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ABSTRACT

The genetic algorithm (GA) is a robust search technique which has been theoretically 
and empirically proven to provide efficient search for a variety of problems. Due largely to 
the semantic and expressive limitations of adopting a bitstring representation, however, the 
traditional GA has not found wide acceptance in the Artificial Intelligence community. In 
addition, binary chromosomes can unevenly weight genetic search, reduce the effectiveness 
of recombination operators, make it difficult to solve problems whose solution schemata 
are of high order and defining length, and hinder new schema discovery in cases where 
chromosome-wide changes are required.

The research presented in this dissertation describes a grammar-based approach to ge­
netic algorithms. Under this new paradigm, all members of the population are strings 
produced by a problem-specific grammar. Since any structure which can be expressed in 
Backus-Naur Form can thus be manipulated by genetic operators, a grammar-based GA 
strategy provides a consistent methodology for handling any population structure express­
ible in terms of a context-free grammar.

In order to lend theoretical support to the development of the syntactic GA, the concept 
of a trace schema - a similarity template for matching the derivation traces of grammar- 
defined rules - was introduced. An analysis of the manner in which a grammar-based GA 
operates yielded a Trace Schema Theorem for rule processing, which states that above- 
average trace schemata containing relatively few non-terminal productions are sampled 
with increasing frequency by syntactic genetic search. Schemata thus serve as the “building 
blocks” in the construction of the complex rule structures manipulated by syntactic GAs.

As part of the research presented in this dissertation, the GEnetic Rule Discovery System 
(GERDS) implementation of the grammar-based GA was developed. A comparison between 
the performance of GERDS and the traditional GA showed that .the class of problems 
solvable by a syntactic GA is a superset of the class solvable by its binary counterpart, 
and that the added expressiveness greatly facilitates the representation of GA problems. 
To strengthen that conclusion, several experiments encompassing diverse domains were 
performed with favorable results.

xii
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Chapter 1

Introduction

The evolutionary process is the only naturally occurring adaptive search algorithm known 

to exist. In nature, every organism is uniquely defined by the structure of its DNA. If each 

individual is considered to be a point within the search space of genetic organization, the 

power of “evolutionary search” becomes readily apparent. For example, a single chromosome 

in even the simplest vertebrate organism contains tens of thousands of genes, each of which 

can take on one of four nucleotide base values. This corresponds to over lO6000 different 

gene combinations. The extraordinary complexity of the biological structures discovered is 

evidence of the system’s incredible search capabilities.

The manner in which genetic search operates was initially investigated by Charles 

Darwin[51]. In his treatise, On the Origin of Species by Means of Natural Selection, Dar­

win introduced the concept of “survival of the fittest” . Each individual differs from other 

organisms in a species by slight variations in genetic structure. These variations cause 

physical and behavioral differences, and directly affect how the individual interacts with 

its environment. If an organism is better suited to its environment, its chances of surviv­

ing and eventually reproducing are greater. In this manner nature continually attempts to

2
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CHAPTER 1. INTRODUCTION 3

adaptively discover optimal genetic solutions.

John Holland[118, 119,120] was first to explore the computational nature of the evolu­

tionary process. In Adaptation in Natural and Artificial Systems, Holland developed a basic 

methodology for viewing all adaptive systems. He also presented a  procedure for solving 

arbitrary search problems using natural selection as a model. This type of solution strategy 

is known as a  genetic  algorithm .

In following the evolutionary paradigm, the genetic algorithm (GA) operates on a pop­

ulation of structures, each of which represents one potential solution to the stated problem. 

The effectiveness of each individual is determined by performing an artificial “natural se­

lection”. Highly fit individuals are then mated and allowed to reproduce by combining 

their structures to create offspring for the successive generation. This process is repeated 

iteratively until the population converges toward a single set of solutions.

In the past two decades the genetic algorithm has been successfully applied to a wide 

variety of problems in optimization, classification, and machine learning; however, GAs 

have not yet made the breakthrough into mainstream Artificial Intelligence (AI). The main 

reason for this discrepancy is that genetic algorithmists have typically adopted a fixed- 

length binary string representation in their research. The larger AI community, on the 

other hand, has relied heavily upon more expressive semantic representations describing 

complex interrelationships between problem elements.

In the past few years there have been several proposals for modifying the representation 

scheme of genetic algorithms. Research efforts by Smith[234] and Goldberg, Korb and 

Deb[87] presented techniques for applying the genetic algorithm to variable length strings. 

Fujiki and Dickinson[83] developed genetic operators for Lisp S-expressions. Bickel and 

Bickel[24] and Koza[149, 152] devised similar operators for tree structures. Antonisse and
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CHAPTER 1. INTRODUCTION 4

Keller[8, 7] and Grefenstette[108,110] also presented methods for performing genetic search 

on certain higher-level statements.

These efforts have provided useful extensions to the genetic algorithm paradigm; how­

ever, each focuses on adapting the GA to only one specific type of structure. None of this 

work has presented a general-purpose strategy for performing genetic operations on an ar­

bitrary class of expressions. Since GAs are designed to be domain-independent procedures, 

this lack of an underlying methodology has greatly reduced the applicability of genetic 

algorithms to problems expressed in conventional AI terms.

The research presented in this dissertation describes a grammar-based approach to ge­

netic algorithms. With this technique, all structures in the GA population are strings 

derivable from a problem-specific grammar. Any structure which can be expressed in 

Backus-Naur Form (BNF), whether it be a fixed-length binary string or a complex computer 

program, can therefore be manipulated by genetic operators. As such, a grammar-based GA 

strategy provides a consistent methodology for handling arbitrary populations of structural 

elements.

Chapter 2 of this dissertation provides an introduction to the genetic algorithm and 

to schema theory. It also details the early development of the genetic paradigm. Chapter 

3 presents the grammar-based genetic approach, and describes related work in GA rep­

resentation. The GEnetic Rule Discovery System (GERDS) for performing GA tasks 

is also detailed. Chapter 4 develops a new schema theory for syntactic GAs, and applies 

the grammar-based genetic algorithm to several optimization tasks. Chapters 5 presents 

applications of GERDS to representative problems in classification and machine learning. 

Finally, Chapter 6 explores the use of a grammar-based approach for the discovery of meta­

rule heuristic operators, and details directions for future research.
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Chapter 2

Background

2.1 The Genetic A lgorithm

The genetic algorithm (GA) is a  powerful search strategy based on natural selection and 

population genetics. In the past two decades it has been empirically and theoretically 

proven to provide robust search for complex problems. Because it is modeled closely after 

the evolutionary paradigm, however, the GA differs in many ways from more traditional 

search techniques.

As does nature, the genetic algorithm conducts its investigation on the basis of a  popu­

lation of individuals. Competition between members of this population drives the inductive 

process. The GA is therefore unlike more familiar hill-climbing techniques which climb a 

functional peak until a maximum value is encountered. The GA climbs many peaks in 

parallel. As such, its chance of finding a local optimum for the best solution is greatly 

reduced.

In keeping with the evolutionary metaphor, each individual in the GA population is 

defined by its gene content. In nature, a gene is a structure holding one of four nucleotide

5
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CHAPTER 2. BACKGROUND  6

bases: adenine (A), cytosine (C), guanine (G) or thymine (T). In the genetic algorithm, a 

gene is usually a  structure holding a binary value. In both the natural and artificial cases, 

the value of a particular gene is known as its allele. Groups of genes are in turn arranged 

into long strands called chromosomes. For GAs, a chrom osom e is defined as a string of 

genes (bits). The position of a gene within the chromosome is called its locus; genes are 

numbered left-to-right starting with locus 1.

In nature, the entire collection of chromosomes defining an individual is its genotype. 

The living organism itself is called a phenotype. In the genetic algorithm, a phenotype is 

a parameter set representing one possible solution to a given problem. The genotype is 

the same solution encoded into a chromosome. As a simple example of this distinction, if 

we were interested in using a genetic algorithm to find the maximum range of the quadratic 

function
f x = x2 — Zx +  6

for integers in the interval [0,63], we could use a  6-bit chromosome ranging in value from 

000000 (zero) to 111111 (sixty-three) to represent the problem’s domain. One possible 

member of the population has the genotype 101101 and the phenotype forty-five.

Every niche of the world ecology represents a  different problem for the evolutionary pro­

cess. Through competition and natural selection, organisms are continually being adapted 

to solve these problems. The algorithm behind natural search, however, remains the same for 

each niche. In other words, the “survival of the fittest” mechanism is domain-independent. 

It operates upon organisms in different niches without regard to genotypes or environment. 

In much the same way, the genetic algorithm works directly on a population of chromosomes 

without requiring additional information about the particular problem it is solving. It needs 

only some method for determining the merit of each potential solution. As in population
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CHAPTER 2. BACKGROUND 7

genetics, this evaluation process is called a fitness function. Once developed, the same 

GA can be applied to many different problems; only the fitness function is changed for each 

application.

Figure 2.1 shows the operation of the simple genetic algorithm. An initial population

create Population 
let Generation =  0 
repeat

apply fitness function to  each m ember of Population 
let Generation =  Generation +  1 
perform REPRODUCTION on Population 
perform CROSSOVER on Population 
perform MUTATION on Population 

until Generation =  M ax__________________________________

Figure 2.1: The Simple Genetic Algorithm

of strings is arbitrarily created for the first generation. Then, after applying the fitness 

function, the GA creates a new population of strings to replace the previous generation. 

This closely parallels natural populations in which organisms are created and eventually 

reproduce if they survive to maturity. After a predetermined number of generations, the 

algorithm halts.

The creation of new organisms in nature depends heavily upon many inherently random 

factors such as the choice of parents. Like other aspects of the genetic algorithm, the pro­

cedures REPRODUCTION, CROSSOVER and MUTATION follow the natural precedent 

for an artificial population of strings. They axe each described in detail below. It is impor­

tant to note that, although the GA utilizes “random operators” for string manipulation, it 

does not conduct a random walk through the search space. Instead, genetic search uses the 

fitness function as its guide.
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CHAPTER 2. BACKGROUND 8

2.1 .1  R e p ro d u c tio n

R eproduction  is an artificial “survival of the fittest” mechanism by which strings (or 

chromosomes) are copied according to their fitness. There are many techniques in the 

literature for performing GA reproduction. The most widely used method is ro u le tte  

w heel selection, which defines the probability of selecting a string Sj for reproduction as

*>i) =  (2-1)
E /(*)

1 = 1

where /  is some fitness function and N  is the population size.

Turning once again to the quadratic maximization example, a genetic algorithm might 

initially generate the population of four strings listed in Figure 2.2, together with their

string (chromosome) fitness function
genotype phenotype value
6-bit string integer x f(x) = x2- 3x + 6

[ lOl  101 45 1896

[oo 1 0 1 1 11 94

(o 1 1 0 1 0 26 604

(1 1 0 1 00 52 2554

total fitness: 5148
Figure 2.2: Sample GA Population
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CHAPTER 2. BACKGROUND  9

associated fitness values. Note that in this case, the fitness function is the same as the 

quadratic equation that is to be optimized. There is no better measure of string optimality 

than the function value of each string. In many other GA applications, however, no such 

objective function exists. In these cases a heuristic approximation is used instead.

Dividing the fitness of each individual string by the summation of all fitness values in the 

population results in the selection probabilities depicted in Figure 2.3. A new population

string fitness function
(chromosome) value selection %

0 0 1 0 1 1

total fitness

Figure 2.3: Roulette Wheel Selection

would then be created by making four spins on the roulette wheel. Since the probability of 

selecting 110100 is roughly fifty percent, about half of the individuals in the next generation 

should be copies of this string. The low-performing string 001011, however, is unlikely to 

survive into any successive populations. The reproduction operator enables the genetic
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CHAPTER 2. BACKGROUND 10

algorithm to focus its search by emphasizing the best strings discovered.

2.1.2 Crossover

C rossover is a recombination operator for manipulating strings. After reproduction has 

occurred and a new population is created, crossover proceeds in three steps:

• strings in the new population are arbitrarily paired

• a crossover locus is chosen uniformly along the length of the string

• two new strings are created by swapping all genes after the crossover locus

Figure 2.4 depicts the results of applying the crossover operator to the strings 101101 and

string 1 string 3

\KM/

Figure 2.4: Crossover Operator

011010 in the sample population. The “\ ” mark indicates that the selected crossover site 

was between the third and fourth genes. Two new strings are then created by trading the 

three genes after the crossover site. In this manner the crossover operator combines highly 

fit population members in order to examine new points in the search space.
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CHAPTER 2. BACKGROUND 11

2.1.3 M utation

Reproduction with crossover is an effective means of combining high-quality solutions. Oc­

casionally, however, these operators might become overzealous and lose an important allele 

value. For example, every string in the population might have the allele 0 at the same locus, 

whereas the optimal solution might require a  1 instead. With reproduction and crossover 

alone, there would be no way to introduce the allele 1 into the population.

M u ta tio n  acts as a safeguard against such an event by occasionally changing the value 

of a gene after crossover. Figure 2.5 shows the mutation operator applied to the string

string 4

1[I]0 10 0

\ k

1 0 0 1 0 0

Figure 2.5: Mutation Operator

110100. The symbol shows that the second gene was the mutation site, and thus the 

1 was mutated to a 0. Mutation plays only a  secondary role in the genetic algorithm. As 

in nature, the probably of mutation occurring is quite low.

2.2 Schema Processing

The mathematical development of the subsequent section is that of Holland[ll9].
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A schem a is a simple pattern-matching device for describing basic similarities between 

strings. Since its introduction into the GA discipline, it has become the basis of all genetic 

algorithm theory. Simply stated, a schema is a string over the ternary alphabet {0,1,*}. 

The 0 and 1 symbols plays the same role in a  schema as they do in a chromosome. The 

additional symbol acts as a  special “don’t care” marker and can take on either binary 

value. It is important to emphasize at this point that is a meta-symbol used only to 

make theoretical observations about groups of similar chromosomes. It is not used as an 

allele value in actual genetic search.

A string is said to match a  particular schema if one of the following:

• a 1 in the string matches a 1 in the schema

• a 0 in the string matches a 0 in the schema

• either a 0 or a  1 in the string matches a in the schema

holds at every position along the length of both. Two examples of schema for the quadratic

maximization example are presented in Figure 2.6. Schema A matches all strings beginning

strings

schema^ schemas0 0 1 0 1 1

1 1 0 1 0 0

Figure 2.6: Schemata Matching
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CHAPTER 2. BACKGROUND 13

with a 0 and having the substring 101 from locus 3 to locus 5. Therefore, 0*101* matches 

only four different strings: the second and third strings of the sample population and the 

strings 001010 and 011011. Schema B, on the other hand, is much less specific and requires 

only that a 1 be present at locus 3. Since it is concerned with only one out of six possible 

gene values, it represents 2̂ 6-1l = 32 different strings. A schema like 110100 matches only 

one string, since it does not contain a “*” . The general schema ******, on the other hand, 

matches every possible string in the population.

The o rd e r o(H) is the number of specific positions in schema H. In other words, it 

is a count of all the non-“*” elements of H.  The defining length  6(H) is the difference 

between the first and last specific position in H.  Figure 2.7 depicts o and 6 calculations

schema^
0 = 4

t t t t 
0 * 1 0 1 *

5 = 5 - 1 = 4

schema C
0  =  6 

1 1 1  11 t
1 1 0 1 0 0

5 = 6 - 1 = 5

schemaB
o =  1
t

♦  ♦ J ♦ ♦ ♦

U
5 = 3 - 3 = 0  

schema D
o =  0

5 = undefined

Figure 2.7: Schema Order o(H) and Defining Length 6(H)
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CHAPTER 2. BACKGROUND  14

for several representative schemata. Very specific schemata such as 110100 would have an 

order equal to the string length /. The defining length of such strings is equal to I — 1. The 

general schema ****** has order 0, since it does not contain any specific information. The 

defining length of the general schema has no meaning, since no first or last positions exist. 

Schemata are useful devices for analyzing the effects of genetic operators on a population

V  of strings. To begin, the average fitness f ( t ) of V  at generation t is defined as

  E / ( * , 0
m  =  ^ —  (2 .2 )

where /  is a fitness function, s,- is a string in V , and N  is the population size.

The average fitness o f  a  schem a is the average fitness of all the strings in the popu­

lation matching schema H. Assuming m(H, t) represents the number of matches o iH 'm V  

at generation t, schema average fitness can be defined as

£  /(* ,< )

The fitness ra tio  o f a  schem a is the ratio of the average fitness of a schema H  to the 

average fitness of V  during generation t, and is expressed as

=  (2.3 )

Turning one more time to the quadratic maximization example, Figure 2.3 shows the 

calculation for total population fitness as 1896 +  94 +  604 4- 2554 = 5148. Dividing the

total fitness by the size of the population yields f ( t )  = 5148/4 =  1287. Schema A in Figure

2.6 matches only string 001011 (with fitness 94) and string 011010 (with fitness 604). The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. BACKGROUND  15

schema average fitness of A would therefore be f(A ,t)  =  (94 +  604)/2 =  349. The fitness

ratio of schema A is then F (A ,t)  =  349/1287 =  0.27.

As stated in Equation 2.1, reproduction with roulette wheel selection copies strings into

subsequent generations with probability

E  / ( * )«=i

Since each schema matches a subset of the strings in the population, it is copied from 

generation t with probability

p(k ,«) = A M .

Z  f Mi=l

After selecting N  strings for the new generation t + 1, the expected number of instances of 

H  is

m (K ,t +  1) =
E  /(* .- .« )t=i

Substituting /( f )  from Equation 2.2 into the above expression results in

m(W,f +  1) =  = m (H ,t)F('H ,t) (2.4)
J\})

where F(H, t ) is the schema fitness ratio from Equation 2.3.

Equation 2.4 states that the growth of a schema H depends only upon whether strings 

representing 7i have a greater fitness value on average than the population as a whole. 

Schemata with a value above the population average will receive increasing trials in future 

generations, whereas lower-than-average schemata will be sampled less frequently. At each
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generation, this process occurs simultaneously for every schema over V 1. Thus, many 

schemata are effectively processed in parallel.

The effect of crossover on H  depends upon the individual schema itself. The crossover 

operator recombines strings by breaking them at an arbitrarily chosen position. A schema 

H  survives crossover only if each specific position in H  remains unaltered. Thus, unless 

the two strings are identical, crossover will disrupt some of the schemata over V. As an 

example, schema E  in Figure 2.8 can be destroyed by choosing any of the four sites between

schema E

4 possible breaks

schema F

* * * *

1 possible break

Figure 2.8: Schema Disruption due to Crossover

the 0 and the 1 as the crossover locus. Schema F can only be disrupted if the crossover 

point is between the two adjacent 1 genes. Close observation reveals that the number of 

disruptive crossover sites is the same as the defining length 6 of a schema.

For strings of length I there are / — 1 possible crossover sites. Therefore, the probability 

Pd of picking a crossover locus which would disrupt TL is

v m  =  ( 2 .5 ,

Thus, the example schema E  would be disrupted with a (5 — l)/(6  -  1) =  4/5 probability,

1A schema over V  is a schema matching a member of "P
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while schema F  has only a (5 — 4)/5 =  1/5 chance of being disrupted by crossover.

By extending Equation 2.5, the probability pa of schema H  surviving crossover would 

be 1 -  pd(W) or

Assuming crossover is performed with probability pc, schema survival is bounded by the 

expression

Multiplying Equation 2.4 by Equation 2.6 results in the expression

6 ( H ) ]m(H, t +  1) > m(H, t)
~  f i t ) 1 - P c l - l

(2.7)

which describes the combined effects of reproduction and crossover on H. In words, Equa­

tion 2.7 states that schemata of short defining length and above-average fitness are increas­

ingly sampled in future generations.

A schema 7i survives mutation only if each specific position in H  remains unaltered. 

Since mutation operates by arbitrarily changing a gene with probability pm, the chance of 

each position surviving its effect is 1 — pm. The order o(W) represents the number of fixed 

positions in H . Therefore, the survival probability p, of H  is

P .(W ) =  ( l - P m ) 0(K) (2.8)
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For pm <C 1, Equation 2.8 can be closely approximated by the expression

18

ps(H) =  1 -  o(H)pm (2.9)

The joint effect of all three operators is obtained by combing Equation 2.7 with 2.9 with 

the result

ro(W, t  +  1) >  m ( W , [ l  -  P c j ^
m

Ignoring the small cross-product term

P c P m 0 i H ) 6 ( H )

l - l

the above equation can be rewritten as

m(7f, t  4-1) > m(H,
f{t)

(2.10)

Equation 2.10 is the expression of the Schem a T heorem , also called the F undam enta l 

T h eo rem  of G enetic A lgorithm s. It states that low-order, above-average schemata 

with short defining lengths are sampled with increasing frequency by the genetic algorithm. 

Schemata with such properties are given the name bu ild ing  blocks because of their special 

importance to the GA process.

