that quantifies the quality of a particular solution (in the TSP this

is the length of a tour).

The assignment of a fitness value to a candidate solution (string) is accomplished by

mapping the objective value O on to a fitness value F [7] as is shown below:

FO →:ψ

Where Ψ is a mapping from O to F , typically the domain F is greater than zero.

Scaling [7, 86] is a technique that is employed so as to facilitate the appropriate

assignment of fitness to candidate solutions from the population throughout a GA

 52

search. In a small population it would be undesirable that a single extraordinary

candidate solution should be allowed to take over a significant proportion of the next

generation particularly early in the search (as would happen with a simple survival of

the fittest scheme) as this leads to premature convergence (where a genetic

algorithm's population converges, in the case of the TSP this would be a poor

suboptimal tour). Similarly late in the search it is quite likely that diversity in the

population will reduce, however the average and the best fitness in the population

might be very close, resulting in an even application of crossover to the next

generation. The survival of the fitness is lost and the search breaks down to a random

walk amongst the mediocre solutions. Two important factors associated with this are

population dispersion [87] and diversity [88]. These are concerned with the

initialization of the GA population and also the progress of the search until

satisfactory convergence.

The fitness value of a candidate solution, may undergo a number of different scaling

techniques [7, 86]. For example a simple linear scaling would take the form:

baff +='

where the raw fitness f and the scaled fitness f’have a linear relationship, the

coefficients a and b being chosen to suit the particular problem. Goldberg states “in

all cases we want the average scaled fitness f’avg to be equal to the average raw fitness

favg because subsequent use of the selection procedure will ensure that each average

population member contributes one expected offspring” [7].

Using a scaling technique can however present its own problems. Care must be taken

to ensure that negative fitness values are not generated. This can occur when the

fitness of a few poor candidate solutions (lethals) is far below the population average

fitness and the population maximum fitness is relatively close to the average. In this

 53

situation it is possible that low fitness values will turn negative following scaling.

This must be avoided in the GA operation [89]. Another problem is clustering of

fitness values. For example when the fitness scale is compressed so that the ratio of

maximum fitness to average fitness is 2:1, then the remainder of the population will

have their fitness clustered closely about 1. This still prevents premature convergence.

However this is at the expense of effectively flattening out the fitness function. This

ratio of maximum to average fitness in a population can be termed selection pressure

[90]. If the fitness function is too flat, genetic drift (the random fluctuations of gene

frequencies from one generation to the next) will become a problem, so over-

compression may lead not just to slower performance, but also to drift away from the

optimal.

Once the fitness value has been calculated this information can then be used by the

fitness function to quantify the quality of the candidate solutions (individuals in the

population). This is then used by the selection techniques to identify parents to

undergo crossover.

A number of differing selection techniques are available [86, 91-95] and all utilise the

fitness values generated by the fitness function. For example in the proportionate

selection technique the selection is based on the probability p(.), with

∑
=

)(

)(
)(

i

i

i
xf

xf
xp , where f(xi), is the fitness of the ith candidate solution.

4.2.2 Selection operators

The importance of selection can not be overstated. Should selection not be present in

the genetic algorithm, the search would be quite random with no method of finding a

good solution. The differing selection techniques all develop solutions based on the

 54

principle of survival of the fittest. Fitter solutions are more likely to reproduce and

pass on their genetic material to the next generation in the form of their offspring. The

selection operator attempts to maintain some diversity in the population, for example

by using a less fit solution which may very well contain optimal subtours for the TSP.

The selective pressure is an important characteristic of selection algorithms. The

selection pressure is the degree to which better individuals are favoured under

selection: the higher the selection pressure, the more the better individuals are

favoured. This selection pressure drives the GA to improve the population fitness over

succeeding generations. The convergence rate of a GA is largely determined by the

selection, with higher selection pressures resulting in higher convergence rates.

Selective pressure is related to the time it takes a solution to occupy the whole

population. Goldberg and Deb call this time the takeover time [91]. Control of the

selective pressure is also important so as to regulate the exploration of the search

space. Extremes of selective pressure may lead to either premature convergence

where selective pressure is too high or, in the case where the pressure is too low,

failure to exploit good individuals in the population.

A number of selection techniques exist including Roulette wheel, Rank and

Tournament. Typically the process of selection takes three phases:

− Map the objective function to fitness.

− Create a probability distribution based on the fitness.

− Draw sample from the distribution.

4.2.2.1 Roulette wheel selection

Roulette wheel carries out all three phases of selection stated above. Roulette wheel

selection is a very simple form of proportional selection where an individual

 55

candidate solution’s reproductive probability is proportional to its own fitness. For

example in Figure 4-2, four solutions form the pool of potential parents.

Each candidate parent has an associated probability of being chosen, these being say

0.6, 0.2, 0.1, and 0.1. With roulette wheel this is represented as, the better the

solution, the greater the percentage of the roulette wheel it occupies and hence the

greater the chance of selection. Conceptually, every time a parent is required, the

roulette wheel is spun. A parent is then chosen when the pointer lands within the area

represented by that parent.

Figure 4-2 Roulette Wheel parent selection.

There are two potential problems with this form of selection. If roulette wheel

selection is used and a candidate parent’s fitness is exceptionally better than any of

the rest of the parents in the population then this single solution will occupy a very

large area in the roulette wheel. Thus this one parent soon dominates the offspring of

the next generation, reducing genetic diversity and ultimately leading to a high chance

that the population will converge on only this region of the search space. The second

Random Number

S
ol

ut
io

n

1

Solution
2

S
o
lu

tio
n

3

Solution
4

 56

significant problem typically occurs late in the evolutionary cycle, as the population

converges. Late in the GA search many of the individuals in the population will have

very similar objective values, resulting in the assignment of similar probabilities of

selection for each candidate parent. This reduces the selection pressure and results in

the search randomly selecting parents lessening the genetic algorithm effect of

encouraging better individuals.

These two problems can be overcome by fitness scaling, Sigma scaling or Power law

scaling [7, 86] have been successfully used. This ensures that exceptional solutions

are not over-prioritised whilst maintaining selection pressure late in the evolutionary

process.

4.2.2.2 Rank-based selection

Rank-based selection (or ranking) is an intuitive selection method, where the rank

ordering of the fitness of an individual in the population (within the current

population) determines the reproductive probability [93, 96]. The rank-based selection

methods have received less attention in the recent past compared to the proportional

selection methods. Grefenstette indicates that this is partly due to the difficulties in

applying the schema theorem to ranking [93]. Ranking simplifies some of the three

phases of selection. The initial step of mapping the objective function f to the fitness

function Φ is carried out using a simple mapping:

δ=Φ)(ia f(ai)

Where δ is +1 for maximisation problems and is set at -1 for minimisation problems.

Rank selection also does not require the use of scaling as the selective pressure within

the population is maintained, even when the population converges on a very narrow

range of fitness. The remaining two phases utilise differing functions, Grefenstette

 57

provides a complete discussion of these [93]. The ranking technique also removes the

need for scaling as selective pressure is maintained even when the fitness values

converge to a very narrow range as happens frequently when a population evolves

over time.

There are two advantages to ranking:

− With proportional selection it is typical for a super solution to completely

take over the population unless this is artificially limited in some way. With

ranking the best solution in each generation is awarded the same rank

regardless of the level of superior fitness it possesses. As the genetic

algorithm cycle progresses and the population converges, each solution is

awarded a similar ranking and this prevents the search degenerating into a

random walk.

− Ranking may be a natural choice for problems where it is difficult to assign

exact fitness values. Grefenstette suggests that this may be the case where the

fitness is based on a “person’s subjective preference for alternative solutions”

[93].

4.2.2.3 Tournament selection

Tournament selection [92, 97], is inspired by the competitive mating behaviours

found in nature, where a competition decides the likelihood of mating for a number of

potential mates.

Tournament selection operates by holding a tournament among n competitors, n being

the tournament size (frequently this is implemented as a competition between two

competitors - binary tournament). The individual with the highest fitness of the n

tournament competitors is termed the winner and this winner is then inserted into a

 58

“mating pool”. The mating pool has a higher average fitness than the average

population fitness, being comprised solely of tournament winners. This fitness

difference provides the selection pressure necessary to encourage the evolutionary

effect, to improve the fitness of each succeeding generation. Tournament selection

continues until this mating pool is equal in size to the population. The individuals in

the mating pool undergo further genetic operators such as reproduction operators

(crossover and mutation) to complete the new generation.

Increased selection pressure can be provided by simply increasing the tournament size

n, as the winner from a larger tournament will, on average, have a higher fitness than

the winner of a smaller tournament [97]. Tournament selection is an efficient

technique and can be implemented with little time complexity O(λ) (as no sorting is

required) where λ is the number of times tournaments take place to obtain a new

population. Tournament selection is also translation and scaling invariant , making the

selection operator easier to implement [92].

4.3 Genetic Algorithm representations

The representation that is used by the genetic algorithm is important as it is through

this that candidate solutions are represented in the population. From an initial small

set of application areas, genetic algorithms soon were applied to increasing numbers

of problem types and domains. This resulted in a number of differing problems. In

some cases it became problematic to map the solution of some of these problems to

the binary representation (the original GA representation). As a result a number of

differing representations have been developed [52, 53, 98, 99]. Significantly there

exists a number of different representations for combinatorial problems and in

particular the TSP [53]. The design and development of new representations and the

 59

modification of existing representations remains a research topic today. The majority

of research papers and books on the topic of genetic algorithm representation were

published in the mid to late 1990’s the area has been reviewed extensively by

Rothlauf [53].

Genetic algorithm representations that have been used when searching for solutions to

TSP problems include: binary vector, matrix, adjacency, ordinal and the path

representation (which is also known as order based) [98]. Some of these

representations lend themselves more readily than others to the TSP, for example:

− The ordinal representation, in which the tour (1, 2, 4, 3, 8, 9, 5, 6, 7) is

represented as the string (1, 1, 2, 1, 4, 4, 1, 1, 1). The string represents codes

that refer to the position of the next city from a list (1, 2, 3, 4, 5, 6, 7, 8, 9) of

unused cities

− The path representation, for example the tour (1, 2, 4, 3, 8, 9, 5, 6, 7)

represents starting in city 1 and visiting all cities in the order that they appear.

− The adjacency representations in which the tour (1, 2, 4, 3, 8, 5, 9, 6, 7) in the

adjacency representation is given by the string (2, 4, 8, 3, 9, 7, 1, 5, 6),

indicating by the entry in position j that the tour goes from j to this new city.

In the following sections, each of these representations will be examined in more

detail and a number of crossover and mutation methods are presented.

4.4 Crossover, mutation and representation

With genetic algorithm representations two operators are principally involved:

crossover and mutation. Crossover provides for the transfer of genetic material from

parent to child during the evolutionary process. The mutation operator assists in

 60

maintaining a degree of diversity in the search and is applied less often than

crossover.

Through the use of crossover and mutation and in keeping with the principle of

survival of the fittest it is expected that offspring will be produced that are fitter than

their parents.

Crossover, unlike mutation, is applied to a sub-population of selected individuals. The

selected individuals (normally two) are typically those individuals in the population

with a better fitness value. Once chosen, the genetic information is crossed, producing

offspring. It is hoped that the material from both parents that is passed onto the

offspring will produce fitter offspring. It is possible that if multiple offspring are

produced that a tournament may decide which of the offspring will be placed into the

next generation.

The combined choice of representation and crossover operator can affect the quality

of produced offspring. For example, with crossover operators that exchange

contiguous sections of the candidate solution (e.g. n-point) the ordering of the

variables may become important. This is particularly true when good candidate

solutions contain building blocks (see section 2.7.1) that could be disrupted by a non-

respectful crossover operator.

Goldberg [100] has reported that representations that utilise small alphabets are

superior (e.g. binary representation), because they maximise the number of schemata

available for genetic processing. This issue has been examined by some

representations specifically designed for genetic algorithms applied to the TSP e.g.

Adjacency and Ordinal representation [98].

 61

In the following section we will examine how representations, crossover and mutation

are all tightly coupled in producing solutions, and in particular (near optimal)

solutions for the TSP.

4.4.1 Binary Representation and reproduction

Binary representation is the original and simplest representation to understand. Each

city is encoded as a string of n2log bits, and as the tours are made of n cities then

an individual candidate solution would contain n n2log bits in total. For example a

six city candidate solution could be represented in binary as:

000001010011100101

This binary representation example uses a 3 bit sequence to encode for each city. This

straightforward approach has been criticised for use with the TSP. For example

Michalewicz points out that the binary representation of tours is not well suited to the

TSP. He queried the importance of city position rather than city to city linkage [101].

The following sections examine crossover operators applied to this representation.

4.4.1.1 Classical crossover

The classical crossover operator was proposed by Holland in 1975 [6]. In the

literature it is also referred to as one point crossover. The classical crossover operator

takes two candidate solutions initially to form the parent strings. Then portions of

these parent strings are selected to form the offspring. The normal process that is

performed is to select a random position in both parent candidate solutions. This

position is known as a crossover point and allows the parents to be divided into parts

 62

which can be recombined to form offspring. Offspring are produced by taking a

substring from one parent and joining it with a substring from the other parent (where

two parents form the parent base). This process of producing offspring as a result of

recombining the parent solutions forms the basis for all crossover operators.

The major drawback of the classical crossover operator for the TSP is the possible

duplication (and elimination) of elements (cities) in the offspring as is depicted in

Figure 4-3. Classical crossover has been evaluated for use with combinatorial

optimisation problems such as the TSP [102].

Figure 4-3 Classical crossover operator.

A number of constraint handling techniques have been applied to classical crossover

and the TSP. These include: repair of invalid solutions, penalty functions or some

form of tolerant decoding that ensures that arbitrary strings always represent (are

mapped onto) a valid tour. However these techniques have been found to be

problematic:

“Unfortunately, there is no practical way to encode a TSP as a binary string that

does not have ordering dependencies or to which operators can be applied in a

meaningful fashion. Simply crossing strings of cities produces duplicates and

omissions. Thus, to solve this problem some variation on standard genetic

crossover must be used. The ideal recombination operator should recombine

 i city i
1 000
2 001
3 010
4 011
5 100
6 101

Parent 1 - (0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1)

Parent 2 - (1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0)

 Offspring 1- (0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0)

 Offspring 2- (1 0 1 1 0 0 0 1 1 0 1 1 1 0 0 1 0 1)

crossover point

crossover point

 ^

 ^

 63

critical information from the parent structures in a non-destructive, meaningful

manner.” [103]

4.4.1.2 n-point crossover

N-point crossover (one of the multi-point crossover operators) is another early

crossover method, first proposed by DeJong [104] in 1975. In keeping with the

classical crossover technique crossover points are selected at random. However,

unlike classical crossover, n-points (n>1) are selected in both parents. The

motivations for multi-point crossover operators are based on empirical evidence that

multiple crossover points can be beneficial to the search [104]. Spears and DeJong

have examined how to select the number of crossover points and how differing

numbers of crossover points can effect schema [104].

Figure 4-4 n-point crossover

Having selected n crossover points in the parents, sub-string exchange

(recombination) is performed in an alternating manner so as to produce offspring (this

is illustrated in Figure 4-4). As a crossover technique for the TSP, the problems

highlighted for classical crossover (omission and duplication) are exacerbated by the

multiple crossover points. The validity preserving techniques of repair, penalty

Parent 1 - (0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1)

Parent 2 - (1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0)

 Offspring 1- (0 0 0 1 0 0 0 1 1 0 1 1 1 0 0 0 0 0)

 Offspring 2- (1 0 1 0 0 1 0 1 0 0 1 0 0 0 1 1 0 1)

crossover points

crossover points

 ^ ^ ^

 ^ ^ ^

 64

functions and tolerant decoding are widely used with n-point crossover when applied

to the TSP.

4.4.1.3 Uniform crossover

The Uniform crossover (UX) scheme was proposed by Syswerda in 1989 [105]. UX is

another multi-point crossover operator. UX produces offspring in a different method

to point crossover methods. Crossover points are not selected but rather UX simply

considers each bit position of the two parents, and swaps the two bits with some

probability, typically 0.5 (Spears [106] considers a range of values). In the example

below, if the first, third, fourth, and ninth bits positions of the parents were to be

swapped during recombination to produce offspring, then the offspring produced

would be:

Figure 4-5 Uniform crossover example

Uniform crossover also has difficulties when computing problems such as the TSP

and in keeping with the other binary representation operators requires some form of

validity preserving technique (repair, penalty or tolerant decoder). Half uniform

crossover (HUX) is a variant of uniform crossover [107] that, by definition, toggles

Parent 1 - (1 0 1 0 1 0 1 0 1 0)

Parent 2 - (1 0 0 0 0 1 0 0 0 0)

 Offspring 1- (1 0 0 0 1 0 1 0 0 0)

 Offspring 2- (1 0 1 0 0 1 0 0 1 0)

crossover points

crossover points

 ^ ^ ^ ^ ^

 ^ ^ ^ ^ ^

 65

exactly half of the differing bits between both parents. Vazquez and Whitley [108]

examine the use of HUX with the Quadratic Assignment Problem.

4.4.2 Path representation crossover operators

Path representation is possibly the most natural representation to use for a tour of

cities, for a TSP problem. In this representation, the cities that are to be visited are

placed in order according to a list of n elements. So if city i is the j-th element in the

list, then city i is the j-th city to be visited in the tour. The candidate solution’s strings

can be in any suitable alphabet and frequently are integer value based [109].

The integer valued path representation has been widely used and according to some is

the most suitable representation for the travelling salesman problem [96, 98, 110,

111]. (Dublin, Cork, London, Bath, Paris, Nice, Madrid, Bilbao) would form a path

representation. The integer valued path representation would represent the above tour

as follows (4, 3, 5, 1, 8, 7, 6, 2) from an alphabetically ordered list of cities. In the

examples in this section the integer valued number representation is used.

4.4.2.1 PMX - partially mapped or matched crossover

Goldberg and Lingle in 1985 proposed the partially matched crossover (PMX)

technique (also referred to as partially mapped crossover). PMX is designed to work

with a path representation and is devised to prevent repetition of values in the

offspring. This is accomplished by mapping a portion of one parent on to a portion of

the other parent. Following this any remaining information is exchanged.

 66

PMX firstly selects two random crossover points in the parent, these crossover points

define the matching section. The corresponding crossover points are then reproduced

on the second parent. In the following example of PMX, crossover points are selected

between the third and fourth, and between the sixth and seventh elements in the

parents. This is depicted in Figure 4-6. The first step is to define the mappings for

PMX, in this case 5 ↔ 2, 6 ↔ 4 and 7 ↔ 8. Following this the second step is to

exchange substrings between the two crossover points in each parent to opposite

offspring (i.e. parent 1 to offspring 2 and parent 2 to offspring 1).

Figure 4-6 PMX example - crossover points.

To complete the offspring, step 3 requires that the offspring be filled, the ith offspring

(where i = 1,2) being filled with the remaining elements from parent i. In this case the

first element in offspring 1 will be 0. The second would be 8; however this is already

present in the offspring string and as a result will be replaced according to the

mapping defined above, 7 ↔ 8 (see Figure 4-7).

Parent 1 - (0 8 4 | 5 6 7 | 1 2 3 9)

Parent 2 - (6 7 1 | 2 4 8 | 3 5 9 0)

Offspring 1- (x x x | 2 4 8 | x x x x)

Offspring 2- (x x x | 5 6 7 | x x x x)

 67

Figure 4-7 PMX- filling offspring.

This process of inserting an element, checking the validity of the string and correcting

offending elements through the mappings that were defined is repeated until the

offspring are completely filled. This produces offspring that have no replicated

elements (see Figure 4-8). A variation on the PMX presented here is an

implementation proposed by Whitley and Yoo [112] where the parents produce only

one offspring. PMX is a very popular crossover technique for problems that have

validity constraints. It has been applied extensively to the travelling salesman problem

[113].

Figure 4-8 Completed offspring produced by PMX

4.4.2.2 Cycle crossover CX

The cycle crossover operator CX was developed by Oliver and Holland in 1987 [114].

It is designed so that two conditions are met; firstly that every element position in an

Offspring 1- (0 7 6 2 4 8 1 5 3 9)

Offspring 2- (4 8 1 5 6 7 3 2 9 0)

Parent 1 - (0 8 4 | 5 6 7 | 1 2 3 9)

Parent 2 - (6 7 1 | 2 4 8 | 3 5 9 0)

Offspring 1- (0 8 4 | 2 4 8 | 1 2 3 9)

Offspring 2- (6 7 1 | 5 6 7 | 3 5 9 0)

 68

offspring retains a value that has a corresponding position in a parent; secondly the

offspring must be a permutation. With these two conditions in place CX cycles

through both parents selecting elements to be placed in the offspring. Figure 4-9,

illustrates how these cycles progress, to generate offspring.

Figure 4-9 CX - parents and cycle example.

From the conditions outlined above, the first element in the offspring must either be 0

or 6 (the left most element in parent 1 and 2) selected at random. Let us select 0 for

this example. Since city 0 in parent 1 corresponds to city 6 in parent 2, this requires

that city 6 be selected from parent 1 (with the corresponding position that city 6

occurs in parent 1). This algorithm is continued, and results in the selection of cities 4,

1, 3 and 9. The cycle finally closes (terminates) in this example when city 9 is

Parent 1 - (0 8 4 5 6 7 1 2 3 9)

Parent 2 - (6 7 1 2 4 8 3 5 9 0)

Offspring 1- (0 x 4 x 6 x 1 x 3 9)

 Cycle No - 1

Parent 1 - (0 8 4 5 6 7 1 2 3 9)

Parent 2 - (6 7 1 2 4 8 3 5 9 0)

Offspring 1- (0 7 4 x 6 8 1 x 3 9)

Cycle No - 2

Parent 1 - (0 8 4 5 6 7 1 2 3 9)

Parent 2 - (6 7 1 2 4 8 3 5 9 0)

Offspring 1- (0 7 4 5 6 8 1 2 3 9)

Cycle No - 3

Termination step

Next step

 69

selected from parent 1 and the corresponding parent 2 city is 0, which is already

present in the offspring.

The cycles continue until the offspring is fully filled with cities from the parents. The

cycles are numbered in order as they occur. In the previous example only three cycles

are required to complete the offspring. On occasion where the position and value of

the elements coincide in both parents this cycle is typically labelled as u for unary.

Whitley in his investigation of crossover operators found CX to perform well along

similar lines to that of PMX [113] when applied to combinatorial optimisation

problems and in particular the TSP.

4.4.2.3 Order crossover OX

In keeping with crossover operators designed for path representation and order based

problems, the OX Order Crossover operator takes advantage of a property in the path

representation. This is where the order of the cities is important more so than their

positions. OX was developed by Davis in 1985 [115] (see also Oliver et. al., [114] for

a complete description) for use in Job Scheduling and has been the basis for many

related crossover operators e.g. Order Based Crossover OX2 [116].

Figure 4-10 OX-Order Crossover step1

Parent 1 - (0 8 4 5 | 6 7 1 | 2 3 9)

Parent 2 - (0 7 2 1 | 4 8 3 | 5 9 6)

Step 1:
Offspring 1- (- - - - | 6 7 1 | - - -)
Offspring 2- (- - - - | 4 8 3 | - - -)

 70

Figure 4-10, illustrates the starting step for OX crossover. Initially two random

crossover points are selected. In the above case these are after position 4 and 7. The

substrings are selected, and then copied to the offspring as in the example.

In Figure 4-11, the empty city positions are filled in the order that they appear in the

opposite parent to the offspring’s copied parent substring. In the example the

offspring 1 tour would be completed by examining parent 2’s remaining cities. The

process starts at the position just after the last crossover point (in this case position 8).

Where a copied city is already present in the substring, the city is skipped and the city

in next position in the parent is selected and copied to the offspring. This process is

continued until the offspring is completely filled wrapping back to the start positions

of parent and offspring as necessary. In this example parent 2 would provide cities 5,

9 to offspring 1 without problem. The next city in order for parent 2 would be city 6.