The Fundamental Theorem clearly defines how each schema is simultaneously processed 

by the genetic algorithm. It makes no statement, however, about the total number of 

schemata over V. It is a simple matter to count the total number of possible schemata 

for an arbitrary GA problem. Each position in a  given schema can take on one of the 

three values 0, 1 or For the example chromosomes of length 6, there would therefore
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b e 3 * 3 * 3 * 3 * 3 * 3  =  36 = 729 different schemata. In general, for genes with k allele 

values contained in chromosomes of length /, there are (k + I)* possible schemata. As stated 

on page 12, during schema matching each gene is compared to the corresponding schema 

position. It matches if the string and the schema have identical values (either a 1 or 0) 

or the schema contains a symbol. Since each position of a string matches a schema

position in two ways, a  string of length I would represent 2* different schemata. Therefore, 

a population V  of size N  matches n different schemata at generation t as bounded by the 

expression

2' < n(V ,t) < N 2l (2.11)

It can be seen from the above equation that the GA possesses the ability to create popula­

tions of strings in such a way as to simultaneously maximize a great number of schemata. 

This property of im plic it parallelism  is an important theoretical result, as it allows the 

genetic algorithm to use combinatorial explosion to its advantage.

2.3 Developm ent o f Genetic A lgorithm s

In the early sixties a number of biologists such as Fraser[82] and Barricelli[16] were running 

computer simulations of genetic systems in an attempt to better understand natural pro­

cesses. Fraser’s work even employed binary strings, a fitness function and a reproduction

operator. There was however no mention in these early works that natural search could be

applied to artificial problems.

A few years later, Holland[118] developed his adaptive system theory, describing in part 

how the genetic process could be applied to arbitrary search problems. His early work
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stressed the importance of selection as a “survival of the fittest” mechanism. He also 

emphasized using a population of search points, and mentioned recombination operators 

such as crossover and mutation.

Bagley[13] was the first to  coin the phrase “genetic algorithm” . For his dissertation, 

Bagley constructed a GA for finding an evaluation function for hexapawn, a game in which 

two players start with three pawns apiece and attempt to cross a three by three chess board. 

Bagley’s GA contained the three standard genetic operators of reproduction, crossover, and 

mutation. However, these were applied to diploid chromosomes, which consist of two joined 

strings. Each gene along a diploid chromosome takes on the value of the most dominant 

allele at each locus.

Rosenberg’s[206] work involved the biological simulation of a population of single-celled 

animals. As part of his research, he developed an adaptive crossover mechanism in which 

linkage factors where carried along with allele values to mark the probability of crossover 

occurring at each locus. His work was very similar to later optimization and root finding 

tasks. At about this time, HoHand[119] was mathematically formulating the underlying 

processing power of the genetic algorithm with his schema theory.

Hollstein[127] was the first to apply genetic algorithms to mathematical optimization 

problems. His GA used crossover, mutation and other genetic operators, and was able to 

find optima much more rapidly than the traditional hill-climbing techniques. Hollstein also 

investigated five different selection methods and eight mating techniques borrowed from 

horticulture and animal husbandry practices.

Frantz[81] studied the positional effect of genes on function optimization. Specifically, he 

considered functions with a strong ep ista tic  nature; that is, functions in which important 

genes were separated by relatively large distances along the chromosome. Frantz used
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roulette wheel selection, simple crossover and simple mutation, and was able to show that 

tight linkage between genes (low epistasis) increased the rate of population improvement.

For his dissertation, DeJong[62] applied Holland’s schema theory to  five problems in 

function minimization ranging in scope from a smooth, unimodal function of two variables to 

a function characterized by discontinuity, great multi-modality and high dimensionality. By 

varying the population size, selection technique, and mutation and crossover probabilities, 

he was able to quantify the performance of genetic algorithms in terms of both interim 

operation and final convergence. His work demonstrated by experiment the robustness of 

the GA across many optimization problems.
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Chapter 3

Rule Representation

3.1 Binary Representation

There are several difficulties inherent in the simple binary encoding schemes used by stan­

dard genetic algorithms. Since the number of chromosome interpretations is not always a 

power of two, GAs often contain redundant information which may unevenly weight the 

search process while at the same time reducing the effectiveness of recombination opera­

tors. As an example, let us turn again to the simple quadratic function from the previous 

chapter. If we were interested in finding the maximum range of

f x =  x 2 — 3x +  6

for integers in the extended interval [0,64], we would require a 7-bit chromosome to represent 

the phenotypes 0000000 through 1000000. As can be seen, the sixty-three chromosomes 

from 1000001 to 1111111 would not have a meaningful genotype interpretation. In other 

words, almost half of the possible strings in the population would have no discernible fitness 

value.

Using binary-valued chromosomes can also make it difficult to solve problems whose

22
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CHAPTER 3. RULE REPRESENTATION  23

solution schemata are of high order and defining length. Consider, for example, the problem 

of finding the maximum range value for the function

f x =  x{x -f 3) mod 32

in the interval [0,63]. As shown in Figure 3.1, there are four optimal solutions to this

schema J

Figure 3.1: Schema for f x = x(x  +  3) mod 32

problem, each of which matches the schema J. Since the defining length S( J)  =  3 and there 

are five possible crossover loci, there is a 3/5 =  0.60 probability of crossover breaking apart 

the solution schema. Similarly, since the order o( J) = 4 and there are six total genes, there 

is a 4/6 = 0.67 probability of mutation disrupting schema J. Since both recombination 

operators are more likely to destroy the solution schema than to preserve it, it is unlikely 

that schema J  will be optimally represented in the population using genetic search.

Under the traditional genetic algorithm paradigm, mutation operates upon individual 

bits within a chromosome. Since the probability pm of mutation occurring is typically 

quite low, many chromosome-wide mutations are unlikely to occur. Turning again to the 

quadratic maximization problem of page 22 for the interval [0,64], it is highly improbable
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that the second best solution 0111111 could be mutated to the optimal 1000000. Point-by- 

point mutation on binary genes does not foster new schema discovery in cases where several 

allele values must be simultaneously altered.

Binary encoding also makes it impossible for genetic algorithms to use variables in the 

traditional sense. Without semantic information to call upon, the GA cannot express com­

plex interdependencies between features in the environment, thereby making it difficult to 

add built-in knowledge and world models. Machine learning applications requiring heuristic 

discovery or explanation-based reasoning processes are therefore severely limited.

Finally, binary representation serves to isolate genetic algorithms from mainstream Ar­

tificial Intelligence. Most AI applications such as Expert Systems rely heavily upon more 

expressive representations describing cognitive aspects of a particular domain. It is difficult 

to abstract useful information from bit string chromosomes and then translate this into the 

high-order representations prevalent in Artificial Intelligence research. It is even more dif­

ficult to effectively encode a semantic knowledge representation into binary chromosomes. 

Genetic-based techniques are therefore commonly overlooked by the larger AI community.

3.2 Rule Representation

Using a higher level knowledge representation offers an easy solution to the above problems. 

In the past, there have been several proposals for modifying the binary representation 

scheme of genetic algorithms. Each of these efforts, however, has focused on adapting the 

GA to one problem-specific structure.

The representation scheme presented in this dissertation provides a general-purpose 

strategy for applying the GA to an arbitrary representation. This is made possible by 

adopting a grammar-based approach to genetic search. Using this technique, all members
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of the GA population are strings derivable from a problem-specific grammar. Therefore, 

any structure which can be expressed in Backus-Naur Form (BNF) can be manipulated by 

genetic operators. As such, a grammar-based GA strategy provides a consistent methodol­

ogy for handling any population structure that can be expressed in terms of a context-free 

grammar. As will be shown in subsequent chapters, the class of such problems is large.

3 .2 .1  G ra m m a r-B a se d  A p p ro ach

Figure 3.2 shows a  sample grammar for generating simple if-then decision rules for playing

1: < ru le > — ( if < co n d itio n >  ( p u t-X  ) )
2: < co n d itio n > < statem ent>
3: < co n d itio n > -► ( and < sta tem en t>  <exp> )
4: < co n d itio n > -► ( and < sta tem en t>  <exp> <exp> )
5: < co n d itio n > -► ( and < sta tem en t>  <exp> <exp> <exp> )
6: < sta tem en t> -<• ( is-em pty < square > )
7: <exp> -*■ ( < p red ica te>  < square>  )
8: < p red ica te> < a ttr ib u te >
9: < a t t r ib u te > -► is-X

10: < a t t r ib u te  > -+ is-O
11: < a t t r ib u te > -► is-em pty
12: < square> — < p o sitio n >
13: < p o s itio n > -*■ top-left
14: < p o s itio n > — ►top-cen ter
15: < p o s itio n > -*■ top-righ t
16: < p o s itio n > — m iddle-left
17: < p o s itio n > — m iddle-center
18: < p o s itio n > -*• m iddle-right
19: < p o s itio n > -* bottom -left
20: < p o s itio n > - f bottom -m iddle
21: < p o s itio n > -*■ bo ttom -righ t

Figure 3.2: A Sample Rule Grammar for Tic-Tac-Toe

the game of Tic-Tac-Toe. When generating rules from the above grammar, it is assumed 

that the player is always X; therefore, P u t-X  appears as the action of every rule. Each rule 

states that if certain board conditions are encountered on the player’s turn, an X should be
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placed in the square tested by the first is -em p ty  predicate.

For Figure 3.2 and all subsequent grammars, non-terminal symbols are shown in brack­

ets, while terminal symbols are in boldface. Each integer to the left of a rule is a p roduction  

label which serves to uniquely identify each production in the grammar. Production 1 is 

always assumed to be the start symbol expansion.

In order for the genetic algorithm to use a grammar effectively, each individual in the 

population must be accompanied by a derivation trace:

Definition 3.1 A derivation  trace  X  =  xiX2..xn has the following syntax:

<derivation trace> —*•10 
<derivation trace> —► 1 <subtrace series> 0 

<subtrace series> —*■ <subtrace series> <derivation subtrace>
<subtrace series > —*• <derivation subtrace>

<derivation subtrace> —► <production label> 0 
<derivation subtrace> —* <production label> <subtrace series> 0 

<production label> —► positive integer

Each trace is therefore represented as a list of integers corresponding to the labels of the 

productions which were used when generating a rule. This list is additionally annotated 

by zeros to mark the completed expansion of each production during a  leftmost derivation 

through the grammar. Each production therefore contributes two pieces of information to

let Rule  =  left-hand side of production 1
let Trace = Rule
repeat

let L  =  left-most non-terminal in Rule
let P  =  arbitrarily selected label of a  production with left-hand side L 
let R  =  right-hand side of production P  
let 5  =  SiS2—sn be the non-terminals in R  from left to right 
let R ule  =  Rule  with L  replaced by R  
let Trace = Trace with L  replaced by the string P s is 2—sn0 

until no non-terminals in Rule

Figure 3.3: Rule and Derivation Trace Creation
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the trace - a unique integer label marking its application and a  zero marking its completion. 

As will be seen, this zero-embedded representation allows the genetic operators to create 

new, syntactically correct rules while preserving the “building block” nature of the GA 

search.

rule derivation trace

<rule> <rule>
(if <condition> 

(put-X)) 1 <condition> 0

(if(and <statement> 
<expression>) 

( put-X))
1 3 <statement> <expression> 0 0

( if ( and ( is-empty <square>) 
<expression>

( put-X))
1 3 6 <square> 0 <expression> 0 0

( if ( and ( is-empty <position>) 
<expression>) 

(put-X))
13  612 <position> 0 0 <expression> 0 0

( if ( and ( is-empty middle-right)
<expression>)

(put-X))
1 3 6 1 2 1 8 0  0 0 <expression> 0 0

( if ( and ( is-empty middle-right)
( <predicate> <square>)) 

(put-X))
1 3 6 1 2 1 8 0 0 0 7  <predicate> <square> 0 0 0

( if ( and ( is-empty middle-right)
( <attribute> <square>)) 

(put-X))
1 3 6 1 2 1 8 0 0 0 7  <attribute> <square> 00  0

( if ( and ( is-empty middle-right) 
(is-0 <square>)) 

(put-X))
1 3 6 1 2 1 8  0 0 0 7 8 1 0  0 0  <square> 0 0 0

( if ( and ( is-empty middle-right) 
( is-0 <position>))

( put-X))
1 3 61218  0 0 0 7 810 0 012 <position> 0 0 0 0

( if ( and ( is-empty middle-right) 
( is-0 middle-left))

( put-X))
1 3 6 1 2 1 8  0 0 0 7 8 1 0  0 0 1 2 1 6  0 0 0 0 0

Figure 3.4: Derivation of a Sample Rule and Trace
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Every rule and its corresponding trace are initially constructed following the algorithm 

presented in Figure 3.3. Each rule is initially set to the right-hand side of production 1. 

The left-most non-terminal symbol L in the rule is then replaced by the right-hand side of 

an arbitrarily selected production whose left-hand side matches L. This process continues 

until all non-terminal symbols have been removed from the rule.

The corresponding derivation trace is constructed in a similar manner; however, each L 

is replaced by a list containing only the non-terminal symbols contained in the expansion. 

This list is additionally headed by the label of the selected production, and is delimited by

Chromosome 
genotype phenotype

derivation trace production rule

1 4 6 12  16  0 0 0 
7 8 9 0 0  1 2  15  0 0 0  
7 8  10  0 0  12  19 0 0 0 0 0

( if ( and ( is-empty middle-left) 
( is-X top-right)
( is-0 bottom-left)) 

(put-X ))

1 2 6  12  17 0 0 0 0 0
( if ( is-empty middle-center) 

(put-X ))

1 5 6 12 21  0 0 0 
7 8 9 0 0  12  19  0 0 0  
7 8 1 0  0 0 12  13 0 0 0 
7 8  1 1  0 0  12  2 0  0 0 0 0 0

( if ( and ( is-empty bottom-right)
( is-X bottom-left)
( is-0  top-left)
( is-empty bottom-center) )  

(put-X ))

1 3 6 12  18 0 0 0 
7 8  1 0  0 0  12  16  0 0 0 0 0

( if ( and ( is-empty middle-right) 
( is-0  middle-left))

( put-X))

Figure 3.5: Sample Population of Tic-Tac-Toe Rules
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a zero expansion marker. Figure 3.4 illustrates the creation of an arbitrary rule from the 

above grammar, as well as the construction of its corresponding derivation trace. Figure 3.5 

shows one possible population of rules arbitrarily derived from the Tic-Tac-Toe grammar.

At first glance, the derivation of rules from a problem-specific grammar might seem 

to place an added burden on the genetic algorithm. In effect, however, traditional GAs 

must perform similar tasks in order to access valid population structures. The if-then 

rules created by the Tic-Tac-Toe grammar directly correspond to population phenotypes. 

Genotypes are the derivation traces describing how each phenotype was uniquely generated. 

In other words, genotypes are obtained from phenotypes during rule creation.

Traditional genetic algorithms, on the other hand, use simple bit-strings as genotypes. 

These strings must be decoded by a  fitness function in order to access problem parameters. 

In other words, phenotypes are obtained from genotypes during rule evaluation. In both 

cases, translation between population phenotypes and genotypes is necessary. The only 

difference lies in when and how this translation occurs.

For example, the rules derived from the Tic-Tac-Toe grammar of Figure 3.2 can also be 

represented in binary. Figure 3.6 shows how an 18-bit string could be used as the genotype

top center middle left middle right bottom center

0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0T r r r r
top left top right middle center bottom left bottom right

00 ignore
01 empty
10 0
11 X

Figure 3.6: Binary Encoding For Tic-Tac-Toe Rules
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for the first member of the rule population. Every board position is described by two bits 

which state whether the square contains an X, a 0  or is empty. Ignore simply means that no 

information about that square is required by the rule. A fitness function for such bit-strings 

would be required to translate this genotype before game board evaluation. As will be 

shown in Chapter 4.4, it is important to note that most grammar-derived rules cannot be 

effectively represented in binary form.

3.2.2 R ule Crossover

As explained in Chapter 2, the standard crossover operator functions by exchanging genetic 

material between two individuals. In traditional GAs, a position or locus is used to deter­

mine how much information each parent passes on to  its offspring. The genes before this 

locus in the first parent are combined with the genes after this locus in the second in order 

to create a new population member.

As shown in Figure 3.7, a modified version of this operation is needed to perform

Crossover of Parents X  and y  to Produce Offspring X ' and y '

let X  =  derivation trace of first parent
let y  =  derivation trace of second parent
let Pc =  arbitrarily  selected member of I x y  — TLSg
le t i =  index of arbitrarily  selected occurrence of Pc in X
let j  =  index of arbitrarily  selected occurrence of Pc in 3̂
let S x  — derivation subtrace headed by Pc a t index i
let S y  =  derivation subtrace headed by Pc a t index j
le t X  =  child of X  w ith S x  replaced by S y
le t y  =  child of y  with Sy  replaced by S x

Figure 3.7: Rule Crossover Algorithm

crossover on grammar-based rules. The first step in this process is to determine the in­

tersection of the parents’ derivation traces.
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D efinition 3.2 Given a derivation trace X , the p ro d uction  label set L x is defined as 

{y | 3z [X =  xi..x{..xn and y =  x,]}. The in te rsec tio n  o f derivation  traces X  and y  is 

then equivalent to the set I x y  =  Lx  n L y .

Since zero is only a marker and does not label any production, Ix y  is equivalent to the set 

of all non-zero elements common to both traces.

Set difference is then performed between I x y  and a grammar-specific Terminal Label

Set.

D efinition  3.3 The Term inal Label S e t of a grammar G is the set TLSg of labels of 

productions of the form Pt- —► siS2..sn, such that every s,- is a terminal symbol.

Rule 1

( if ( and ( is-empty middle-left) 
(is-X top-right)
( is-0 bottom-left)) 

(put-X))

1 4 6 12 16 0 0 0
7 8 9 0 0 12 15 0 0 0
7 8 10 0 0 12 19 0 0 0 0 0

Rule 3 1 ,3 =
1 6 7 8 9 10 12 19

( if ( and ( is-empty bottom-right)
( is-X bottom-left)
( is-0 top-left)
( is-empty bottom-center)) 

(put-X))

1 5 6 12 21 0 0 0 
7 8 9 0 0  12 19 0 0 0  
7 8 10 0 0 12 13 0 0 0 
78  11 0 0  12 20 0 0 0 0 0

Pc in Ii3- tls = 1 6 7 8 12

Figure 3.8: The Selection of the Crossover Production Label
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The result of this operation is the set of all shared labels to productions whose expansions 

contain at least one non-terminal symbol. The rationale behind the elimination of TLSq 

productions is explained below. One member of I x y  — TLSq is then chosen as the crossover 

production label

D efinition 3.4 Given traces X  and y  with intersection Ix y , the crossover p roduction  

label is an arbitrarily selected production label Pc E I x y  — TLSg

Figure 3.8 shows the method by which the crossover production label is selected in greater 

detail. Note tha t for non-trivial grammars Pc is guaranteed to be non-empty, since all 

traces must contain the first production of the grammar.

In many cases, several instances of the label Pc can be found in a parent trace. For

derivation trace 1

1 4 6 12 16 0 0 0 
-  7 8 9 0 0 12 15 0 0 0

7 8  10 0 0  12 19 0 0 0 0 0

1 2 3 2 1 2 3 2 1 0

:- >  [7 8 9 0 0 12  15  0 0 0
subtrace for crossover

derivation trace 3

1 5 6 12 21 0 0 0
7 8 9 0 0  12 19 0 0 0  

- 7 8 10 0 0 12 13 0 0 0
7 8  11 0 0  12 20 0 0 0 0 0

> 7 8 10  0 0 12 13 0 0 0
subtrace for crossover

Figure 3.9: Determination of Crossover Subtraces
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example, the labels 7, 8 and 12 occur many times in the traces of both Rule 1 and Rule 3. 

Therefore, it is necessary to determine the trace loci for crossover.

Definition 3.5 Given traces X  = X\X2 - x n and y  =  yiy2"lfm with crossover production 

label Pc, i and j  are trace loci for crossover iff 1 < i < n and 1 < j  < m and

Xi = Vj =  Pc-

Unlike traditional crossover, the trace locus is not used to split rules apart in order to 

exchange “before” and “after” pairs. Such a method would not ensure that syntactically 

valid traces would be generated. Instead, the derivation traces of both rules are examined 

in order to find derivation subtraces.