However this is already present so this city is skipped and the city in the next position

is taken. As a result the order of the cities copied from the parent to the offspring is 5,

9, 0, 2, 4, 8, 3. Offspring 2 is completed in a similar way based on the order of cities

in parent 1.

Figure 4-11 OX-Order Crossover completed offspring

Parent 1 - (0 8 4 5 | 6 7 1 | 2 3 9)

Parent 2 - (0 7 2 1 | 4 8 3 | 5 9 6)

Offspring 1- (2 4 8 3 6 7 1 5 9 0)

Offspring 2- (5 6 7 1 4 8 3 2 9 0)

 71

4.4.2.4 Modified crossover (ModX)

Modified crossover (ModX) can be best described as OX with only one cut point

[117]. Significantly the position of the crossover point is fixed at the very beginning

of the solution string.

Figure 4-12 ModX crossover

As is illustrated in Figure 4-12, the initial parent strings are randomly selected and

positioned at the beginning of the offspring string. Following this, the steps and rules

as described for OX are performed. Completion of the offspring starts in the first

position of the parent rather than after the final crossover point as in OX. A hybrid

version of ModX was recently applied to scheduling problems by Fenton and Walsh

using a repeating permutation representation [118].

4.4.2.5 Voting Recombination Crossover

The Voting Recombination (VR) crossover operator was developed by Mühlenbein

[119] in 1989. The p-sexual VR operator requires p parents to vote on the allele

values to be placed in the child. The operator also uses a threshold value. This value

determines the number of parents that must be in agreement before the vote is

accepted and passed. This value is defined to be a natural number smaller than or

Parent 1 - (0 8 4 5 | 6 7 1 2 3 9)

Parent 2 - (6 7 1 2 | 4 8 3 5 9 0)

Offspring 1- (6 7 1 2 0 8 4 5 3 9)

Offspring 2- (0 8 4 5 6 7 1 2 3 9)

 72

equal to p. In the example below four separate parents are voting on the allele values

that will go into the offspring. The threshold value is set at 3. This requires three

parents to be in agreement before the offspring gets the allele. Once voting is

completed any remaining position in the offspring is filled using mutation.

Figure 4-13 Voting recombination example

Merz et. al [120] have challenged the use of the VR algorithm as presented by

Mühlenbein in 1989 [119] stating that it is a highly disruptive crossover operator, and

on its own, for the Quadratic Assignment Problem (see section 3.1.2) it can present

constraint validation difficulties. Withstanding this, through the use of constraint

handling techniques such as repair or penalty functions these validity problems can be

overcome, and this may explain why it has been applied to the TSP [121].

4.4.2.6 Maximal Preservation crossover (MPX)

The MPX operator was developed by Gorges-Schleuter and Mülhelenbein [122] in

1988 specifically for the TSP. It is closely related to the PMX crossover operator.

Parent 1 - (1 4 3 5 2 6)

Parent 2 - (1 2 4 3 5 6)

Parent 3 - (3 2 1 5 4 6)

Parent 4 - (1 2 3 4 5 6)

Offspring after voting- (1 2 x x x 6)

Offspring after mutation- (1 2 4 5 3 6)

 73

MPX operates by initially selecting a random substring (for the TSP this is a subtour)

from the first parent (called the donor). This subtour is usually defined as being a tour

with string length less than or equal to the TSP problem size n divided by 2. A

minimum subtour length is also set, typically at 10 elements (unless the TSP problem

size is very small), as substrings that are very short are ineffective and substrings that

are too large do not allow for meaningful variation [122]. Selecting appropriate sized

substrings provides a suitable means for parents to transmit significant loci

information to the offspring. The second stage of MPX is to remove the elements

currently in the offspring from the second parent. Then the remaining elements are

inserted into the offspring, the first parent’s substring having been placed at the start

of the offspring and the remaining free elements of the offspring being filled by the

clean parent 2 string.

This three stage operation of MPX is illustrated in Figure 4-14. With regard to the

MPX and its application to the TSP, although the MPX prevents invalid tour

generation in the offspring, they are liable to be produced with few building blocks

being inherited from both parents due to the cleaning of the second parent’s string

prior to completing the offspring strings.

Figure 4-14 MPX three stage operation

 Parent 1 - (1 4 3 5 2 6)

 Parent 2 - (1 2 4 3 5 6)

 Offspring (1 4 3 x x x)

cleaned Parent 2 - (- 2 - - 5 6)

 Offspring (1 4 3 2 5 6)

 74

4.4.2.7 Masked crossover

The Masked Crossover (MkX) technique was first proposed by Louis and Rawlins in

1991 [123] as a crossover operator which would efficiently operate in the

combinatorial logic design problem area rather than as a combinatorial optimisation

technique. However in the intervening years the MkX operator has been applied to a

number of differing problems [124]. MkX attempts to impart loci information from

parent to offspring in a more effective manner than previous crossover methods.

Louis and Rawlins state that MkX tries to preserve schemas identified by the masks

and they identify this as one of their key goals [123]. The MkX operator assigns each

parent a mask that biases crossover. Once these masks have been positioned then the

operation is as given in Figure 4-15.

Figure 4-15 Masked crossover

The offspring of MkX also require masks, should they be selected to be parents in

another generation. The masks are normally provided to the offspring by the parents.

Typically the parent that is designated the dominant parent is called Parent1 the

dominant parent with respect to Offspring1 as Offspring1 inherits Parent1’s bits

unless Parent2 feels strongly (Mask2i = 1) and Parent1 does not (Mask1i = 0).

copy Parent1 to Offspring1 and Parent2 to Offspring2

 for (i from 1 to string-length)

 if Mask2i = 1 and Mask1i = 0

 copy the ith bit from Parent2 to Offspring1

 if Mask1i = 1 and Mask2i = 0

 copy the ith bit from Parent1 to Offspring2

 75

A number of mask rules are also defined by Louis and Rawlins [123], two of which

are used when the simple rule of assigning masks from dominant parent to offspring

don’t apply. Chan [125] notes that the MkX is an ineffective crossover operator for

the TSP as it fails to preserve the ordering of the solutions. Validity of solution is

problematic and (in conjunction with the selected mutation operator) typically

involves a repair or penalty function.

4.4.2.8 Position crossover

The Position Crossover (PX) operator was developed by Syswerda in 1991 [116]. PX

was later evaluated by Barbulescu [126] where she examined and compared PX’s

operation to similar operators for scheduling problems. This crossover technique is

closely related to OX and OX2 crossover techniques. PX operates by selecting several

random locations along the parent strings. The elements are then inherited by the

offspring in the order that they occur in the first parent. The remaining elements

required to complete the offspring are donated by the second parent (with the

elements donated by the first parent omitted) in the order that they appear in the

second parent. Each step of the operation is illustrated in Figure 4-16:

Figure 4-16 Position crossover mappings

Parent 1 - (0 8 4 5 6 7 1 2 3 9) Parent 2 - (6 7 1 2 4 8 3 5 9 0)

Offspring 1- (0 4 1 5 6 8 7 2 9 3) Offspring 1- (6 1 4 2 8 7 5 9 3 0)

 76

4.4.2.9 Modified PMX (MPMX)

Modified PMX (MPMX) crossover operator was proposed (independently) by Brown

[127] in the late 80’s and by Mott [128] in the early 1990’s. The MPMX operator

initially partitions the parents’ solution strings and the offspring strings into three

sections (left, middle and right). These sections are randomly created through the

selection of two random crossover points that will be used for both the parents and

offspring for this instance of crossover in the GA. Stage two provides the offspring

with the middle section of its solution string. This is the donated middle section of

parent 1. The third stage, is the insertion of elements into the left and right sections of

the offspring. This is accomplished using parent 2 as the donator. Corresponding

positions in the parents donate elements to the offspring, provided they have not

already been donated by parent 1. The final stage is to complete the offspring using a

random permutation of the elements not yet allocated to the offspring over the

previous stages. The following example illustrates this:

Figure 4-17 MPMX 4 stage process

Parent 1 - (0 8 | 4 5 6 7 | 1 2 3 9)

Parent 2 - (6 7 | 1 2 4 8 | 3 5 9 0)

Offspring stage1- (- - | - - - - | - - - -)
Offspring stage2- (- - | 4 5 6 7 | - - - -)
Offspring stage3- (- - | 4 5 6 7 | 3 - 9 0)

Offspring stage4- (8 1 4 5 6 7 3 2 9 0)

 77

4.4.2.10 Complete Subtour Exchange crossover

The complete subtour exchange crossover (CSEX) operator is designed to operate

with the path representation. CSEX was proposed by Katayama and Narihisa [129] to

be used specifically for permutation problems (such as the TSP).

The philosophy behind CSEX is to encourage offspring to inherit as many good traits

(subtours) from the parents as possible. CSEX enumerates subtours that have the

same direction (or reversed direction) on two permutations as common subtours.

Figure 4-18 Example of Complete CSEX subtour exchange.

In Figure 4-18 we see an example of CSEX in operation. The common subtours are 1

2 and 5 6 7 in parent 1, and 7 6 5 and 2 1 in parent 2. It should be noted that CSEX

does not include the subtour 1 2 3 from parent 1 and 2 1 3 from parent 2 as they are

not the same or symmetrical [129]. CSEX by allowing only the same (or symmetrical)

subtours can enumerate all the common subtours with O(n) time. Having selected the

common subtours, the offspring are produced by inverting the common subtours from

the parent. In the example, parent 1 produces offspring 1, 2 and 3 by inverting a

common subtour for each offspring. This is then repeated for parent 2 which produces

offspring 4, 5 and 6. Once all the offspring are produced they are evaluated for fitness

and the two fittest offspring survive to the next generation.

Parent 1 - (0 1 2 3 4 5 6 7 8 9)

Parent 2 - (4 9 7 6 5 0 8 2 1 3)

Offspring 1- (0 2 1 3 4 5 6 7 8 9)
Offspring 2- (0 1 2 3 4 7 6 5 8 9)
Offspring 3- (0 2 1 3 4 7 6 5 8 9)
Offspring 4- (4 9 5 6 7 0 8 2 1 3)
Offspring 5- (4 9 7 6 5 0 8 1 2 3)
Offspring 6- (4 9 5 6 7 0 8 1 2 3)

 78

4.4.3 Adjacency Representation

The Adjacency Representation is a representation developed for genetic algorithms

and was proposed for the travelling salesman problem by Grefenstette [130]. A key

motivating factor for the development of the adjacency representation was an

improved schemata analysis. However research on this has not been very successful,

as stated by Larranaga [98] “the empirical results obtained by the representation have

been poor”.

The adjacency representation represents the TSP in the following manner. The

solution string contains a list of n cities. City j is listed in position i if and only if the

tour leads from city i to city j (this is illustrated in Figure 4-19).

Figure 4-19 Adjacency TSP tour

Two issues can occur with this representation when it is applied to the TSP. Firstly the

representation does not work well with any of the classical crossover methods (or

point mutation), producing illegal tours. Secondly, the representation can sometimes

inadvertently represent illegal tours. For example, should the solution string:

2,4,8,5,1… exist in the GAs population, then this would produce the TSP tour: 1-2-4-

5-1… a premature cycle not visiting all the cities in the problem and therefore an

illegal TSP tour. This problem can be resolved through the use of a repair function.

The repair function can be incorporated into the crossover operator (as Grefenstette

does [130]) or it can be standalone.

Index - (1 2 3 4 5 6 7 8 9)

Solution string - (2 4 8 3 9 7 1 5 6)

Tour - (1-2-4-3-8-5-9-6-7)

 79

The adjacency crossover operators use methods other than the traditional cut and

splice crossover methods as discussed so far in this chapter. Grefenstette proposed a

number of specific crossover operators to work with adjacency representation [130]

all of which are closely related. In the next section one of these crossover methods is

examined.

4.4.3.1 Subtour Chunking Crossover

Subtour chunking was proposed by Grefenstette [130] in 1985. Subtour chunking

requires two parents to be crossed over so as to produce new offspring. Initially a

subtour is chosen at random from one parent. This subtour is of a random length.

Then, this subtour is extended by a randomly chosen subtour of random length from

the second parent. This process continues until the offspring are of the correct length.

Should any of the proposed subtour generate a premature cycle for the TSP tour then

the offending element in the subtour is repaired (random element selected from

remaining elements) so that this prevents the premature cycle. The operation of

subtour chunking is illustrated in the example below (Figure 4-20).

Figure 4-20 Subtour Chunking

Parent 1 - (2 4 8 3 9 7 1 5 6)

Parent 2 - (7 5 1 6 9 2 8 4 3)

Offspring 1 - (2 4 8 3 - - - - -) from parent 1

Offspring 1 - (2 4 8 3 7 5 1 6 -) from parent 2

Offspring 1 - (2 4 8 3 7 5 9 6 -) random edge

Offspring 1 - (2 4 8 3 7 5 9 6 8) from parent 1

Offspring 1 - (2 4 8 3 7 5 9 6 1) random edge

 80

4.4.4 The Mutation Operator

Having examined a number of crossover operators, we now move on to the mutation

operators that have been used with genetic algorithms and which we will evaluate in

Chapter 8. Goldberg when examining the role of mutation (with binary-string

encodings in particular) characterised the benefits of mutation as follows:

“the mutation operator plays a secondary role in the simple genetic algorithm.

Mutation is needed because, even though reproduction and crossover effectively

search and recombine extant notions, occasionally they may become overzealous and

lose some potentially useful genetic material at particular locations [...]. In artificial

genetic systems, the mutation operator protects against such an irrecoverable loss.

[...] By itself, mutation is a random walk through the string space. When used

sparingly with reproduction and crossover, it is an insurance policy against

premature loss of important notions. [... W]e simply note that the frequency of

mutation to obtain good results in empirical genetic algorithm studies is on the order

of one mutation per thousand bit (position) transfers.” [7]

This is an accurate (if general) description, in particular cases however, it may require

modifications. Smith and Tate [131] suggest that Goldberg’s description only holds

for simple encodings and for more complex encodings parameters must be modified

e.g. significantly higher mutation rates. Goldberg’s stated belief that using mutation as

the sole operator in a genetic algorithm results in the search disintegrating into a

random walk, is also well accepted in the following scenario. The algorithm must be a

generational GA where each generation is created solely through the application of

mutation which replaces the previous generation in the population of candidate

solutions. The notion of a GA behaving similarly to a random walk is only valid

 81

where mutation is applied in a uniform manner over the entire population and without

regard to selective pressure.

What is of key importance for the genetic algorithm is this selective pressure, the

selection of parents based on their fitness and the elimination of weaker candidate

solutions. This drives the improvement in fitness of candidate solutions in the genetic

algorithm’s population. The actual difference between mutation and crossover

operators is relatively small when compared to the cumulative effect that selection

and replacement strategies have on the algorithm.

Mutation when used in conjunction with crossover has a key expected result: that is to

prevent the permanent loss of any particular allele which may occur through the use

of crossover [132]. Crossover as normally described can lose certain alleles from a

population but can never restore them. It was found that genetic algorithms, after only

a few generations, drove all the bits in some position to a single value: either 0 or 1.

This increased the likelihood that the genetic algorithm would then suffer from

premature convergence. Without the use of some form of mutation, there would be no

mechanism to compensate for (premature) convergence, and the loss of genetic

diversity. Mutation therefore acts as a background operator, occasionally changing

allele values and allowing alternative alleles to be investigated (or restored as the case

may be).

This is the traditional understanding for the action of mutation; this ignores its

potential operation as a form of hill-climbing mechanism. In this case it provides a

complementary local search through the offspring searching in and around their

parents.

This search mechanism would operate in the neighborhood of highly-fit solutions,

without the danger of eliminating the highly-fit solutions themselves in the process.

 82

This is a plausible scenario, which can lead to the understanding that mutation is not

primarily required for the finding of lost alleles. Smith and Tate have found that when

applied to particular problems (permutation problems) this view may be more

applicable and as a result higher mutation rates can assist in the discovery of highly-fit

but previously unseen allele values.

The two explanations of mutation, are related to a larger discussion regarding the

correct balance between exploitation and exploration [133]. Exploitation consists of

spreading useful traits once they are discovered while Exploration consists of

searching for new useful traits.

4.4.4.1 2-opt mutation

The heuristic based function 2-otp was developed by Lin and Kernighan in 1973

[134], not as a mutation operator but rather a local search operator for local searches.

The function was later used with genetic algorithms where it was used as a mutation

operator [84]. 2-opt operates as follows: two unique points are selected in the parent

tour, the values at these positions are then swapped; if the fitness of the resulting child

tour is less than the parent then the swap is undone. In Kernigan’s approach this is

repeated until the search meets a specific termination criterion.

The 2-opt function has been found to work well with order based representations and

with parallel genetic algorithms optimising solutions for the TSP [84].

Figure 4-21 2-opt mutation

Parent 1 - (0 8 4 5 6 7 1 2 3 9)

Offspring 1- (0 8 3 5 6 7 1 2 4 9) ���� evaluate change

 83

4.4.4.2 Reciprocal Exchange (swap) Mutation

Reciprocal Exchange Mutation also known as: swap mutation (SM), exchange

mutation, order based mutation and point mutation [135] was formalised by Oliver in

1987 [114]. This mutation operator is simple to implement, initially two random

points are selected along the chromosome, and then an exchange is performed on the

elements at these positions. This mutation is illustrated below:

Figure 4-22 Reciprocal Exchange Mutation – (SM)

In its most simplistic form SM can produce a very small perturbing effect on the

offspring. This is usually where the size of the tour is very large and the effect of a

single point mutation may be considered as insufficient to introduce/reintroduce

alleles displaced as a result of crossover. This is particularly acute late in the genetic

cycle when stagnation (evolutionary plateaus) may be encountered. One technique to

counter this is to increase the likelihood of this mutation operator being applied

during (or later in) the evolutionary process with the use of an adaptive mutation rate.

A number of different methods have been suggested from the basic increase in

mutation rate (which also has considerable downsides) through to Ambati’s repeated

exchange mutation operator [136] .

Tour- (0 8 4 5 6 7 1 2 3 9)

Tour after SM - (0 8 3 5 6 7 1 2 4 9)

 84

4.4.4.3 Inversion Mutation IVM (Inversion crossover)

Inversion mutation is an asexual reproductive technique discussed by Holland [6] and

later applied to the TSP by David Fogel 1990-1993 [137-139]. The motivation behind

the development of this operator was the requirement of some validity preserving

operator to be incorporated into the genetic algorithm e.g. PMX, repair function,

penalty function or another complex technique. Fogel’s Inversion is a simple

technique to implement and operates quite well. The technique is built upon the

premise that only valid TSP solutions will form the initial population of the

evolutionary algorithm.

 The operator initially selects crossover points in the parent string at random. The

subtour between points is then selected and reversed (inverted). The remaining

sections of the parent string are copied in their existing position to the offspring and

then the reversed substring is re-inserted between the crossover points to produce the

new offspring. This is illustrated in the example below:

Figure 4-23 Inversion operator IVM

Fogel has reported a number of modifications to his implementation of the inversion

operator. In one case he focused on the benefits of reducing the length of the inversion

string linearly over time to a pre-specified minimum as the number of generations

reached their maximum (termination condition) [139]. The results obtained from these

experiments indicated that the use of inversion as the sole operator were encouraging

and competed favourably with other approaches to searching the TSP with GAs.

Parent 1 - (0 8 4 | 5 6 7 1 | 2 3 9)

Offspring 1- (0 8 4 1 7 6 5 2 3 9)

 85

4.4.4.4 Insertion mutation

Insertion mutation was proposed and discussed in detail by David Fogel [140] in 1988

and Michalewicz [101] in 1992. This mutation operator initially selects a city at

random in the tour, removes the city from the tour, re-positions the remaining cities in

the same order but filling the empty position. Finally another random position is

selected and the removed city is reintroduced into the tour with the surrounding cities

being moved in their respective order to make room for the new city. This technique

was an earlier attempt by Fogel to develop a recombination operator which would

maintain solution validity for the TSP throughout the evolutionary cycle. Again the

entire technique is built upon the premise that only valid TSP solutions will form the

initial population of the evolutionary algorithm.

This is illustrated in the example below (Figure 4-24)

Figure 4-24 Insertion Mutation example

4.4.4.5 Mutation rates and the mutation operators

Following the selection of the required mutation operator, the user must then decide

upon the rate at which this operator will be applied to the population of offspring.

This is the mutation rate. The mutation rate directly affects the amount of perturbation

that occurs to the offspring following crossover. As mentioned earlier in this chapter

there are occasions when varying the mutation rate may be required such as early

Tour - (2 4 8 3 9 7 1 5 6)

Tour stage1 - (2 4 8 9 7 1 5 6 -)

Tour after mutation - (2 4 8 9 7 3 1 5 6)

 86

premature convergence of the population. Selecting the correct mutation rate is

difficult, and typically reference to the literature assists in the selection of a mutation

rate. Should this not be applicable then the user must select a mutation rate that they

believe to be appropriate, through whatever process they choose (e.g. trial and error

testing) or as we will see later in this thesis the use of an automated approach to select

appropriate mutation rates.

The use of adaptive mutation rates which change during the life of the genetic

algorithm are also a method which can be considered, evaluating the population at

each step of the genetic cycle, and then deciding whether to increase or decrease the

mutation rate. This technique has its origins in the area of simulated annealing

although annealing typically refers to the lowering of temperature. Bornholdt terms

his adaptive mutation rate for combinatorial problems as the annealing mutation rate

[141].

4.5 Summary

In this chapter existing genetic algorithm operators have been presented and examined

in depth. Initially an overview of the genetic algorithm outlined the core operators and

techniques that are responsible for the operation of the GA. Following this

representation, selection, crossover and mutation were examined in turn.

Different representation techniques were presented together with their derived

crossover operators. These operators have been used to evaluate optimisation

problems such as the TSP. Finally mutation operators were presented and this section

was completed with a brief look at mutation rates.

 87

It can be concluded from this chapter that some operators may require techniques to

ensure the validity of the TSP solutions.

 88

Chapter 5

Genetic Algorithm Techniques Specific to the TSP

In this chapter, modifications and new operators that have been developed for genetic

algorithms applied to the TSP are presented. These modifications are made for a

number of reasons for example quality of end result or length of computation time.

Researchers have examined a number of different approaches to achieve these

qualities. Presented in this chapter are the most prominent approaches, these include:

a parallel genetic algorithm approach for the TSP, specific operators that have been

designed to assist in the computation of valid results for TSP problems. This is then

followed by an examination of repair operators that correct invalid tours that may be

produced following mutation and/or crossover and also penalty functions that promote

valid tours. The chapter concludes with an examination of how repair has been

applied and a review of the literature on natural inspiration of repair based genetic

algorithms.

.

5.1 Adapting the Genetic Algorithm to solve TSP problems

In the last chapter a number of different genetic operators were presented: crossover,

mutation and selection. In addition, differing representations that can be used with

genetic algorithms were introduced. These operators work in conjunction with a

suitable fitness function to provide the necessary methods to construct a genetic

algorithm.

 89

The selection of these genetic operators is one important component that must be

considered when attempting to develop any evolutionary system and is particularly

crucial for genetic algorithms when attempting to find optimal tours for the TSP.

Different approaches have been taken to the selection of these operators and settings

e.g. Spector [142] and his “Autoconstructive evolution: Push, PushGP, and Pushpop”,

where the reproductive and diversification mechanisms co-evolve with the organism.

We will see in Chapter 8 how multi-level genetic algorithms have been used to assist

in the design of the right genetic algorithm. In all of these approaches, appropriate

consideration must be given to the design of the genetic algorithm.

5.2 Fogel’s Genetic Algorithm approach to the TSP

D.B. Fogel implemented one of the first successful evolutionary optimisation

approaches to the TSP which he described in "An evolutionary approach to the

travelling salesman problem" [140] in 1988. In this paper he outlined an alternative to

the genetic operators which Holland [4] proposed in 1979. Fogel stated that the

emphasis should be on the behavioural appropriateness of the evolved trial solutions.

Valid tours were constructed from strings of random cities. The initial population size

was set at fifty individuals. Evolution pressure was provided by a single operator -

mutation. This mutation operation was loosely modelled on L.J. Fogel’s

"Evolutionary Programming restricted to single state machines" [5, 140]. This

mutation operator is analogous to the Reciprocal Exchange Mutation operator

presented previously (see section 4.4.4.2). Through the use of multiple mutation

operations, Fogel concluded that there was no difference between widespread

mutation and the use of a crossover operation. This conclusion did not receive

 90

widespread agreement from either the genetic algorithm community or the TSP GA

community and this issue still remains unsettled. Fogel concluded that his approach,

making use of mutation solely, created a random search for new offspring in the

vicinity of the parents.

In later research Fogel introduced population reduction [139] to simulate the

diminishing availability of resources as time proceeds. This was implemented by

reducing the population size by 1 every 5000 offspring evaluations which is

equivalent to every 100 generations in his system. This differed from the simple

population size approach which maintained a fixed population size, throughout the

duration of the genetic algorithm.

Fogel concluded that population reduction and a simple mutation operator proved

more effective in finding better solutions. Fogel also noted that, should a dramatic

difference in the link between parent and offspring be permitted, then the end result

may well be the same as that of a random search.

Fogel implemented other evolutionary approaches to the TSP [138, 139, 143] in

which he introduced a new mutation technique and further examined the issue of

behavioural methods. The tour was generated in the same manner as before (i.e

generated valid random tours). The population was set at one hundred tours, double

the previous population. Each of the tours in the population produced a new offspring

through mutation. The best one hundred individuals from each generation were

selected for the next generation. Here Fogel used a mutation strategy based on

inversion. Fogel simulated the decrease in behavioural difference across generations;

these are visible in natural systems, as they become better predictors of their

environment.

 91

The results reported by Fogel were that for 30, 50 and 75 city tours, his genetic

algorithm found solutions which were better or at worst matched the previous best

known tour lengths generated by Whitley et. al [103]. Fogel used the Whitley

generated TSP problems, which makes comparisons with TSPLIB problems difficult.

What can be compared is the number of offspring evaluations required to reach the

optimal solutions for each problem size. Fogel presented these as follows: for 30-city

problem shortest tour occurred after 40000 offspring, 50-city problem shortest tour

occurred after 100,000 offspring, and for the 75-city problem shortest tour occurred

after 320,000 offspring.

5.2.1 Other Genetic Algorithm approaches to the TSP

The travelling problem has maintained its prominence as a benchmark problem for

genetic algorithms over the last thirty years. A number of different evolutionary

approaches have been applied to searching the TSP in order to achieve optimal TSP

tour solutions for large TSP problems 5000 to 20000 cities [144-147]. In very recent

times, the TSP has been examined by a number of researchers who tackle the problem

from a variety of different evolutionary computation approaches – parallel, hybrid

and modified genetic algorithms [84, 108, 148, 149].

These approaches have made use of validity preserving reproduction and mutation

operators within different genetic algorithm frameworks. Some of these approaches

have included novel operators such as strangers (which introduces new individuals

into the population) implemented by Davoian [84, 150] so as to increase population

diversity and so hopefully encounter more near optimal solutions. Other approaches

have increased the amount of computation power applied to the problem thus

discovering fitter solutions. These techniques are typically presented in isolation and

 92

not clearly compared with each other. This is probably due to a number of issues

related to the problem itself and also the differing approaches that the researchers

have taken.

A review of the literature indicates that a large number of evaluation techniques have

been applied to the travelling salesman problem. Metrics include approximation to

optimal solution, number of function evaluations, number of generations and these

make direct comparison of results difficult. Reproduction of results is also

problematic as it is sometimes difficult to ascertain what parameter settings have been

used (population size, dynamic population sizes). Finally what makes comparisons

most difficult is the wide variety of TSP problem data that is used.

At present there are three main accepted TSP problem sets: Uniform TSP [139]

(randomly generated connected graphs), distance matrix [151] (typically road/sea/air

mileage charts - asymmetric TSP) and the Symmetric Euclidian TSP data sets

commonly grouped under the TSPLIB data library [75]. All of these differing factors

complicate the process of comparing different approaches to optimising solutions for

the TSP through the use of genetic algorithms.

However, putting the different problems data sets, different metrics and different

parameter settings aside, what is common to all searches is the overriding factor of

solution validity constraints that have to be addressed through one technique or

another.

The issue of solution validity has been addressed in all of the previous research

examples for the TSP. The most frequently used method is validity preserving

crossover and mutations operators (see Chapter 4). These operators do not permit the

creation of invalid TSP tours as a result of the genetic process. However this approach

excludes a large number of potentially beneficial genetic algorithm operators. Other

 93

attempts which have used operators which may cause validity problems have used

some form of a weighted fitness function to negate invalid tours (penalty functions).

Fogel examined the use of a single genetic operator such as repeated inversion which

would maintain tour validity but at the expense of not implementing a crossover and

mutation operator. The use of a repair operator has also been used with varying

success.

The next section will examine some of these common approaches that are used to

implement problem validity constraints.

5.3 Repair operators and penalty functions for genetic algorithms

Many different constraint handling approaches have been proposed for evolutionary

search algorithms for different problems. Coello provides an in-depth evaluation of

these techniques [152]. The most popular constraint handling techniques include

repair and penalty function.

The use of a repair operator to correct invalid tours is not new. However it is difficult

to exactly ascertain by whom and exactly when the first repair operator was proposed,

Michalewicz and Fogel [153] note:

The idea of repairing infeasible solutions enjoys a particular popularity in the

evolutionary computation community, and especially so for certain

combinatorial optimisation problems (e.g. TSP, knapsack problem, Set

covering)…

Michalewicz and Fogel refer to infeasible solutions meaning invalid tours. They

present a number of differing techniques that can be used as alternatives to repair

which suggest that they do not totally endorse the use of repair methods.

 94

The first repair operator that the author has found to be formally documented is

Nakano and Yamada’s local and global harmonization operator [154] applied to

the job-shop scheduling problem.

The process for repair in these problems (TSP, Knapsack problem, Set covering) is

reasonably straightforward as the problems have clearly defined solution constraints.

Initially the repair must enter some form of constraint validation for the candidate

solution, then should an error be encountered the error must be corrected in one

manner or another.

In some cases the repaired individual is returned to the population, in others the

invalid solution is killed and a completely new solution created (these solutions can be

generated randomly or by replicating a parent). This new solution is then inserted into

the population. Using a repaired candidate solution rather than killing the solution off

and replacing the candidate solution with a new solution maintains some tentative link

with the genetic process, and could be viewed as a form of Lamarckian evolution

[155].

One of the key disadvantages of the repair operators that Michalewicz and Fogel have

examined is their problem dependence [153], i.e. they are not generalisable across

other problems and are designed for use with particular problem types e.g. the TSP.

During the completion of this work it has been expressed by some [156] that repair

operators are a clumsy attempt to correct a badly designed genetic algorithm. This

may be true. However, without firstly evaluating the effects that repair has on

searching, and assessing genetic algorithms with and without repair, it is difficult to

answer this critique (this will be addressed in Chapter 7 and Chapter 8).

 95

Penalty functions are another widely implemented approach to ensuring solution

validity. Bäck [157] explored the use of penalty functions, repair heuristics and

stochastic operators for the set-covering problem. Penalty functions typically take two

forms, death penalty and weighted fitness penalty functions.

The death penalty function is another name for a validity ensuring technique that uses

killing and replacement of the solution to generate a population containing only valid

solutions. Some implementations do not replace the removed invalid solution

(outright death penalty) and rely on the genetic process to fill the population during

the next generation through production of new offspring. However, using an outright

death penalty function has a potential drawback: if it were to be applied to an initial

random population (where a portion of the population is invalid to start) then the

population will be very small for the start of the next generation. Similarly a

drawback of the random replacement method for death penalty functions could be the

widespread randomisation of the population reducing the effect of the genetic process

and ultimately leading to a form of random search technique.

Weighted fitness penalty functions typically take the approach of significantly

impeding the likelihood of the invalid candidate solution being selected for

reproduction. Ultimately this leads to the candidate solution dying off. This is in

keeping with the biological metaphor of survival of the fittest and is viewed by some

to be a positive approach [157]. This approach however does have drawbacks: should

the genetic algorithm’s entire population of candidate solutions become invalid a

weighted fitness penalty function would permit the population to evolve, possibly

achieving a valid solution but perhaps more likely to yield a final invalid solution as

the fittest solution. The mechanism that is used to reduce this potential problem is the

 96

selection of an appropriate weighting for the penalty function [153, 157], however this

is a difficult and time consuming problem.

5.3.1 Early Repair Operators

The harmonization repair operator developed by Nakano and Yamada [154] was

applied to the Job-shop scheduling problem. Their approach was to use the standard

genetic operators of 1-point and 2-point crossover without any modification to the

genetic algorithm. However this then places a requirement of designing a repair

operator to correct invalid solutions that may occur following crossover. The repair

operator that they developed was called the Harmonization:

“A repairing procedure that generates a feasible bit string, as similar to an

illegal one as possible, is called the harmonization algorithm. The hamming

distance is used to assess the similarity between two bit strings. The

harmonization algorithm goes through two phases: local harmonization and

global harmonization. The former removes the order inconsistencies within

each machine, while the latter removes ordering inconsistencies between

machine…

The replacement of the original string with a repaired feasible one is called

Forcing, which can be considered as the inheritance of an acquired character,

although it is not widely believed that such inheritance occurs in nature

[154]…”

 97

Interestingly not all repaired solutions were returned to the population, rather only the

elite (most fit) repaired solutions were returned to the population. Nakano and

Yamada believed that large scale use of forcing might destroy diversity in the

population and as a result inhibit the quality of the solutions. Another reason that they

were dissuaded from the use of the repair operator was the lack of a biological

analogy.

However limited information is provided on how to construct this repair operator,

with basic information regarding the key processing steps that the repair operator has

to perform – fault detection and fault repair. This failure to provide an in-depth

discussion of the repair technique renders the independent implementation of the

harmonization technique impossible.

5.3.2 2-Repair crossover and mutation repair

2-repair was developed by Gorges-Schleuter [158] as an advancement on the 2-opt

mutation operator which has a form of “repair”. From the previous chapter we have

examined the operation of 2-opt. As explained, in 2-opt the child offspring is checked

for optimisation improvement, and should no improvement be found then the changes

are discarded.

Gorges-Schleuter takes this further in a genetic algorithm context. She advocates that

the individual solutions are already well adapted to the environment and as such only

minor changes should be required (permitted) to occur between parent and child. With

this hypothesis, changes in the genotype at positions where information has changed

due to the application of crossover and mutation are checked for consistency. These

changes are then evaluated. If it is found that the proposed changes are poorer than the

 98

ancestor position information, then the changes either revert back or they are replaced

by another randomly generated element. This process iterates through all the elements

in the candidate solution until an equal or better fitness solution is encountered. These

newly inserted elements are marked as new and 2-repair continues to check for

consistency until the entire population is composed of validated candidate solutions.

5.3.3 GENOCOP III

GENOCOP III is an evolutionary computation system designed for handling

numerical optimisation problems with linear and non-linear constraints. It integrates

the ability to repair unfeasible solutions (i.e. do not satisfy one or more constraint) and

incorporates some concepts of co-evolution [159].

The original GENOCOP used an annealing penalty function which “cools” as the

generations increase so as to ensure linear constraints were handled appropriately. The

GENOCOP III system described by Michalewicz [159] builds upon the early

GENOCOP systems and extends them handling both linear and non-linear constraints

by requiring the genetic algorithm to maintain two separate populations. These

populations assist one another where a development in one population influences the

other population [159]. The first population contains candidate solutions that

Michalewicz terms as search points S. Through the use of special operators that were

used in previous GENOCOP versions these are maintained as feasible solutions (i.e.

satisfy linear constraints). The second population contains candidate solutions which

Michalewicz terms reference points R . These are solutions that are fully feasible (i.e.

they satisfy all the constraints both linear and non-linear), at initialisation this

 99

typically means that a single valid solution is handcrafted and then copied to occupy

the entire second population.

When population 1 produces a candidate search point S as a result of the genetic

process, that is not a fully feasible solution, then a repair operator may be invoked.

This repair operates as follows: a reference point R is chosen (selection method

based on nonlinear ranking see [159]), then random points Z are generated for a

segment between S and R such that the random numbers a are from the

range RaSaZ)1(:1,0 −+= .

If the fitness of Z is better than the fitness of R then Z replaces R , similarly with

some probability, Z may replace S . This probability is set by the user and is termed

the replacement probability pr.

The repair operator that is used by GENOCOP is more of a function to assist in the

directing of the search rather than the repair as presented by harmonization for

example. The effectiveness of the GENOCOP repair operator to assist GENOCOP III

to be considered as a generalised algorithm for a variety of problems is not well

understood either. It is believed that the penalty function operates more effectively in

allowing GENOCOP III to be considered as a generalised search algorithm [160]. As

Michalewicz himself stated: most evolutionary techniques for numerical optimization

problems with constraints are based on penalties (as opposed to repair algorithms)

[160].

 100

5.4 Repair and replacement probabilities

When repair has been applied to combinatorial problems other than the TSP it is

common for the repair algorithm to work in conjunction with another form of

constraint handling. Much research has been focused on the level to which repaired

solutions should be returned to the population. Both Michalewicz and Orvosh have

independently published replacement probabilities for specific combinatorial

problems.

Michalewicz has reported a wide range of differing replacement rates from 100% to

15%. These have been developed for a range of problems including the Knapsack

problem (100%) through problems which can be evaluated by GENOCOP III (15%)

[101, 159-161].

Orvosh and Davis [162] have reported that genetic algorithms which ensure solution

validity through the use of a repair function do have a positive effect on the solutions

obtained. The study does not indicate in what manner repair was implemented. The

focus of the research was to ascertain to what extent repaired individuals should be

returned to the population. This work is cited significantly as the de facto standard

when assessing any repair approach when coupled with a genetic algorithm. Orvosh

and Davis found that by permitting 5% of repaired individuals to return to the

population the overall genetic algorithm produced fitter solutions. The remaining

invalid solutions were permitted to remain in the population, and a weighted fitness

penalty function was applied to these.

Walters [94] in 1998 and also the work of Michalewicz [101] both contradict Orvosh

and Davis’ results. Walters indicates that the 5% rule may not always be the

appropriate approach, in particular for the TSP problem. Walters’ evaluation,

comparing 100% repair against the 5% rule, showed that the 100% approach yielded

 101

fitter result in less fitness evaluations. However it should be noted that it is not

possible to categorically state whether this improvement is a direct result of the repair

algorithm or as a result of the novel selection approach that Walters employed. This is

called Brood Selection [94] which he acquired from the Genetic Programming

community.

5.5 Repair and natural evolution

Should the use of repair operators with genetic algorithms be considered as an

approach? Should one be concerned with the use of non-nature inspired functions in

conjunction with genetic algorithms? Do repair techniques occur in biological systems

in nature? These are some of the questions that have been raised during the course of

this thesis.

Repair does occur in nature, for example DNA repair. However this form of repair is

different to the repair technique considered in this thesis. Malats and Calafell [163]

define DNA repair as:

“A major cell defence system against DNA damage produced by environmental

and endogenous compounds. There are several different repair pathways and

several enzymes (some of them polymorphic) involved in each way. Abnormalities

in these processes have been implicated in cancer and aging”.

In recent research [164, 165] it has been suggested that a repair does exist which is a

template driven approach (examined in chapter 6):

 102

“The precise reversion of hth mutations without the appearance of secondary

mutations is consistent with a template-driven repair but also with the alternative

hypothesis of mutagenesis and selection.” [165]

As to whether or not this would constitute a Non-Mendelian form of inheritance is

attracting further research. Mendelian evolution’s primary tenet relates to the

transmission of hereditary characteristics from the parent organisms to their offspring.

Repair could be considered as not conforming to the Mendelian evolution approach

depending on how the repair operation is implemented.

Genetic algorithms by their very nature are a combination of many disparate

biological approaches. It may be best to view them as all embracing evolutionary

biology inspired computer based searches, which make use of all the best techniques

(computational, biological, mathematical etc) that are available to them.

It is also interesting to note that following a review of the evolutionary computation

literature, it would appear that relatively little research has been focused on the

development of different repair techniques, the selection of the most beneficial repair

technique and coupled with this the selection of the most appropriate genetic

operators to be used with repair. In the next chapter GeneRepair (the repair technique

developed during this work) is introduced. This repair technique can be implemented

in a number of different configurations allowing for the comparison of different repair

strategies.

 103

5.6 Summary

In this chapter a number of different operators that ensure solution validity were

discussed. The main techniques of penalty and repair operators were examined,

including differing motivations for the repair of candidate solutions. One of the

differing approaches was the GENOCOP III system. This system is an attempt to

provide a generalised search algorithm for a variety of problems. Following this an

examination of candidate solution replacement regimes (probabilities and

motivations) was presented. The chapter concluded by briefly assessing the literature

on biological inspiration for repair based strategies for genetic algorithms. Since there

are so few references to repair in the literature it is fair to conclude that further

examination of this area may be fruitful.

 104

Chapter 6

GeneRepair

6.1 Introduction

In this chapter the GeneRepair technique is introduced. The early motivating factors

and the initial design of the repair technique are discussed. The design of the repair

technique is accomplished by examining the basic components of GeneRepair (fault

detection and correction). The operation of each of these components is examined and

following this a number of different configurations for the GeneRepair components

are presented. The occurrence in nature of one of these component configurations,

template based repair, is identified. The chapter concludes by discussing the possible

side effects to the primary purpose of repair that may occur during the evolutionary

process.

6.2 Exploratory work on repair operators

The forerunner to the GeneRepair technique was CleanUp [10]. This repair technique

was designed so as to improve a genetic algorithm for the TSP. Initially Fogel’s work

[138, 140, 143] was used as a tutorial for the design of the early genetic algorithm.

However rather than use a single genetic operator (as Fogel advocated), both

crossover (uniform crossover) and mutation (swap mutation) were employed. The

early genetic algorithm that was implemented utilised penalty functions so as to

ensure tour validity for the path representation. However, following early tests and a

review of the literature it was apparent that the amount of computation required by

this early system far exceeded the published expected norms [139]. As a result the

 105

CleanUp repair operator was designed so as to support the penalty function and

improve the computation efficiency of the genetic algorithm. The CleanUp repair

operator was not guided by the literature of the day but was rather designed as a quick

solution to improve the system.

As a result of the experience gained from this early implementation (principally in

understanding possible fault detection and also fault correction mechanisms, the use

of templates and also the importance of template construction) further work was

initiated to implement a genetic algorithm which relied solely on the repair operator to

ensure solution validity. This early repair operator was essentially a corrective

function and not related in any direct way to the genetic process other than

transforming invalid tours into valid TSP tours.

6.3 Why Examine Repair

Some issues on repair and comparisons with other validity preservation techniques

have been examined by Michalewicz, Orvosh and also by Bäck [101, 157, 162].

These have included rate of replacement for repaired solutions (how many repaired

solution should be returned to the population), use of repair operators and penalty

functions and repair as a neighbourhood search technique. However, Bäck concluded

that:

Although repairing infeasible solutions is almost a trivial operator, this

technique received some attention in genetic algorithm research only recently

(Orvosh and Davis [162]). Little is known about the frequency of repairing and

further research is required…[157]

When presenting his first paper [12] on this work, the author benefited from a great

deal of advice and (constructive) criticism on the use of repair operators.

 106

As a result a number of questions were raised (including those raised by Bäck) that

could not be answered through the literature. If repair really was as good as the

CleanUp paper [12] suggested, why had it not attracted more attention? Why was it

not found to occur in nature where evolution would benefit from it? More

fundamentally if it does occur in nature then how would it operate? These questions

were also compounded by observations by Fogel and others, which queried the

necessity for “non traditional operators” for a genetic algorithm [156, 166]. They

(Fogel and others) have suggested that with a well chosen representation, crossover

operator and mutation operator the need for an outside repair technique is not justified

and in fact the time spent validating and repairing solutions is really wasted

computation time that could have been better used continuing the GA search for fitter

solutions.

It was decided to explore in more detail genetic algorithms which utilise repair

techniques, examining (but not being limited to) the following:

− how repair might affect the genetic process,

− how repair might work with a wide variety of genetic operators,

− possible implementations of repair,

− how repair would effect parameters such as mutation or crossover rate, and

− what known genetic operators work best when coupled with repair.

These questions are ultimately addressed with the aid of experimental results

presented in Chapter 7 and Chapter 8.

6.4 The Repair method

In Chapter 5 repair techniques were introduced and a number of different approaches

for repair were identified. Following a review of the literature it was noted that little

 107

detail was available on implementation strategies for repair operators. Nakano,

Leipins, Orvosh, Tate and others [154, 162, 167, 168] are regularly cited as the

relevant literature for repair and in fact all have produced similar detection (depending

on problem type) and replacement mechanisms (random replacement). However in all

of these works the authors mentioned very little detail regarding the exact

implementation and operation of the repair operator. The authors of these works

instead, following a very brief introduction to their chosen repair technique, focused

on related issues such as application of repair to a given problem or replacement rate

strategy.

The process of genetic repair has not received serious consideration in its own right.

We have developed a repair operator that we term a template based repair operator.

Figure 6-1 illustrates how template based repair operates, correcting an invalid TSP

tour to a valid TSP tour through the use of a template tour. The template tour is a

known valid tour and is used as a reference point for the fault detection and also as a

source for cities for the fault correction phase of the repair operator.

Figure 6-1 Example of TSP tour repair

Repair Template 1903527486

(i) Candidate 1 0122479309

 (ii)Candidate 1Repaired 0125479386

Left to right scan

 108

− Fault detection requires the repair operator to flag cities within candidate tours

that are in contravention of the TSP problem validity constraints (in Figure 6-1

these are the red cities). All valid cities are identified in the candidate solution

(in Figure 6-1 the lines linking the candidate solution cities to the template

represent valid cities in the candidate tour). The fault detection phase is

straightforward and can be implemented through differing formats, which

result in the same end result (identification of invalid cities in an invalid tour

or validation of the candidate tour).

− Fault correction corrects invalid tours. The repair template in this phase takes

on its second function: donator of cities. Once a tour is identified as being

invalid, each contravention of the validity constraints is processed individually

by the fault correction phase. The function uses a city

substitution/insertion/deletion to correct the invalid tour where the tour is

invalid as a result of (a) repeated cities in the tour (b) too few cities in the tour

or (c) too many cities in the tour.

In the scenario in Figure 6-1 where repetition of cities has occurred, the

template tour donates the cities (highlighted in green in the example) that are

missing from the candidate tour (in this example a left-to-right replacement

strategy is used). This raises two important implementation issues:

− How is the template constructed?

− If multiple errors are detected in the candidate tour, then what is the

order in correcting these multiple errors?

The GA paradigm opens up new vistas for the use of corrective templates beyond

those that are practical within the biological domain. The natural constraint on

availability and access to appropriate genetic material severely constrains the diversity

 109

of corrective templates that naturally occur [169]. However, within GAs there is a far

greater availability of, and access to, the source of genetic material – beyond the

bounds of the immediate parents.

The conjecture that these new repair based GAs might out-perform standard GAs that

constrain themselves to immediate-parent inheritance is evaluated in Chapter 7. With

this in mind we propose the following repair techniques to be evaluated:

1. Techniques for Generating Templates

− Static Random Template (generate a random template at the start of the GA

search).

− Dynamic Random Template (generate a random template for each individual

invalid candidate tour).

− Best in Previous Generation.

− Best So Far (select the best tour so far found in the GA search)

− More fit parent of candidate offspring.