Definition 3.6 A derivation subtrace is a contiguous subsequence S  = xqxc+i ~X[ndex-i 

of X  = x\X 2 ..xn, determined by the following algorithm:

let Parity  =  0
let Index  =  locus C  in X  =  i x i 2. . i n 
repeat

if Ztndex > 0
let Parity = Parity  +  1

else
let Parity  =  Parity  — 1 

let In d e x  =  Index  +  1 
until Parity  =  0 
let S = XcXc+l-XIndex-1

Beginning with locus C, the derivation trace is searched from left to right until the 

number of zero and non-zero elements examined is equal. This section of the trace represents 

a parsed subtree headed by the selected trace locus. Assuming label 7 was chosen as the 

production locus, Figure 3.9 shows how the derivation subtraces for crossover can be found 

by parity count.
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As depicted in Figure 3.10, crossover subtraces are then exchanged between the parents

( if ( and ( is-empty middle-left) 
(is-X top-right) 
( is-0 bottom-left)) 

(put-X))

R l l l C  1  ( if ( and ( is-empty middle-left)
(is-0 top-left) 
( is-0 bottom-left)) 

(put-X))

1 4 6 12 16 0 0 0 
7  8 9 0 0  1 2  1 5  0  0  0 .............
7 8 10 0 0 12 19 0 0 0 0 0

1 4 6 12 16 0 0 0
- > 7  8  1 0  0 0 1 2  1 3  0 0 0

7 8 10 0 0 12 19 0 0 0 0 0

r
1 5 6 12 21 0 0 0 A 1 5 6 12 21 0 0 0

7 8 9 0 0 12 19 0 0 0 /  \ 7 8 9 0 0 12 19 0 0 0
7 8 1 0  0  0 1 2  1 3  0 0 0 .......... J L- > 7  8  9 0 0  1 2  1 5  0  0 0
7 8 11 0 0 12 20 0 0 0 0 0 7 8 11 0 0 12 20 0 0 0 0 0i

( if ( and ( is-empty bottom-right) 
(is-X bottom-left) 
(is-0 top-left) 
( is-empty bottom-center)) 

(put-X)) Rule 3

( if ( and ( is-empty bottom-right) 
(is-X bottom-left) 
(is-X top-right) 
( is-empty bottom-center)) 

(put-X))

Figure 3.10: Crossover between Grammar-Based Rules

in order to form two new rules. Since this modified crossover process permits an exchange of 

data only between subtrees with common root elements, syntactically valid rules will always 

be generated. Although some computation time is required to find elements common to both 

parents, new rules do not have to be parsed in the grammar. New traces are automatically 

generated through the crossover operator, and it is then a simple matter to construct the 

corresponding rule.

Since productions in TLSq contain only terminal symbols, the subtraces which they
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head will always be of constant form. For example, every derivation subtrace headed by 

production label 9 will be of the form 9 0. Crossover between members of set TLSg would 

therefore lead to the non-productive exchange of identical subtrees.

It is for a similar reason that the Tic-Tac-Toe grammar contains such transition struc­

tures as

7: <exp> — ( <predicate> <square> )
8: <predicate> -* <attribute>
9: < a ttr ib u te> is-X

10: < attr ib u te> -♦ is-O
11: < attr ib u te> -► is-em pty

At first glance, it might seem that production 8 above could eliminated, resulting in the 

production set

7: <exp> — * ( < attribute>  <square> )
8: < a ttr ib u te>  —► is-X  
9: < a ttr ib u te>  —► is-O 

10: < a ttr ib u te>  —► is-empty

The original production 8 is necessary, however, as it serves as a mechanism for choosing 

between three different production labels. Without this intermediate step, the crossover 

operator would be incapable of exchanging different < a t t r ib u te >  values. For example, 

two partial derivation subtraces from the revised grammar might be

7 8 0 <square> 0 
7 9 0 <square> 0

In the above example, the subtraces 8 0 and 9 0 could not be exchanged through crossover, 

since no common production locus exists. Crossover could only occur between entire sub­

traces, permanently linking all < a t t r ib u te >  and <square> values in production 7. 

Using the original production set, the corresponding partial subtraces would be
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7 8 9 0 0 <square> 0 
7 8 10 0 0 <square> 0

In this case, production 8 could be selected as the locus for crossover, and the two subtraces 

8 9 0 0 and 8 10 0 0 could be independently swapped. B ranch  p ro d u c tio n s  such as 8 are 

commonplace in many of the grammars presented in this paper.

3.2.3 R ule M utation

The crossover operator described above is sufficiently able to exchange information between 

existing rule structures in a grammar-based GA; crossover alone, however, cannot introduce 

new material into the system. As is the case with traditional GAs, a mutation operator is 

necessary to accomplish this task. Unlike these systems, though, occasionally miscopying 

a gene is not enough. Caxe must be taken to mutate a rule and still produce syntactically 

valid structures.

Figure 3.11 depicts the algorithm for performing mutation on grammar-derived rules.

Mutation of X  to Produce X'

l e t  X  =  d e r i v a t i o n  t r a c e  o f  o r ig in a l  r u l e

l e t  Pm =  a r b i t r a r i l y  s e l e c t e d  m e m b e r  o f  Lx — TLSq
l e t  i =  i n d e x  o f  a r b i t r a r i l y  s e le c te d  o c c u r r e n c e  o f  Pm  i n  X
l e t  Sx  =  d e r i v a t i o n  s u b t r a c e  h e a d e d  b y  Pm a t  i n d e x  i
l e t  Sm =  a r b i t r a r i l y  g e n e r a t e d  d e r i v a t i o n  s u b t r a c e  h e a d e d  b y  Pm
l e t  X' =  m u t a t e d  X  w i t h  Sx  r e p l a c e d  b y  Sm

Figure 3.11: Rule Mutation Algorithm

First, the derivation trace is examined in order to find the trace’s production label set Lx- 

As with crossover, set difference is then performed between L x  and TISg - The result is the

set of all labels to productions in the rule’s derivation whose expansion contains at least

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. RULE REPRESENTATION  37

one non-terminal symbol. One member of L x  — TLSg is then selected as the mutation 

production label.

D efinition 3.7 Given trace X  with production label set L x , the m u ta tio n  p roduction  

label is an arbitrarily selected production label Pm  6 L x  — TLSg -

Figure 3.12 shows this calculation in greater detail for Rule 4 in the example population.

Rule 4

( if ( and ( is-empty middle-right) 
( is-0 middle-left)) 

(put-X))

1 3 6 12 18 0 0 07 8 10 0 0 12 16 0 0 0 0 0

U =

PM in h r  TLS0=  l i  3 « 7 s 1 2 )

Figure 3.12: Selection of the Production Locus for Mutation

As a final step, the trace locus for mutation must be determined for the rule which is to 

be altered.

D efinition 3.8 Given trace X  = XiX2 -.xn and mutation production label Pm, i is the trace  

locus for m u ta tio n  iff 1 < i < n and x,- = Pm-

The derivation subtrace for mutation can then be determined using the parity calculation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. RULE REPRESENTATION 38

derivation trace 4

1 3  6 1 2  1 8  0 0 0
7 8 1 0  0 0 1 2  1 6  0

11
0 0 0 0

1 2 1 0

— > 12 16  0 0
subtrace for mutation

Figure 3.13: Determination of the Mutation Subtrace

algorithm presented in Definition 3.6. One possible mutation subtrace is presented in Figure 

3.13. In this example, label 12 serves as production locus.

Next, the mutation subexpression is removed from the trace. It is replaced by a new

( if ( and ( is-empty middle-right) Rulg 4 ( if ( and ( is-empty middle-right)
( is-0 middle-left)) ( is-0 bottom-middle))

(put-X)) ( put-X))

1 3 6 12 18 0 0 0 
7 8 10 0 0 12  1 6  0 0 0 0 0

1 3 6 12 18 0 0 0 
7 8 10 0 0 12  2 0  0 0 0 0 0

mutation 
rule trace

<square> «

<position> 12 * 0

bottom-middle 12 20 0 0

Figure 3.14: Mutation of a Grammar-Based Rule

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. RULE REPRESENTATION  39

subtrace arbitrarily created from the grammar using the mutation locus as the starting 

production. Figure 3.14 shows the mutation of Rule 4 from the sample population. It is 

important to note that mutation does not automatically guarantee that an alteration will be 

made to an individual rule. Because the replacement subtrace is arbitrarily generated, it is 

possible that all selected productions will be identical to those of the original subtrace. For 

this reason, the rate at which this operator is applied to population members is generally 

higher than that of its traditional counterpart. As with crossover, members of TLSg are 

excluded from Pm  selection because the subtraces they head are always a constant structure. 

Therefore, a “random” derivation headed by a TLSg production would always be identical 

to the pre-mutated subtrace.

3.3 GERDS

As part of the research presented in this dissertation, the GERDS (GEnetic Rule Discovery 

System) package was developed to execute the grammar-based search process described in 

the previous section. GERDS was implemented in modular form using Common Lisp[240]. 

A general overview of the GERDS algorithm is presented in Figure 3.15. As can be seen, 

the design of the system is quite similar to that of the traditional genetic algorithm depicted 

in Figure 2.1.

The first step undertaken by GERDS is to load a problem-specific E x p e r im e n t  F ile  

into the system. This file sets the values for global variables such as the crossover and 

mutation rates. It also defines the location of the four other external files used by the 

system. Figure 3.16 lists all GERDS variables and their default values. These values can 

be redefined in the EXPERIMENT F ile  using the Lisp setq command. For example, in order 

to change the population size variable from its default value to 150, the line
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GERDS

repeat
apply fitness function-^

Generation= Generation+1

until G enerations Max

reproduction

crossover

create-popuiation

create-genotype
statistics

mutation

process-grammar
read-grammar

create-phenotype

modify-grammar

parity-count

Fitness
File

Grammar
File

Experiment
File

Training
File

Output
File

Figure 3.15: Overview of the GERDS algorithm

(setq *population* 150) 

should appear somewhere in the file.

Next, the read-training module loads a set of example cases from T r a in in g  F i le .  This 

data is then stored internally in < t r a i n - l i s t > ,  which can be accessed by the fitness 

function to test population members during classification and machine learning experiments. 

In the default case that * tr a in - f  i le *  is n i l ,  the read-training module is not executed.

The process-grammar module then constructs an internal grammar for the experiment.
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DESCRIPTION GLOBAL DEFAULT
the number of "fittest” individuals to display 

to output file after each generation ♦best-display* 5

the percent chance of crossover taking 
place between two individuals ♦crossover-rate* 0 .6

the name and path of the file where the function 
"fitness” can be found ♦fitness-file* "fitness-function.o"

the total number of generations to evaluate 
during the course of the experiment ♦generations* 100

the name and path of the file where the grammar 
for creating population members can be found ♦grammar-file* "grammar.lsp"

the percent chance of mutation affecting 
each allele of an individual ♦mutation-rate* 0.02

the name and path of the file where statistical 
information on performance will be sent *output-file* "output.lsp"

the number of "fittest" individuals which automatically 
survive into the next generation ♦overlap* 0

the total number of individuals contained 
in the population for this experiment ♦population* 100

the name and p th  of the file where example data 
can be found (if required by the fitness function) ♦train-file* n il

Figure 3.16: Global Parameters used by the GERDS algorithm

It calls read-grammar, which inputs the set of productions listed in G ram m ar F i le .  This 

information is then passed to modify-grammar, which transforms these rules so that table 

lookup can be used when referencing grammar symbols. Figure 3.17 shows an example 

G ra m m a r F i l e  describing the Tic-Tac-Toe grammar used in earlier examples. Each tran­

sition rule in this file is represented as a list whose first element is the left-hand side of the 

production. For example,

( CONDITION ( AND STATEMENT EXPRESSION ) )
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GRAMMAR FOB

(CROSSOVER RULE STATEMENT EXPRESSION PREDICATE ATTRIBUTE)
( MUTATE RULE STATEMENT EXPRESSION PREDICATE ATTRIBUTE)

( RULE ( IF CONDITION (PUT-X)))
(CONDITION STATEMENT)
(CONDITION (AND STATEMENT EXPRESSION))
( CONDITION ( AND STATEMENT EXPRESSION EXPRESSION))
( CONDITION (AND STATEMENT EXPRESSION EXPRESSION EXPRESSION)) 
( STATEMENT ( IS-EMPTY SQUARE))
( EXPRESSION ( PREDICATE SQUARE))
(PREDICATE ATTRIBUTE)
( ATTRIBUTE IS-X)
(ATTRIBUTE IS-O)
(ATTRIBUTE IS-EMPTY)
(SQUARE POSITION)
(POSITION TOP-LEFT)
(POSITION TOP-CENTER)
(POSITION TOP-RIGHT)
(POSITION MIDDLE-LEFT)
( POSITION MIDDLE-CENTER)
(POSITION MIDDLE-RIGHT)
(POSITION BOTTOM-LEFT)
(POSITION BOTTOM-CENTER)
( POSITION BOTTOM-RIGHT)

Figure 3.17: Sample Grammar File Processed by GERDS

corresponds to the production

<condition> —► ( and <statem ent> < expression> )

The only exception to this interpretation of G ram m ar F ile  entries occurs if either the word 

CROSSOVER or MUTATE appears as the first element of a list. In this case, GERDS treats 

the expression as a specification list defining the symbols allowed to serve as loci for the 

operator in question. In other words, the list

( CROSSOVER RULE STATEMENT EXPRESSION PREDICATE ATTRIBUTE )
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would restrict crossover to accept as a locus only those productions whose left-hand sides 

began with one of the five symbols RULE, STATEMENT, EXPRESSION, PREDICATE 

or ATTRIBUTE. Specification lists are optional, and as will be seen in later chapters, are 

used only rarely as a method of encapsulating rule subexpressions.

The next step of the algorithm is create-population, which uses the problem grammar to 

generate new population members. It first makes a call to create-genotype, which arbitrarily 

constructs a derivation trace beginning with a selected production locus. In the case of 

create-popuiation, this locus is always 1. The create-phenotype module, in turn, constructs 

the rule structure corresponding to this new trace.

GERDS then enters a relatively straight-forward execution loop which closely follows 

the traditional GA paradigm. First, a fitness function is applied to the population in order 

to determine individual rule merit. F itness F ile  contains the code for the user-defined 

function named “fitness” for each experiment. A default function is also provided, which 

simply uses the Lisp eval statement in determining a phenotype’s value. The copy-population 

module then saves this evaluated population, while statistics sends information about each 

generation to the selected O u tp u t F ile .

Finally, the three basic genetic operators are applied to the population. The reproduction 

module copies structures chosen by roulette wheel selection into the next generation. The 

recombination operators crossover and mutation are then applied. Both operators make 

use of parity-count, which returns the subtrace beginning with a selected production locus. 

The mutation module also applies create-genotype and create-phenotype in order to generate 

new mutated subrules. After Max generations have been created and evaluated, program 

execution halts.

A complete listing of the GERDS package is presented in Appendix A to this dissertation.
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3.4 R elated  Work
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3.4.1 Cram er

Cramer’s[50] work marked an important turning point in the development of rule-based ge­

netic algorithms. Although still using a binary representation scheme, Cramer interpreted 

these strings to be integers in a simple “number-string” language for generating short se­

quential computer functions. This technique was used successfully to produce two-input, 

single-output multiplication functions.

JB, the language Cramer first devised, was a variation of the algorithmic language PL, 

and consisted of the operator set shown in Figure 3.18. Programs in JB were simple lists 

of integers, divided into statements of length three. Extra integers at the ends of :ZERO 

and :INC statements were simply ignored during program execution. The first statement in 

a JB program was defined as the main statement. Subsequent operations were known as 

auxiliary statements. For example, Figure 3.19 depicts the phenotype for the JB function 

to calculate v5 = v3 * u4.

Despite the fact that Cramer devised a way to encode arbitrary computer programs into

INDEX OPERATOR FUNCTION

0 ( :BL0CK statement statement) performs first statement before second

1 ( :L00P variable statement) performs statement variable times

2 ( :SET variable variable) sets first variable to second variable

3 ( :ZER0 variable) sets variable to zero

4 ( :INC variable) adds one to variable

Figure 3.18: Cramer’s JB Operator Set
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( 0 0 1 3 5 8 1 3 2 1 4 3 4 5 9 ) 

u PROGRAM

main statement (001) ( :BL0CK sO s i )

auxiliary statement 0 (358) (2ER0v5)

auxiliary statement 1 (132) (:L00Pv3s2)

auxiliary statement 2 (143) (:LOOPv4s3)

auxiliary statement 3 (459) (:INCv5)

Figure 3.19: A Sample JB Program for Multiplication

a binary format, there were two major problems with the straight-forward use of the JB 

language. First of all, since the semantic positioning of each integer was extremely sensitive 

to change, mutation could easily destroy an entire program. Second, JB programs were 

strongly epistatic in nature, and therefore not well-suited to crossover. In other words, the 

standard genetic operators would not work on JB programs.

In order to overcome this obstacle, Cramer created TB , a modified version of the JB 

language, in order to take advantage of the “implicit tree-like nature or JB programs”. 

In TB, auxiliary statements were no longer used. Instead, when a statement was initially 

generated, all other required statements were immediately created and recursively expanded. 

The sample multiplication program from above would therefore have the form

( 0 ( 3 5 ) ( 1 3 ( 1 4 ( 4 5 ) ) ) )

in TB.

Mutation in Cramer’s TB-language system was severely limited. Only statements lo­

cated at the leaves of program trees could be altered and still preserve TB structure. 

Therefore, mutation was restricted to the :INC, :SET and :ZERO operators. Crossover
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was similarly limited. Single statements could not be exchanged, as subtrees were treated 

as indivisible units. Despite these limitations and the narrow applicability of the representa­

tion scheme, Cramer’s work with number-string programs was an important early attempt 

at using the GA paradigm on higher-order structures such as computer programs.

3.4.2 Bickel and Bickel

As part of their investigation in using genetic techniques to  create expert systems, Bickel 

and Bickel[24] developed the GENES program. Each member of the GENES population 

was an expert, a linear list of simple condition-action rules. The number and length of these 

rules were randomly determined using several initializing parameters. One possible rule in 

a GENES expert might be

(IF (NOT ((Cl =  2) AND (C4 < 3)) OR (C2 >  12)) THEN Al)

Mutation was performed on a single rule within each expert, and required the use of auxiliary 

tables of information about operators, operands and conditions and actions. Via table 

lookup, the relational operator OR could be mutated to an AND, the boolean operator > 

could be changed to <, or an operand such as 32 could be changed to 212. The mutation 

operator in GENES also allowed for the removal or addition of a rule from an individual 

expert.

Bickel and Bickel also used a simple inversion operator. It functioned by randomly 

choosing two points along the length of an expert rule set. The list of rules between these 

two points were then spliced out of the rule list, reversed, and finally re-inserted. Figure 

3.20 shows the effect of the inversion operator on an arbitrary rule set. Since using inversion 

changed the order of rule evaluation within a given expert, GENES was able to alter the 

priority associated with each decision rule.
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rule F

rule Frule C

rule D

rule C

rule A rule D

rule D

rule A rule C

rule 6

rule 6

rule Brule E

rule E

rule B rule E

rule B

Figure 3.20: The Inversion Operator in GENES

In Bickel and Bickel’s system, crossover was allowed only at points between rules. Since 

the length of the rule sets varied, one locus for crossover was selected by taking the modulus 

of the shorter expert, and the other by taking the modulus of the longer. If both loci turned 

out to be less than the length of the shorter expert, then a double crossover occurred. As 

depicted in Figure 3.21, double crossover operated by exchanging the sublist of rules from 

both experts found between these two loci, thereby allowing both experts to retain their 

original size. If only one locus was less than the length of the shorter rule list, single 

crossover exchanged only the tail end of the experts.

The GENES model was tested on a small scale with some success; however, the multi­

ple auxiliary tables required by GENES in order to perform mutation on individual rules 

severely limited the generality of this approach. It also restricted the size and scope of prob-
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rule Frule C rule Drule B rule Erule A
Expert A

rule 3rule 1 rule 4 rule 5rule 2

Expert B

rule Frule 4 rule Erule A rule 2

Expert A’

rule Crule 1 rule B rule D rule 5

Expert B*

Figure 3.21: The Double Crossover Operator in GENES

lems which could be addressed by the system. In addition, the inability of the crossover 

operator to exchange information between individual rules resulted in each complex rule 

structure being treated as a simple gene in an “expert” chromosome.

3.4.3 Fujiki and Dickinson

Fujiki and Dickinson[83] explored the use of genetic algorithms for discovering Lisp source 

code for solving the Prisoner’s Dilemma problem. The programs generated by their study 

were based on sets of productions for generating Lisp cond expressions like the one shown 

in Figure 3.22 Using this grammar, Fujiki and Dickinson’s system randomly created a 

population of cond expressions. Productions were separated into two categories: those that
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index —*  (cond (t action)) 
index —> (cond index-cond-term (t action)) 

index-cond-tenn —> (logical action) 
index-cond-term —* (logical action) index-cond-term 

action —> 1 
action —> 2 
logical —* (not logical) 
logical —> (1-op logical logical) 
logical —» (equal nround 1) 
logical —> (equal nround 10) 
logical —> (equal op-play action) 
logical —> (equal op2-play action) 
logical - >  if-any 

1-op —* and 
1-op —> or 

if-any —> past-def-op 
if-any —> past-coop-op

Figure 3.22: Fujiki and Dickinson’s Grammar for the Prisoner’s Dilemma

had only terminal symbols on their right-hand side, and those that had one or more variable 

symbols.

The length of the generated cond was controlled by a selection algorithm in which the 

probability of choosing productions from the terminal symbol category was increased as the 

length of the expression grew. Each condition-action pair in the cond was considered to 

be one individual piece of information to be used by their GA. These were never examined 

by recombination operators. Production sets were used only for the creation of the initial 

population.

Fujiki and Dickinson’s crossover operator worked by dividing the parent cond expressions 

at two random points between condition-action pairs. New conds were then created by 

combining the first part of one expression with the second part of the other expression. In
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order to ensure that the final condition-action pair at the end of the cond contained the 

only condition in the expression to always evaluate true, the last member of the list could 

not be exchanged.