− Less fit parent of candidate offspring

− Varying combination on each generation (randomly use any of the foregoing

template methodologies)

2. Techniques for applying Templates (scanning method)

− Left-To-Right (correct the candidate tour, processing flagged errors in a left to

right direction)

− Right-To-left (correct the candidate tour, processing flagged errors in a right to

left direction)

 110

− Random Direction (correct the candidate tour, processing random flagged

errors)

From these two sets of techniques it is possible to generate a number of different

repair strategies. In Chapter 7, the results that these strategies have produced for

selected TSP problems are presented. To better understand the process of the repair

technique, in the next section we examine the genetic algorithm which incorporates

repair and we also examine the repair technique in further detail.

6.5 Genetic Repair

The operation of the repair operator developed in the course of this work is relatively

straightforward. The operation of the repair technique is presented in this section.

 A genetic algorithm with repair operates as follows: once an initial valid population

is created, candidate solutions are evaluated for fitness, this is followed by selection,

with crossover and mutation according to the respective rates. At this point the repair

operator is applied. Each candidate solution in the population is evaluated for

correctness and should it be found to be invalid then the solution is corrected

(according to the particular repair technique). Once the entire population has been

examined and corrected if necessary, the genetic process proceeds to the next

generation, this repeats until the GA reaches its termination criterion.

In Figure 6-2, the pseudo code for a repair operator that uses a dynamic random

template with left to right processing is presented. The first step in this repair operator

is candidate solution selection, followed by template construction. When this is

completed the repair enters a fault detection phase. Should a constraint violation not

 111

be identified then the candidate solution is valid and the repair terminates. Otherwise

the fault correction phase is carried out.

All but one form of repair listed in section 6.4 conforms to this basic repair process.

The parent based repair technique is performed immediately after crossover and

mutation has occurred. This is so that the parents are still easily identifiable and can

be used to form the repair template (selecting the more or less fit parent). The

direction in which the repair is carried out is in agreement with the approach selected.

The amount of repair required to transform an invalid tour to a valid tour is tightly

coupled with the type of crossover and mutation operators that have been selected. As

was discussed in Chapter 4 many differing approaches can be taken to theses

operators.

Figure 6-2 Repair implementation

Select candidate solution from population P(i)

based on order in population. (i, j = 0)

Generate random tour of cities to form the template

Compare candidate city[j] with template, if city[j] in

 template and is un-flagged, then flag city[j] in candidate

 solution and template.

Repeat until all cities have been checked.

If all cities in template and candidate flagged then tour is valid

 Else if un-flagged cities in template

Replace first un-flagged city in candidate solution with

 first un-flagged city in template.

 proceed in a left to right manner replacing un-flagged cities

 with un-flagged counterparts from template.

Repeat until all cities in candidate solution are updated

 Else if un-flagged cities in candidate and template all flagged

Delete first un-flagged city in candidate solution

 proceed in a left to right manner deleting un-flagged cities

Repeat until all only flagged cities remain

 Repeat until candidate solution validated.

Repeat until all candidate solution validated.

 112

Two experiments that were identified as being important with regard to repair and the

use of different genetic operators, were firstly, to measure the amount of repair that

occurred in a GA search for a TSP problem and then secondly to assess when repair is

applied most in a genetic algorithm. These experiments are discussed in Chapter 7.

6.6 Genetic Repair and a biological analogy

Recent advances in genetics indicate that in some plants (Arabidopsis Thaliana)

offspring inherit allele-specific DNA sequence information that was not present in the

parents (but was present in previous generations). This is a direct contradiction of the

accepted evolutionary process that inspires all genetic algorithms and evolutionary

systems. A fundamental tenet of classical Mendelian genetics is that genetic

information is stably inherited from one generation to the next [164, 170].

Lolle et al [164] postulate that these genetic restoration events are the result of a

template-directed process that makes use of an ancestral RNA-sequence cache. This

leads to a question of whether this template based system is a form of genetic fault

detection and genetic fault correction mechanism.

What constraints this form of repair actually validates is still under investigation. It is

probable that they are not in the same form as the validity constraints that we

encounter with the TSP. However withstanding this, the research would suggest that it

is not at all impossible that template based repair operators do naturally occur in

nature. Arabidopsis Thaliana is listed by some as the most studied modal organism for

genetics [171] and it appears to be the first tentative biological analogy that exists for

evolutionary computation with GeneRepair.

 113

6.7 Genetic repair and possible side effects

The use of repair operators may possibly have side effects on the search for fitter

solutions outside of just correcting invalid candidate solutions. These knock-on

effects may require alterations to the parameters for the traditional genetic operators

(e.g. mutation rate). As the repair operator manipulates the population in the genetic

algorithm it may have some mutation effect on the repaired solutions [14]. This might

require a change in the rate of mutation or a mutation operator that does not disturb

the candidate solution to a very significant degree (see sections 7.3.1 and also 7.5).

The effect of using differing template tours may result in slowing down or speeding

up the evolutionary process. For example the amount of change that would normally

occur following crossover and mutation may be altered with parent based template

repair techniques. The resultant offspring may be very similar to the parent that was

used to correct the invalid offspring, thus potentially slowing the evolutionary

process. These side effects will be evaluated in the next two chapters (Chapters 7 and

8). Further experiments will explore the operation of GeneRepair alongside and also

compared to other validity preserving operators.

6.8 Summary

In this chapter the repair operator (GeneRepair) that has been developed was

introduced. The early motivating factors and the initial design of the GeneRepair

operator were presented. This was followed by an examination of the key components

of the repair technique: fault detection and fault correction. A number of different

configurations for fault correction were then proposed for experimental investigation.

The chapter concluded by briefly examining if a biological metaphor exists for

template based repair. Finally the possible side effects of repair were highlighted.

114

Chapter 7

Preliminary Experiments on GeneRepair with Genetic Algorithms

GeneRepair is a repair technique specifically designed to operate with genetic

algorithms searching for TSP solutions. In this chapter a number of preliminary

experiments examining GeneRepair are presented. The operation and performance of

GeneRepair is examined briefly through the use of a number of different experimental

metrics: quality of end solution, proximity to the known best result and number of

generations to the best solution. Finally the chapter concludes with a discussion of the

appropriateness of the GeneRepair techniques and what if any benefits these may

have.

7.1 Experimentation with GeneRepair

When undertaking experiments for the first time in a problem area it is good practice

to have the benefit of reference to previous research results that have been published

by others. This literature can guide one in the selection of appropriate data points that

at a later date can be used as a means of comparing one’s own results with other

approaches. Earlier in this thesis (see section 5.2.1) it was highlighted how difficult

direct comparison from one result in the literature to another is in the area of TSP

optimisation. With this in mind a number of differing data points were selected as a

means of providing a broad spectrum for the comparison of the GeneRepair

115

techniques against previous results. In the following experiments in this chapter all

problems were selected from the benchmark problems of the TSPLIB library [75].

The genetic algorithm was varied across the experiments. In the following

experiments the genetic algorithm were formed from the following settings:

− Path representation.

− Roulette wheel, Rank or Tournament selection.

Validity preserving operators:

− PMX crossover or Inversion

− Swap mutation

Non-validity preserving operators:

− N-point crossover

− N-point mutation

Both a penalty function (linear scaling) and the GeneRepair techniques could be

selected to ensure problem validity constraints were met in the event that a non-

validity preserving mutation or crossover operator was used.

In Figure 7-1, a result generated from the system first published by Mitchell et. al [10]

in 2000 is depicted. In the experiments that formed that paper, little effort was

expended on finding the optimal configuration settings (operators and parameters) for

the GA. The population size was fixed at 100 candidate solutions, 2-point crossover,

swap mutation and a mutation rate of 0.007 probability was used together with a

simple GeneRepair technique (termed CleanUp in Mitchell et. al [10]). The repair

technique scanned from left to right and then performed corrections where necessary

utilising a fixed, randomly generated corrective template tour. For comparison

purposes the non-repair genetic algorithm (GA) was validity preserving and of the

116

type proposed by Fogel [138, 139]. Mutation was applied at the same probability

(0.07) as before.

Examining Figure 7-1, it can be seen that the GA without repair (Fogel’s approach)

reaches similar quality solutions in similar time to the GA with repair, however the

asymptotic limit is better for the GA with repair.

To quantify the usefulness of repair a more systematic series of experiments was

conducted on differing areas of the genetic algorithm’s implementation.

Figure 7-1 GA with repair and GA without repair.

The selection of genetic operators and associated parameters is a highly important

feature of any GA. Deciding on the best operators and parameter settings has typically

required a number of ‘trial and error’ tests so as to find an acceptable combination.

The use of software spikes [172], from the agile software process, provided a suitable

development process which permitted the latitude necessary to conduct trial and error

testing in a structured manner.

An initial avenue for exploration concerned the effect of differing mutation rates on

solutions which were generated by a GA with repair. A family of genetic algorithms

0

200

400

600

800

1000

1200

1400

1600

1 10 100 500 1000 5000 10000 25000 50000 75000 100000

Number of Generations

D
is

ta
n
c
e

GA

GA&GR

117

was constructed. These consisted of two different types of crossover operators, three

different selection techniques and swap mutation, together with the GeneRepair

operator. A combination of selection and crossover operators was tested against a

range of mutation rates.

It is important to note that very minor changes in the mutation rate resulted in a

clearly noticeable effect on best solution found by the GA. For example an increase or

decrease in the mutation rate by as little as 0.25% can result in a 3% deviation in the

best found solution. Obtaining a suitable mutation rate range would also assist in the

experimentation with differing operators etc. This was later found to be impracticable

as all parameters can have some interdependencies. This is addressed in Chapter 8.

The genetic algorithms were constructed with fixed termination points of 10000,

30000, 50000 and 100000 generations. Once the genetic algorithm reached the

termination criteria it would store the following three sets of data:

− During a run of the GA, the best solution so far found was recorded.

− The GA returned the number of times the best solution so far found was

improved upon (updated).

− During each repair phase a record was kept of the number of invalid cities in

each new string.

The selection of these data points as being relevant to the future work of the project,

was as a result of the Mitchell et. al 2000 publication [10]. These data points

provided an important avenue for the evaluation of GeneRepair and the effect it has

on different GA implementations.

7.1.1 The mutation rate experiments

The evaluation of mutation rate was based two on well known criteria:

− Best tour distance found

118

− Number of generations to find best solution

The first and most obvious criterion was the tour distance. Due to the stochastic

behaviour of genetic algorithms, the individual results were averaged over five runs

so that a consistent result was obtained, (reducing the effect of rogue results). The

mutation rate that produced the lowest average distance for the selected TSP problem

would typically be selected.

Measuring the number of generations
1 to find the best solution in different tests

provided a metric to compare the computation effort of each experiment against other

experiments. Both of these metrics were keeping with the metrics published in the

literature on the TSP.

Tests were carried out on three TSPLIB data sets, eil51, st70, eil101. The eil101 data

set is illustrated in Figure 7-2. Results for these data sets are published on the

TSPLIB website [75, 173] where an optimal tour is listed, indicating the best tour

distance and also the route that was found to produce this distance. It should be noted

that only one best distance is stored and should routes be found to produce similar

results these are not published in the library. The TSPLIB purely records the first

instance of the shortest tour, irrespective of how this was generated, i.e. it is not

possible to ascertain what algorithms (GA, Heuristic approach, LK etc…) were

utilised in the determining of the quoted optimal route/distance.

Experiments evaluating the effect of different mutation rates against best tours

distance are illustrated in Figure 7-3. This graph suggests that the most effective

mutation rate lies between 0.005 and 0.01 for all three problems tested.

1 In these experiments population size did not vary, and was set at 100 individuals

119

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80

eil101

Figure 7-2 Map of the data points for the Eil101 TSPLIB data set.

The best known solutions for the three problems as published on TSPLIB website are

also indicated on this graph. It is clear, from the graph, that mutation rates close to 0%

or greater than 1% reduced the quality of the final tour distance in all cases tested.

Figure 7-3 The tour distance obtained at various mutation rates.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

500

1000

1500

2000

2500

Mutaion rate

D
is

ta
n
ce

eil51
st70
eil101

x 10

-2

Best known

solutions

120

Figure 7-4 Number of improvements at various mutation rates.

The effect that the various mutation rates have on the operation of the genetic

algorithm is indicated in Figure 7-4. Similar to Figure 7-3, the most productive

mutation rates are those which are close to 0.005 which would support the belief that

the genetic process encourages fitter solutions and mutation encourages some

exploration (even into less fit solution areas). It can be concluded that for mutation

rates greater than 0.01, the GA converges on poor solutions and there is no significant

improvement.

The number of generations required to be evaluated before encountering the best

solution for varying mutation rates is given in Figure 7-5.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
20

40

60

80

100

120

140

160

180

200

220

Mutation rate

N
u
m

b
e
r

o
f
im

p
ro

ve
m

e
n
ts

eil51
st70
eil101

x 10

-2

121

Figure 7-5 Number of generations to find best solution

This graph (Figure 7-5) was produced by the average of 5 test runs for each problem

as had been done previously. What is noticeable is the extremely high variability in

this graph. This is due to the very small sample size that this graph is produced from.

A clear indicator of this is the wide range for the standard deviation for each mutation

rate. As a result of this high variation, it is not possible to draw any strong conclusions

from these three specific cases. Further examination of mutation rates is required from

a larger sample before it is possible to establish a confidence in a mutation rate setting

for use with GeneRepair (see Chapter 8 for further study).

7.1.2 Selection and Mutation rate effect on experiments:

In the following group of experiments an additional five combinations of selection

(Tournament, Rank, Roulette) and crossover (1-point and 2-point) were introduced.

0

5000

10000

15000

20000

25000

30000

0
0.

25 0.
5

0.
6

0.
65 0.

7
0.

75
0.

76 0.
8

0.
82

5
0.

85 1 2 3 4 5

Mutation rate

N
u

m
b

e
r

o
f

G
e

n
e

ra
ti

o
n

s

eil51

st70

eil101

x10-2

122

Again the experiments were primarily aimed at evaluating the mutation rate range that

was most effective with GeneRepair.

Figure 7-6 Mutation rate effect for extended set of operators with GeneRepair.

The mutation range tested was between 0 and 0.05 probability. These experiments

were performed solely on the medium sized TSP problem of st70.

Results (see Figure 7-6) indicated that the best results were generated for roulette

wheel and tournament selection with a mutation rate range between 0.005 and 0.01.

Rank selection favoured a higher mutation rate closer to 0.02. Rank selection would

appear (in these experiments) to be less sensitive to mutation rates changes between

0.005 and 0.05.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
800

1000

1200

1400

1600

1800

2000

2200

2400

2600

Mutation Rate

D
is

ta
n
c
e

Rank 1−pt
Rank 2−pt
Roul 2−pt
Roul 1−pt
Tourn 2−pt

x 10
-2

123

7.2 Operators and GeneRepair

The following experiments built upon the very brief evaluation of the effect that

different selection and crossover operators have on the generation of good solutions.

The previous experiments had primarily examined the range of mutation rates.

Figure 7-7 Most effective operators for eil51 problem data set.

The eil51, st70 and eil101 problem sets were again used as the test problems. For each

combination, the population size was fixed as before and the mutation rates were

fixed at 0.0075 for the tournament and roulette wheel selection types. Rank selection

had produced results that indicated that a higher mutation rate produced better results.

As a result mutation was set at 0.02 for rank selection.

Tourn 2 Tourn 1 Roul 1 Roul 2 Rank 1 Rank 2
0

100

200

300

400

500

600

D
is

ta
n
c
e

124

Figure 7-8 Most effective operators for st70 problem data set.

In Figure 7-7 the results of a number of experiments on the eil51 data set are

presented. Each experiment was conducted five times and then averaged. Tournament

selection with 2-point crossover was the most effective combination in the 51 city

experiments. This was followed by roulette wheel. Rank selection produced the

weakest solutions.

Figure 7-9 Most effective operators for eil101 problem data set.

Tourn 1 Tourn 2 Roul 1 Roul 2 Rank 1 Rank 2
0

200

400

600

800

1000

1200

D
is

ta
n
c
e

1250

1000

750

500

250

0

D
is

ta
n

ce

125

Figure 7-8 presents the same experiments on the st70 data set. Again tournament

selection was the most favourable. However in these experiments it was found that it

produced fitter results when paired with 1-point crossover. Rank selection again was

the weakest selection operator.

Finally in Figure 7-9, the experiments were conducted on eil101 data set. Results

indicated that tournament selection was the most effective selection operator, the best

combinations of selection and crossover operators being tournament and 1-point

crossover. These results are in keeping with the previous results, but variation in

differing runs (not shown) was more significant in eil101 than in the 51 and 70 city

problems. The weakest combination was with rank selection.

In summary, experiments on the 51, 70 and 101 city problems indicate that

tournament selection with either 1 or 2 point crossover was consistently the most

effective selection technique, while rank selection was the weakest.

7.3 GeneRepair and the TSP

The results for the GA with GeneRepair applied to the 51, 70 and 101 TSP problem

set were very encouraging (see Figure 7-10). The number of generations required to

find near optimal solutions were very favourable when compared to previous

documented attempts [84, 138, 140, 143, 150]. The previous documented results for

optimal tours were the product of lucky runs (for example [174] report 250,000 trial

for eil51) and the actual number of generations required to reach this result can be

difficult to ascertain. The results generated in these experiments were frequently not

126

optimal and it proved quite difficult to make any significant improvements upon the

results with variation to the population size and the other parameters. In Figure 7-10,

the 51 city problem experiments produced only a near optimal result (average 8%

from optimal), with similar results for the other data sets (70 and 101). Convergence

of the population occurred regularly in the first 2000 generations in the problems.

This indicates a rapid improvement in the solution early in the search and is superior

to previous documented results for these problems, convergence on the optimal

solution occurred between 2000 and 8,000 generations in other studies [174, 175].

This outcome was promising.

Figure 7-10 Effect of fixed mutation rate

The following experiments were designed to more fully understand the direct impact

that GeneRepair had on the search. The percentage of repairs that took place for the

three problems 51, 70 and 101 cities were graphed and are presented in Figure 7-11.

This represents the percentage of the population on each generation requiring repair

by GeneRepair. It is clear from this graph that GeneRepair has a significant role in the

searching for valid solutions in the early part of the genetic algorithm. However the

rate of GeneRepair plateaus in all of the tests at around 1000 generations. This

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

Number of generations

D
is

ta
n

c
e

eil51

st70

eil101

51 opt

70 opt

101 opt

127

coupled with the convergence of the genetic algorithm on a sub-optimal solution in a

relatively small number of generations, would suggest that mutation was having

insufficient effect in opening / introducing the variation necessary for the discovery of

optimal solutions1.

 This insight was the stimulus to investigate a more adaptive mutation rate, one which

could adapt to meet the changing dynamics of the search as it progressed. The

adaptive mutation rate was investigated so as to examine how the genetic algorithm

with GeneRepair might more effectively search other areas of the search space

Figure 7-11 % of repairs for each problem

The hypothesis was that performance could be improved by increasing the mutation

rate as the application of GeneRepair appeared to plateau or the population appeared

to be converging on a solution.

This adaptive mutation rate was implemented with the following two mechanisms:

− The mutation rate would be increased and decreased according to feedback

from the GeneRepair operator.

1 In a fully converged population, crossover operators can no longer introduce any variation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1

2

3

4

5

6

7

8

9

Number of generations

P
e

rc
e

n
t

o
f

re
p

a
ir
s

eil51
st70
eil101

128

− The mutation rate would be increased to a maximum user defined mutation

rate and would remain at this new rate until feedback indicated a further

movement.

7.3.1 GeneRepair and variable rates

Preliminary experiments were conducted to examine a genetic algorithm which used a

variable mutation rate. With the variable mutation rate it was possible to vary the

application of mutation in accordance with a fixed schedule. The mutation rate was

initially set at 0.0076, and on a periodic basis was increased and decreased according

to a preset time interval.

Figure 7-12 Effect of increased mutation rates

1 2 3 4 5 6 7 8 9 10
465

470

475

480

485

490

495

500

505

510

515

Adaptive Rate

D
is

ta
n

c
e

1000
3000
5000

x 10-2

129

This approach was a simplification of the adaptive mutation rate technique (which we

introduce in the next section). Initially the mutation rate increase occurred at 1000

generations, after which it remained at the new higher level.

In further experiments (see Figure 7-12,) the mutation rate was increased also at 3000

and then at 5000 generations, no improvement on the previous experiments was

identified.

The experimental results graphed in Figure 7-12 are from a series of tests conducted

on the eil51 data set. In this graph an increase in mutation rate to 0.01 after 3000

generations generated the best solution. However this result was still approximately

8% away from the optimal solution.

7.3.2 A feedback for adaptive mutation rate

The second implementation of the adaptive mutation operator was to couple the

mutation rate with the effects of GeneRepair. This implementation allowed for both

the increase and decrease of the mutation rate based on feedback from the genetic

algorithm (whether in a plateau for some length of time x or if there was a noticeable

change in the solutions during the period of time x). This mutation technique is a new

hybrid adaptive parameter control mutation rate similar to that used by Thierens

[176].

In Figure 7-13, a number of experiments conducted on the st70 problem data set are

presented. The most effective result was found when the mutation rate was increased

to a maximum of 0.002. The best result obtained from these experiments was still not

optimal. However it was a significant 2% improvement over previous results.

Experiments were conducted on the eil51 and eil101 problem sets with similar

130

outcomes being identified in both sets of results. As a result of these encouraging

results, further evaluation of GeneRepair coupled with an adaptive mutation rate was

suggested.

Figure 7-13 Effect of varying mutation rate with GeneRepair.

7.3.2.1 Adaptive mutation

Investigating the adaptive mutation rate required further tests on the effective range of

mutation rate values. Nine different mutation rate values were each tested five times

for stability over a range of probabilities (0.001 to 0.005). These tests indicated that

coupling GeneRepair with an adaptive mutation rate of a maximum of 0.00225

yielded the best result.

0 5 10 15
700

720

740

760

780

800

820

840

860

880

Mutation rate

D
is

ta
n

c
e

1000
3000
5000

x 10-2

131

Figure 7-14 Improvement and adaptive mutation parameters.

In Figure 7-14, the best solution was found for the 70 city problem when the mutation

rate was 0.00225.

Figure 7-15 Adaptive mutation and the GeneRepair GA search

1 1.5 2 2.5 3 3.5 4 4.5 5
730

740

750

760

770

780

790

800

D
is

ta
n
c
e

Rate
1 1.5 2 2.5 3 3.5 4 4.5 5

140

150

160

170

180

190

200

210

N
u
m

b
e
r

o
f
im

p
ro

v
e
m

e
n
ts

x10-2

Generations

T
o

u
r

D
is

ta
n

ce
 M

u
ta

tio
n

 ra
te

-

-

-

-

-

-

-

-

-

-

132

In Figure 7-15, a graph illustrating a run of the genetic algorithm with the adaptive

mutation rate with feedback is presented. The fluctuating mutation rate increases and

decreases as the search for the best solution progresses. It is evident that while the

mutation rate varies over time the genetic algorithm converges on a solution, in this

case the optimal solution for the st70 data set. Improvements in the solution are made

at approximately 3,500, 7,000 and 17,000 generations. The mutation rate starts to vary

at 5,000 generations and has an effect on the population which leads to improvements.

In keeping with previous results, significant improvement in the tour cost occurs very

early in the genetic process.

Creating an adaptive mutation rate which tracked the effect that GeneRepair had on

the genetic process enabled us to more fully examine the possible mutation effect that

GeneRepair appeared to have on the genetic algorithm. Since repair directly alters the

offspring which occur due to the application of crossover and mutation it is possible

that repair produces at least one of the two following effects:

1. Increase the disturbance to the crossed over and mutated offspring thus

acting as an increase in mutation.

2. Decrease the effect of crossover / mutation by replacing invalid cities

with cities in the location previously found in either of the parent tours

or the desired template.

These effects are tightly coupled with the type of repair templates that are utilised and

the rate with which repair is applied to the offspring tours. Results have indicated that

GeneRepair is applied significantly more in the early part of the search than later on.

This suggests that the repair increases the search space in and around the offspring in

133

the exploration phase of the search and then maintains solution validity as the search

starts to converge on a solution.

In all of the experiments that have been discussed so far, the GeneRepair technique

has been relatively simple and has examined only one possible approach for template

design and scanning of those suggested for GeneRepair at the end of Chapter 6.

7.4 Alternative GeneRepair techniques

The experiments discussed so far were conducted using the preliminary

implementation of GeneRepair (CleanUp) [10]. This implementation consisted of a

randomly generated template which remained fixed for the life of the search; the

scanning strategy was to replace invalid flagged cities in a left to right approach, these

approaches were included in the GeneRepair strategies (as in section 6.4).

Following on from the encouraging results that this strategy produced, the remaining

implementations (that were introduced in section 6.4) were examined. The

effectiveness of differing template constructions and scanning/replacement methods

had to-date not been evaluated. The idea that repair might have differing effects on

the search led us to explore all of these implementations. It was suggested by Fogel

[166] that these different repair techniques would have no effect on the finding of

better solutions, as the validity preserving operators in essence utilised a form of

repair. However the results have proved to be quite surprising. The different strategies

examined were:

Techniques for Generating Templates

− Static Random Template (generate a random template at the start of the GA

search).

134

− Dynamic Random Template (generate a random template for each individual

invalid candidate tour).

− Best in Previous Generation.

− Best So Far (select the best tour so far found in the GA search).

− More fit parent of candidate offspring.

− Less fit parent of candidate offspring.

− Random parent.

− Varying combination on each generation (randomly use any of the foregoing

template methodologies).

Techniques for applying Templates (scanning method)

− Left-To-Right (correct the candidate tour, processing flagged errors in a left to

right direction).

− Right-To-left (correct the candidate tour, processing flagged errors in a right to

left direction).

− Random Direction (correct the candidate tour, processing random flagged

errors).

7.4.1 Experimental results to determine the best GeneRepair technique

A number of experiments were conducted to evaluate the configuration for

GeneRepair and it was expected that either one or a set of configuration would be

identified which would yield the fittest TSP solutions. Experiments were conducted

on the 51, 70 and 101 problem sets as before (over five runs each). The results of

these tests are tabulated in Table 7-1, Table 7-2 and Table 7-3. These results suggest

135

that the random template selection technique is the most effective template

construction strategy, while the random direction strategy proved to be the most

effective technique to scan and then correct the tours.

Static

Random

Best

so

far

Dynamic

Random

Generation

Shortest
Combination

More fit

parent

Less fit

Parent

Random

parent

Left-to-

Right
1.5% 0.5% 0.5% 1.3% 0.5% 1.3% 0.5% 0.5%

Right-to-

Left
1.5% 0.5% 0.5% 1% 0.5% 0.5% 0.5% 0.3%

Random

Direction
1.5% 0.5% 0.3% 0.5% 0.3% 0.5% 0.5% 0.5%

Table 7-1 Percentage error (rounded up) away from the optimal solution for eil51

Static

Random

Best

so

far

Dynamic

Random

Generation

Shortest
Combination

More fit

parent

Less fit

Parent

Random

parent

Left-to-

Right
7%

6..3
%

4.8 6.6% 4.5% 5.8% 6.1% 5.1%

Right-to-

Left
6.2% 5% 3.3% 6.6% 5.1% 5.3% 5.3% 4.2%

Random

Direction
5.6% 3.6% 1.4% 4.8% 2.3% 4.4% 4.7% 3.6%

Table 7-2 Percentage error away from the optimal solution for st70

Static

Random

Best

so

far

Dynamic

Random

Generation

Shortest
Combination

More fit

parent

Less fit

Parent

Random

parent

Left-to-

Right
14%

12.2
%

10.8% 13.7% 10.5% 11.8% 11.7% 11.3%

Right-to-

Left
12.4% 10% 10.3% 13.6% 11.7% 11.3% 11.3% 10.2%

Random

Direction
11.2% 9.6% 6.8% 10.8% 7% 8.4% 8.7% 7.6%

Table 7-3 Percentage error away from the optimal solution for eil101

A new termination condition was selected for these experiments. The motivation for

the selection of this new termination condition was to establish the likely behaviour of

the genetic algorithm over a large number of generations (in excess of what had

previously been required). In this case the number of generations was set at 100,000.

This figure was selected as it was at least 3 times the maximum number of

generations utilised by either Fogel or Davoian in their previous attempts using GAs

on similar sized TSP problems [84, 138-140, 143, 150]. The population size,

crossover operators and the mutation techniques all remained the same across all of

the experiments. However, some variation in the mutation rate did occur as a result of

using the adaptive mutation rate. The extent of the range of mutation rates that the

136

adaptive mutation applied was 0.0074 to 0.0225 across all the tests, the higher rates

were found to coincide with the emergence of evolutionary plateaus.

The results for eil51 do not provide a clear distinction between the different repair

strategies, (see Table 7-1). This is probably due to the small size of the problem, and

the rapid convergence on good solutions. GeneRepair (in our small sample)

consistently finds very good solutions which are no more than 1.5% away from the

optimal solution for eil51. GeneRepair also generates good solutions for the larger

problems. However on any single run it is highly likely that the result will only be

near optimal for that problem. Lucky or Golden runs do occur (i.e. a single run that

produces an optimal solution), however they only occur occasionally. These lucky

runs have achieved optimal results for the st70 and eil101 problem sets and have

produced very favourable results for larger problems (e.g. less than 1% away from the

best known solution for the 299 city problem pr299 [75]).

The dynamic random, combination and random parent repair templates applied in the

random scanning direction outperformed all other strategies. A possible reason for

this was that these template construction methods are more random in their creation

and also these templates were updated after every generation. Thus they may have

increased the mutation effect on the offspring, discovering new alleles and

introducing lost alleles which might occur due to the crossover operation (see section

7.5 for a discussion on the mutation effect of GeneRepair).

This observation is further supported by the fact that the static random repair template

was consistently the weakest strategy. The static template approach may also be an

impediment to the evolutionary process, as the same template is applied to the first

generation right through to the last generation of the genetic algorithm.

137

It is interesting that the method of scanning should have such a significant effect on

the results. This is something that we did not expect. It is possible that the random

nature of conventional mutation is best expressed in the random nature of the

GeneRepair dynamic random template and the random direction strategies.

7.5 Does GeneRepair act as a special mutation operator?

GeneRepair is composed of two distinct tasks: fault detection and fault correction. To

help identify the exact reason for a genetic algorithm with GeneRepairs’ improvement

in performance, each of these were analysed.

Initially we measured the frequency with which GeneRepair was invoked.

GeneRepair repaired approximately 11% of the candidate solutions, while solving the

benchmark TSP problems. Additionally, some of these candidate solutions required

multiple repair operations. (As may be expected, these figures are higher during the

first 100 generations than at any other point in the search).

For comparison, we recorded the number of invalid tours generated by our solution

without GeneRepair [14] and using a penalty function. Approximately 15% of

individuals were found to violate the TSP validity constraint and would either have

been discounted from the genetic algorithm through penalty function or would not

have been permitted to progress to the next generation (death penalty). Thus the

penalty or death penalty genetic algorithm in effect would have constrained the

search, while the repair techniques would seem to maintain (depending of course on

the strategies used for template construction and scanning) the population diversity to

some degree.

138

In general, GeneRepair does increase the number of generated individuals that form

part of the valid search space. However, this relatively modest increase in the search

space does not adequately account for the significant increase in performance

obtained. For example, increasing the population size to allow for this 11% wastage,

had little effect on the quality of the results generated.

Following these experiments an investigation of the fault correction phase of

GeneRepair was conducted. Firstly, how errors were introduced was analysed.

Crossover introduces the majority of errors (with mutation contributing the

remainder). It does this by combining incompatible sections of tours. However as the

population converges on solutions this effect is reduced. As a result, the GeneRepair

operator is invoked more during early evolution than it is when the GA reaches

convergence.

This poses a number of possible effects of GeneRepair. One consideration is that

GeneRepair allows crossover to work in a classic, schema like way. For example:

In this simple example, GeneRepair will not be required for the first two or last two

alleles, as both parents have identical elements in these positions. The offspring can as

a result inherit these elements with GeneRepair only being required on the free alleles

(i.e. those where parents differ). GeneRepair may only be invoked on the errors that

might occur at free allele positions, as a result it could be considered as a focused

mutation operator.

Parent 1 1 2 3 4 5 6 7 8

Parent 2 1 2 6 5 4 3 7 8

Offspring 1 2 # # # # 7 8

139

A second consideration is how the replacement technique affects the search. This

technique replaces invalid (i.e. duplicate) genes with missing genes, according to a

replacement strategy as described in Chapter 6. GeneRepair might possibly be

considered as a multi-point mutation operator, which is applied heavily during early

evolution and rarely applied when convergence is achieved. As a result of this

possible effect, an adaptive mutation rate is necessary so as to permit a variation in the

mutation rate during the genetic search. Initially the search is started with a low

mutation rate, so as not to initiate an undesirable undirected random search, then later

in the search the rate is increased to compensate for the reduction in the mutation

effect of GeneRepair as the repair is applied less frequently.

With a low mutation rate, information in the population is exploited and the mutation

effect of GeneRepair is used as a positive side effect. GeneRepair in essence can be

viewed as a secondary mutation operator whilst performing its primary function as a

solution for problem validity constraint handling.

When single point mutation is used in the genetic algorithm searching for solutions to

the TSP then one can expect validity problems with the solutions. GeneRepair will

correct the validity problems. However it does so in an unintelligent manner and as a

result directly impacts on the role of the mutation operator. The repair may result in

either the mutation remaining unaffected by GeneRepair and another duplicate city

will be replaced or it has the effect of causing a 2-point mutation. Alternatively, the

mutation itself will be repaired, which reduces the level of mutation.

Importantly, the mutation introduced by GeneRepair is definitely not simply an

alternative to standard mutation, as standard mutation is still required when near-

optimal convergence is encountered.

140

The mutation effect may account for the GeneRepaired genetic algorithm’s improved

performance as it effectively works against the problem of premature convergence.

Furthermore, it is applied less frequently during final convergence, allowing an

optimal solution to be achieved. This would be reminiscent of the operation of a

Boltzman machine on simulated annealing problems and would also be supported by

the approaches introduced by Fogel in his inversion string reduction technique.

7.6 Summary

In this chapter we have examined the results of a series of preliminary experiments

conducted to explore the configuration setting of genetic algorithms that use repair,

and in particular GeneRepair. A number of experiments were conducted to understand

the dynamics of TSP problems. Comparisons were draw between the genetic

algorithms with repair and those without repair. Further preliminary experiments were

conducted to examine mutation rates for the different problem sizes. It was found that

the most effective technique was that of an adaptive mutation rate. This adaptive

mutation rate monitored the state of the search and where convergence was

encountered the mutation rate was varied so as to bring about a change.

The use of a repair strategy does not imply that only a single implementation must be

used, and in these preliminary experiments we have examined a number of novel

implementation strategies. We have also examined these strategies to give an

indication of suitable configuration settings for mutation rates, selection techniques,

crossover operators and mutation operators. These experiments were ultimately

focused on finding the best solutions possible for selected TSP problems. The final

141

sets of experiments evaluated the effect of the differing GeneRepair implementation

strategies.

Conclusion: The preliminary experiments suggest that the GeneRepair strategies

which utilised random templates and random scanning were the most effective in

finding the best solutions to the selected TSP problems. This result suggests that

GeneRepair can be interpreted as a secondary mutation operator, where the number of

repaired genes (cities) is dictated by the number of non-identical genes (cities) in the

two parents (although the location of repaired alleles may vary). This process assists

in the discovery and return of lost alleles.

However, although these preliminary results are encouraging, further statistically

reliable experiments are required before we can safely suggest an optimal GeneRepair

strategy or configuration settings which should be used with GeneRepair (these

statistically reliable experiments will be explored in the next chapter: Chapter 8).

142

Chapter 8

Configuration Setting for GAs and the TSP

In this chapter we present experiments that were carried out to evaluate differing

genetic algorithm configurations to solve TSP problems. A suite of parameters are

presented which must be selected to form differing GA configurations. A multi-level

Genetic Algorithm is presented which is used to more effectively evaluate the

configuration settings. A cost/benefit function assists the multi-level genetic algorithm

in identifying these configurations in an economically viable manner. The chapter

concludes by presenting results which show that a random GeneRepair technique

consistently forms one of the parameters in the optimal configuration settings.

8.1 Motivation

In the last chapter we presented a number of experiments which were designed to

investigate GeneRepair. Following these experiments conclusions were drawn as to

what the optimal configuration (genetic operators and rates) for a genetic algorithm

with GeneRepair should be. The results suggested that GeneRepair enhanced the

operation of the Genetic Algorithm when solving particular TSP problem instances.

Furthermore results indicated that the most successful implementation for GeneRepair

was a random template and direction technique.

These experiments were hand crafted (i.e. the crossover operator, mutation operator,

associated rates, selections techniques, population size, GeneRepair technique all of

143

which were selected by the author). Secondly these experiments were performed on

just three TSP problems eil51 st70 and eil101.

The experiments presented in this chapter utilise the operators and techniques

presented in Chapters 4, 5 and 6. The experiments are designed to identify the optimal

configurations settings for solving selected TSP problems. The solutions presented in

this chapter are multi-objective, as the optimal configuration is identified for a genetic

algorithm to find TSP solutions which meet the tradeoff needs between quality of

solution and cost (time or computation expense) for a particular user’s requirement.

The configuration settings consisted of a choice of the following specifications:

1. Validity preserving mechanism (repair / penalty)

2. Population size

3. Selection type

4. Mutation

5. Mutation rate

6. Crossover

7. Crossover rate

8. Adaptive mutation

Experiments were carried out on 20 different TSP problems grouped into three

problem sizes 50, 70 and 100 cities.

This configuration setting problem was complex. There were for example six operator

settings, excluding the mutation rate and crossover rate, which specify particular

operators or population sizes. The total number of permutations of these six settings is

250,000. The inclusion of mutation and crossover rates increases the total number of

permutations of the configuration to 250 million.

144

The complex nature of this problem is however heightened when one considers that to

find a fitness value for each configuration setting it is necessary to solve a TSP

problem.

With this vast number of configurations and the complexity of controlling all of the

experiments, it was decided that the process should be automated. As the focus of this

project is on differing genetic algorithms it was natural that a genetic algorithm was

selected to efficiently search for optimal configuration settings. We developed a

multi-level genetic algorithm to search for the optimal configuration setting for TSP

problems of 50, 70 or 100 cities in size.

It was expected that a set of suitable configuration settings would be generated for

each of the problem sizes. Each problem was expected to exhibit similar GA

parameters and operators based on the number of cities in the problem. Generating

configuration settings for each problem size would then permit the reuse of these

settings on any new problems of the three sizes.

8.2 Configuration setting of Genetic Algorithms

Attempts have been made to design software packages/systems that simplify the use

of Genetic Algorithms since the mid 1980’s [177]. These packages/systems attempt to

simplify the operation of the genetic algorithm by removing the need to select genetic

operators and parameters such as mutation rate, population size, selection rate, etc.

Grefenstette [178] proposed one of the earliest parameter setting genetic algorithms

which utilised a meta-GA approach. The meta-evolutionary algorithm can be

visualised as follows: base level genetic algorithms attempt to solve a given problem

e.g. in this case the TSP. The parameters for these base level GAs are specified by the

145

meta-level GA, rather than being set by the user. The meta-level GA treats the

selection of the parameters for the base-level GAs as an optimisation problem, and

then attempts to optimise the parameter strings using a genetic algorithm. An

illustration of the meta evolutionary algorithm is presented below:

Figure 8-1 Meta evolutionary algorithm to identify configurations settings.

In the illustration above, the meta-GA, through the use of evolutionary optimisation,

can identify better configuration settings for evaluations of a given class of problem.

Researchers have attempted for a number of years to identify a standalone search

system that can generate good results for a range of problems without requiring the

user to have specific knowledge of the dynamics of the problem [27]. Genetic

algorithms have been proposed to examine this area. Examples of these include the

Adaptive Genetic Algorithm (AGA) [179] and the Parameter-less Genetic Algorithm

(PLGA). Harik [180, 181] in particular acknowledged that the goal of developing a

generalised search technique was an arduous task. Harik also noted that significant

work had already been directed in the use of meta-genetic algorithms to automate the

hand tuning of genetic algorithms.

meta-GA

evaluate

crossover

mutate

select

base-GA

ev
o

lv
e

pop size mut rate xrate

City 1 City 2 City 3 …

evaluate

crossover

mutate

select

1 2 3 0 4 5

5 1 3 0 4 2

1 2 0 4 3 5ev
o

lv
e

1 0 1 1 1 1

1 1 1 1 1 0

1 1 0 1 1 0

Parameters for GA

base-GA

base-GA

Optimising: parameter setting for base GA

Optimising: TSP tour

146

Harik therefore proposed to automate only one parameter: population size. He

developed a system based on a genetic algorithm which evolved the population size

rather than inheriting a preset population size. Harik’s PLGA occurred at a similar

time to a number of similar research projects [182-184]. These works were an attempt

to simplify the usage of evolutionary computation systems rather than to generate a

General Problem Solver (see section 3.4.1). Other multi-level approaches include

Genetic Programming and Evolutionary programming multi-level systems applied to

routing optimisation [185].

Freisleben in 1993 [186] used a meta-evolutionary approach to determine operators

(selection, elitist model, crossover, and mutation) and parameters (population size,

crossover probability, mutation probability) for a genetic algorithm to solve instances

of the travelling salesman problem. Freisleben’s work was further extended by

Mernik in 2000 [187]. Mernik focused on the best combination of crossover operators

to be used in a single instance of a GA applied to the TSP.

The conclusion of Freisleben’s research was that the selection of crossover operators

plays only a lesser role in the generation of optimal solutions for the TSP, and that the

mutation operator is the most important search operator. Mernik challenged this view

by concluding that a combination of crossover operators was consistently more

effective than a single crossover operator implementation.

However, this finding must be viewed in the context of the experiments that were

conducted by both Mernik and Freisleben. In both cases the crossover operators are

validity preserving operators: PMX, OX, CX, ERX etc. A second factor to consider is

that in the previous attempts only a single instance of problem data for a single given

problem size was used for comparison. Secondly the TSP problem sizes explored as

stated by the researcher were “very small” [187].

147

8.3 Another meta-evolutionary examination of the TSP…

In the literature the previous research has attempted to identify either the optimal

parameters or operators for genetic algorithms applied to single TSP problem

instances.

This previous research has been performed, primarily on TSP problem sizes of 48

cities (from TSPLIB [75]). Mernik [187] carried out parameter evaluation

experiments on TSP problem sizes between 11 cities and 48 cities. He concluded that

the 48 city problem was the largest problem size that could be feasibly (time

considerations and computation expense) computed with a meta-evolutionary

approach.

The approach presented in this chapter differs principally on three fronts from this

previous work:

1. Experiments are conducted on a set of 20 TSP problem from 3 problem sizes 50,

70 and 100 cities.

2. The multi-level genetic algorithm also explores TSP problem validity constraints

issues. Through a number of different techniques: penalty function, repair and

validity preserving genetic operators, the validity of the end solution is assured.

3. A cost benefit function is used which allows the user to tradeoff the cost of

searching for better TSP solutions (i.e. time, computational effort) against the

quality of the solution (shortest tour length).

148

In the next section the multi-level genetic algorithm framework is presented,

following this the cost benefit function (Quality-Time Tradeoff) is introduced. Finally

the experiments and results complete this chapter.

8.3.1 The multi-level Genetic Algorithm framework

The meta-evolutionary framework utilises the parallelisation that is possible over a

cluster of a number of processors (or PCs). A number of different implementations of

distributed genetic algorithms are possible [188]. Techniques for developing

distributed platforms differ principally in either dividing the problem amongst the

distributed clients or farming individual problems to each of the autonomous

distributed clients. The latter approach is taken for the design of our meta-

evolutionary system.

Figure 8-2 The distributed multi-level genetic algorithm

The system that has been developed consists of a server genetic algorithm and client

genetic algorithms (Figure 8-2). The server genetic algorithm acts as the meta-GA,

essentially implementing a genetic algorithm embodying the key functions of

crossover, mutation, selection and fitness function. The server also accomplishes

149

auxiliary functions such as the marshalling of clients, distribution of jobs to the base

GAs and maintenance of the fault tolerant components. The marshalling of clientGAs

(base-GAs) is implemented through the use of a remote method implementation (see

Figure 8-3).

Figure 8-3 Simplified class diagram.

A variety of computer platforms were utilised in the experiments, these included an

IBM cluster and up to 400 networked PCs.

Testing of the systems included considering the invisible recovery [11-13]

mechanism. This technique provided robustness for the system in the event of a client

node failure or error. During testing, the system operated within the expected bounds

and successfully withstood failure testing (power failure crash). The system utilised a

checkpoint and roll back recovery mechanism, when necessary to return the system to

a correct stable state.

During testing of the system it was found that maintaining a full account of processed

data on the clients was not practical (it was not feasible to collect / collate all of this

ClientInterface

ServerInterface

GAClient

PingThread

configObj

clientObj

StartServer

(main)

GAServer

serverThread

DHGA

George G Mitchell

ver 1.0.1

2006

Interface Implementation

Other (reference, etc..)

Project Class

Project interface

clientThread

StartClient

(main)

150

data). It was decided that the results would be stored by the meta-GA. This decision

had an impact on the network communications. As with all distributed systems a

potential bottleneck is the communication channels. Following an investigation into

the effect that different amounts of data communication could potentially have on the

network it was decided that a minimally sufficient set of result data would be returned

to the meta-GA. This result data was then maintained by the meta-GA in the data

store. This data store had a number of functions:

1. To provide information to maintain the genetic algorithm.

2. To provide data for later analysis.

3. As a source for the invisible recovery mechanisms to allow a restart of the

system in the event of a crash.

The data store information included: a copy of the meta population, best runs found

to date together with configuration settings (passed as strings), invalid (down) IP

addresses, current base-GA configuration index (the list of IP addresses with the

associated configuration list delivered to them).

It was decided to implement a technique for constraining the expenditure of

computation time on evaluating configurations. The constraining of time was

implemented utilising a cost benefit function. This function balanced the cost

(computation time) against the benefit (improved TSP solution) and could be

specified by the user in order to meet their own specific requirements.

Following a review of the literature in the area of multi-objective optimisation, a GP

termination function [189] and following discussions with Carlos Coello Coello

[190], the Quality-Time Tradeoff function was designed. This tradeoff function was

designed so as to achieve two distinct tasks:

1. Fitness evaluation of the cost benefit of each configuration for the meta-GA.

151

2. Termination of the search where a quality-time tradeoff was not being met –

Base-GA (clientGA) side

To accomplish this, a new technique the QTT (Quality-Time Tradeoff) function was

developed. This operator provided a cost-benefit measure of the configuration settings

for the TSP. The cost benefit measure made use of the quality of tour distance and

also the amount of computation time spent on generating this solution.

8.4 Tradeoff function

The use of a tradeoff function (also known as a cost-benefit function) within the

optimisation research area is not new. Sosič [191] developed a tradeoff function for a

local optimisation algorithm, Sosič’s cost-benefit function was called Duty. Duty

minimised the excess (error) of a present solution compared to the benchmark known

optimal solution. An optimal present solution would be found to have an excess of

zero. The generalised Duty measure gives equal weight to the quality of the solution

and the computing time as follows:

Dk (t) = t k * E(t)

The QTT function which was developed to operate with our multi-level evolutionary

system used a simplified function as defined below:

QTT = t + wQ

where t, the computation time is measured as the number of generations, Q the quality

of the solution is the shortest distance TSP tour for each generation and w was the

weighting factor placed on the quality of the solution. By weighting the quality of

solutions the tradeoff function can be set by the user to terminate the solution at the

optimal cost benefit point (where the effort spent searching for a better solution out-

weighs the improvement in the quality of the solution).