The mutation operator worked by randomly removing one condition-action pair from 

an expression and replacing it with a  new pair created by a separate production set. As 

with crossover, mutation of the final cond element was restricted. An inversion operator 

was also used by Fujiki and Dickinson which reversed the order of every condition-action 

pair in the expression excepting the last.

Although Fujiki and Dickinson applied a grammar to the task of genetic search, the 

system offered very little overall structure to the generated rules. The size and shape of 

the generated expressions were instead controlled by a problem-specific external selection 

algorithm. In addition, the gram m ar was used only to generate complete condition-action 

pairs. Rules were therefore treated by necessity as single genes. As a  result, the applicability 

of the crossover and mutation operators was severely curtailed.

3.4.4 G refenstette

Grefenstette[108, 110] and others investigated the use of genetic algorithms for solving 

sequential decision tasks, processes in which a decision-making agent iteratively interacts 

with a discrete-time dynamic system. Such a system moves from state to state as a result of 

performing one of a finite number of actions. These actions are in turn selected by applying 

the agent’s decision making rules.

For their research, Grefenstette, Ramsey and Schultz developed a specialized genetic 

algorithm called SAMUEL and applied it to the sequential decision task known as the 

Evasive Maneuvers (EM) problem. The tactical goal of the EM problem was to maneuver
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a plane in such a way as to avoid its being hit by an approaching missile. The missile was 

able to track the motion of the plane and steer toward its anticipated course. The speed of 

the missile, however, decreased for each course correction undertaken. If the missile speed 

dropped below a certain threshold, the plane escaped destruction.

Unlike traditional genetic algorithms, the SAMUEL system was designed to operate on 

a high-level representation. Each rule in the system had the form

if (and ci C2 .. cn) then (and ai 02 .. a m ) 

where each c,- was a condition and each aj an action. Conditions for the EM problem were 

based upon the states of six sensors which gathered information about the current tactical 

situation. These sensors and the information they provided are listed in Figure 3.23. The

SENSOR MEANING RANGE UNIT TYPE
last-turn current turning 

rate of plane -180 to 180 in linear
time tiae since detection 

of Bissile 0 to 19 1 linear
range missile's current distance 

from plane 0 to 1500 100 linear
bearing direction from plane 

to missile 1 to 12 1 cyclic
heading missile's direction 

relative to plane 0 to 350 10 cyclic
speed missile's current 

speed 0 to 1000 50 linear
Figure 3.23: Sensors used by SAMUEL for the EM  Problem

range column shows the extreme upper and lower sensor settings, while unit refers to the 

separation between discrete values within each range. For example, the sensor last-turn
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could take on any of the nine values in [—180, —135, —90, —45,0,45,90,135,180].

The form of each condition depended on the type of sensor it contained. Linear sensors 

took on linearly ordered numeric values such as time. Conditions for this sensor type 

specified legal upper and lower bounds for the sensor value. The condition

(speed 100 230)

would therefore match sensor values in which 100 < speed < 230. Cyclic sensors, on the 

other hand, took on cyclicly ordered numeric values such as bearing. Since the next “higher” 

value of bearing 12 was bearing 1, there were no absolute endpoints. Therefore, conditions 

for cyclic sensors could take on any legal values. Thus, the condition

(heading 340 30) 

would match any of the sensors values in [340,350,0,10,20,30].

Each action of an EM rule consisted of a single control variable turn, which ranged 

in value from -180 to 180 in increments of 45. Its application led to adjustments in the 

course of the airplane during the next time step or episode. An EM problem was divided 

into twenty episodes that began when a missile was detected and prematurely ended when 

either the plane was hit or the missile was evaded. The fitness function used by the EM 

problem was

1000 if plane escapes
/ .

■ { lOOt if plane is hit at time t

The aim of the SAMUEL system was the discovery of a  tactical plan, a complete set of 

decision rules for the EM problem. For this reason, SAMUEL adopted a different approach 

to genetic search, applying recombination operators at the level of the tactical plan rather 

than the individual rule. Initially, each tactical plan in the population consisted of nine 

maximally general rules in which every sensor condition contained both the extreme upper 

and lower sensor values. A maximally general rule could therefore be interpreted as
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for any sensor settings, turn Y  

where Y  was one of the nine possible values for the turn control variable.

In order to create plausible new rules from these initial tactical plans, SAMUEL used 

a genetic operator called specialize. It was invoked whenever a maximally general rule was 

fired leading to a  successful evasion, and there was still space in the tactical plan for an 

additional rule. By applying specialize, a new rule was created in which every condition 

was modified to cover only half the legal values for the sensor. The starting point to the 

condition subrange was calculated by finding the midpoint between the sensor state and its 

nearest extreme sensor value. Figure 3.24 shows the specialize operator in greater detail.

maximally general rule
i f  {and (last-turn -180 180)

(time 0 19)
(range 0 1500)
(bearing 1 12)
(heading 0 350)
(speed 0 1000)) then (turn 90) 

half distance from extreme interval start half start+ half

last-turn 90
time 4
range 600

bearing 3
heading 60
speed 700

(1 8 0 -9 0 )/2=45 90+45=135 -180 135-180=-45
(4 -0 ) /2=2 0+2=2 10 2+10=12

(6 0 0 -0 )/2=300 0+300=300 750 300+750=1050
(3 - 1 ) /2=1 1+1=2 6 2+6=8

(6 0 -0 ) /2=30 0+30=30 180 30+180=210
(1000-700)/2=150 1000-150=850 -500 850-500=350

rule after specialization
i f  (and (last-turn -45 135)

(time 2 12)
(range 300 1050)
(bearing 2 8)
(heading 30 210)
(speed 350 850)) then (turn 90)

Figure 3.24: SAMUEL’s specialization operator 

The sensor speed, for example, might have a value 700. The nearest extreme sensor
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value is the maximum of 1000. The halfway point between 1000 and 700 would therefore 

be 850, which would serve as the maximum bound on the new specialized condition. The 

minimum would be found by taking half of the speed sensor’s range (1000/2 = 500) and 

subtracting it from the halfway point, yielding the new specialized condition

(speed 350 850)

Each specialized rule was assumed to be plausible, since its action was known to be successful 

in at least one situation: the sensor states that triggered rule specialization.

Crossover in SAMUEL operated by assigning each rule from two parent tactical plans 

to one of two offspring plans. SAMUEL was able to examine traces of the parents’ previous 

performance when distributing rules to the children. Figure 3.25 shows two traces and the 

new tactical plans created through crossover. A sequence of rules in a parent trace which led 

to a successful missile evasion was treated as a unit whenever possible in order to increase 

the likelihood that productive behavior would be inherited. The crossover operator was 

restricted so that no plan received duplicate copies of a rule. In other words, if and 

R2,9 were identical rules, crossover would ensure that they were each distributed to different 

tactical plans.

SAMUEL’s final genetic operator, mutation, introduced a new rule to a tactical plan 

by making a random change to an existing one. For example, mutation might alter the 

condition (time 3 7) to (time 3 11) or it might change the action from (turn —90) to (turn 

45). The new value produced by mutation was chosen from the set of legal values for each 

sensor and control variable.

The SAMUEL program was highly adapted to problems involving discrete numeric 

values of limited range. In addition, the unique crossover and specialization operators were 

developed with the intent of “plan” discovery. Although it was successfully applied to the
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—  traces from tactical plan #1

HKi.sl (failure)

$ Ri,5 — —HRi . « N Ri,il (sucessi

Isucessl$ ^1,2 * ^1.3  ̂^1.9

* 1*1,7 1*1,4 1*1,3 —*  1*1,4 —*  1*1,5 (failure)

—  traces from tactical plan #2

* 1*2,1 — f̂^2,g |— f̂^gm—Ĥ 2r71—N^mI (sucess) 

(failure)'  ^2,8 * 1*2,1

* 1*2,7 * 1*2,2  ̂ 1*2,9

 ̂1*2,3 * 1*2,9 * 1*2.5

(failure)

(sucess)

new tactical plan #1

1*1,5 1*1,4 1*1,8

1*1,1 1*2,3 ^ 2.9

^ 2,5 1*1,7 1*2,2

new tactical plan #2

1*1,2 1*1,3 1*1,

1*2,1 1*2,4 1*2,8

1*2,7 1*2,4 1*1,4

Figure 3.25: Crossover between tactical plans in SAMUEL

EM problem with 90% accuracy, the domain-specific nature of the overall system severely 

limits the wide-spread application of the paradigm.

3.4.5 Koza

Koza’s[149, 152] work on genetic programming marked a significant advance in the applica­

tion of the genetic paradigm to higher representation schemes. In Koza’s work, each member 

of the population was a “program” which corresponded to a simple Lisp S-expression. This 

expression was constrained to contain only members of a set F oi functions. These functions
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in turn could operate only over members of a terminal set T  of constants and variables. 

The genetic programming methodology required that there be closure between the two sets 

F  and T; in other words, each function had to accept as an argument any value returned by 

any other function or terminal. The S-expressions contained in the initial population were 

randomly generated using members of F  and T. The structure and size of these programs 

were controlled by the system’s many variables and parameters.

Crossover, as well as the other recombination operators developed by Koza, functioned 

by treating each S-expression program as a tree structure. The first step in performing 

crossover was the selection of a random point within each of two parent programs. These 

points were heads of the two subtrees to be exchanged through crossover. For example, the 

S-expressions

(  OR (  NOT D l  ) (  AND DO D l )  )
(  OR (  OR D1 (  NOT DO ) )  (  AND ( NOT DO ) ( NOT Dl ) ) )

PARENT 1 PARENT 2

OR

NOT AND

DO Dl

OR

OR AND

Dl NOT NOT NOT

© © ©
Figure 3.26: Examples of Genetic Programs
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could be represented by the two program trees shown in Figure 3.26, where the expressions 

( NOT Dl ) and ( AND ( NOT DO ) ( NOT Dl ) ) have been selected as the points for

CHILD 1 CHILD 2

OR

ANDAND

DO DlNOT NOT

@  @

OR

NOTOR

Dl NOT

Figure 3.27: Crossover Between Genetic Programs

crossover. As depicted in Figure 3.27, these two subtrees were then exchanged between 

parent programs in order to produce the two new programs

(  OR (  AND ( NOT DO ) ( NOT Dl ) ) (  AND DO D l )  )
(  OR (  OR D l  (  NOT DO )  )  (  NOT Dl )  )

Because all members of an S-expression were restricted to returning values of the same type, 

crossover between trees always produced two legal genetic programs. As with the standard 

GA, the crossover operator, in conjunction with reproduction, was the workhorse of the 

search process.

Koza’s mutation operator functioned by arbitrarily selecting a random point in the S- 

expression tree. The entire subtree beginning at this node was then removed and replaced 

by a new subtree which was randomly generated using the same control parameters that
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AFTER MUTATIONBEFORE MUTATION

OROR

DO AND, DOAND

D l HOT DODO

Figure 3.28: The Mutation Operator in Koza’s Genetic Programming

guided the development of the initial population. Figure 3.28 depicts the mutation of the 

program

( OR ( AND Dl DO ) DO ) 

where Dl has been selected as the mutation point. This node is removed and then replaced 

by a new subtree ( NOT Dl ). Although the application of his mutation operator resulted 

in valid new programs, Koza very rarely included it as part of an experiment. This was 

because his crossover operator acting alone was capable of altering any node within the 

“free-form” genetic program tree.

Koza’s work also included a permutation operator which served to shuffle the positions 

of all children of a parent. As such, it shared a  similar function to the inversion opera­

tors discussed earlier. For many genetic programs such as the boolean function example, 

permutation of a tree would not result in a new program. However, for functions such as 

division, the importance of parameter ordering becomes apparent. Figure 3.29 shows the
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BEFORE
PERMUTATION

AFTER
PERMUTATION

Figure 3.29: The Permutation Operator in Koza’s Genetic Programming

permutation of the program tree A * B /  C, where the division operator has been chosen 

as the permutation point. The position of the child nodes B and C are then rearranged, 

resulting in the new program A * C /  B.

Due to the unconstrained shape of genetic program trees, Koza’s work required the 

application of an editing operator to simplify S-expressions. To perform editing, a set 

of rules was recursively applied to a program tree. This rule set contained both domain- 

independent and domain-specific simplification routines. Regardless of the domain to which 

the genetic programming paradigm was applied, a function containing only constants as 

subtrees could always be replaced by its functional evaluation. DeMorgan’s laws could be 

applied to simplify S-expressions in boolean domains, whereas expressions such as A*1 could 

be replaced by A in mathematical applications. The editing operator could be applied at 

any time during genetic programming evolution.

Koza successfully applied his genetic programming methodology to a wide variety of
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applications such as sequence induction and multiple symbolic regression. There are many 

domains, however, in which his paradigm would be unsuitable. The system was designed to 

operate only upon functional programs in the form of Lisp S-expressions. As demonstrated 

by the wide success of the traditional bitstring approach to GAs, not all structures well- 

suited to genetic search are self-evaluating.

Furthermore, the closure property of Fand T  required that all functions return the same 

type of values. There are many problems, however, which cannot be adequately described 

by only one data type. Special care had to be taken even when this was the case. For 

example, functions such as division and logarithm had to be “protected” over the range of 

integers so that the expressions A / 0 and log(—3) would return some integer value.

The non-structured form of the genetic program was another inherent source of difficulty. 

Many problem domains have structures which follow rigid guidelines where positioning of 

elements is important. In addition, genetic programming had an unfortunate tendency to 

find large “ugly” solutions containing redundant information. Although the application of 

the editing operator partially remedied this problem, it was extremely time-consuming and 

had to be tailor-made for each domain.

Perhaps most importantly, crossover between genetic programs worked against pop­

ulation convergence. In the traditional GA approach, when crossover is applied to two 

identical bitstrings, the resulting children are guaranteed to be copies of the parents. In this

manner, highly fit individuals propagate over the course of several generations. In genetic

programming, on the other hand, when two identical parents mated, two random subtrees 

were exchanged. For example, if crossover is performed between identical S-expressions

(  OR (  N O T  D l  )  (  AND DO D l )  )
(  OR (  NOT D l  )  (  AND DO D l )  )
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where ( NOT D 1) and DO have been selected as crossover points, the two new S-expressions

( OR DO ( AND DO Dl) )
( OR ( HOT D1 ) ( AND ( NOT Dl ) Dl) )

are created. Thus, unless the same nodes in both parents were selected as the locus, 

crossover between duplicate parents in genetic programming would result in entirely new S- 

expressions. The grammar-based methodology presented in this dissertation, on the other 

hand, imposes an underlying structure to rules in the search space and thereby fosters 

population convergence.
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Chapter 4

Rule and Bitstring Comparison

4.1 Syntactic R epresentation of Bitstrings

Throughout the previous discussions of Sections 2.1, 2.2 and 3.1, a 6-bit chromosome was 

used to represent integers in the interval [0,63]. Intuitively, each of these binary strings is 

a member of the language

£  =  (l +  0)6

As previously stated, the syntactic genetic algorithm is capable of generating any set of 

structures defined by an arbitrary language. As shown in Figure 4.1, it is therefore a

1 <bitstring> — A«shoV <locusl>
2 <locusl> — <gene> ACMCOsorHV

3 <locus2> — <gene> <locus3>
4 <locns3> —- <gene> <locus4>
5 <locus4> -* <gene> <locuaS>
6 <loeus5> — <gene>
7 <gene> -*■ <allele>
8 <allele> 0
9 <allele> — 1

Figure 4.1: 6-bit Binary String Grammar 

62
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relatively simple task to construct a grammar G describing members of B.

As an example of how G creates rules, consider S  =  001101 6 B. Under the binary

representation, string S  is equivalent to a chromosome with the genotype 001101 and the

phenotype thirteen. For the syntactic GA, string S  corresponds to a  rule with 001101 acting

as phenotype and the derivation trace

^ = 1 7 8 0 0 2 7 8 0 0 3 7 9 0 0 4 7 9
0 0 5 7 8 0 0 6 7 9 0 0 0 0 0 0 0 0

serving as genotype. The remaining 62 — 1 members of B can be generated from G in a 

similar manner.

4.1.1 Syntactic Em ulation of B inary Crossover

Binary crossover operates by exchanging all genes occurring after an arbitrarily selected 

crossover site in two parent strings. As stated in Section 2.2, for binary chromosomes of 

length / there exist / — 1 different interchange sites. Figure 4.2 depicts the five possible

0 0 1 1 0 1 0 o\l 101

ooo 0 0 1 l\o 1 001 io\i
Figure 4.2: Possible Crossover Sites for Bitstring 001101

crossover loci (indicated by the “\ ” marks) for the 6-bit string 001101.

Rule crossover for the syntactic genetic algorithm, on the other hand, exchanges deriva­

tion subtraces headed by a “randomly” determined production common to both parents. 

Since the derivation trace of every rule derived from G contains exactly 18 productions, only 

six of which are members of the terminal label set TLSq of G, there exist twelve possible
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crossover sites in each rule: 1, 2, 3, 4, 5, 6, and the six instances of 7. Thus, rule crossover 

allows for a wider variety of genetic interchange than its binary counterpart. It is possible, 

however, to restrict the application of syntactic crossover by using a  specification list.

As detailed in Section 3.3, when a crossover specification list is associated with a  gram-

© ©

pc= 3 HI
0 0 1 1 0 1 0  0\1 1 0  1

© © © ©
El ©  © 0  ©  ©

EJ © ©

0 0 1 U 0  1

0  ©

0 © © 
0 © ©

0 © © 
Pc = 6  s  © ~ (S )

I I 
0 00 0 1  1 0 \1

0

X  = 1 7 8 0 0 2 7 8 0 0 3 7 9 0 0 4 7 9
0 0 5 7 8 0 0 6 7 9 0 0 0 0 0 0 0 0

Sc = { 2 3 4  5 6 }

Figure 4.3: Possible Crossover Sites for Rule 001101
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mar, the selection of a crossover production label Pc is limited to productions whose left- 

hand side appear in that list. Thus, if

Lc =  ( CROSSOVER LOCUSl L0CUS2 L0CUS3 L0CUS4 L0CUS5 ) 

is used as a crossover specification list for G , only members of the set

Sc =  {2 3 4 5 6}

can be chosen as the crossover production label. Since all elements of Sc appear exactly once 

in each derivation trace, five possible crossover subtraces exist for each rule. As illustrated 

in Figure 4.3, there is a  one-to-one correspondence between these derivation subtraces and 

the five crossover loci for the binary operator. Thus, the syntactic crossover of rules in G 

using specification list Lc is equivalent to binary crossover performed on 6-bit chromosomes.

4.1.2 Syntactic Em ulation o f Binary M utation

Binary mutation functions by changing the value of one or more genes along the length of the 

chromosome. In effect, this amounts to taking the complement of every bit with probability 

pm. Figure 4.4 depicts the six possible mutation loci (indicated by the surrounding

[0]0 1101 00110 1 ooCDioi

j oo i[Do i 001101 ooiiod

Figure 4.4: Possible Mutation Sites for Bitstring 001101

symbols) for the example chromosome 001101.

In contrast, syntactic mutation operates by first removing the derivation subtrace headed 

by a mutation production label Pm , and then replacing it with a newly constructed deriva­

tion subtrace headed by that same production. Rule mutation is applied with probability
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pm to every production in the derivation trace, with the exception of members of the ter­

minal label set. Since every rule in G has a derivation trace containing 18 productions, of 

which only six are members of TLSgi uP to twelve different Pm  may be mutated. As with 

syntactic crossover, however, this selection can be limited by using a specification list.

0  0  0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 7 8 0 0 2 7 8 0 0 3 7 9 0 0 4 7 9
0 0 5 7 8 0 0 6 7 9 0 0 0 0 0 0 0 0
19 20 21 22 23 24 25 26

Pm =
27 28

7
29 30 31 32 33 34 35 36

Figure 4.5: Possible Mutation Sites for Rule 001101
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Thus, if the mutation specification list

Lm =  ( MUTATION GENE ) 

is associated with grammar G, only members of the singleton set

Sm =  {7}

can be selected as a mutation production label. The derivation trace of every rule in G 

contains six instances of 7, each of which heads one of the two mutation subtraces

7 8 0 0 
7 9  0 0

corresponding to rule subexpressions 0 and 1, respectively. As depicted in Figure 4.5, there 

is a direct relationship between these derivation subtraces and the six potential mutation 

loci for the binary operator. Thus, the syntactic mutation of rules in G using specification 

list Lm is equivalent to the binary mutation of 6-bit chromosomes.

4.1.3 Syntactic Em ulation o f B inary R eproduction

Under roulette wheel selection, a binary chromosome Sj is copied into the subsequent gen­

eration with probability

E /(*)t=i

where /  is some fitness function and N  is the population size. The syntactic representation 

presented in the dissertation also uses roulete wheel selection, and therefore reproduces rule 

rj with probability

P(ri) -
E  / W
t=l
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4 .1 .4  E q u iv a len ce  o f  S y n ta c tic  a n d  B in a ry  R e p re s e n ta tio n

The ability of the syntactic genetic algorithm to represent a 6-bit binary string can easily 

be generalized to

O bservation  4.1 Any problem whose parameter set can be encoded by a binary GA into 

chromosomes of length L can also be expressed in a syntactic GA by rules derivable from a 

grammar G of the form

1: <bitstring> — <gene> <locusi>
2: <l0CUSi> <gene> <locus2>

L-l: <l0CUSL_2> _► <gene> <locusL_i>
L: <locusL_1> — <gene>
L+i: <gene> — <allele>
L+2: <allele> — ► 0
L+3: <allele> — 1

with a crossover specification list Gc = ( CROSSOVER LOCUSi LOCUS2 .. LOCUSl ) 

and a mutation specification list GM = ( MUTATE GENE ).

4.2 Binary Optim ization

As a simple example of binary GA optimization, consider the task of finding the greatest

x = 324 z = 73

y = -319

x2 + y2 +Figure 4.6: Encoding for Binary Optimization of f x,y,z
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functional value of the equation

fx,y,z = x 2 + y2 + z2

in the interval [—511,511] for the variables x, y and z. One possible binary encoding for this 

problem is shown in Figure 4.6. Each independent variable in this example is represented 

in sign-magnitude notation.

The syntactic GA presented in this dissertation can be used to construct corresponding

1 <bitstring> — <gene> <locusl>
2 <locusl> — ► <gene> <locus2>
3 <locus2> — ► <gene> <locus3>
4 <locus3> -* <gene> <locus4>
S <locus4> — <gene> <locus5>
6 <locus5> —► <gene> <locus6>
7 <locus6> — <gene> <locus7>
8 <locus7> — <gene> <locus8>
9 <locus8> — <gene> <locus9>
10 <locus9> -*• <gen.e> <locusl0>
11 <locuslO> — <gene> <locusll>
12 <locusll> -► <gene> <locusl2>
13 <locusl2> — <gene> <locusl3>
14 <locusl3> -» <gen«> <locusl4>
15 <locusl4> — ► <gene> <locusl5>
16 <locusl5> — ► <gene> <locusl6>
17 <locusl6> — <geno> <locusl7>
18 <locusl7> — <gene> <locusl8>
19 <locusl8> — <gene> <locusl9>
20 <locusl9> -► <gene> <locus20>
21 <locus20> -*■ <gene> <locus21>
22 <locus21> — <gene> <locus22>
23 <locus22> -+ <gene> <locus23>
24 <locus23> -*• <gene> <locus24>
25 <locus24> — ► <gene> <locus25>
26 <locus25> — *■ <gene> <locus26>
27 <locus26> -*• <gene> <locus27>
28 <locus27> — <gene> <locus28>
29
30

<locus28>
<locus29>

<gene>
<gene>

<locus29>

31
32
33

<gone>
<allele>
<allele>

-*
<allele>
0
1

Figure 4.7: 30-bit Binary String Grammar
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“bitstring rules” which can utilize the same encoding mechanism. Figure 4.7 shows a gram­

mar for generating binary strings of length I =  30. As shown in Section 4.1, the specification 

lists

Lc =  (CROSSOVER LOCUSl LOCUS2 LOCUS3 . . .  LOCUS29)
Lm =  (MUTATE GENE)

must also be associated with this gram max in order to mimic binary GA performance.

B I N A R Y  R E P R E S E N T A T I O N

Effects of Population Size 
Crossover Rate = 0.50, Mutation Rate = 0.001

0.9
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Generation1 50
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Population = 8

Population = 4

Population = 2

Figure 4.8: Population Size Effect on Binary Population
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Since it has been determined that a syntactic GA is capable of effectively representing a 

30-bit chromosome encoding three independent binary variables in sign-magnitude notation, 

the next logical step is a comparative study of on-line binary and syntactic GA performance 

for the optimization of }x,y,z =  x 2 +  y2 +  z2. Figure 4.8 shows the effect of population size 

on the average fitness of the binary genetic algorithm over the course of 1000 trial runs. As 

expected, larger populations have greater average fitness, as more points within the search

S Y N T A C T I C  R E P R E S E N T A T I O N

Population = 256 

Population = 128 

Population = 64 

Population = 32 

Population = 16 

Population = 8 

Population = 4 

Population = 2

Figure 4.9: Population Size Effect on Syntactic Population
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space can be examined during each generation.

Figure 4.9 shows the equivalent effect of population size on the average fitness of a syn­

tactic GA operating on “bitstring rules” . The performance of both GAs for this experiment 

is nearly identical. Note, however, tha t the mutation rate for the syntactic population is 

double tha t of the binary GA. As stated in Section 3.2, the rule mutation operator does 

not guarantee a new rule will always be produced, since a gene containing allele 1 may

B I N A R Y  R E P R E S E N T A T I O N

Effects of Crossover Rate 
Population Size = 64, Mutation Rate = 0.001

Crossovers 1.00 

Crossover = 0.75 

Crossover = 0.50 

Crossover = 0.25 

Crossover = 0.0

1 Generation 50

Figure 4.10: Crossover Rate Effect on Binary Population
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be mutated to either 1 or 0. By doubling the rate at which the rule mutation operator is 

applied, the effect of non-productive mutation is eliminated.

Figure 4.10 shows the outcome of applying various crossover rates to the binary GA 

over the course of 1000 trial runs. The performance curves indicate that greater crossover 

rates lead to greater average population fitness. In general, however, the optimal crossover 

rate is highly problem-dependent, and results can vary significantly between individual trial

S Y N T A C T I C  R E P R E S E N T A T I O N

Effects of Crossover Rate 
Population Size = 64, Mutation Rate = 0.002

Crossover = 1.00 

Crossover = 0.75 

Crossover = 0.50 

Crossover = 0.25 

Crossover = 0.0

1 Generation 50

Figure 4.11: Crossover Rate Effect on Rule Population
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runs.

Figure 4.11 depicts the effect of applying the same crossover rates to the syntactic 

GA population. Once again, the performance curves indicate that higher crossover rates 

generate higher average fitness values. As expected, crossover variance in this experiment 

produces nearly identical results in both binary and syntactic GAs.

Finally, the effect of varying the mutation rate of the binary GA is presented in Figure

B I N A R Y  R E P R E S E N T A T I O N

Effects of Mutation Rate 
Population Size = 64, Crossover Rate = 0.50

0.9
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Generation 50
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Mutation = 0.001

Mutation = 0.005

Mutation = 0.01

Mutation = 0.05

Mutation = 0.1

Mutation = 0.5

Figure 4.12: Mutation Rate Effect on Binary Population
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4.12. The graph illustrates that lower mutation rates lead to greater average population 

fitness. Mutation is, however, only a  secondary operator and is designed to act as a safeguard 

against premature allele loss. Because of the relatively large number of genes examined in 

the 1000 trial runs, the visible effect of the mutation operator is diminished. It is interesting 

to note, however, that a mutation rate of 0.5 leads to a random, non-productive walk through 

the search space.

S Y N T A C T I C  R E P R E S E N T A T I O N

Effects of Mutation Rate 
Population Size = 64, Crossover Rate = 0.50
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Figure 4.13: Mutation Rate Effect on Rule Population
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Figure 4.13 shows the result of applying the same mutation rates to a population of 

syntactic binary rules. As explained earlier, all mutation rates have been doubled in order 

for the rule mutation operator to function at the same probability as its binary equivalent. 

Once again, the outcome of this experiment for both the binary and syntactic GAs is 

essentially identical.

The empirical evidence of the previous three experiments clearly shows that the syntactic 

GA is able to emulate a binary GA operating on 30-bit chromosomes, and leads to the 

general conclusion

O bservation 4.2 A binary GA with a population o f N chromosomes of length L, a crossover 

rate Pc and a mutation rate PM is equivalent to a syntactic GA with crossover rate Pc and 

mutation rate 2*PM, operating on a population o f N rules derived from a grammar G con­

taining L+3 productions, crossover specification list Gc and mutation specification list GM.

4.3 Trace Schem ata

As described in Section 2.2, a schema is a simple pattern matching device which serves 

as the theoretical basis of genetic algorithm research. Under the binary representation, a 

schema is a string over the ternary alphabet {0,1, *}, where the meta-symbol serves as 

a special “don’t care” marker for matching both 0 and 1. An analysis of the method by 

which schemata are processed by the genetic algorithm produced the result

m ( H , t +  1) > [l - P c f^ -  PmO(H)

which is known as the Schema Theorem or Fundamental Theorem of Genetic Algorithms. It 

states that “building block” schemata of above-average fitness, low order and short defining
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length are sampled with increasing frequency by the genetic algorithm.

Extending the binary schema to a grammar-based approach, a trace schema can be 

defined as follows:

D efinition 4.1 A tra ce  schem a T  is a derivation trace V  in which n > 0 derivation 

subtraces o fV  have been replaced by the meta-symbol “[]”.

Each trace schema can therefore be represented as a  list consisting only of production labels, 

the zero expansion delimiter, and the special meta-symbol “[]” . As with a derivation trace, 

the number of production labels and zeroes must be equal.

In keeping with its binary counterpart, the trace schema functions as a similarity tem­

plate for matching the derivation traces of grammar-defined rules. The “[]” meta-symbol 

serves as a special “don’t care” marker indicating that the trace schema produces a  deriva­

tion subtrace.

D efinition 4.2 For an arbitrary grammar Q, let derivation trace V  = d\d2 -.dn be a string 

over E =  P U  {0}, where V = {p | p is a production label in Q}; similarly, let trace schema 

T  =  t \ t i ..tm be a string over E U {[]}, where m < n. Then T  ==> V  (T  produces V )  

iff V  is obtained from T  by replacing each distinct instance o f “[]” i n T  with any possible 

subtrace o f V .

A trace schema match is then said to occur if the following holds:

D efinition 4 .3  Trace schema T  = t i t 2 - tm is a tra c e  schem a m atch  of derivation trace 

V  =  did2..dn i f f T  = >  V.

As a simple example of trace schema matching, Figure 4.14 depicts one possible trace 

schema T  which produces the derivation traces of a subset of rules for the 6-bit binary string 

grammar presented in Figure 4.1.
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DERIVATION TRACE A

1 7 8 0 0 2 [ 7  9 0 0 ]3  7 8 0 0 4 7[9 0]0 
5 7 9 0 0[6 7 9 0 0 0]0 0 0 0 0

TRACE SCHEMA T

17 8 0 0 2 [ ] 3 7  8 0 0 4 7 [ ] 0 5 7 9 0 0 [ ] 0 0 0 0 0
A A
i i
' DERIVATION TRACE B 'i i

1 7 8 0 0 2 [7  8 0 0 ]3  7 XO 0 4 7[9 0J0 
5 7 9 0 0 [6 7 8 0 0 0] 0 0 0 0 0

Figure 4.14: Trace Schemata Matching

Derivation trace A matches trace schema T  as

• the first elements 1 7 8 0 0 2 in the trace schema consecutively match derivation trace 
elements 1 7 8 0 0 2

• the first “[]” in the trace schema produces the derivation subtrace 7 9 0 0

• the elements 3 7 8 0 0 4 7  in the trace schema consecutively match derivation trace 
elements 3 7 8 0 0 4 7

• the second “[]” in the trace schema produces the derivation subtrace 9 0

• the elements 0 5 7 9 0 0 in the trace schema consecutively match derivation trace 
elements 0 5 7 9 0 0

• the third “[]” in the trace schema produces the derivation subtrace 6 7 8 0 0 0

• the final elements 0 0 0 0 0 in the trace schema consecutively match derivation trace 
elements 0 0 0 0 0
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Trace schema T  does not match derivation trace B , however, as the production label 9 

at locus 13 in the derivation trace does not match the corresponding label 8 in the trace 

schema.

With an understanding of trace schemata, it is now possible to begin deriving the Trace 

Schema Theorem, a grammar-based equivalent to the Fundamental Theorem of Genetic 

Algorithms. As will be seen, the development features several similarities to the latter 

theorem, as well as a number of significant innovations. To begin, the order of a trace 

schema is defined. This will later prove useful for analyzing the effects of the mutation and 

crossover recombination operators on trace schemata.

The o rd e r  o f a  trace  schem a 0 ( T )  is the number of production labels contained in 

trace schema T  which are not members of the grammar-specific terminal label set TLSg - 

Figure 4.15 depicts the derivation trees of three representative trace schemata for the 6-bit 

binary string grammar. Trace schema A contains eight production labels. Of these, two are 

members of the grammar specific terminal label set TLSg as indicated by the surrounding 

The order of trace schema A is therefore 0(A)  =  8 — 2 = 6, the number of internal 

nodes in a derivation tree of the trace schema. Very specific trace schemata such as trace 

schema B  match only one particular derivation trace, since its derivation tree contains no 

“[]” meta-symbols. The order of trace schema B  is therefore 0(B)  = 18 — 6 =  12. General 

trace schemata such as trace schema C, on the other hand, contain no production labels. 

The order of trace schema C is thus 0 ( C )  = 0.

The average  fitness /( f )  of a rule population 1Z at generation t is defined as

N
E/fa,*)
i = i (4.1)
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T R A C E  S C H E M A  BT R A C E  S C H E M A A
1 7 9 0 0 2 7 8 0 0 3 7 9 0 0 4 7 8

0 0 5 7 8 0 0 6 7 9 0 0 0 0 0 0 0 01 7 [ ] 0 2 7 8 0 0 3 7 9 0 0 [ ] 0 0 0

T R A C E  S C H E M A  C

O = undefined

Figure 4.15: 0  Calculations for Sample Trace Schemata

where /  is a fitness function, r,- is a member of 1Z, and N  is the population size. The average 

fitness o f a  tra c e  schem a T  is then the average fitness of all rules whose derivation traces 

match T. If M (T, t) represents the number of trace schema matches of T  in R. at generation 

t, the average fitness of a trace schema can be expressed as

E  f (r i , t )
r i € T

M ( T , t )

The fitness ra tio  o f a  tra c e  schem a is the ratio of the average fitness of a trace schema
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T  to the average fitness of TZ during generation t, and can be expressed as

= (4.2)
V ' /(*)

As stated in Section 2.1, reproduction with roulette wheel selection copies population 

members into subsequent generations with probability

K r j )Pfo) = -jf-----
E  f (ri)
«'=l

Each trace schema T  will therefore be copied from generation t with probability

r f T f l -  / ( T ^P(T . l ) = -ft-----
E /(r«)t=i

After selecting N  population members for the new generation t +  1, the expected number 

of instances of T  is

M  (T , t + 1) =  M (T, t ) N - f ^ ~
E  /(r,-,0i=i

Substituting f ( t )  from Equation 4.1 into the above equation gives

M ( T , t + l )  = M ( T , t ) ^ l  (4.3)
J\})

which is the trace schema fitness ratio of T.

Equation 4.3 is the trace schema counterpart of the binary schema fitness ratio. It indi­

cates that the growth of trace schemata depends only upon whether rules whose derivation 

traces match T  have a greater fitness value on average than the population as a whole. Trace

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. RULE AND BITSTRING COMPARISON 82

schemata with a fitness ratio above the population average fitness will receive increasing

trials in future generations, whereas lower-than average trace schemata will be sampled less

frequently. At each generation, this process occurs simultaneously for every trace schema 

over 1Z1. Thus, many trace schemata are processed in parallel.

The effect of rule crossover on T  depends upon the individual trace schema itself. The 

crossover operator for grammar-derived rules operates by exchanging two arbitrarily selected 

derivation subtraces. Unless these subtraces are identical, rule crossover will disrupt some 

trace schemata over 1Z. As an example, trace schema A in Figure 4.15 will survive crossover 

if any production label in a derivation subtrace produced by “[]” in the trace schema is 

selected as the trace locus for crossover. Such an exchange would have no effect on any 

specified member of trace schema A. The selection of production label 1 would also keep 

trace schema A intact, as the entire trace schema would be exchanged during crossover. As 

stated in Chapter 3.2, members of the terminal label set TLSg are excluded as crossover 

production labels; therefore, only crossover at the internal nodes of the derivation subtree 

located below production label 1 would disrupt trace schema A.

Closer observation reveals that the number of disruptive trace loci for crossover is equiv­

alent to 0 { T )  — 1. Every derivation trace contains an equal number of production labels 

and zero delimiters. Thus, for a derivation trace of length I there axe 1/2 possible crossover 

sites. The probability pd of picking a trace locus for crossover which would disrupt T  is

therefore

(4.4)

A trace schema over 72 is a trace schema matching the derivation trace of a member of 72
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As shown in earlier figures, each rule derived from the 6-bit binary string grammar has a 

corresponding derivation trace of length 36. Thus, trace schema A  will be disrupted with 

probability pd(A) = (6 — l)/(36  /  2) =  0.28.

By extending Equation 4.4, the probability p3 of a trace schema surviving crossover is

1 - p d O T

n m  = 1 -  ° ^ ' 1 
Pa(  ̂ 1/2

A ssum ing  crossover is performed with probability pc, trace schema survival is therefore 

bounded by the expression

Ps > 1 -  2pc~^~y— ~ (4.5)

Multiplying Equation 4.3 by Equation 4.5 results in the expression

0(T) -  1
1 -  2 pc- l (4.6)

which describes the combined effects of rule reproduction and rule crossover on T.  In 

words, Equation 4.6 states that trace schemata of short order and above-average fitness are 

increasingly sampled in future generations.

As with rule crossover, the effect of rule mutation on T  depends upon the individual trace 

schema. The mutation operator for grammar-based rules operates by arbitrary changing 

a derivation subtrace. Unless the newly created derivation subtrace is equivalent to the 

original, rule mutation will disrupt some trace schemata over 7Z. For example, trace schema 

A will survive rule mutation if any production label in a derivation subtrace produced by 

“[ ]” in the trace schema is selected as the trace locus for mutation. Any alteration occurring
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in these derivation subtraces would have no effect on trace schema A; however, if any other 

production label in the derivation trace except TLSg members were selected as the trace 

locus for mutation, trace schema A  might be destroyed.

The number of disruptive mutation loci in T  is therefore 0{T) .  Assuming pm is the 

probability of mutation occurring at each production label in a  derivation trace, the chance 

of a production label remaining unaffected by the mutation operator is 1 — pm. As stated 

earlier, mutation between grammar-derived rules does not necessarily mean that an alter­

ation will be made to schema T ; therefore, the mutation survival probability p, of T  is 

bounded by the expression

ps( T ) > ( l - p m) ° m  (4.7)

For pm <  1, Equation 4.7 can be closely approximated by the expression

P s ( T ) > l - 0 ( T ) p m (4.8)

The joint effect of all three operators is obtained by combining Equation 4.6 with 4.8, 

with the result

M { T , t  +  1) > M ( T , t 1
/(*)

Ignoring the small cross-product term

2pepm0 (T )^ >-~ 1}

I [1 — 0 (T )p m]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. RULE AND BITSTRING COMPARISON 

the above equation can be rewritten as

85

1 - 2  p OSD- . 1 - Pm0(T) (4.9)

Equation 4.9 is thus the trace schema equivalent of the Fundamental Theorem of Genetic 

Algorithms. It states that above-average trace schemata containing relatively few non­

terminal productions are sampled with increasing frequency by syntactic genetic search. 

As such, it serves as the T race Schem a T heorem  for rule processing in search and 

optimization.

In Section 2.2 it was shown that for binary chromosomes of length /, there exists 3* 

different schemata. The number of trace schemata obtainable from Q, on the other hand, 

is entirely dependent on the internal structure of the grammar itself. In order to make a 

comparison between binary and syntactic GA performance, all possible trace schemata can 

be calculated for the 6-bit binary string grammar presented earlier.

To begin, it is useful to observe that every rule obtained from the binary grammar has 

a partial rule derivation

1 <gene> 2 <gene> 3 <gene> 4 <gene> 5 <gene> 6 <gene> 0 0 0 0 0 0 

where <gene> is expanded by production 7 in the partial grammar

7: <gene>
8: <allele> 
9: <allele>

<allele>
0
1

Since the “[]” marker can replace any derivation subtrace, every expansion of production 7 

can be a member of a trace schema in any of the ways presented in

U= { [ ]  7 [] 0 7 8 0 0 7 9 0 0}

In order to determine the number of trace schemata containing L =  {1 2 3 4 5 6}, the set 

U can be substituted for <gene> in the partial derivation as follows:
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1 U 2 U 3 U 4 U 5 U 6 U 0 0 0 0 0 0  

Since |U | = 4 ,  there must therefore b e 4 * 4 * 4 * 4 * 4 * 4  =  46 different trace schemata 

containing production labels in L.

Next, production label 6 can be removed from L by replacing the subtrace 6 U 0 with 

“[]” in the partial derivation

1 U 2 U 3 U 4 U 5 U [ ]  0 0 0 0 0  

resulting i n 4 * 4 * 4 * 4 * 4  = 45 different trace schemata containing L = {1 2 3 4 5}. This 

process can be continued by iteratively eliminating productions labels 5 through 1 from C 

as seen in

1 U 2 U 3 U 4 U [ ]  0 0 0 0 4 * 4 * 4 * 4  =  44
1 U 2 U 3 U [ ] 0 0 0 4 * 4 * 4 =  43

1 U2 U[ ]  0 0 4 * 4 =  42
1 U[ ] 0 4 =  41

[] 1 =  4°

Using the geometric series substitution

r n+1 -  1 
r — 1

it can therefore be stated that
4<+1 -  1 

3

different trace schemata exist for an arbitrary /-bit binary string grammar.