152

The tradeoff function will produce a ‘u’ shaped curve (as shown Figure 8-5). Then by

identifying the minimum QTT value of this curve the base level GA search is halted.

This minimum value represents the optimal cost benefit point. The cost benefit point

can be visualised as in Figure 8-4, where the time line intersects with the GA search

for a good TSP solution. The quality/time tradeoff function identifies the minimum

value of the tradeoff values through the use of the following algorithm:

1. The best tradeoff value for the search is updated after each generation.

2. A sliding window sized at a number of generations is applied, during which

time fitter tradeoff values may be encountered. The size of the window is user

defined.

0

200

400

600

800

1000

1200

1400

1600

1800

1 51 101 151 201 251 301 351 401 451 501 551 601

Tout length "Q"

Compute cost "t"

600300 900 15001200 1800 2100 2400
Generations

T
o
u

r
le

n
g
th

Figure 8-4 Cost benefit point tour length versus time

0

200

400

600

800

1000

1200

1400

1600

1 51 101 151 201 251 301 351 401 451 501 551 601

QTT values

Window

600300 900 15001200 1800 2100 2400
Generations

T
o

u
r

le
n

g
th

Figure 8-5 Tradeoff graph - u shape graph and illustration of sliding window

Initially a series of experiments were performed on the well known problem data sets,

eil51, st70 and eil101. This was completed for two reasons: firstly the optimal

153

solution values for these problems are well known, secondly these data sets were

evaluated a number of times in the course of the project and were very familiar. For

these reasons they were chosen to evaluate the validity of the multi-level genetic

algorithm and the QTT tradeoff function.

To highlight how the weight value w could be selected, we suggest the following

scenario:

A company regularly requires routes for new TSP problems. The company

has gained access to a large amount of computing power and conducts a

once off set of experiments to identify the optimal configuration settings for

a set of 50 city, 70 city and 100 city problems. Due to monetary and time

constraints it has been decided to utilise a cost benefit function to balance

these costs according to the requirements of the customer. This balance is

addressed by weighting the importance of quality of solution (tour length)

versus the cost (time, computing power etc).

An important consideration in this work was the objective of identifying good results

which were generated in relatively short amounts of computation time.

0

200

400

600

800

1000

1200

1400

1600

1800

1 1930 3859 5788 7717 9646 11575 13504 15433 17362 19291 21220

eil 51

Generations

F
it

n
es

s
q
u
al

it
y

Figure 8-6 A sample run of the fitness progress of a GA for eil-51 TSP.

154

A sample GA run for the TSP eil51 data set is illustrated in Figure 8-6. In this

example, the majority of improvements occurred in the initial 2000 generations.

Should a user wish to identify high quality solution for this problem then a weighting

factor which promotes the importance of quality would be desirable.

The selection of the weighting and window size are therefore purely based on the

constraints affecting the user: time, computer availability, financial considerations and

desired final solution quality.

8.5 Meta-GA design

The meta-GA (Server GA), while being responsible for the marshalling of the

clientGAs (base-GAs), also evolved the configuration settings used by the base-GA.

These configurations were evolved using a simple genetic algorithm. The meta-

Genetic Algorithm was implemented using the following design attributes:

User-specified meta-GA parameters were: num_generations, pop_size,

cross_rate, mut_rate.

The operation stages of the meta-GA were

1. A random population of size pop_size was created. The population

consisted of a random number string which represented the

configurations for the clientGA.

2. Configuration fitness was calculated by the clientGA.

3. Population was then sorted according to fitness.

4. Selection was performed on the population, together with crossover

being applied according to a crossover rate defined by the user:

cross_rate.

5. A mutation probability is specified as mut_rate.

6. Repeat steps 2 through 5 until num_generations is reached.

155

The meta-GA population of configuration strings specified for each base-GA were

implemented as string objects (an artefact of implementing in RMI), and simplified

the communication. Each of the elements in the configuration string encoded the

value for a specific parameter or operator. The configuration string consisted of eight

individual settings, defined as integer values, as illustrated below:

Locus 1 2 3 4 5 6 7 8

Gene

Function

Repair

type

Population

size

Selection

Type

Mutation

Type

Mutation

Rate

Crossover

Type

Crossover

Rate

Adaptive

Mutate

Possible

Alleles
0-99 0-99 0-99 0-99 0-99 0-99 0-99 0-99

example configuration string: 34 41 02 58 15 07 08 04

With the integer representation that was used, each parameter or operator was evenly

distributed over the gene values e.g. mutation techniques 00-99 coded Static Random

Template direction left, Static Random Template direction right and Static Random

Template direction random, as 00-04, 05-09 and 10-14 in the configuration string.

The first gene in the string specified GeneRepair/penalty technique:

1. Static Random Template, direction left

2. Static Random Template, direction right

3. Static Random Template, direction random

4. Dynamic Random Template, direction left

5. Dynamic Random Template, direction right

6. Dynamic Random Template, direction random

7. Best in Previous Generation Template, direction left

8. Best in Previous Generation Template, direction right

9. Best in Previous Generation Template, direction random

10. Best So Far Template, direction left

11. Best So Far Template, direction right

12. Best So Far Template, direction random

156

13. More fit parent of candidate offspring Template, direction left

14. More fit parent of candidate offspring Template, direction right

15. More fit parent of candidate offspring Template, direction random

16. Less fit parent of candidate offspring Template, direction left

17. Less fit parent of candidate offspring Template, direction right

18. Less fit parent of candidate offspring Template, direction random

19. Varying combination Template, direction left

20. Varying combination Template, direction right

21. Varying combination Template, direction random

22. Best in previous generation and best so far (alternating) Template, direction

left

23. Best in previous generation and best so far (alternating) Template, direction

right

24. Best in previous generation and best so far (alternating) Template, direction

random

25. Penalty function.

The second gene specified the size of the GAs population:

1. population size of 20

2. population size of 50

3. population size of 100

4. population size of 200

5. population size of 500

6. population size of 1000

7. population size of 2000

8. population size of 3000

9. population size of 4000

10. population size of TSP problem size squared (i.e. N2)

The third gene specified the selection type:

1. roulette wheel

2. tournament

3. rank

157

4. truncation

5. combination

The fourth gene specified the mutation operator:

1. reciprocal exchange (swap) mutation.

2. insertion mutation.

3. 2-opt mutation.

4. inversion mutation.

5. combination of mutation operators.

The fifth gene specified the mutation rate in a range between 0.001 and 0.099

probability increasing in increments of 0.001.

The sixth gene specified the type of crossover to be used:

1. Classical Crossover

2. n-point crossover

3. Uniform crossover

4. PMX - partially mapped or matched crossover

5. Cycle crossover CX

6. Order crossover OX

7. Voting Recombination Crossover

8. Maximal Preservation crossover (MPX)

9. Masked crossover

10. Modified crossover

11. Position crossover

12. Modified PMX

13. Complete Subtour Exchange crossover

14. Subtour Chunking Crossover

15. Path (with classical & n-point) crossovers random combination

16. Classical, n-point or uniform crossovers random combination

17. Binary and Adjacency crossovers random combination

18. CX and PMX random

19. OX and PMX random

158

20. Full combination

The seventh gene specified the crossover rate values. These were in increments of 0.1

between 0.1 and 1 probability.

The eighth and final gene specified adaptive mutation. This was either applied or not

applied.

These eight different configuration settings represent a total of 250 million possible

permutations.

In the following sections, results from a number of experiments are presented which

were performed on twenty different TSP problems. These experiments identify the

optimal configuration settings for specific tradeoff function (QTT) settings. It is

important to restate at this point, that these values are not optimal TSP tour solutions,

but rather solutions that have been generated in a manner which best suits the user’s

requirements as dictated by the QTT function settings.

8.6 Experiments with the QTT multi- level evolutionary system

The determination of the meta genetic algorithm parameter settings was accomplished

through reference to the literature in the area of meta-evolutionary approaches [177,

178, 183, 187]. The meta-GA population was set at 100 individuals, termination

occurred at 1500 generations, swap mutation, 1-point crossover, mutation rate 0.05

and rank based selection.

It was also decided that the 50 city problem set would be examined first, as this was

the smallest TSP problem to be examined and should therefore be examined the

fastest.

159

The experiments were typically performed on 26 networked Pentium 4 computers (a

larger number of PCs (up to 100) were available on an ad hoc basis as was access to a

98 node super computer). Each meta-level GA run required between 4 and 6 weeks of

computation time, this had two key implications:

− Only a limited amount of time was expended on determining the meta-level

GA parameters.

− Only a single run of each meta-level GA was computed.

8.6.1 50, 70 and 100 city TSP Experiments

Initially a series of experiments were conducted to evaluate how configuration

settings changed with regard to the QTT weights and secondly how these

configurations compared across a group of similarly sized TSP problems. Arbitrary

weights were selected along with a window size of 500 generations.

The 50, 70 and 100 city TSP problem sizes were selected due to their proximity to the

previously examined problems. The identification of multiple data sets for these

problems however proved difficult except in the case of the 100 city problem. As a

result the 50 and some of the 70 city problems were specifically constructed for these

experiments. The 100 city size problem group was taken directly from the TSPLIB

benchmark problems (KRO100a, KRO100b, KRO100c, KRO100d, KRO100e [75]).

The 70 city size problem group was constructed by using the st70 problem and also

by selecting TSPLIB problems between 70 cities and 100 cities and then removing

cities so as to produce a 70 city problem. The four data sets constructed by the author

were titled 70a, 70b, 70c and 70d.

The 50 city size problem group was constructed by selecting TSPLIB problems

between 50 cities and 69 cities and then removing cities so as to produce a 50 city

160

problem. The five data sets constructed by the author were titled 50a, 50b, 50c, 50d

and 50e.

It was a possibility that this experiment would yield a larger number of sets of

configuration settings that yield ‘good’ TSP solutions. This would have indicated that

each problem’s unique topology required different parameter settings to generate

these good tours. The results (see Table 8-1, Table 8-2, Table 8-3) would suggest that

this is not the case and in fact a small set of parameters are effective in finding good

solutions for TSP problems of 50, 70 or 100 cities in size (see section 8.7 for

discussion of these results).

T
S

P

P
ro

b
le

m

W
ei

g
h

t

R
ep

a
ir

T
y

p
e

S
el

ec
ti

o
n

T
y

p
e

M
u

ta
ti

o
n

T
y

p
e

M
u

ta
ti

o
n

R
a

te

C
ro

ss
o

v
er

T
y

p
e

C
ro

ss
o

v
er

R
a

te

A
d

a
p

ti
v
e

M
u

ta
te

P
o

p
u

la
ti

o
n

S
iz

e

50a 0.1
Vary. Comb.

Random
Tournament

Swap
Mutation

0.008
Path random
combination

0.9 Off N2

50b 1
Vary. Comb.

Random
Tournament

Insertion
Mutation

0.008
Path random
combination

1 Off N2

50c 5
Vary. Comb.

Random
Tournament

Insertion
mutation

0.007
Path random
combination

1 On N2

50d 2
Dynamic

Rand. Rand
Tournament

Insertion
mutation

0.007
Path random
combination

1 On N2

50e 11
Dynamic

Rand. Rand
Tournament

Insertion
mutation

0.008
Path random
combination

1 Off N2

Table 8-1 50 city experiments

T
S

P

P
ro

b
le

m

W
ei

g
h

t

R
ep

a
ir

T
y

p
e

S
el

ec
ti

o
n

T
y

p
e

M
u

ta
ti

o
n

T
y

p
e

M
u

ta
ti

o
n

R
a

te

C
ro

ss
o

v
er

T
y

p
e

C
ro

ss
o

v
er

R
a

te

A
d

a
p

ti
v
e

M
u

ta
te

P
o

p
u

la
ti

o
n

S
iz

e

70a 15
Vary. Comb.

Random
Tournament

Swap
Mutation

0.007
Path random
combination

0.8 On N2

70b 0.2
Vary. Comb.

Random
Tournament

Insertion
Mutation

0.007
Path random
combination

1 Off N2

70c 13
Vary. Comb.

Random
Roulette

Insertion
mutation

0.008
Path random
combination

0.8 Off N2

70d 7
Vary. Comb.

Random
Tournament

Insertion
mutation

0.007
Path random
combination

1 On N2

70e 5
Vary. Comb.

Random
Tournament

Insertion
mutation

0.007
Path random
combination

1 On N2

Table 8-2 70 city experiments

161

T
S

P

P
ro

b
le

m

W
ei

g
h

t

R
ep

a
ir

T
y

p
e

S
el

ec
ti

o
n

T
y

p
e

M
u

ta
ti

o
n

T
y

p
e

M
u

ta
ti

o
n

R
a

te

C
ro

ss
o

v
er

T
y

p
e

C
ro

ss
o

v
er

R
a

te

A
d

a
p

ti
v
e

M
u

ta
te

P
o

p
u

la
ti

o
n

S
iz

e

100a 15
Vary. Comb.

Random
Tournament

Swap
Mutation

0.008
Full

combination
0.8 On 4000

100b 15
Dynamic

Rand. Rand
Tournament

Insertion
Mutation

0.008
Path random
combination

1 On 4000

100c 0.1
Dynamic

Rand. Rand
Tournament

Insertion
mutation

0.009
Path random
combination

1 On 4000

100d 0.2
Dynamic

Rand. Rand
Tournament

Swap
Mutation

0.009
Path random
combination

1 On 4000

100e 0.2
Dynamic

Rand. Rand
Tournament

Insertion
mutation

0.008
Path random
combination

1 On 4000

Table 8-3 100 city experiments

8.6.2 Comparison of QTT vs. literature defined configurations.

A second set of experiments were performed on five new 50 city problems. These

experiments were to examine if the most consistent configuration settings identified

by the multi-level genetic algorithm (for all three problem sizes) were comparable to

those configuration settings freely available in the literature. Secondly, this second set

of experiments was conducted to examine the conjecture that similar sized problems

could use identical configuration settings and still produce QTT optimal results.

Finally this set of experiments would examine the application of GeneRepair against

the literature standard approach which uses validity preserving genetic operators

rather than repair or penalty functions.

Five new 50 city TSP problems were created. These problems were constructed from

varying sized data sets (150-500cities) available from TSPLIB, and were reduced

down to 50 cities. These data sets were titled 50f, 50g, 50h, 50i and 50j. The topology

of the cities in all of these problems was plotted and evaluated for any similarity to

each other and also to examine if any clearly apparent good tours of the points (cities)

were present. All of the 50 city problems when plotted did not show any of these

traits.

162

The literature defined configuration settings were those that were used by researchers

and originate in publications by Davoian, Fogel, Grefenstette, Larranga, Mernik and

Rintala [84, 96, 98, 130, 143, 187].

R

ep
a

ir

T
y

p
e

S
el

ec
ti

o
n

T
y

p
e

M
u

ta
ti

o
n

T
y

p
e

M
u

ta
ti

o
n

R
a

te

C
ro

ss
o

v
er

T
y

p
e

C
ro

ss
o

v
er

R
a

te

A
d

a
p

ti
v
e

M
u

ta
te

P
o

p
u

la
ti

o
n

S
iz

e

meta-GA

derived

settings

Vary. Comb.
Random

Tournament
Insertion
mutation

0.008
Path random
combination

1 On N2

Literature

defined

settings

Penalty Tournament
Swap

mutation
0.05

Alternating
PMX,OX,CX

0.6 Off 100

Table 8-4 Configuration settings.

The QTT weighting and the window size (500 generations) were the same for both the

meta-GA derived configuration setting and the literature defined setting for each TSP

problem.

TSP

problem
Weight

QTT value

Multi-level GA

configuration

QTT value

Literature

configuration

50f 0.6 10300 13012

50g 0.2 16482 17790

50h 0.5 10598 12071

50i 0.4 10633 12594

50j 0.7 8812 9338

Table 8-5 Experiment 2 - comparison of QTT derived setting vs. literature settings.

The results indicate that in all cases the meta-GA derived configuration settings were

superior to the literature based configuration settings. It should be noted that while no

measurements were taken of individual configuration string longevity in the meta-

level population, it is known that each string was evaluated at least once and up to a

possible 150,000 (generations x population size) times during the meta-level search.

These results would suggest (or at least don’t disprove) that the use of configuration

settings derived from the meta-GA would be applicable to similar sized TSP

163

problems. A second point regarding these results is that a genetic algorithm with

GeneRepair consistently produced superior results over non-repair based genetic

algorithms for the TSP problems tested. This supports the results that were presented

in Chapter 7 .

8.7 Discussion

The results presented in this chapter, can be discussed from a number of different

viewpoints: population sizes, operators, operator rates and GeneRepair.

These results are quite stable across the twenty different TSP problems (of three

different sizes). Although some variation is exhibited in particular parameters this

variation is small.

Examining the population sizes it is clear that for 50 and 70 city problems, a

population size of N2 (the square of the problem size) is selected. This is 2500 and

4900 for 50 and 70 cities respectively. This is interesting, as this population size is a

very definite choice, while there were other close population sizes for these two

problems, 2000 and 3000 for the 50 city problem and 4000 for the 70 city problem.

The results for the 100 city problem were also very consistent, selecting a population

size of 4000. One point to consider is that the (closest) alternative population sizes

were for this problem were 3000 and N2 (10,000). It is possible that the optimal

population size might lie between 4000 and 10000.

Examining the operators that were selected by the meta-GA for the three problem

sizes, we see that selection, mutation and crossover are consistently similar. Path

random combination is identified as the best crossover operator in 14 out of 15

experiments. Tournament selection was identified all but once across all problems as

164

being the best selection technique and insertion mutation was identified as the best in

11 out of 15 experiments, the remaining four experiments (in different problem sizes)

identified swap mutation. Adaptive mutation would appear to be more consistently

required for the larger problem sizes. The rates for crossover and mutation were

consistently in the range 0.9 (+/- 0.1) for crossover rate and 0.008 (+/- 0.001) for the

mutation rate across all problem sizes.

The GeneRepair technique was consistently selected for use over other approaches in

all of the experiments. This supports the findings of Chapter 7, where genetic

algorithm with GeneRepair out-performed other genetic algorithms. The selection of

the best GeneRepair technique is split between two random implementations: the

random varying combination template random direction and the dynamic random

template random direction, a nine to six split with combination being selected more

for the 50 and 70 city problems and dynamic random template random direction

being selected more for the 100 city problems.

8.8 Summary

In this chapter we presented a number of experiments that were carried out to identify

the optimal genetic algorithm configurations for three TSP problem sizes. A suite of

parameters were presented from which differing GA configurations could be formed.

A multi-level Genetic Algorithm was developed which was used to evaluate the

configuration settings (from a total set of 250 million different configurations). A

cost/benefit function (QTT tradeoff) was implemented to assist the multi-level genetic

algorithm to identify configurations in an economically viable manner, trading the

quality (length of tour) vs. the cost (time). The QTT approach was supported by a

165

commercial real world scenario where the weighting values could represent a user’s

requirements or constraints.

Results show, that GeneRepair is consistently required by genetic algorithms when

solving TSP problems of the size 50, 70 and 100 cities. A random composite

GeneRepair implementation is the most utilised repair technique in experiments.

Optimal mutation rates, crossover rates, selection technique, mutation operator,

crossover operator and the use of an adaptive mutation rate were also identified for

different QTT weighting values.

It can be concluded that in keeping with the results presented in Chapter 7, a random

GeneRepair implementation is the most beneficial type of repair or penalty function.

The use of an adaptive mutation technique only appeared to be of importance for the

100 city problem. This might suggest that as the problem size increases the effect of

crossover must be overcome through the application of increasing mutation rates.

166

Chapter 9

Conclusion & Future Work

One must wait until the evening to see how splendid the day has been…

 Sophocles.

This concluding chapter summarises the contributions made and provides suggestions

for possible future directions for this work.

9.1 Conclusions

This thesis examined the use of genetic algorithms to solve instances of the travelling

salesman problem. It detailed 21 different GeneRepair techniques that can be

employed to ensure that TSP problem validity constraints are met. A cost benefit

technique was developed which allows the user to find optimal GA configuration

settings. This cost benefit function performs a tradeoff between the quality of solution

and the computational effort that is required to continue searching for a better

solution. In addition, recommendations on the best configuration settings for genetic

algorithms to solve three TSP problem sizes were identified out of a possible 250

million configuration settings.

From the review and experimental work a number of definite contributions have been

made:

1. A literature review of Repair strategies in Evolutionary Computation (see

Chapter 5).

2. The introduction and exploration of the GeneRepair operator, and its

comparison to other repair techniques (see Chapter 6).

167

3. Experimental evidence suggests that a Random Form of GeneRepair is the

most successful approach (see sections 7.4.1 & 8.6).

4. A Cost/benefit function (QTT) is introduced and its use examined in the

context of a meta-GA (see sections 8.4).

5. Experimental evidence to support the successful adoption of a meta-GA

approach to search for a good parameter setting for a GA applied to TSP

(see sections 8.6 & 8.7).

In the next section I outline conclusions drawn from each of the experimental

contributions.

9.1.1 The Random GeneRepair approach

Twenty one differing GeneRepair implementations were identified and evaluated.

Evaluation was performed using both handcrafted genetic algorithms and also an

automated multi-level GA approach. Genetic algorithms with GeneRepair yielded

shorter TSP tour lengths in fewer numbers of generations than comparative GA

approaches without repair. Of the twenty one differing implementations it was found

that a random combination of the GeneRepair techniques proved to be the most

effective repair strategy.

When examining the application of GeneRepair it was found to occur more frequently

in the early generations of the GA search. This is to be expected as GeneRepair is

required more frequently when there is a high disruption in the solutions, which can

be caused by crossover and mutation. GeneRepair only ever arises when invalid tours

are generated. Crossover can do this, but only in the presence of diversity in the

population. Initial diversity is high (due to the random generation of the initial

168

population); and progressively falls as the search focuses on the better performing

regions of the search space. As diversity falls, the rate of generating invalid tours also

falls (even with a fixed crossover rate), and thus the rate of applying GeneRepair will

also fall. Invalid tours can also be generated from particular mutation operators e.g.,

simple point mutation. Errors as a result of mutation can be considered as a constant

background effect particularly where a fixed mutation rate is applied.

The GeneRepair technique is believed to act as a mutation effect, introducing lost

alleles that were removed as a result of convergence on a particular solution. As

crossover has a less disruptive effect on the population (as the population converges),

the application of GeneRepair also decreases thus resulting in a requirement for an

increase in mutation. An Adaptive mutation rate was implemented which allowed the

mutation rate to vary based on feedback from the solutions. Results show that a

genetic algorithm with GeneRepair consistently out-performs all other genetic

algorithm approaches that were tested.

9.1.2 A Cost/benefit function (QTT)

A cost/benefit function (QTT) was developed to assist multi-level genetic algorithms

to identify configuration settings in an economically viable manner, in order to trade-

off the quality (length of tour) against the cost (computational effort or time). The

QTT approach uses weighting values that are selected by a user’s requirements or

constraints. The QTT tradeoff function used a straightforward linear summation of t

and wQ where t represents the computation time, Q the quality of the solution (i.e.

shortest distance TSP tour) and w the weighting factor placed on the quality of the

solution. These values enabled the determining of a cost/benefit point for each GA

169

search. When the cost/benefit point was encountered the GA search was terminated.

As a result the tradeoff between the importance of computational effort cost and

quality of solution TSP tour length could be specified at the outset of the search by the

user.

9.1.3 Identifying good parameter settings for a GA applied to the TSP

The multi-level genetic algorithm with the QTT tradeoff function was used to identify

optimal configuration settings for three differing TSP problem sizes 50, 70 and 100

cities. Chapter 4 presented a number of differing genetic operators. These were

evaluated in Chapter 8 through the use of a multi-level genetic algorithm. Some of the

operators considered required the use of a solution validity-ensuring technique (repair,

penalty). Previous research attempted to identify the best operators for the TSP.