The number of trace schemata actually represented in population R  can be determined 

by once again examining the partial derivation of each binary rule. In this case, every

expansion of production 7 matches an arbitrary trace schema in any of the ways presented

in
{[] 7 [] 0 7 8 0 0} i/D ' =7 8 0 0
{[] 7 [] 0 7 9 0 0} if  d" =7 9 0 0
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Since | V | =  3 for both derivation subtraces D =  7 8 0 0 and d” =  7 9 0 0, the set V can be 

substituted for each occurrence of <gene> in the partial rule derivation. Then, following 

the previous counting methodology, the total number of trace schemata matched by a given 

rule in % can be determined as

1 V 2 V 3 V 4 V 5 V 6 V 0 0 0 0 0 0 3 * 3 * 3 * 3 * 3 * 3  =  36
1 V 2 V 3 V 4 V 5 V [ ]  0 0 0 0 0 3 * 3 * 3 * 3 * 3  =  35

1 V 2 V 3 V 4 V [ ]  0 0 0 0 3 * 3 * 3 * 3  =  34
1 V 2 V 3 V [ ] 0 0 0 3 * 3 * 3 =  33

1 V 2 V [] 0 0 3 * 3 =  32
1 V [] 0 3 =  31

[] 1 =  3°

Thus, each /-bit binary rule in R  matches

3*+1 -  1 
2

of the possible trace schemata. A population R  of size N  therefore contains n trace

schemata as bound by the expression

3 ,+1 -  1 V + l  -  1
-  ■ < n(R, t )  < N-  ■ -

This compares favorably with Equation 2.11

2' < n(V, t )  < N2l

which presents the same calculation for a  population V  of binary chromosomes. Syntactic 

GAs therefore possess the same property of “implicit parallelism” inherent to the traditional 

genetic algorithm, and are thus able to create populations of rules in such a way as to 

simultaneously maximize a large number of trace schemata.

As presented in Figure 4.15, each trace schema T  directly corresponds to a unique 

derivation tree. This property was previously utilized to describe overall features of T  such
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as trace schema order 0 ( T ) .  As with any tree structure, however, it is also possible to 

examine an arbitrary subtree of T  defined as a  subtrace schema.

D efin ition  4.4 A su b trace  schem a S  is a derivation subtrace T>' o f V  in which n > 0 

derivation subtraces o f V '  have been replaced by the meta-symbol

Like the trace schema from which it is derived, each subtrace schema is represented as a 

list consisting of production labels, the zero expansion delimiter, and the “[]” meta-symbol. 

Since by Definition 3.6, each derivation trace V  is also a derivation subtrace T>' of Z>, the 

number of subtrace schemata is at least as great as the number of trace schemata for any 

syntactic GA problem.

A subtrace schema match is said to occur if the following holds:

D efin ition  4.5 Subtrace schema S  =SiS2 ..sm is a sub trace  schem a m atch  o f derivation 

trace V  = d\d 2 -.dn iff S  => V ', where T>' is any derivation subtrace o f V .

Figure 4.16 depicts several representative subtrace schemata for the 6-bit binary grammar 

used in earlier examples. Unlike the trace schema, it is quite possible for a subtrace schema 

to match a derivation trace in more than one way. For example, subtrace schema Y  could 

match a binary string rule at any of the 6 possible “bit” positions, while subtrace schema 

Z would match each of the 18 derivation subtraces in every rule.

The significance of the subtrace schema is not readily apparent in cases such as the 

6-bit binary grammar, which is rigidly constrained by crossover and mutation specification 

lists. As will be seen in later experiments, however, subtrace schemata frequently describe 

the structure of partial rule expressions important in the overall solution to a syntactic 

GA problem. During rule crossover, these expression are exchanged intact whenever the 

corresponding subtrace schemata produce at least one of the crossover subtraces. Each
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SUBTRACE SCHEMA W SUBTRACE SCHEMA X

2 7 [ ] 0 3 7 9 0 0 [ ] 0 0 4 7 8 0 0 5 7 9 0 0 6 7 9 0 0 0 0 0

SUBTRACE SCHEMA Y SUBTRACE SCHEMA Z

7 8 0 0

Figure 4.16: Sample Subtrace Schemata

partial solution is then copied into subsequent generations based upon the fitness of each 

rule whose derivation trace matches the subtrace schema in question. As such, subtrace 

schemata serve as the “building blocks” in the construction of the complex rule structures 

manipulated by syntactic GAs.

4.4  Equation O ptim ization

Genetic algorithms have traditionally been used as an optimization technique for isolat­

ing a near-maximal or near-minimal functional value for some set of equations. This method
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requires the GA to encode all independent variables of the system into a fixed length binary 

chromosome which can then be manipulated by genetic operators. As was shown in Section 

4.1, the syntactic genetic algorithm can be applied successfully to this class of “parameter 

tuning” problems.

In the following experiment, the concept of optimizing an equation is taken to its next 

logical progression. Instead of “parameter tuning” the variables within an equation, the

1 <equation> —► ( <operator> <expressionl>  <expression l>  )
2 <expressionl> -*• <operandl>
3 <operandl> —► <number>
4 <operandl> -+ ( <operator> <expression2> <expression2> )
5 <expression2> — *■ <operand2>
6 <operand2> —*• <number>
7 <operand2> —► ( <operator> <expression3> <expression3> )
8 <expression3> —*• <operand3>
9 <operand3> —+ <number>

10 <operand3> —*• ( <operator> <expression4> <expression4> )
11 <expression4> —- <operand4>
12 <operand4> —1• <number>
13 <operand4> -*• ( <operator> <number> <number> )
14 <operator> —- <sign>
15 <sign> — * +
16 <sign>
17 <sign> — *• *
18 <sign> -  /
19 <number> — < d ig it>
20 < d ig i t > 0
21 < d ig i t > 1
22 < d ig i t > -h. 2
23 < d ig i t > -► 3
24 < d ig i t > 4
25 < d ig i t > — 5
26 < d ig i t > 6
27 < d ig i t > -*• 7
28 < d ig i t > 8
29 < d ig it> -h. 9

Figure 4.17: Grammar for Optimization of an Equation
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equation itself is treated as the parameter to be optimized. Figure 4.17 presents a grammar 

for producing arithmetic expressions over the operator set {H—  * /} and the operand set 

{0 1 2 3 4 5 6 7 8 9}. Although this grammar appears relatively simple, it generates over 

6.84 * 10so distinct rules, and therefore provides the syntactic GA with a relatively large 

search space to examine.

The equation grammar produces a few obstacles in determining the fitness of individual 

population members. Each instance of the “/ ” operator, for example, may have as its 

divisor either 0 or an expression which evaluates to zero. In addition, many of the equations 

calculate either negative values or zero; roulette wheel selection, on the other hand, requires 

that all population members return a positive fitness value. For these reasons, the fitness 

function

h = {
Ti +  1 if Ti >  0 
2r* if Ti < 0 
LPF if T{ undefined

is used, where r:- is a  rule in population TZ and LPF is a constant set to the least positive 

float. Figure 4.18 presents the best solution with optimal fitness value f x = 932 +  1.

In Section 4.1, it was shown that a binary chromosome of length I can be represented by

( * 9 9 ) ( * 9 9 ) ) ( * ( * 9 9 ) ( * 9 9 ) ) )

( * 9 9 ) ( * 9 9 ) ) ( * ( * 9 9 ) ( * 9 9 ) ) )

Figure 4.18: Best Solution for Equation Optimizer
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a syntactic GA as a “bitstring rule” derived from a grammar containing I + 3 productions. 

In order to once again compare binary and syntactic genetic algorithms, the “best solution” 

obtainable for the equation optimizer can be represented as a binary chromosome. A close 

observation of the equation grammar reveals that there exist exactly 16 terminal symbols 

which can be represented using the binary encoding scheme presented in Figure 4.19.

Binary Terminal 
Encoding Symbol

0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7

Binary Terminal 
Encoding Symbol

1 0 0 0 8
1 0 0 1 9
1 0 1 0 (
1 0 1 1 )
1 1 0 0 +
1 1 0 1 -

1 1 1 0 *
1 1 1 1 /

Figure 4.19: Binary Encoding of Equation Optimizer Terminal Symbols

Since the “best solution” contains 125 terminal symbols, it can be represented in a 

binary string of length I =  125 * 4 =  500 bits. This result is easily generalized to

O bservation 4.3 Any rule of length L derivable from a grammar G containing T distinct 

terminal symbols can be encoded into a binary chromosome of length [log2 T]*L.

Since the goal of this experiment is the “parameter tuning” of the entire equation to produce 

this 500-bit optimal result, the entire population of the binary GA must be composed of 

500-bit chromosomes. The fitness function f x for syntactic equations is also sufficient for 

binary chromosomes, as ill-formed expressions evaluate to LPS.

Figure 4.20 presents the average population fitness of both the syntactic and binary GAs 

for a population of 100 individuals using a 0.60 crossover rate. As with earlier experiments,
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EQUATION O P T IM IZ A T IO N  

Population Size = 100, Crossover Rate = 0.6

1.0

Generation0 200

Syntactic G A 
Mutation Rate =  0.02

Binary GA 
Mutation Rate =  0.01

Figure 4.20: Average Fitness of Equation Optimization

the 0.02 mutation rate of the syntactic GA is double that of its binary counterpart. The 

resulting performance curves are the average of 10 trials.

As can be seen, the syntactic GA population converges upon near optimal solutions. 

In fact, by generation 75 the “best solution" shown in Figure 4.18 was present in the 

populations of each of the 10 trials. Since 75 generations of 100 equations represents only 

750 of the 6.84 * 10so possible equations, the syntactic GA was able to discover the optimal 

solution after examining only 750/6.84* lO50 = 1.09* 10-48 of the points in the search space.
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This result is due largely to the bottom-up propagation of important subtrace schemata. 

For example, the subtrace schemata

19 29 0 0 
14 15 0 0

corresponding to 9 and * respectively are quickly spread throughout the population. Even­

tually, the new subtrace schema

13 14 15 0 0 19 29 0 0 19 29 0 0 0

representing (* 9 9) is formed and in turn propagated into future generations. This “build­

ing block” process continues until the final optimal solution is constructed.

The binary genetic algorithm, on the other hand, has a near-zero average population 

fitness throughout the course of the experiment. This is not surprising when it is considered 

that a 500-bit binary chromosome has 2500 = 1.27 * lO150 possible interpretations of which 

only 4.61 * 10so represent well-formed expressions. Thus, there is only the small probability 

4.61*105O/1.27*1015O*100 =  1.41*10-130 of discovering an equation during each generation. 

Even in the unlikely event that one of these valid points in the search space was isolated, 

it is extremely doubtful that the encoded equation would survive the combined effects of 

binary crossover and mutation. The inability of the binary GA to operate in this domain 

of this experiment leads to the result

O bservation  4.4 Due to the inherent difficulties of binary encoding, the effect of gene 

epistasis and the high order and defining length of typical solution schemata, a binary GA 

is not equivalent to a syntactic GA for problems whose parameters are structured by a non­

trivial grammar G.

Combining Observation 4.2 with Observation 4.4 leads to the final conclusion
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O bservation 4.5 Empirically, the class of problems B solvable by a binary GA is a subset 

of S, the class o f problems solvable by a syntactic GA.

As explained in Section 3.2.3, the application of the syntactic mutation operator does 

not ensure that a change will be made to the original rule. Since the replacement derivation 

subtrace is arbitrarily constructed, it is possible that the newly selected productions will be 

identical to those of the pre-mutated derivation subtrace. For gram m ar G, however, there 

are only two possible mutation subtraces for Pm  =  7; therefore, by doubling the rate pm at 

which the rule mutation operator is applied, the affect of non-productive mutation can be 

easily eliminated. Thus, the syntactic mutation of rales in G using specification list LM at 

rate 2pm is equivalent to the binary mutation of 6-bit chromosomes performed at rate pm.
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Chapter 5

Machine Learning and 

Classification

5.1 Balance Scale

The data for this experiment was obtained from the University of California Irvine Machine 

Learning Repository[130]. Based upon psychological experiments originally reported by 

Siegler[228] in 1976, the data has since been used in a variety of forms by several different 

studies[147,153,176, 216]. As depicted in Figure 5.1, the balance scale experiment involves

w-

2 x 4 = 1 x 8

Figure 5.1: Calculation of Balance Condition

96
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the classic Physics problem of determining the proper fulcrum for two objects of weights W\ 

and W2 placed at distances d\ and d2  from a center point at opposite ends of a weightless 

surface. As shown above, a  balance condition can be satisfied by ensuring that the quantities 

(wi*di )  and (W2  * ^2) have equal values; if not, the “scales” will tilt to either the left or 

the right, depending on which respective quantity is greater.

The balance scale is a  typical classification problem. It serves as an excellent experiment 

for the syntactic GA because it does not involve a simple boolean discrimination function. 

Instead, three distinct classes must be distinguished - balanced, right-leaning and left- 

leaning - based upon an unknown algebraic relationship between four variables. In other 

words, three different equations must be simultaneously optimized. Drawing from the results 

of Section 4.4, such a task would be exceedingly difficult for the binary GA to accomplish.

Figure 5.2 shows a  representative sample of the training data used for this experiment.

( ’to-right ( 3 2 3 3 ) )
( ’balanced ( 2 2 1 4 ) )
( ’to-right ( 1 2 3 4 ) )
( ’to-left ( 4 1 1 2 ) )

( ’to-left ( 5 4 2 3 ) )
( ’to-right ( 2 2 4 3 ) )
( ’balanced ( 1 4 1 4 ) )
C ’balanced ( 3 2 2 3 ) )

Figure 5.2: Training Data for Balance Scale Experiment

Each example gives the value of the variables w\, di, W2  and d2 , as well as the correct 

classification, indicated by one of the LISP primitives ’to - r ig h t ,  ’balanced, or ’to - l e f t .  

Every combination of integer values for the variables over the range [1..5] is presented to the
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GA; therefore, 625 different items axe examined in total. The distribution of the ’t o - l e f t  

and ' t o - r i g h t  classes in the training data is equal at 46.08% apiece. The ’balanced 

class, however, is represented by only 7.84% of the instances. This uneven distribution of 

examples poses an interesting challenge for the syntactic GA. Care must be taken to ensure 

that resources will be apportioned equally to all three target classes.

1: <rule> — ( cond <condl> <cond2> <cond3> )
2: <condl> — ( <equation> ’to-left )
3: <cond2> — ( <equation> ’balanced )
4: <cond3> -*■ ( <equation> ’to-right )
5: <equation> -* ( <relational> < expressionl> <exprassionl> )
6: <expressio&l> —¥ <operandl>
7: <operandl> -* <term>
8: <operandl> —■ ( <operator> <expression2> <expression2> )
9: <expression2> — <operand2>
10 <operand2> — <term>
11 <operand2> — ( <operator> <expression3> <expression3> )
12 <expression3> -*• <operand3>
13 <operand3> — <tern>
14 <operand3> — ( <operator> <expression4> <expression4> )
15 <expression4> —- <operand4>
16 <operand4> — <term>
17 <operand4> — ( <operator> <term> <term> )
18 <relational> -*■ <boolean>
19 <boolean> — =
20 <boolean> —- <
21 <boolean> -» >
22 <boolean> -*• <=
23 <boolean> — >=
24 <boolean> <>
25 <operator> — <sign>
26 <sign> +
27 <sign> —► -
28 <sign> -► *
29 <sign> -*■ /
30 <term> —► <variable>
31 <variable> — left-weight
32 <variable> — right-weight
33 <variable> —► left-distance
34 <variable> — right-distance

Figure 5.3: Grammar for Balance Scale Experiment
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The grammar for the balance scale experiment is displayed in Figure 5.3 on the preceding 

page. Since it is known that a solution to this problem involves discriminating between three 

separate classes, the grammar is designed to produce LISP cond statements containing three 

distinct elements. Productions 2, 3 and 4 generate conditional statements which return the 

predicates ’t o - l e f t ,  ’balanced, and ’to - r ig h t, respectively. These predicates indicate 

how each training instance was classified. In the event that none of the elements in the 

cond are triggered, n i l  is returned instead.

The problem statement specifies that each class can be stated as a relationship between 

two mathematical quantities - the state of both sides of a fulcrum in terms of four variables. 

The condition of each rule therefore consists of a boolean relational operator separating 

two mathematical expressions. This design allows the three condition-action pairs to act as 

independent boolean classifiers, and helps to alleviate any bias against the relatively infre­

quent occurrences of ’balanced examples. Each “scale rule” will thus divide its attention 

equally between ail three alternatives.

One of six relational operators - “= ”, ”< ”, “> ”, ”< = ” , “> = ” or “< > ” - is assigned 

to each element of the cond statement by means of productions 18 through 23. The re­

mainder of the grammar is allocated to the creation of mathematical expressions. Two 

such expressions, in conjunction with a relational operator, can be seen as constituting a 

single equation. For this reason, the expression structure initiated by production 7 in the 

grammar is borrowed directly from the “Equation Optimizer” of the previous chapter.

Productions 8 through 17 therefore create mathematical expressions of various length. 

The branching mechanism of the < express ion,-> non-terminals serves as a biasing mech­

anism which favors the creation of shorter conditional statements during “random” rule 

generation and mutation. Each <expression,-> is expanded to either a variable or to an
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infix operation with equal probability. If an operation is chosen, there is again a 50% chance 

that each term will be expanded by means of <expression,-+ l>. This effect is cumula­

tive, so there is only a 25% chance of generating <expression3> and a 12.5% chance of 

creating <expression4>. Because of the added number of trace schemata caused by such 

branching, a term which contains unnecessary calculations such as

( -  le f t-w e ig h t ( + le f t-w e ig h t le ft-w e ig h t ) )

is likely to be simplified to le f t-w e ig h t during rule mutation and crossover.

Each operation can contain up to five levels of nested subexpressions. This cutoff point 

was established by examining the opportunity cost of including additional productions in 

the grammar. Increasing the size of the grammar impairs the performance of the mutation, 

crossover and reproduction operators, as more production labels must be examined and 

copied. Conversely, the likelihood of generating each successive subexpression decreases 

exponentially with parse tree depth. Through experimentation, it was determined that a 

maximum depth of five resulted in a favorable tradeoff between processing speed and rule 

expressiveness.

In keeping with Section 4.4, only the four basic additive and multiplicative functions - 

and “/ ” - could be used as mathematical operators. Productions 25 through 

29 placed one of these at the beginning of each infix expression. Unlike the “Equation Op­

timizer” , however, these functions did not operate over the integers [0..9]. Since the three 

balance equations needed to learn a relationship between two weights and two distances, 

the operand set instead consisted of the four variable names le ft-w e ig h t, r ig h t-w eig h t, 

le f t-d is ta n c e , and r ig h t-d is ta n c e . Each variable was assigned a value from a corre­

sponding entry in the training data, and were generated by the final five productions of the 

grammar. Figure 5.4 shows the genotype and phenotype of an arbitrarily derived rule from
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the experiment grammar.

101

G E N O T Y P E

2 5  18 23 0 0 6 7  30 31 0 0 0 0 6 7  30 32 0 0 0 0 0 0
3 5 18 19 0 0 6 7 30 31 0 0 0 0 6 8 25 28 0 0 9 11 25 26 0 0 12 13 30 32 0 0 0 0 12 13 30 34 0 0 0

0 0 0 9 11 25 28 0 0 12 14 25 26 0 0 15 16 30 31 0 0 0 0 15 16 30 32 0 0 0 0 0 0 12 14 25 28 
0 0 15 16 30 33 0 0 0 0 15 17 25 27 0 0 30 32 0 0 30 33 0 0 0 0 0 0 0 0 0 0 0 0

4 5 18 22 0 0 6 8 25 26 0 0 9 10 30 31 0 0 0 0 9 11 25 29 0 0 12 13 30 32 0 0 0 0 12 13 30 31 0 0
0 0 0 0 0 0 6 8 25 27 0 0 9 10 30 33 0 0 0 0 9 11 25 29 0 0 12 13 30 32 0 0 0 0 12 13 30 33 
0 0 0 0 0 0 0 0 0 0 0 0 )

P H E N O T Y P E
C cond 

(
( >“  le f t-w e ig h t  r ig h t-w e ig h t )

’t o - l e f t
)
(

(  *
le f t-w e ig h t  
( *

( + r ig h t-w e ig h t r ig h t-d is ta n c e  )
( *

( + le f t-w e ig h t  r ig h t-w e ig h t )
( * le f t - d i s ta n c e  ( -  rig h t-w e ig h t le f t - d is ta n c e  ) )

)
)

)
'b a lan ced

)
(

( <-
( + le f t-w e ig h t  ( /  rig h t-w e ig h t le f t-w e ig h t ) )
( -  l e f t - d i s ta n c e  ( /  r ig h t-w e ig h t l e f t - d is ta n c e  ) )

)
’to - r ig h t

)
)

Figure 5.4: Rule Generated from Balance Scale Grammar

Each rule A  in the population is evaluated by the fitness function

0_  f C - I  \ i C - I >  
|  2 ĉ ~D otherwise

where C is the number of balance scales correctly classified and I  is the number incorrectly 

identified. The 2^c ~ ^  calculation ensures that the poorer the rule performs, the less its
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fitness value will be. By this means, positive / a values are always produced, as required by 

roulette wheel selection.