However, these attempts focused on validity preserving operators only and also on a

very small TSP problem size. They thus excluded a group of genetic operators and

also repair.

In this thesis a variety of genetic operators together with GeneRepair were evaluated.

Experiments identified the optimal mutation rates, crossover rates, selection

technique, mutation operator, crossover operator and the use of an adaptive mutation

rate for differing QTT settings. A total of 250 million combinations of these settings

existed.

These results are quite stable across the twenty different TSP problems (of three

different sizes). The fact that these results are so stable is further supported by the

experimental approach of the author where problem size was co-varied with QTT

170

weighting values. This approach would have identified if differing configuration

settings or a single setting would be applicable for different cost benefit points across

a range of differing TSP problems.

Adaptive mutation would appear to be more consistently required for the larger

problem sizes. The configurations identified through the use of the multi-level GA

were superior to the literature proposed operators and parameters when evaluated for

the same QTT weighting values, over a newly created set of TSP problems.

The results indicate that a random combination of GeneRepair, together with

tournament selection, insertion mutation, 0.008 (+/- 0.001) mutation rate, path random

combination crossover, 0.9 (+/- 0.1) crossover rate are consistently selected. The

population size was consistently 2500 for 50 cities, 4900 for 70 cities and 4000 for

100 cities.

9.2 Future work

This thesis leads to a number of opportunities for future research. The following are

possible areas for further investigation that could prove profitable to the genetic

algorithm community and also to other research areas:

1. Further experiments

2. New repair approaches

3. New target problem domains

171

9.2.1 Further experiments:

The experiments presented in Chapters 7 and 8 while providing sound findings and

productive outcomes, obviously due to the complexity of the problem, do not cover

the full area and open many avenues for further fruitful exploration. These would

include the following experiments:

1. Perform experiments using a multi-level GA run comprising of a number of

different TSP problems, rather than a single instance of the TSP. These new

experiments might more deeply examine the possibility that a single set of

optimal configuration settings exist for TSP problems between 50 and 100

cities.

2. Adapt the QTT tradeoff function so that the number of fitness evaluations

rather than the number of generations are used to represent time or

computational effort.

3. Expand the size of the TSP problems to examine how the configuration

settings change with larger TSP problems.

9.2.2 New repair approaches

The repair techniques that were evaluated exclusively utilised a template based repair

approach. Results indicate that random GeneRepair implementations as opposed to

ones which use parents (or previous solutions identified in the GA search)

consistently produce the best result. It would be interesting to examine a non-template

172

based repair mechanism that purely uses a random repair strategy in order to identify

if this technique would work as well as template based repair.

9.2.3 New application areas

There may be many areas in which the finding of this thesis could be applied. Two are

dealt with by way of example. The findings have definite application in permutation

based problems, as these are similar to the problem examined in this thesis. There are

many other areas of high complexity which at present are in the early stages of

research. One factor which inhibits research in this area is the cost of computation.

The findings of this thesis will most likely make a very valuable contribution to these

problems. One possible example is Synthetic Biology.

9.2.3.1 Permutation based problems

The QTT tradeoff function, the multi-level genetic algorithm and the GeneRepair

techniques are applicable to a number of problems. This would have the following

benefits

1. The QTT tradeoff function would allow the user to specify a tradeoff between

quality of solutions and computational effort.

2. GA configuration setting would be identified with the multi-level GA

framework.

3. GeneRepair would improve quality of solutions found.

173

Problems, similar to the present area of research, to which these techniques could be

applied include: other TSP implementations (see section 3.3), the VRP (vehicle

routing problem) and QAP (quadratic assignment problem) which were both

mentioned earlier in this thesis (see section 3.1.2).

9.2.3.2 Synthetic Biology

A very different area that could benefit from the application of the QTT function to

limit GA searching in a multi-level system would be in the area of Artificial Cell

Signalling Networks.

One current goal of Synthetic Biology is to simulate and evolve Cell Signaling

Networks in-silico (CSNs are highly complex biochemical networks occurring in

living cells). The ability to simulate and direct the evolution of CSNs may allow the

design of molecular computers which may be programmed to perform specific tasks

(e.g. smart drugs). However simulating CSNs in-silico is computationally expensive

due to the high number of interacting molecules and the intricate and multi-level

nature of these biological networks. This is why specific techniques from

Evolutionary Computation (EC) are required to assist this enterprise.

In this evolutionary computation problem, we may observe a hierarchy of processes

which constitutes the multi-level nature of the problem. Many levels are possible,

below are just three examples:

− Molecular level: this is the lowest level in which the molecules are considered

(nodes in the networks). These molecules may interact with one another, these

chemical reactions constitute the networks arcs.

174

− Cellular compartment level: the molecules are located in compartments within

the cell (membrane, cytosol, nucleus, etc). Compartments (nodes) may

communicate (arcs) to each other by transferring molecules to one another.

− Cellular level: At this level, we consider the inter cellular communication,

where cells may broadcast a signal to other cells.

For each network level, optimization of the network topology is required.

Furthermore, additional features in the simulation need to be accounted for, such as:

Brownian motion, chemical kinetics and other physical and chemical properties. For

these various reasons, the building of an evolutionary simulation platform requires

adapted EC techniques to make it feasible.

At each level it is possible that a multi-level genetic algorithm with QTT could assist

in these complex searches, for example the evaluation of reaction kinetics for CSNs.

A CSN description has a range of kinetic parameters which must be considered for

each topological instance. This is a very large numerical optimisation problem in a

highly nonlinear setting. Other approaches (Lenser 2007 [192])] have used a fixed

termination condition (limit on the number of generations) for each of the base-level

GA searches. Lenser noted that with the size of the problem it was "necessary to use

less computing-intensive methods" [193], he suggested a multi-level genetic

algorithm. The QTT function examined in this thesis would be a very strong candidate

to assist with the evaluation of the base-level GA searches in this problem. The QTT

would allow the user to control the search in an effective manner, balancing the

computational expense against the quality of the solution.

175

Over time and with further research, it is probable that other application areas will be

identified for the use of the techniques developed in the course of this work.

9.3 Summary

In this chapter a review of the contributions made by this thesis was presented. Three

core contributions were identified: GeneRepair, QTT tradeoff function and the

configuration setting for the 50, 70 and 100 city TSP problem sizes. Each of these

contributions was discussed and following this new, and hopefully rewarding,

research applications of this work were outlined. These future research areas were

divided into two key groups: further experiment to be carried out on the existing

system and also new application areas such as combinatorial problems e.g. TSP, VRP

and the QAP and also different research disciplines such as Systems Biology.

176

List of Publications

• G. G. Mitchell, B. McMullin, and J. Decraene, A Cost Benefit Operator for
Efficient Multi Level Genetic Algorithm Searches, Proc. of the IEEE
International Conference on Evolutionary Computation, 2007.

• G. G. Mitchell, B. McMullin, J. Decraene, and C. Kelly, Quality Time
Tradeoff Operator for Designing Efficient Multi Level Genetic Algorithms,
Proc. Genetic and Evolutionary Computation Conference (GECCO), 2007.

• Chirouzea, O., Cleary, D., Mitchell, G.G., A Software Methodology for
Applied Research: eXtreme Researching, Software - Practice and Experience,
Wiley Interscience. July 2005

• Mitchell, G.G., Quality-Time Tradeoff in a Distributed Parameter-less Genetic
Algorithm, Artificial Intelligence Applications 2005.

• Mitchell, G.G., Validity Constraints and the TSP - GeneRepair of Genetic
Algorithms, Artificial Intelligence Applications 2005.

• Mitchell, G.G., O'Donoghue, D., Barnes, D., McCarville, M., GeneRepair - A
Repair Operator for Genetic Algorithms, late-breaking paper, GECCO,
Chicago IL, July 2003.

• Mitchell G.G., The Effect of a General Routing Algorithm Optimisation
Function, poster, IT&T 2002, Waterford, Ireland, Oct 30 & 31,
2002.(Awarded Best Poster)

• Mitchell G.G., Fitzgerald W.M., Doody J. An Approach for Network
Forwarding Systems Quality, IT&T 2001, Athlone, Ireland, pp 103 -111,
ISSN 1649 - 1246, 2001.

• Mitchell, G.G., and Brown, S. A Model for Invisible Recovery Applied to
Communications Networks, Applied Informatics 2001, Innsbruck, Austria,
pp76 -81, ISBN 0-88986-320-2, 2001.

• Mitchell, G.G., and Brown, S. An Approach for Network Communications
Systems Recovery, Applied Informatics 2000, Innsbruck, Austria, pp 575-578,
ISBN 0-88986-280-X, 2000.

• Mitchell, G.G., O'Donoghue, D. and Trenaman, A. A New Operator for
Efficient Evolutionary Solutions to the Travelling Salesman Problem, Applied
Informatics 2000, Innsbruck, Austria, pp 771-774, ISBN 0-88986-280-X,
2000.

177

References

[1] C. Darwin, On the Origin of Species, A Facsimile of the First Edition.
Cambridge: Harvard Press, 1964 (1859).

[2] R. Chambers, Vestiges of the Natural History of Creation:
http://www.esp.org/books/chambers/vestiges/facsimile/, 1844.

[3] E. Mayr, Populations, Species, and Evolution: An Abridgment of Animal

Species and Evolution. New York: Belknap Press of Harvard University Press,
1970.

[4] G. Mendel, "Experiments in Plant Hybridization," vol. 2006:
http://www.mendelweb.org/Mendel.html, 1865.

[5] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial intelligence through

simulated evolution. New York: John Wiley and Sons, Inc., 1966.
[6] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence: The
University of Michigan Press, 1975.

[7] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine

Learning. Boston: Addison-Wesley, 1989.
[8] Depew D.J. and W. B.H., Darwinism Evolving: Systems Dynamics and the

Genealogy of Natural Selection. Boston: The MIT Press, 1995.
[9] O. Chirouzea, D. Cleary, and G. G. Mitchell, "A Software Methodology for

Applied Research: eXtreme Researching," Software - Practice and

Experience, vol. 35 (15), pp. 1441-1454, 2005.
[10] G. G. Mitchell, D. O'Donoghue, and A. Trenaman, "A New Operator for

Efficient Evolutionary Solutions to the Travelling Salesman Problem," Proc.

Applied Informatics, pp. 771--774, 2000.
[11] G. G. Mitchell and S. Brown, "A Model for Invisible Recovery Applied to

Communications Networks," Proc. Applied Informatics, pp. 76--81, 2001.
[12] G. G. Mitchell and S. Brown, "An Approach For Network Communications

Systems Recovery," Proc. Applied Informatics, pp. 575--578, 2000.
[13] G. G. Mitchell, W. M. Fitzgerald, and J. Doody, "An Approach for Network

Forwarding Systems Quality," Proc. Information Technology and

Telecommunications, pp. 103--111, 2001.
[14] G. G. Mitchell, D. O'Donoghue, D. Barnes, and M. McCarville, "GeneRepair-

A Repair Operator for Genetic Algorithms," Proc. Genetic and Evolutionary

Computation Conference (GECCO) Late Breaking Papers, pp. 235--239,
2003.

[15] G. G. Mitchell, "Validity Constraints and the TSP - GeneRepair of Genetic
Algorithms.," Artificial Intelligence and Applications, pp. 306-311, 2005.

[16] G. G. Mitchell, "Quality-Time Tradeoff in a Distributed Parameter-less
Genetic Algorithm," Artificial Intelligence and Applications, 2005.

[17] G. G. Mitchell, B. McMullin, J. Decraene, and C. Kelly, "Quality Time
Tradeoff Operator for Designing Efficient Multi Level Genetic Algorithms,"
Proc. Genetic and Evolutionary Computation Conference (GECCO), 2007.

[18] G. G. Mitchell, B. McMullin, and J. Decraene, "A Cost Benefit Operator for
Efficient Multi Level Genetic Algorithm Searches," Proc. of the IEEE

International Conference on Evolutionary Computation, 2007.
[19] A. M. Turing, "Computing machinery and intelligence," Mind, vol. 59, pp.

433-460, 1951.

178

[20] J. R. Searle, "Minds, brains, and programs.," Behavioral and Brain Sciences,
vol. 3, pp. 417-457, 1980.

[21] Fogel L.J., Owens A.J., and W. M.J., Artificial intelligence through simulated

evolution. New York: John Wiley and Sons, Inc., 1966.
[22] R. A. Brooks, "Intelligence without representation," Artificial Intelligence, pp.

139-159, 1991.
[23] J. M. Daida, S. P. Yalcin, P. M. Litvak, G. A. Eickhoff, and J. A. Polito, "Of

Metaphors and Darwinism: Deconstructing Genetic Programming's Chimera,"
Evolutionary Computation, 1999. CEC '99. Proceedings of the 1999 Congress

on, vol. 2, pp. 982-989, 1999.
[24] G. F. Luger, Artificial Intelligence: Structures and Strategies for Complex

Problem-Solving, 5th ed. Harlow, UK: Addison Wesley, 2005.
[25] M. Conrad, "Computation: evolutionary, neural, molecular," IEEE Symposium

on Combinations of Evolutionary Computation and Neural Networks, pp. 1-9,
2000.

[26] D. A. V. Veldhuizen, "Multiobjective Evolutionary Algorithms:
Classifications, Analyses, and New Innovations," in Department of Electrical

and Computer Engineering. Wright-Patterson Air Force Base: Air Force
Institute of Technology, 1999.

[27] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. New
Jersey: Prentice Hall, 1995.

[28] G. Brassard and P. Brately, Algorithms: Theory and Practice. New Jersey:
Prentice Hall, 1988.

[29] P. Husbands, "Genetic algorithms in optimization and adaptation," in
Advances in Parallel Algorithms, 1992, pp. 227-276.

[30] R. Neapolitan and N. Kuma, Foundation of Algorithms,. Massachusetts: D. C.
Heath and Co., 1996.

[31] D. E. Goldberg, "From Genetic and Evolutionary Optimization to the Design
of Conceptual Machines," University of Illinois at Urbana Champaign, Urbana
IL, USA, IlliGAL Report No. 98008, 1998.

[32] L. Perron, "Search Procedures and Parallelism in Constraint Programming,"
Proc. of the Int. Conf. on Principles and Practice of Constraint Programming,
pp. 346-360, 1999.

[33] A. M. Rafter and G. G. Mitchell, "The Effect of a General Routing Algorithm
Optimisation Function," Proc. Information Technology and

Telecommunications, 2002.
[34] A. H. Land and A. G. Doig, "An Automatic Method of Solving Discrete

Programming Problems," Econometrics,, vol. 28, pp. 497-520, 1960.
[35] G. Dantzig, R. Fulkerson, and R. Johnson, "Solution of a large-scale travelling

salesman problem," Operations Research, vol. 2, pp. 393-410, 1954.
[36] J. Clausen, "Branch and Bound Algorithms - Principles and Examples,"

Department of Computer Science, University of Copenhagen, Copenhagen,
Denmark. 1999.

[37] K. Kostikas and C. Fragakis, "Genetic Programming Applied to Mixed Integer
Programming," Proc. of 7th European Conference on Genetic Programming,

EuroGP2004, pp. 113-124, 2004.
[38] E. Aarts and J. Karel Lenstra, Local Search in Combinatorial Optimization:

John Wiley and Sons, 1997.

179

[39] M. Mitchell, J. H. Holland, and S. Forrest, "When will a genetic algorithm
outperform hill climbing?," presented at Advances in Neural Information
Processing Systems, San Francisco CA, 1994.

[40] M. Yagiura and T. Ibaraki, "Meta-heuristics as robust and simple optimization
tools," Proceedings of the IEEE Conference on Evolutionary Computation

(CEC 1996), pp. 541-546, 1996.
[41] E. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines: A

Stochastic Approach to Combinatorial Optimization and Neural Computing.
Chichester England: John Wiley & Sons, 1989.

[42] D. Janaki Ram, T. H. Sreenivas, and K. Subramaniam Ganapathy, "Parallel
Simulated Annealing Algorithms," Journal of Parallel and Distributed

Computing, vol. 37, pp. 207–212, 1996.
[43] F. Glover and Laguna, Tabu Search. Boston: Kluwer Academic, 1998.
[44] K. A. De Jong, D. B. Fogel, and H.-P. Schwefel, "A history of evolutionary

computation," in Handbook of Evolutionary Computation, T. Bäck, D. B.
Fogel, and Z. Michalewicz, Eds. Oxford, UK: IOP & Oxford University Press,
1997, pp. A2.3:1-11.

[45] R. M. Friedberg, "A Learning Machine: Part I," IBM J. Research and

Development, vol. 2, pp. 2-13, 1958.
[46] R. M. Friedberg, B. Dunham, and J. H. North, "A Learning Machine: Part II,"

IBM J. Research and Development,, vol. 3, pp. 183-191, 1959.
[47] N. L. Cramer, "A representation for the adaptive generation of simple

sequential programs," In Proceedings of an International Conference on

Genetic Algorithms and the Applications, pp. 24-26, 1985.
[48] D. Dickmanns, J. Schmidhuber, and A. Winklhofer, "Der genetische

Algorithmus: Eine Implementierung in Prolog.," Institut für Informatik,
Technische Universität München, München 1987.

[49] J. R. Koza, Genetic Programming: On the Programming of Computers by

Means of Natural Selection. Cambridge, MA, USA: MIT Press, 1992.
[50] J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M.

H. Garzon, D. E. Goldberg, H. Iba, and R. L. Riolo, "Genetic Programming
1998: Proceedings of the Third Annual Conference," Evolutionary

Computation, IEEE Transactions on, vol. 3, pp. 159-161, 1999.
[51] D. Beasley and J. Heitkpetter, (Eds.), "The Hitchhikers Guide to Evolutionary

Computation: A List of Frequently Asked Questions (FAQ)," USENET:

comp.ai.genetic, 1997.
[52] F. Rothlauf, "The Influence of Binary Representations of Integers on the

Performance of Selectorecombinative Genetic Algorithms," Illigal, University
of Illinois at Urbana-Champaign, IL, USA. 2002014, 2002.

[53] F. Rothlauf, Representations for Genetic and Evolutionary Algorithms.

(Studies in Fuzziness and Soft Computing.). Heidelberg New York: Physica-
Verlag, 2002.

[54] C. Thornton, "The building block fallacy.," Complexity International 4, vol.
http://www.csu.edu.au/ci/vol04/thornton/building.htm, 1997.

[55] W. B. Langdon and R. Poli, Foundations of Genetic Programming. New York
USA: Springer-Verlag, 2002.

[56] R. Poli, "Exact schema theory for genetic programming and variable-length
genetic algorithms with one-point crossover.," Genetic Programming and

Evolvable Machines,, vol. 2 (2), 2001.

180

[57] R. Stephens C and Zamora A., "EC theory: A unified viewpoint.," Proc.

Genetic and Evolutionary Computation Conference (GECCO), vol. 2724 -
LNCS, pp. 1394-1405, 2003.

[58] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, The

Traveling Salesman Problem. New York: John Wiley and Sons, Ltd, 1985.
[59] A. Schrijver, "On the history of combinatorial optimization (till 1960)," in

Handbooks in Operations Research & Management Science, K. Aardal, G. L.
Nemhauser, and R. Weismantel Eds. Amsterdam: North-Holland Publishing,
2005.

[60] D. Applegate, R. E. Bixby, V. Chvatal, and W. Cook, "Implementing the
DantzigFulkerson -Johnson Algorithm for Large Traveling Salesman
Problems," Mathematical Programming 97, pp. 91-153, 2003.

[61] ORSOC, "A brief History of TSP," vol. 2005: The Operations Research
Society, UK, 2006.

[62] D. Applegate, R. E. Bixby, V. Chvatal, and W. Cook, "On the solution of
traveling salesman problems," Documenta Mathematica Journal der

Deutschen Mathematiker-Vereinigung, International Congress of

Mathematicians, pp. 645-656, 1998.
[63] D. Applegate, R. E. Bixby, V. Chvatal, and W. Cook, "Tsp cuts outside the

template paradigm.," Computer sciences, Rutgers University, 2000.
[64] J. N. MacGregor and T. C. Ormerod, "Human performance on the traveling

salesman problem," Perception and Psychophysics,, vol. 58, pp. 527-539,
1996.

[65] H.-P. Fu and C.-T. Su, "A comparison of search techniques for minimizing
assembly time in printed wiring assembly," International Journal of

Production Economics, vol. 63, pp. 83-98, 2000.
[66] N. V. Hop, M. T. Tabucanon, and D. Q. Minh, "PCB assembly sequence and

feeder assignment problem for the case of Tchebyshev robot arm motion. I.
Basic problem," presented at Proc. of the Int. Conf. on Management of
Innovation and Technology (ICMIT), 2000.

[67] Y. Seo and P. J. Egbelu, "Integrated manufacturing planning for an AGV-
based FMS," International Journal of Production Economics, vol. 60-61, pp.
473-478, 1999.

[68] P. Machado, J. Tavares, F. B. Pereira, and E. Costa, " Vehicle Routing
Problem: Doing it the Evolutionary Way," Proc. Genetic and Evolutionary

Computation Conference (GECCO), pp. 690, 2002.
[69] E. Falkenauer and A. Delchambre, " A genetic algorithm for bin packing and

line balancing.," Proc. of the IEEE 1992 Int. Conf. on Robotics and

Automation, pp. 1186-1192, 1992.
[70] P. Pardalos, F. Rendl, and H. Wolkowicz,, "The quadratic assignment

problem: A survey and recent developments,," Proceedings of the Discrete

Mathematics and Theoretical Computer Science (DIMACS) Workshop on

Quadratic Assignment Problems, American Mathematical Society, pp. 1-41,
1994.

[71] J. F. Sibeyn, "The Parallel Maxflow Problem is easy for almost all Graphs,"
vol. 2006: citeseer.ist.psu.edu/sibeyn97parallel.html, 1997.

[72] D. S. Johnson and C. H. Papadimitriou, "Computational complexity," in The

Traveling Salesman Problem. Chichester: Wiley, 1985, pp. 37-85.
[73] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms:

MIT Press, 1990.

181

[74] M. T. Goodriich and R. Tamassia, Algorithm Design. New York, USA: John
Wiley and Sons, 2002.

[75] G. Reinelt, "TSPLIB - A Traveling Salesman Problem Library," ORSA

Journal on Computing, vol. 3, pp. 376-384, 1991.
[76] D. E. Goldberg, K. Deb, and J. Horn, "Massive multimodality, deception, and

genetic algorithms," in Parallel Problem Solving from Nature 2,, pp. 37-46,
1992.

[77] D. H. Wolpert and W. G. MacReady, "No Free Lunch Theorems for Search,"
Santa Fe Institute, Sante Fe, NM, USA Technical Report SFI-TR-95-02-010,
1995.

[78] O. J. Sharpe, "Towards a Rational Methodology for Using Evolutionary
Search Algorithms," Centre for Research in Cognitive Science, University of
Sussex, PhD dissertation 2000.

[79] D. Keil and D. Q. Goldin, "Adaptation and Evolution in Dynamic Persistent
Environments.," Electronic Notes in Theoretical Computer Science, vol. 141,
pp. 163-179, 2005.

[80] C. A. Coello and G. T. Pulido, " Multiobjective Structural Optimization using
a Micro-Genetic Algorithm,," Structural and Multidisciplinary Optimization,
vol. 30, No. 5, pp. 388-403, 2005.

[81] Y. Tian-Li, K. Sastry, and D. E. Goldberg, "Linkage learning, overlapping
building blocks, and systematic strategy for scalable recombination,,"
Proceedings of the 2005 conference on Genetic and evolutionary computation,
pp. 1217-1224, 2005.

[82] D. E. Goldberg, The Design of Innovation: Lessons from and for Competent

Genetic Algorithms. Norwell, MA, USA: Kluwer Academic, 2002.
[83] Y. Tian-Li, K. Sastry, and D. E. Goldberg, "Online Population Size Adjusting

Using Noise and Substructural Measurements," University of Illinois at
Urbana-Champaign, Urbana IL, USA, IlliGAL Report No. 2005017, 2005.