The syntactic GA performance for the scale balance problem was excellent. Using a 

population of 200 rules, a 0.7 crossover rate and a 0.02 mutation rate over 50 experimental 

runs, GERDS discovered an optimal solution within 200 generations in all but two cases. 

In these exceptions, near optimal solutions in which two of the three classes were correctly 

identified were present in the population. Figure 5.4 depicts one optimal solution to the

( cond 
(

( < ( * right-distance right-weight ) ( * left-w eight left-distance ) ) 
’to - le f t

)
(

( = ( * right-distance right-weight ) ( * left-w eight left-distance ) ) 
'balanced

)
C

(  >  (  *  right-distance right-weight ) ( * left-w eight left-distance ) ) 
'to-right

)
)

Figure 5.5: Solution to Balance Scale Experiment

problem, although many variations in the mathematics occurred over the 50 runs.

The basis of the solution was the initial discovery of subtrace schemata such as

6 8 25 28 0 0 9 10 31 0 0 0 9 10 33 0 0 0 0 0 
6 8 25 28 0 0 9 10 32 0 0 0 9 10 34 0 0 0 0 0

corresponding to the expressions

( * le ft-w e ig h t le ft-d is ta n c e  )
( * right-w eight r ight-d istance )

which is necessary for all three conditional statements of an optimal “scale rule” . These
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subtraces were then quickly propagated throughout the GA population, after which the 

correct relational operators “> ” and “= ” were put into place.

Observation 4.5 concluded that the traditional genetic algorithm cannot emulate a syn­

tactic GA for non-trivial grammars. This was empirically evidenced by the vastly different 

performance of the two paradigms with regard to the “Equation Optimizer” . Since the 

balance scale experiment was structured as a 3-way equation optimization problem and 

borrows heavily from the grammar of the previous experiment, it is logical to conclude that 

a binary GA would be unable to effectively solve this problem.

5.2 LED Classification

The data for this experiment was obtained from the University of California Irvine Machine 

Learning Repository[130], and has been used in several machine learning studies[33, 245].

notsO

nots2

nots4

nots6

Figure 5.6: Example LED configurations
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A standard LED (Light Emitting Diode) display contains seven diodes, which may be lit in 

certain combinations to produce an alphanumeric character. The purpose of this experiment 

is to train a learning system to recognize the ten decimal digits. The task is made more 

difficult by the introduction of noise into the environment. Each of the seven diodes has 

a 10% chance of misfiring, thereby affecting the output of the overall display. Figure 5.6 

presents an example of three LED outputs. The middle display does not correspond to any 

decimal character, and so obviously contains at least one inversion - it is most probably a 4 

with an inverted s6 diode. The left and right displays show the digits 8 and 6 respectively; 

however, these may also be in error, as the two outputs differ by only one diode.

This experiment is interesting from a GA perspective for several reasons. Since the 

problem entails the categorization of the digits 0 through 9, ten distinct classes must be 

learned. The distinction between these classes is blurred by the presence of noise in the 

data. Because the seven diodes for each display can be represented as boolean values, it is 

possible for the traditional binary GA to encode this problem. A solution, however, would 

require the decomposition of the problem into ten separate tasks.

Figure 5.7 presents a small sample of the 2000 training instances used for this experiment. 

The digits represent the correct classification of each LED display, while the t  and nil values 

signify the states of the seven diodes (read from left to right as sO through s6). Each training 

instance was created by using a simple program which randomly selected a correct solution 

to one of the classes and then altered the status of each diode with a 10% probability. 

Theoretically, the distribution of each class should be equal at 200; however, variation in 

the data occurred for each run of the experiment. Figure 5.8 shows information regarding 

the training instances used in the first run of the system. Note that some digits, especially 

8 and 9, are likely to have a high percentage of incorrectly classified instances.
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c 1 ( nil nil t t nil t nil ) )
( 3 ( t nil nil t nil t t ) )
( 4 ( nil t t t nil t nil ) )
( 3 C t nil t t nil t t ) )

c 9 ( t t t t nil nil t ) )
( 1 ( nil nil t nil nil t nil ) )
( 6 ( t t nil nil t t t ) )
( 5 ( t t t t nil t t ) )

Figure 5-7: Training Data for LED Experiment

The grammar used for the LED classifier is presented in Figure 5.9 on the following 

page. Its design proceeds in a relatively straight-forward manner from the problem state­

ment. Like the balance scale experiment of the previous section, this problem requires 

the simultaneous learning of multiple concepts with uneven distributions. In the case of 

the former, a grammar was created to produce LISP cond statements with exactly three

LED
DIGIT

NUMBER OF 
INSTANCES

ALL BARS 
CORRECT

FALSE
POSITIVE

0 172 101 23
1 195 112 14
2 196 92 1
3 214 119 17
4 188 90 4
5 212 119 24
6 214 135 29
7 216 108 15
8 194 132 39
9 199 129 35

Figure 5.8: Distribution of LED Training Data
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1 <rule> ( cond <cond0> <condl> <cond2> <cond3> <cond4> <cond5> 
<cond6> <cond7> <cond8> <cond9> )

2 <condO> — ( <bars> 0 )
3 <condl> — » ( <bars> 1 )
4 <cond2> — » ( <bars> 2 )
5 <cond3> — ► ( <bars> 3 )
6 <cond4> — ► ( <beurs> 4 )
7 <cond5> — ( <bar8> 5 )
8 <cond6> — *• ( <bars> 6 )
9 <cond7> — ( <bars> 7 )
10 <cond8> — ( <bars> 8 )
11 <cond9> — ( <bars> 9 )
12 <bars> — ► ( and <bar0> <barl> <bar2> <bar3> <bar4> <barS> <bar6> )
13 <bar0> — *• <choice0>
14 <choice0> — ► sO
IS <cboice0> — ( not sO )
16 <barl> — ► <choicel>
17 <choicel> —* si
18 <choicel> — ► ( not si )
19 <bar2> — ► <cboice2>
20 <cboice2> — ► s2
21 <choice2> — ( not s2 )
22 <bar3> — ► <cboice3>
23 <choice3> — ► s3
24 <choice3> — ( not s3 )
25 <bar4> -* <cboice4>
26 <choice4> — s4
27 <choice4> — ( not s4 )
28 <bar5> — <choice5>
29 <choice5> — s5
30 <choice5> — ( not s5 )
31 <bar6> — <cboic«6>
32 <choice6> — s6
33 <cboice6> — ( not s6 )

Figure 5.9: Grammar for Balance Function

condition-action pairs. As is evident from production 1, the grammar for this experiment 

creates a  cond containing exactly 10 conditional statements. Productions 2 through 11 are 

then dedicated to the creation of boolean classifiers for the digits 0 through 9 respectively.

As evidenced by production 12, the condition of all ten statements consists of a LISP and 

function followed by seven values generated by the < bart> non-terminals. When expanded,
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each produces the boolean state of the corresponding diode - either st- or ( not s t- ). Figure 

5.10 shows the genotype and phonotype of one arbitarily created rule.

The crossover and mutation specification lists

( CROSSOVER CONDO CONDI . . .  COND6 BARO BARI . . .  BAR6 )
( MUTATE BARS BARO BARI BAR2 . . .  BAR6 )

are also associated with the grammar in order to limit the scope of the recombination 

operators. Under these restrictions, mutation may only change the value of one diode at a 

time. This serves to prevent catastrophic changes to an entire rule. The crossover operator 

may affect one diode as well, but it is also permitted to exchange an entire conditional 

statement. By this means, the boolean classifiers within each rule remain isolated from

G E N O T Y P E
( l

2 12 13 15 0 0 16 17 0 0 19 21 0 0 22 23 0 0 25 26 0 0 28 29 0 0 31 32 0 0 0 0
3 12 13 15 0 0 16 17 0 0 19 20 0 0 22 24 0 0 25 26 0 0 28 30 0 0 31 33 0 0 0 0
4 12 13 14 0 0 16 17 0 0 19 20 0 0 22 23 0 0 25 26 0 0 28 30 0 0 31 32 0 0 0 0
5 12 13 15 0 0 16 18 0 0 19 21 0 0 22 24 0 0 25 26 0 0 28 29 0 0 31 32 0 0 0 0
6 12 13 15 0 0 16 18 0 0 19 21 0 0 22 23 0 0 25 27 0 0 28 30 0 0 31 32 0 0 0 0
7 12 13 14 0 0 16 18 0 0 19 20 0 0 22 23 0 0 25 27 0 0 28 30 0 0 31 33 0 0 0 0
8 12 13 14 0 0 16 17 0 0 19 20 0 0 22 23 0 0 25 27 0 0 28 29 0 0 31 33 0 0 0 0
9 12 13 14 0 0 16 17 0 0 19 20 0 0 22 23 0 0 25 27 0 0 28 30 0 0 31 32 0 0 0 0
10 12 13 15 0 0 16 17 0 0 19 21 0 0 22 23 0 0 25 27 0 0 28 29 0 0 31 33 0 0 0 0
11 12 13 15 0 0 16 17 0 0 19 20 0 0 22 23 0 0 25 26 0 0 28 30 0 0 31 33 0 0 0 0 

0 )_______________________________________________________________
_____________________________P H E N O T Y P E _________________________
( cond

( and ( not sO ) s i  ( n o t s2 ) s3 s4 s5 s6 ) 0 )
( and ( not sO ) s i  s2 ( n o t s3 ) s4 ( n o t sS; ) ( n o t s6 ) ) 1 )
( and sO s i s2 S3i s4  ( n o t s5 ) s6 ) 2 )
( and ( not sO ) ( n o t s i  ) ( not s2 ) ( no t s3 ) s4  s5 s6 ) 3 )
( and ( not sO ) ( no t s i  ) C not s2 ) s3 ( not s4 ) ( not s5 ) s6
( and sO ( n o t s i ) s2 s3 ( not s4 ) ( n o t s5 ) ( n o t s6 ) ) 5 )
( and sO s i s2 s3> ( n o t s4 ) s5 ( not s6 ) ) 6 )
( and sO s i s2 s3> ( n o t s4 ) ( not s5 ) s6 ) 7 )
( and ( not sO ) s i  ( n o t s2 ) s3 ( not s4  ) sS ( n o t s6 ) ) 8 )
( and ( not sO ) s i  s2 s3 s4 ( not s5 ) ( not s6 ) ) 9 )

)

Figure 5.10: Rule Generated from LED Grammar
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one another. The syntactic GA therefore processes ten separate subpopulations of boolean 

classifiers simultaneously.

Each rule A  in the population is evaluated by the fitness function

_  f C - I  i f C - / > 0  
\  2^c ~ ^  otherwise

where C  is the number of LED displays correctly classified and I  is the number of incorrect 

instances. Once again, the 2^c ~^  calculation ensures that poorer performing rules receive 

lower fitness values while ensuring that a positive result is always produced. This basic 

mechanism was often found to be useful in the design of fitness functions.

The experiment was conducted using a crossover rate of 0.8, a mutation rate of 0.05, 

and a population size of 200. For each of the 50 experimental run, GERDS was able to 

isolate the optimal solution presented in Figure 5.11 within 150 generations. This solution

( cond
( ( and sO si s2 ( not s3 ) s4 s5 s6 ) 0 )
( ( and ( not sO ) ( not si ) s2 ( not s3 ) ( not s4 ) s5 ( not s6 ) ) 1 )
( ( and sO ( not si ) s2 s3 s4 ( not s5 ) s6 ) 2 )
( ( and so ( not si ) s2 s3 ( not s4 ) sS s6 ) 3 )
( ( and C not sO ) si s2 s3 ( not s4 ) sS ( not s6 ) ) 4 )
( ( and sO si ( not s2 ) s3 ( not s4 ) sS s6 ) 5 )
C ( and sO si ( not s2 ) s3 s4 s5 s6 ) 6 )
( ( and sO ( not si ) s2 ( not s3 ) ( not s4 ) s5 ( not s6 ) ) 7 )
( ( and sO si s2 s3 s4 sS s6 ) 8 )
( (

)
and sO si s2 s3 ( not s4 ) s4 s5 ( not s6 ) ) 9 )

Figure 5.11: Solution to the LED Experiment

was obtained by first discovering a “near hit” to one or more of the ten classes. Since 

noise in the training data created many different diode states for each digit, a  “near hit” 

was usually not difficult to find. Mutation and crossover would then gradually alter the 

classifier for that digit until the correct conditions were encountered. These classifiers were
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then propagated throughout the population until convergence was achieved.

As stated earlier, a binary GA would certainly be able to encode the states of the seven 

diodes into binary chromosomes; however, solving the problem as presented in this section 

would still present difficulties. The most obvious solution would entail the decomposition 

of the experiment into ten separate binary GA problems. This however, would not pro­

duce a general classifier in the same sense as the syntactic GA does, and would require a 

significantly larger overall population. In any event, the expressive advantages of using a 

high-level language are clear.

5.3 Badge Function

Every person in attendance at the Eleventh International Conference on Machine Leaming[l] 

and the Seventh ACM Conference on Computational Learning Theory[?] received a name 

badge labeled with a “+ ” or This labeling was due to some function known only to 

the person who generated the badges, and depended only upon the position of characters 

in the attendee’s name. The purpose of the experiment is to identify the unknown func­

tion using Machine Learning techniques. Since a solution to this problem requires finding 

a possibly complex interrelationship between characters in a string, a high-level semantic 

representation is required. As such, the binary GA is not well-suited to this task. The 

syntactic genetic algorithm offers a more viable solution strategy.

For this experiment, the syntactic GA was presented with 294 names, 210 of which were 

classified as “+ ” and 84 of which were instances. Because of the limitations of LISP 

string processing, each name was transformed into a list of exactly 24 characters, the length 

of the longest name in the dataset. Figure 5.12 shows examples of the training data. The 

tilde character represents NULL characters at the end of names whose length is less than
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t N A □ K I  _ A B E
n i l M Y R I A M _ A B R A M S 0 N

t D A V I D _ W i A H A  '
t K A M A L _ M j A L 1 ■"

n i l E R I C _ A L L E N D E R
t D A N A _ A N 6 L U I N “

t T A K E F U M I Y A M A z A K I ....................................
t H □ L L Y _ Y A N C 0 — ~ —

t J □ H N _ M ! _ Z E L L E
n i l T H □ M A S _ Z E U G M A N N

t J E A N - D A N I E L _ Z U C K E R ............................
t D A R K 0 _ Z U P A N I  c

Figure 5.12: Training Data for Badge Function Experiment

the maximum. To simplify processing, several character-by-character substitutions were 

also performed: the space characters between names were replaced by underscores; periods 

located after initials were changed to exclamation points; and any apostrophes were changed 

to the “96” character. Because the badge function was boolean, instances of the “+ ” class 

were changed to t  and became n i l .

In designing a grammar for this experiment, it was necessary to decide how each gener­

ated rule would examine the badge names. LISP, of course, provides a variety of functions 

for handling lists. For reasons of generality, however, rules were limited to the basic nth 

function, which returns the item found at a specified position within a sequence. Simple 

equality was used to compare the nth item with one of the permissible characters in the 

problem domain.

Figure 5.13 shows the grammar used for the badge function experiment. Each rule is 

a simple IF-THEN statement whose condition is in disjunctive normal form. The action, 

contained in production 1, simply returns the t  LISP primitive to indicate classification as
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1 <rule> — ( if <condition> t  )
2 <condition> ( or <term> <tenn> <term> <term> <term> 

<t«rm> <tarn> <tenn> )
3 <term> — <or-choica>
4 <or-clioice> — <and-expr«ssion>
5 <or-choice> — <•c
6 <and-expression> —¥ <exprassion>
7 <and-expression> — ► ( and <expression> <and-choice2> )
8 <and-choice2> — ► <and2>
9 <and2> — <expression>
10 <and2> — ► <expression> <and-choice3>
11 <and-choice3> —» <and3>
12 <and3> -♦ <flxpr«8sion>
13 <and3> —<■ <expression> <and-choice4>
14 <and-cho ic«4> — <and4>
15 <and4> — <expressio&>
16 <and4> -♦ <expression> <and-choice5>
17 <and-choice5> —<• <and5>
18 <and5> — <expression>
19 <and5> -* <axpression> <and-choice6>
20 <and-choic«6> — <and6>
21 <and6> — <expression>
22 <and6> —» <expressio&> <and-choice7>
23 <and-choice7> -*■ <and7>
24 <and7> — <expres8ion>
25 <and7> — <expression> <expression>
26 <expression> —*• ( equal <index> <letter> )
27 <index> — ( nth <position> badge )
28 <letter> —»• <character>
29 <character> -*■ ’a
30 <character> — ’b
31 <charact«r> — ’c

54 <character> ’z
55 <character> -*• 1
56 <character> -►
57 <chaxacter> -*
58 <character> —
59 <cbaracter> —
60 <positioa> — <number>
61 <munber> — 0
62 <number> — 1

84: <number> — 23

Figure 5.13: Grammar for Badge Function Experiment
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a instance. The inclusion of

< or-cho ice>  —► c

in the branch structure of productions 3 through 5 allows each < o r-ch o ice>  to be expanded 

by an epsilon transition. Thus, each of the eight instances of <term > in production 2 

is optional. The condition of each “badge function” therefore contains between 0 and 8 

alternatives. The choice of eight as a maximum length was arbitrary. Note that in LISP, 

an or statement with no arguments evals to n i l .

If expanded, each term in the or function becomes either a nth test by means of pro­

duction 6 or an and statement conjoining up to eight tests if production 7 is selected. Once 

again, the choice of eight as a cutoff point was arbitrary. The various <and-choice,-> non-

G E N O T Y P E

3 5 0 0
3 4 6 26 27 60 70 0 0 0 28 33 0 0 0 0 0 0 
3 5 0 0 
3 5 0 0
3 4 7 26 27 60 74 0 0 0 28 58 0 0 0 8 10 26 27 60 63 0 0 0 28 40 0 0 0 11 12 26 27 60 62 

0 0 0  28 35 0 0 0 0 0 0 0 0 0 0  
3 4 6 26 27 60 74 0 0 0 28 33 0 0 0 0 0 0
3 4 7 26 27 60 83 0 0 0 28 34 0 0 0 8 9 26 27 60 72 0 0 0 28 50 0 0 0 0 0 0 0 0
3 4 6 26 27 60 66 0 0 0 28 41 0 0 0 0 0 0 0 0_)_____________________________________

P H E N O T Y P E
C i f  

( or
( equal ( nth 9 badge ) ’e )
( and

( equal ( nth 13 badge ) '% )
( equal ( nth 2 badge ) ’1 )
( equal ( nth 1 badge ) ’g )

)
( equal ( nth 13 badge ) ’e )
( and ( equal ( nth 22 badge ) ’f  ) ( equal ( nth 11 badge ) ’▼ ) )
( equal ( nth 5 badge ) ’■ ) )

)
t

Figure 5.14: Rule Generated from Badge Function Grammar
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terminals are similiar in affect to the branching structure presented in Section 5.1; thus, 

productions 8 through 21 act to bias the generation of rules in favor of and statements of 

lower complexity.

Production 27 creates the call to nth, where badge is set to each name in the training 

data during rule evaluation. Because each name contains 24 characters, the indexes 0 

through 23 are obtainable from productions 61 through 84 in the grammar. Production 

26 generates the actual comparison of letters, with productions 28 through 59 providing 

the choice of permissible characters. Figure 5.13 presents a sample rule which has been 

“randomly” derived from the experiment grammar.

The fitness function for this experiment is identical to those of the previous two problems. 

Each rule A  in the population is evaluated by the function

_  j  C - I  if C  — /  > 0 
A |  otherwise

where C  is the number of badges correctly identified and I  is the number incorrectly 

classified. As seen in Figure 5.15 below, the optimal solution to the problem was surprisingly 

simple: members of the have a vowel as their second character.

Utilizing a population of 100 rules, a 0.6 crossover rate and a 0.03 mutation rate, the 

syntactic GA was able to reach this solution within 150 generations in each of the 50 

experimental runs. This success can in a large part be attributed to the relatively easy task 

of isolating the trace schema

50 53 0 0

corresponding to position 1. Once discovered for at least one of the vowels, different letter 

combinations at this location were gradually explored in subsequent generations until a 

correct solution was achieved. A traditional GA approach, whose schemata depend upon the
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position of bits within the chromosome, would be unable to employ this strategy. Although 

the solution to this experiment is not complex, the variable structure of the rules and the 

semantic nature of the badge function problem make it unsuitable for traditional GAs.

5.4 Gram m atical Induction

Because the syntactic GA depends upon the construction of rules from a problem-specific 

grammar, one interesting search problem involves the inductive learning of context-free 

grammars from language examples. The following experiment can be easily generalized 

to many applications in compiler construction, finite automata, programming languages 

and computation theory. It also serves as the basis for the “meta-rule” discovery process 

described in Chapter 6 of this dissertation.