[84] K. Davoian and S. Gorlatch, "A Modified Genetic Algorithm for the Traveling
Salesman Problem and Its Parallelization," Proc. of Artificial Intelligence and

Applications, pp. 281-286, 2005.
[85] Gordon V. S., Whitley D., and B. A. P.W., "Dataflow parallelism in genetic

algorithms," Parallel Problem Solving from Nature, vol. 2, pp. 533–542, 1992.
[86] J. Grefenstette, "Proportional selection and sampling algorithms," in

Handbook of Evolutionary Comutation, T. Bäck, D. B. Fogel, and Z.
Michalewicz, Eds. Oxford UK: IOP & Oxford University Press, 1997, pp.
C2.2:1-7.

[87] R. W. Morrison, "Dispersion based population initialization," Proc. Genetic

and Evolutionary Computation Conference (GECCO), pp. 1210-1221., 2003.
[88] A. L. Barker and W. M. Martin, "Dynamics of a distance-based population

diversity measure," Congress on Evolutionary Computation, 2000. CEC2000,
2000.

[89] D. Beasley, D. Bull, and R. Martin, "An overview of genetic algorithms: Part
1, Fundamentals," University Computing, vol. 2, pp. 58-69, 1993.

[90] G. Ochoa, I. Harvey, and H. Buxton, "Optimal Mutation Rates and Selection
Pressure in Genetic Algorithms," Proc. Genetic and Evolutionary

Computation Conference (GECCO), 2000.
[91] D. E. Goldberg and K. Deb, "A comparative study of selection schemes used

in genetic algorithms," in Foundations of Genetic Algorithms, G. J. E.
Rawlins, Ed. San Mateo California: Morgan Kaufman, 1991, pp. 69-93.

182

[92] T. Blickle, "Tournament selection," in Handbook of Evolutionary

Computation, T. Bäck, D. B. Fogel, and Z. Michalewicz, Eds. Oxford, UK:
IOP & Oxford University Press, 1997, pp. C2.3:1-4.

[93] J. Grefenstette, "Rank-based selection," in Handbook of Evolutionary

Comutation, T. Bäck, D. B. Fogel, and Z. Michalewicz, Eds. Oxford UK: IOP
& Oxford University Press, 1997, pp. C2.4:1-6.

[94] T. Walters, "Repair and Brood Selection in the Traveling Salesman Problem,"
Proceedings of the 5th International Conference on Parallel Problem Solving

from Nature - PPSN V, pp. 813-822, 1998.
[95] K. Katayama, H. Hirabayashi, and H. Narihisa, "Analysis of crossovers and

selections in a coarse-grained parallel genetic algorithm," Mathematical and

Computer Modelling, vol. 38, pp. 1275-1282, 2003.
[96] T. Rintala, "Population size in GAs for TSP," Proc. Second Nordic Workshop

on Genetic Algorithms and their Applications (2NWGA), vol.
http://www.uwasa.fi/cs/publications/2NWGA/2NWGA.html, 1996.

[97] B. L. Miller and D. E. Goldberg, "Genetic Algorithms, Tournament Selection,
and the Effects of Noise," University of Illinois at Urbana-Champaign, Urbana
IL, USA, IlliGAL Report No. 95006, 1995.

[98] P. Larranaga, C. Kuijpers, R. Murga, I. Inza, and S. Dizdarevic, "Genetic
Algorithms for the Traveling Salesman Problem: A Review of Representations
and Operators," Artificial Intelligence Review, vol. 13, pp. 129-170, 1999.

[99] D. B. Fogel and A. Ghozeil, "A note on representations and variation
operators," Evolutionary Computation, IEEE Transactions on, vol. 1, pp. 159-
161, 1997.

[100] D. E. Goldberg, "Real-coded Genetic Algorithms, Virtual Alphabets, and
Blocking," Department of General Engineering, University of Illinois at
Urbana-Champaign, Urbana-Champaign, IL, USA IlliGAL Report No. 90001,
1990.

[101] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution

Programs. Berlin Germany: Springer Verlag, 1996.
[102] A. Colorni, M. Dorigo, and V. Maniezzo, "A genetic algorithm to solve the

timetable problem," Politecnico di Milano, Milan, Italy TR. 90-060 revised,
1992.

[103] L. D. Whitley, T. Starkweather, and D. A. Fuquay, "Scheduling Problems and
Traveling Salesman:The Genetic Edge Recombination Operator," Proc. 3rd

International Conference on Genetic Algorithms, pp. 133 - 140, 1989.
[104] W. M. Spears and K. A. De Jong, "An Analysis of Multi-Point Crossover," in

Foundations of Genetic Algorithms, G. J. E. Rawlins, Ed. San Mateo
California: Morgan Kaufman, 1991, pp. 301-315.

[105] G. Syswerda, "Uniform crossover in genetic algorithms," Proc. 3rd

International Conference on Genetic Algorithms, pp. 2-9, 1989.
[106] W. M. Spears and K. A. De Jong, "On the Virtues of Uniform Crossover,"

Proc. of the 4th International Conference on Genetic Algorithms, 1991.
[107] L. J. Eshelman, "The CHC Adaptive Search Algorithm: How to Have Safe

Search When Engaging in Nontraditional Genetic Recombination.," in
Foundations of Genetic Algorithms, G. J. E. Rawlins, Ed. San Mateo
California: Morgan Kaufman, 1991, pp. 265-283.

[108] M. Vazquez and L. D. Whitley, "A Hybrid Genetic Algorithm for the
Quadratic Assignment Problem," Proc. Genetic and Evolutionary

Computation Conference (GECCO), pp. 169-178, 2000.

183

[109] U. Hammel, "Simulation models," in Handbook of Evolutionary Comutation,
T. Bäck, D. B. Fogel, and Z. Michalewicz, Eds. Oxford, UK: IOP Press, 1997,
pp. F1.8.1-9.

[110] S. Chatterjee, C. Carrera, and L. A. Lynch, "Genetic algorithms and traveling
salesman problems," European Journal of Operational Research, vol. 93, pp.
490-510, 1996.

[111] A. Kumar, A. Srivastava, A. Singru, and R. K. Ghosh, " Robust and
Distributed Genetic Algorithm for Ordering Problems," Proc. The 5th

International Symposium on High Performance Distributed Computing

(HPDC '96), pp. 253-262, 1996.
[112] L. D. Whitley and N. W. Yoo, "Modeling simple genetic algorithms for

permutation problems," in Foundations of Genetic Algorithms 3, L. D.
Whitley and M. Vose, Eds. San Mateo California: Morgan Kaufmann., 1995,
pp. 163-184.

[113] Whitley D., Starkweather T., and F. D'A., "Scheduling Problems and
Traveling Salesman:The Genetic Edge Recombination Operator," Proc. 3rd

International Conference on Genetic Algorithms, pp. 133 - 140, 1989.
[114] I. M. Oliver, D. J. Smith, and J. R. Holland, "A study of permutation crossover

operators on the traveling salesman problem," Proc. 2nd International

Conference on Genetic Algorithms and their Applications, pp. 224-230, 1987.
[115] L. D. Davis, "Applying Adaptive Algorithms to Epistatic Domains," Proc. of

Int. Joint Conference on Artificial Intelligence IJCAI, pp. 162-164, 1985.
[116] G. Syswerda, "Schedule Optimization Using Genetic Algorithms," in

Handbook of Genetic Algorithms, L. D. Davis, Ed. New York: Van Nostrand
Reinhold, 1991, pp. 332-349.

[117] J. Wroblewski, "Theoretical foundations of order-based genetic algorithms,"
Fundamenta Informaticae, vol. 28, pp. 423-430, 1996.

[118] Pio Fenton and Paul Walsh, "Improving the performance of the repeating
permutation representation using morphogenic computation and generalised
modified order crossover.," Congress on Evolutionary Computation (CEC

2005), pp. 1372-1379, 2005.
[119] H. Mühlenbein, Parallel Genetic Algorithms, Population Genetics and

Combinatorial Optimization: Morgan Kaufmann Publishers, 1989.
[120] P. Merz and B. Freisleben, "Fitness Landscape Analysis and Memetic

Algorithms for the Quadratic Assignment Problem," IEEE Transactions on

Evolutionary Computation, vol. 4, pp. 337-352, 2000.
[121] W. Boomsma, "A Comparison of Adaptive Operator Scheduling Methods on

the Traveling Salesman Problem.," In Proceedings of the 4th European

Conference on Evolutionary Computation in Combinatorial Optimization, pp.
31-40, 2004.

[122] H. Mühlenbein, M. Gorges-Schleuter, and O. Krämer, "Evolution algorithms
in combinatorial optimization.," Parallel Computing, vol. 7, pp. 65-85, 1988.

[123] S. J. Louis and G. J. E. Rawlins, "Designer Genetic Algorithms: Genetic
Algorithms in Structure Design," Proc. 1st International Conference on

Genetic Algorithms, pp. 53-60, 1991.
[124] K. Vekaria and C. Clack, " Biases introduced by adaptive recombination

operators," Genetic and Evolutionary Computation Conference (GECCO), pp.
670-677, 1999.

184

[125] Y. L. Chan, "A Genetic Algorithm Shell for Iterative Timetabling," in
Department of Computer Science. Melbourne, Australia: RMIT University,
1994, pp. 71.

[126] L. Barbulescu, A.E. Howe, L.D. Whitley, and M. Roberts., "Understanding
Algorithm Performance on an Oversubscribed Scheduling Application,"
Journal of Artificial Intelligence Research, vol. 27, pp. 577-615, 2006.

[127] D. E. Brown, C. L. Huntley, and A. R. Spillane, "A Parallel Genetic Heuristic
for the Quadratic Assignment Problem," Proc. 3rd International Conference

on Genetic Algorithms, 1989.
[128] A. L. Tulson, "The Implementation of a Genetic Algorithm for the Scheduling

and Topology Optimisation of Chemical Flowshops," Physical Chemistry
Laboratory, Oxford University, Oxford UK, Technical Report TRGA94-01,
1994.

[129] K. Katayama and H. Narihisa, "An Efficient Hybrid Genetic Algorithm for the
Traveling Salesman Problem," Electronics and Communications in Japan,

Part 3, vol. 84, pp. 1783-1791, 2001.
[130] J. Grefenstette, R. Gopal, B. Rosimaita, and D. V. Gucht, "Genetic Algorithms

for the Traveling Salesman Problem," Proc. 1st International Conference on

Genetic Algorithms and their Applications, pp. 160-165, 1985.
[131] D. M. Tate, A. E. Smith, and S. Forrest, "Expected Allele Coverage and the

Role of Mutation in Genetic Algorithms," Proc. 5th International Conference

on Genetic Algorithms, pp. 31-37, 1993.
[132] L. D. Whitley, "A Genetic Algorithm Tutorial," International Journal of

Statistics and Computing, vol. 4, pp. 65-85, 1994.
[133] W. M. Spears, "Crossover or Mutation?," in Foundations of Genetic

Algorithms, L. D. Whitley, Ed. San Mateo California: Morgan Kaufman, 1992,
pp. 221-237.

[134] S. Lin and B. W. Kernighan, "An Effective Heuristic Algorithm for the
Traveling Salesman Problem,," Operations Research, vol. 21, pp. 498-516,
1973.

[135] S. Wagner, M. Affenzeller, and D. Schragl, "Traps and Dangers when
Modelling Problems for Genetic Algorithms," Cybernetics and Systems,

Austrian Society for Cybernetic Studies, pp. 79-84, 2004.
[136] B. K. Ambati, J. Ambati, and M. M. Mokhtar, "Heuristic Combinatorial

Optimisation by Simulated Darwinian Evolution: a Polynomial Time
Algorithm for the Traveling Salesman Problem," Biological Cybernetics, vol.
65, pp. 31-35, 1991.

[137] D. B. Fogel, "Simulated Evolution: A 30-Year Perspective," presented at
Signals, Systems and Computers, 1990. 1990 Conference Record Twenty-
Fourth Asilomar Conference on, 1990.

[138] D. B. Fogel, "Applying Evolutionary Programming to Selected Traveling
Salesman Problems," Cybernetics and Systems, vol. 24, pp. 27-36, 1993.

[139] D. B. Fogel, "Empirical Estimation of the Computation Required to Reach
Approximate Solutions to the Traveling Salesman Problem Using
Evolutionary Programming," Proc. of the Second Annual Conf. on

Evolutionary Programming, pp. 56-61, 1993.
[140] D. B. Fogel, "An Evolutionary Approach to the Traveling Salesman Problem,"

Biological Cybernetics, vol. 60, pp. 139-144, 1988.
[141] S. Bornholdt, "Annealing schedule from population dynamics," Physical

Review, vol. E 59, pp. 3942-3946, 1999.

185

[142] L. Spector, "Autocontructive Evolution: Push, PushGP, and Pushpop," Proc.

Genetic and Evolutionary Computation Conference (GECCO), pp. 137-146,
2001.

[143] D. B. Fogel, "A Parallel Processing Approach to a Multiple Traveling
Salesman Problem Using Evolutionary Programming," Proc. 4th Annual

Symposium on Parallel Processing, pp. 318-326., 1990.
[144] Y. Nagata, "Fast EAX Algorithm Considering Population Diversity for

Traveling Salesman Problems," In Proceedings of the European Conference

on Evolutionary Computation in Combinatorial Optimization (EvoCop 2006),
2006.

[145] Sofge D., Schultz A., and De Jong K., "Evolutionary Computational
Approaches to Solving the Multiple Traveling Salesman Problem using a
Neighborhood Attractor Schema," In Proceedings of the European Conference

on Evolutionary Computation in Combinatorial Optimization (EvoCop 2002),
2002.

[146] R. Baraglia, J. I. Hidalgo, and R. Perego, "A Parallel Hybrid Heuristic for the
TSP," In Proceedings of the European Conference on Evolutionary

Computation in Combinatorial Optimization (EvoCop 2001), 2001.
[147] J. H. van Hemert, "Property Analysis of Symmetric Travelling Salesman

Problem Instances Acquired Through Evolution," In Proceedings of the

European Conference on Evolutionary Computation in Combinatorial

Optimization (EvoCop 2005), 2005.
[148] D. Bonachea, E. Ingerman, J. Levy, and S. McPeak, "An Improved Adaptive

Multi-Start Approach to Finding Near-Optimal Solutions to the Euclidean
TSP," Proc. Genetic and Evolutionary Computation Conference (GECCO),
2000.

[149] G. A. Sena, D. Megherbi, and G. Isern, "Implementation of a parallel Genetic
Algorithm on a cluster of workstations: Traveling Salesman Problem, a case
study," Future Generation Computer Systems, vol. 17, pp. 477-488, 2001.

[150] K. Davoian, "Search Space Extension and PGAs: A Comparative Study of
Parallelization Schemes to Genetic Algorithms using the TSP," Proc. of

Artificial Intelligence and Applications, pp. paper No 502, 2006.
[151] D. S. Johnson, "Asymmetric TSP Page," in

http://public.research.att.com/~dsj/chtsp/atsp.html: Access Date: 29/04/06,
2006.

[152] C. A. Coello, "A survey of constraint handling techniques used with
evolutionary algorithms.," Laboratorio Nacional de Informatica Avanzada,
Veracruz, Mexico, Technical report Lania-RI-99-04, 1999.

[153] Z. Michalewicz and D. B. Fogel, How to SolveIt: Modern Heuristics. Berlin,
Heidelberg, New York: Springer Verlag, 2000.

[154] R. Nakano and T. Yamada, "Conventional Genetic Algorithm for Job Shop
Problems," Proc. 4th International Conference on Genetic Algorithms, pp.
474-479, 1991.

[155] D. G. Kim, "Riemann Mapping Based Constraint Handling for Evolutionary
Search," ACM Symposium on Applied Computing (SAC98), pp. 379-385, 1998.

[156] B. Rylander, "Personal Communication between George Mitchell and Bart
Rylander at GECCO 2003 LBP presentation." Chicago, IL, USA, 2003.

[157] T. Bäck, M. Schütz, and S. Khuri, "A comparative study of a penalty function,
a repair heuristic, and stochastic operators with the set-covering problem," in
Artificial Evolution, E. Ronald, Ed. Berlin: Springer, 1996, pp. 3-20.

186

[158] M. Gorges-Schleuter, "ASPARAGOS an asynchronous parallel genetic
optimization strategy," Proc. 3rd International Conference on Genetic

Algorithms, pp. 422-427, 1989.
[159] Z. Michalewicz and G. Nazhiyath, "Genocop III: A Co-evolutionary

Algorithm for Numerical Optimisation Problems with Nonlinear Constraints,"
Proc. of the 2nd IEEE International Conference on Evolutionary

Computation, vol. 2, pp. 647-651, 1995.
[160] S. Koziel and Z. Michalewicz, "A decoder-based evolutionary algorithm for

constrained parameter optimization problems.," Parallel Problem Solving

from Nature,, vol. 5, pp. 231-240, 1998.
[161] Z. Michalewicz, D. Dasgupta, R. G. Le Riche, and M. Schoenauer,

"Evolutionary Algorithms for Constrained Engineering Problems,,"
Computers & Industrial Engineering Journal,, vol. 30, pp. 851-870, 1996.

[162] D. Orvosh and L. D. Davis, "David Orvosh, Lawrence Davis: Shall We
Repair? Genetic AlgorithmsCombinatorial Optimizationand Feasibility
Constraints," Proc. 5th International Conference on Genetic Algorithms, pp.
650 (poster), 1993.

[163] N. Malats and F. Calafell, "Basic glossary on genetic epidemiology," Journal

of Epidemiology and Community Health, vol. 57, pp. 480-482, 2003.
[164] S. J. Lolle, V. L. Victor, J. M. Young, and R. E. Pruitt, "Genome-wide non-

mendelian inheritance of extra-genomic information in Arabidopsis," Nature,
vol. 434, pp. 505-509, 2005.

[165] L. Comai and R. A. Cartwright, "A Toxic Mutator and Selection Alternative to
the Non-Mendelian RNA Cache Hypothesis for hothead Reversion," The Plant

Cell, vol. 17, pp. 2856-2858, 2005.
[166] D. B. Fogel, "Personal Communication on CleanUp and Genetic Algorithms,"

G. G. Mitchell, Ed. NUI,Maynooth, 2000.
[167] D. M. Tate and A. E. Smith, "A Genetic Approach to the Quadratic

Assignment Problem. Computers and Operations Reseach," Computers &

Operations Research, vol. 22, pp. 73-78, 1995.
[168] G. E. Liepins, M. R. Hilliard, J. Richrdson, and M. Palmer, "Genetic algorithm

applications to set covering and traveling salesman problems.," Operations

Research and Artificial Intelligence: the Integration of Problem Solving

Strategies, pp. 29--57., 1990.
[169] E. C. Friedberg, Walker, G. C. & Siede, W., DNA Repair and Mutagenesis.

Washington, DC: Am. Soc. Microbiol., 1995.
[170] S. de Givry, I. Palhiere, Z. Vitezica, and T. Schiex, "Mendelian error detection

in complex pedigree using weighted constraint satisfaction techniques," Proc.

of ICLP-05 workshop on Constraint Based Methods for Bioinformatics, pp. 9-
17, 2005.

[171] S. Leonelli, "Arabidopsis, the botanical Drosophila: from mouse cress to
model organism," Endeavour, vol. 31, pp. 34-38, 2007.

[172] K. Beck and C. Andres, Extreme Programming Explained: Embrace Change

(2nd Edition): Addison-Wesley Professional, 2004.
[173] G. Reinelt, "TSPLIB - http://www.iwr.uni-

heidelberg.de/groups/comopt/software/TSPLIB95/," vol. 2007: Universität
Heidelberg, 2007.

[174] G. A. Jayalakshmi, S. Sathiamoorthy, and R. Rajaram, "A Hybrid Genetic
Algorithm- A New Approach to solve Traveling Salesman Problem,"

187

International Journal of Computational Engineering Science, vol. 2, pp. 339–
355, 2001.

[175] A. G. Najera, "TSP: Three Evolutionary Approaches vs. Local Search,"
School of Computer ScienceUniversity of Birmingham, Birmingham, UK,
TR- 2006-11-10-tsp 09/11/06 2006.

[176] D. Thierens, "Adaptive Mutation Control Schemes in Genetic Algorithms.,"
presented at IEEE Proc. of Congress on Evolutionary Computing, 2002.

[177] B. Freisleben, "Metaevolutionary approaches," in Handbook of Evolutionary

Comutation, T. Bäck, D. B. Fogel, and Z. Michalewicz, Eds. Oxford, UK: IOP
Press, 1997, pp. C7.2:1.

[178] J. Grefenstette, "Optimization of control parameters for genetic algorithms,"
IEEE Transactions on Systems, Man and Cybernetics, vol. 16 (1), pp. 122-
128, 1986.

[179] U. Derigs, M. Kabath, and M. Zils, "Adaptive genetic algorithms: A
methodology for dynamic autoconfiguration of genetic search algorithms. ."
Proceedings of the Metheuristic International Conference MIC`97, 1997.

[180] G. Harik and F. Lobo, "A Parameter-Less Genetic Algorithm," presented at
Genetic and Evolutionary Computation Conference, 1999. GECCO 1999,
1999.

[181] G. R. Harik, F. G. Lobo, and D. E. Goldberg, "The compact genetic
algorithm," Evolutionary Computation, IEEE Transactions on, vol. 3, pp. 287-
297, 1999.

[182] S. Tongchim and P. Chongstitvatana, "Parallel genetic algorithm with
parameter adaptation," Information Processing Letters, vol. 82 (1), pp. 47-54,
2002.

[183] F. G. Lobo and D. E. Goldberg, "The parameter-less genetic algorithm in
practice," University of Illinois at Urbana Champaign, Urbana IL, USA,
IlliGAL Report No 2001022, 1999.

[184] D. E. Goldberg, "Using Time Efficiently: Genetic-Evolutionary Algorithms
and the Continuation Problem," Proc. Genetic and Evolutionary Computation

Conference (GECCO), pp. 212-219, 1999.
[185] J. Tavares, P. Machado, A. Cardoso, F. B. Pereira, and E. Costa, "On the

Evolution of Evolutionary Algorithms," In Proceedings of the 7th European

Conference on Genetic Programming (EuroGP 2004), pp. 389-398, 2004.
[186] B. Freisleben and M. Härtfelder, "In search of the best genetic algorithm for

the traveling salesman problem," Proc. of the 9th Int. Conference on Control

Systems and Computer Science, pp. 485-493, 1993.
[187] M. Mernik, M. Crepinsek, and V. Zumer, "A Meta Evolutionary Approach in

Searching of the Best Combination of Crossover Cperators for the TSP.,"
Proc. of the International Conference on Neural Networks (NN'2000), pp. 32-
36, 2000.

[188] T. C. Belding, "The Distributed Genetic Algorithm Revisited.," Proceedings

of the 6th International Conference on Genetic Algorithms, pp. 114-121, 1995.
[189] J. R. Koza and A. Andre, "Parallel Genetic Programming on a Network of

Transputers," Stanford University, CA USA, Stanford STAN-CS-TR-95, 30-
Jan-95 1995.

[190] C. A. Coello, "Personal Communication between G. Mitchell and C.A. Coello
regarding EMOO." NUI, Maynooth, 2004.

188

[191] R. Sosic and G. D. Wilby, "Using the Quality-Time Tradeoff in Local
optimization.," Proceedings of the IEEE Second ANZIIS Conference, pp. 253-
257, 1994.

[192] T. Lenser, T. Hinze, B. Ibrahim, and P. Dittrich, "Towards Evolutionary
Network Reconstruction Tools for Systems Biology," Evolutionary

Computation, Machine Learning and Data Mining in Bioinformatics, 5th

European Conference, pp. 1500-1511, 2007.
[193] ESIGNET, "Fast Evolutionary Algorithms – Report," Friedrich Schiller

University, Jena, European Commission Report May 2006.