Ail of the decisions regarding the design, structure and length of the production rules 

created by this experiment were arbitrarily determined. Figure 5.16 presents a grammar for 

generating a set of production rules over the non-terminal symbols AT =  {S T  U V  W  X Y  Z}

( i f
( or

( equal 
( equal 
( equal 
( equal 
( equal

nth 1 badge ) ’e ) 
nth 1 badge ) ’u  ) 
nth 1 badge ) ’a  ) 
nth 1 badge ) 5o ) 
nth 1 badge ) ’i )

Figure 5.15: Badge Function Solution
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1 < g ra m n a r> — ( C s t a r t >  < r n l e >  < r n l e >  < r u l e >  C m l e >  C r u le >  
C m l e >  cm le>  < r o l e >  < r u l « >  )

2 < s t a r t > — ( S —► C sy m b o l2 >  )
3 < r u l e > — ( < n o n te rm in a l- s y m b o l>  —*■ c s y m b o l  1 >  )
4 < r u l e > — f
5 C s y m b o ll> — C c h o ic e l>
6 < c h o i c e l > —*■ C te r m in a l- s y m b o l>
7 < c h o i c e l > — C te rm in a l- s y m b o l> C 3 y m b o l2 >
8 < s y m b o l2 > —►C c h o ic e 2 >
9 < c h o i c e 2 > -*■ C a n y -sy m b o l>

10 < c h o i c e 2 > — C a n y -s y m b o l> c s y m b o l3 >
11 < s y m b o l3 > -*■ C c b o ic e 3 >
12 < c h o i c e 3 > —► C a n y -sy m b o l>
13 < c h o ic « 3 > — C a n y -sy m b o l> C sy m b o l4 >
14 < s y m b o l4 > — C c h o ic e 4 >
IS < c h o ic ® 4 > -» C a n y -sy m b o l>
16 C c b o ic ® 4 > -*■ C a n y -sy m b o l> C sy m b o lS >
17 < s y m b o ls> — C c h o ic e 5 >
18 < c b o ic « 5 > — C a n y -sy m b o l>
19 < c h o i c e 5 > — C a n y -s y m b o l> C a n y -s y m b o l>
20 < a n y - s y m b o l> — C sym bo l>
21 < s y m b o l> —►C n o n te rm in a l-s y m b o l>
22 < s y m b o l> -► C te r m in a l- s y m b o l>
23 C n o n te r m in a l- s y m b o l> —<■ C n o n te r m in a l>
24 C n o n t  e n n i n a l > -*■ T
25 C n o n ta r m in a l> -* U
26 C n o n te r m in a l> -+ V
27 C n o n te r m in a l> — W
28 C n o n te r m in a l> —►X
29 C n o n t  e r m i n a l> —►Y
30 C n o n t  e r m i n a l> — Z
31 C te r m in a l - s y m b o l> — C te r m in a l  >
32 C t e r m i n a l > — a
33 C t e r m i n a l > — b

Figure 5.16: Grammar for Grammatical Inductioa

and the terminal symbols T  =  {a b}. The non-terminal S is treated as a unique start sym­

bol, and appears only once in each generated grammar as the left-hand side of the first 

production. The expansion of S can contain symbols in the set j V u T .  The seven non­

terminals T  through Z can appear an arbitrary number of times in each grammar. If one 

of these symbols appears on the left-hand side of a production, its expansion will contain
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a non-terminal as the first symbol. Subsequent symbols can be members of either AT or T. 

This grammar structure guarantees that parsing will not lead to infinite recursion, as the 

expansion of each production must eliminate at least one terminal symbol in the example 

string.

Production 1 in the grammar generates ten transition rules. The single instance of the 

start symbol is created by production 2, while the remaining nine rules are derived from 

the branch structure of productions 3 and 4. As described in Section 5.3, the use of

< ru le >  -► e

allows the non-terminal symbol < ru le >  to be expanded by an epsilon transition. Thus, 

each of the nine instances of < ru le >  in production 1 is optional. Since the < s ta r t>  non­

terminal is always expanded, each population member will therefore contain between 1 and 

10 productions.

G E N O T Y P E
( 1 2 8 10 20 21 23 27 0 0 0 0 11 13 20 21 23 28 0 0 0 0 14 15 20 22 31 32 0 0 0 0 0 0 0 0 0 0 0 

4 0
3 23 24 0 0 5 7 31 33 0 0 8 10 20 21 23 24 0 0 0 0 11 13 20 21 23 27 0 0 0 14 16 20 22 31 32

0 0 0 0  17 19 20 22 31 33 0 0 0 0  20 21 23 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0
4 0
4 0
3 23 24 0 0 5 7 31 32 0 0 8 10 20 21 23 26 0 0 0 0 11 12 20 22 31 33 0 0 0 0 0 0 0 0 0 0 0
4 0
3 23 26 0 0 4 6 31 32 0 0 0 0 0
4 0 0 )

P H E N O T Y P E
(

( S -► WXa )
( T -> bTWabW )
( T —► aVb )
( V -► a )

)

Figure 5.17: Rule Generated for Grammatical Induction
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The biasing branch structure of the < symbol,-> non-terminals in productions 5 through

19 has also been seen before in previous grammars. Each production < ru le >  has a 50% 

chance of expanding to one symbol, a  25% chance of expanding to two, a 12.5% chance of 

expanding to three, a 6.25% chance of expanding to four, and a 3.125% chance of expanding 

to either five or six symbols. The grammar depicted in Figure 6.8 is therefore capable of 

generating over 3.72 * 1052 different “grammar rules” with varying degrees of probability in 

accordance with the rules stated above. Productions 23 through 30 create members of set 

M  while 31 through 33 produce members of T. Finally, the branch structure of productions

20 through 22 generate symbols in AT U T.  Figure 5.17 shows one possible rule derivable 

from the grammar.

Figure 5.18 presents some of the 200 items used as training data for the inductive

( T ( babaab ) )
( NIL ( a ) )
( T C bbba ) )
( NIL ( bbaab ) )

( T ( abbaba ) )
( NIL ( bbb ) )
( T ( ab ) )
( NIL ( babbb ) )

Figure 5.18: Training Data for Grammatical Induction 

learning of a grammar for parsing strings in the

C = ((a + b)(a 4- b))+

language. The training file was evenly divided into 100 positive and 100 negative instances, 

as indicated by the T and NIL classifications respectively. Note that since the language £
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contains an infinite number of strings, it is impossible to create a training file containing 

every positive instance.

Each “grammar rule” A  in the population is evaluated by the fitness function

fA  =
C - I + ( l - § )  i f C - / > 0
2lc ~l+w) otherwise

where C  is the number of strings in in the training set correctly parsed by C as a member 

of C, I  is the number of strings incorrectly parsed as C members, and P  is the number 

of productions contained in A.  The C — I  evaluation in was presented in the previous 

three experiments. The additional use of the term ^  serves as a secondary fitness measure 

which rewards grammars containing fewer productions. This acts to eliminate unnecessary 

or duplicate productions from the “grammar rules” during the course of the experiment.

This experiment was conducted over 25 experimental runs using a population of 300 

rules, a 0.75 crossover rate and a 0.02 mutation rate. The maximum C — I  value of 100 was 

reached in all but one case by generation 120. A slow increase in fitness after this point 

was obtained by minimizing grammar productions by means of the secondary yjj fitness 

measure. Figure 5.10 presents the optimal grammar for the language £  discovered during

(
( S —► W W  )
( w a )
( w -+  b )
( w aW W  )
( w —► bW W  )

)

Figure 5.19: Solution to ((a +  6)(a +  6))H
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generation 46 of the first experimental trial.

In additional experiments, GERDS was able to discover other grammars expressing a 

variety of formal languages. This success can largely be attributed to the high-level seman­

tic representation adopted by the syntactic GA, which allows the overall structure of the 

solution to be adapted during grammar induction. The traditional GA, on the other hand, 

must maintain one fixed-length structure for each problem. Its adaptive and expressive 

capabilities are therefore limited to problems whose solutions can be easily expressed in a 

constant format.

5.5 Artificial Life

The syntactic genetic algorithm closely mimics the evolutionary paradigm of natural selec­

tion. Operators exist which resemble the reproductive, selective and variative mechanisms 

found in nature. It is therefore a logical progression to utilize the GA to study and model 

evolutionary behavior by creating a  population of artificial “animals” . This type of investi­

gation is frequently referred to as A rtificial Life in the literature[191, 232, 271]. Although 

the binary genetic algorithm is capable of modeling artificial populations as well, it can not 

efficiently handle the more complex structures used in this experiment.

The environment for this problem consists of a topologically toroidal 200 x 200 grid. 

Each cell in the grid may contain one item: an animal, a rock, or a piece of food. The goal 

for each animal is to move through the “world” in order to obtain food, which is necessary 

for its survival. To accomplish this task, they must learn to maneuver around rock hazards 

and to avoid stronger animals which might prey on them. Figure 5.20 shows a portion of 

this environment. The “@” symbol represents the position of an animal, the “tP” character 

is the location of a food stuff, and the “A” represents the position of a rock. Empty spaces

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 120

4» A A V  A 4» 4» V • • • 4» t 4* 4* A * A 4* A - ft A

4» 4» 4» A *
4* A • 4» A 4» * ft A ft ft * A

ft 4* 4* A * A 4» A • • ft A 4»
4* A 4» A ft A * • 4* A • A • 4» A 4* * A * 4* *

4* ft
A 4* ft A ft ft • A 4* A ’ A * 4* A A 4* * ft A * * 4?

A A
4* 4» A 4» 4» * * 4» * * A V  * ft A * * A 4» f t

f t  A
4* 4* A A 4» • f t A
• A f t * A A * * 4* * * A 4» A * A 4» A Hf *P 4* 4» 4»

* 4* A  4» f t A A 4* f t  A f t f t
f t  A 4» 4» f t 4*

* ft 4» A 4» 4» 4» f t 4* * * A V  A 4*
♦ V A 4» f t A V 4» A ♦ A 4» A * * f t A

A 4» f t A 4» A 4* A A 4» A 4* 4» 4» 4* 4*
A A A 4* f t A f t f t
* 4» A 4» 4» A A 4» A
* A 4» f t A • * * A f t * * A * 4» A A • 4» A 4* A * 4» •

f t
f  y  y  A A 4> A * f t A 4» A A 4» A 4* 4»

4» 4» 4* 4» A 4* 4» 4*
A f t  f t 4»
• f t 4* 4* 4» f t r 4* A * A 4* A f t  A A 4» A

A

f t A 4» f t A A V f t A f t f t  *
4* A 4*

A  4* * f t A A 4» f t A 4» A A 4» A A
4*

A 4» * 4» 4» 4* 4» A A 4* A A 4* * f t A ft A *
4» 4» 4»
A 4* f t 4* 4» 4* A 4* f t A * * A 4* f t A V f t A

f t  A
4» 4* A 4* A 4* f t 4* A 4* 4* 4* * * 4* * V 4*

4» A A 4* A f t A 4* A 4» f t A

4» 4» 4* 4* A A 4» f t A 4* A ♦ 4* - A A A
ft ft

4* ft 4* 4» ♦ 4* ♦ ♦ A * 4* 4* 4* A • A 4* A V 4* A
A 4* * ft A

4* 4» 4»

Figure 5.20: Environment for Artificial Life Experiment

in the grid are depicted as a character. For each generation, 1000 animals, 2500 rocks 

and 5000 pieces of food are arbitrarily placed in the world grid.

An animal may attempt to move into any of the four adjoining cells. A space containing 

a rock may not be entered. If an item of food is encountered at the new location, the animal 

consumes it and the cell is cleared of food. An animal is also allowed to move onto a space 

containing a weaker animal. In this event, the stronger animal “survives” and the weaker 

falls victim to predation. It is removed from the population as it is consumed. Movement 

onto a space containing an animal of equal or greater strength is prohibited, where strength
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(a)
4> A • A • 4* A * *
• • A .  @ • • A *

4» 4» • • * • • •

• ‘ ®
• • • @-
• 'V • • • A • 4»

4» • • A • • •

A 4» * @ A .

A
( look ’right) — ► *P 

4* b 'food

(e)

4» 4»

A 4»

( look 'left) — ► • 
.«  nil

(b )
4* A

vp

A V

( look 'up)

(d)

4» V

A 4>

( look ’down)
A b 'rock

Figure 5.21: The look primitive

is expressed as an integer between 1 and 4 indusive.

The animals obtain information about their surroundings by means of two “senses” - 

sight and sound. Figure 4.21 graphically illustrates the operation of the vision primitive 

look. Note that this ability is not passive. The animal “mind” must dedde to look and 

spedfy a direction. Line of sight then extends from an adjacent cell in the stated direction 

until an object is encountered or the maximum range of vision is exceeded. The primitive 

then returns the type of object last examined. The vision range is spedfied by an integer 

in the interval [1..4], For the preceding examples, it is assumed that this value is set to 3.

The l i s t e n  primitive operates in a similar fashion. It also requires the animal to actively
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(a)
4» A • A • 4» A - •
• • A • @  • • A •
4* 4* . ip .

. . „----> @
• • - &----- •
• 4» • •''-*A • 4'
4* • • A • * 4» •
A 4* • @  A • •

A

<b)
4> A

A 4*

( listen ’right) ----► nil ( listen ’up )

(c )  <d)
4* A ■ A • 4* A • -

• A * @  * * A •
•  •  •

 @
•  • * p  •

• • 4» \  A • 4»
• 4» • r A 5 - •
• A 4> * @  X • • •
A .................

( listen ’left)  ► nil ( listen ’down ) ----* • nil

4* A • A • 4» A • •
• • A • @ • * A •
4> 4» * • • 4» • • •

<- • * • @<- — 9 • • 4» •
• 4* • A • 4*
4» • • A - • 4» •
A 4* • @ A • • •

A

Figure 5.22: The listen primitive

specify a direction. Unlike look, however, which operates only upon one row or column in 

the world grid, l i s t e n  examines three adjacent rows or columns simultaneously. As shown 

in Figure 4.22, each is traversed until either an object is encountered or the maximum range 

of hearing is exceeded. If an animal was discovered at any of these three positions, l i s t e n  

evaluates to true. Hearing range is also an integer between 1 and 4 inclusive, and is assumed 

to equal 3 in the examples.

During each discrete time step of the experiment, all animals are permitted to examine 

their environment by means of the look and l i s t e n  primitives and, as a result, possibly 

move to an adjacent location. The timing of these activities depends upon the animal’s
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movement rate. This value is once again an integer in the interval [1..4], where 4 represents 

the highest speed. All animals of the same movement rate perform their actions in an 

arbitrary order.

Figure 5.23 presents the grammar for the artificial life experiment. From production 

1, it can be seen that each generated rule consists of five parts. The first four of these 

are integers: the < see>  non-terminal defines the range of vision; <hear>  creates the 

equivalent value for the l i s t e n  primitive; the <hunt>  symbol generates the strength of 

each animal used in determining predation; and <move> provides the rate of movement. 

These are created by means of productions 2 through 5 respectively. The actual value of 

these integers are then determined by the branch structure headed by production 44.

The <mind> non-terminal in production 6 is expanded to produce the final part of each 

rule. It creates a LISP cond statement which acts as a driver program for the individual 

animal. As suggested by production 7, this statement may contain between 1 and 6 separate 

condition-action pairs, where 6 was arbitrarily chosen as the limit. Each condition contains 

expressions such as

( equal ( look ’right ) ’rock )
( not C l i s t e n  ’down ) )

designed to test the values returned by the two primitives. Each action, determined by 

production 34, is simply a request to move in a specific direction. The expansion of the 

<exp> term accounts for the first condition-action from 7. The remaining five may or 

may not be present, depending on whether the epsilon transition is followed in the branch 

structure of productions 8, 9 and 10.

Variations of productions 11 through 26 have been seen before in several experiments. 

Together, they create and statements of increasing length with decreasing probability. Each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 124

1: <start> — ( <see> <hear> <hunt> <speed> <oind> )
2: <see> — •( sees <range> )
3: <hear> ( hears <range> )
4: <hunt> — ( hunts <range> )
S: <speed> -* ( moves <moves> )
6: <mind> -► ( thinks <cond> )
7: <cond> — ( cond <exp> <term> <tenn> <term> <term> <term>)
8: <term> — <expand>
9: <expand> — <axp>
10 <expand> — £
11 <exp> -*• ( <and-condition> <action> )
12 <and-condition> -♦ <and-expression>
13 <and-expression> -+ <not-condition>
14 <and-expression> -► ( and <and2> ) )
15 <and2> — <and2-expand>
16 <and2-expand> -► <not-condition> <not-condition>
17 <and2-expand> — <and3> <not-condition> <not-condition>
18 <and3> -♦ <and3-expand>
19 <and3-expand> -* <not-condition>
20 <and3-expand> — <and4> <not-condition>
21 <and4> — <and4-expand>
22 <  and4-expand> -► <not-condition>
23 <and4-expand> —► <and5> <not-condition>
24 <and5> — <and5-expand>
25 <and5-expand> —► <not-condition>
26 <  and5-expand> -* <not-condition> <not-condition>
27 <not-condition> — <not-expression>
28 <not-expression> — ( not <test>)
29 <not-expression> -♦ <test>
30 <test> —► <sense>
31 <sense> — ( equal <looks> <iten>)
32 <sense> •— ( listen <direction>)
33 <looks> -» ( look <direction>)
34 <action> — ( move <direction>)
35 <item> -*• <obj ect-seen>
36 <obj ect-seen> ’animal
37 <obj ect-seen> — ’rock
38 <object-seen> — ’food
39 <direction> -► <vay>
40 <aay> ’left
41 <way> — ’right
42 <say> -*• ’up
43 <way> — ’down
44 <rang«> —+ <value>
45 <value> -*• 1
46 <value> -» 2
47 <value> — 3
48 <value> — 4

Figure 5.23: Grammar for the Artificial Life Experiment
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statement can contain up to 6 terms, as six was determined to provide a favorable tradeoff 

between processing speed and rule expressiveness. Each term is then placed into a not 

function with a 50% probability through the actions of the branch structure at productions 

27, 28 and 29. Productions 30 through 32 are used to decide which of the sensory primitives 

- either look or l i s t e n  - are contained in each term. The remainder of the grammar is 

used to  choose the direction and object specifications required by these senses. Figure 5.24 

shows one possible “animal" created by the grammar for this experiment.

In order to bias the system in favor of more efficient structures, a food interval was

G E N O T Y P E
( 1 2 4 4  47 0 0 0 3 4 4  45 0 0 0 4 4 4  45 0 0 0 5 4 4  46 0 0 0

6 7 11 12 14 15 16 27 28 30 32 39 42 0 0 0 0 0 0 27 29 30 31 33 39 41 0 0 0 35 37 
0 0 0 0 0 0 0 0 0 0  34 39 40 0 0 0 0 0 0  

8 10 0 0 
8 10 0 0
8 11 13 27 29 30 32 39 41 0 0 0 0 0 0 0 34 39 40 0 0 0 0 0 
8 10 0 0
8 11 13 27 28 30 31 33 39 43 0 0 0 35 36 0 0 0 0 0 0 34 39 42 0 0 0 0 0 0 )

P H E N O T Y P E
(

( sees 3 ) ( hears 1 ) ( hunts 1 ) ( mores 2 )
( thinks 

( cond 
(

( and ( not ( listen ’up ) ) ( equal ( look ’right ) ’rock ) ) 
( move ’left )

)
(

( listen 'right )
C nove ’left )

)
(

( not ( equal ( look ’down ) ’animal ) )
( move ’up)

)
)

)
)

Figure 5.24: Rule Generated from Artificial Life Grammar
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calculated for each animal. This value determined the number of time steps an animal 

could survive without finding food. If an animal exceeded this individual limit, it was 

removed from the population and replaced by a  piece of food in the world grid. For each 

animal A , the food interval Ia  was calculated as

IA =  40 -  (VA + HA + SA + MA + flog, |GM)|1)

where Va  is the vision range, Ha  is the hearing range, Sa  is the strength and Ma  is the 

movement rate of A , and G{A) is the genotype of the rule. Grammar 5.23 produces rules 

whose derivation traces have a t least 62 and at most 786 elements; thus, I  a  ranged in value 

from 14 to 30. By using the food interval mechanism, more complex animals had to exhibit

( ( sees 4 ) ( hears 1 ) ( hunts 1 ) ( moves 4 ) 
( mind 

( cond
C

( equal ( look 'left ) 'food )
( move 'left )

C equal ( look ’right ) 'food )
( move 'right )

( equal C look 'up ) 'food )
( move 'up )

( not ( equal ( look 'left ) 'rock ) ) 
( move 'left )

( not ( equal ( look 'up ) 'rock ) ) 
( move ’up )

)
)

Figure 5.25: A “Gatherer” Solution to Artificial Life Experiment
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more complex behavior in order to survive.

For each generation, the simulation was continued until the last animal exceeded its 

food interval. Fitness was the calculated as

fA = LS(A)

where LS(A) was the life span of each animal. The simulation was initiated at time step 1, so 

the resulting functional value was guaranteed to be positive even in the event of immediate 

predation. The experiment was conducted over the course of 5000 generations utilizing a 

0.4 crossover rate and a 0.01 mutation rate.

The open-ended nature of this problem precluded the convergence of the population 

toward one single solution; instead, several “species” of animals thrived at different times 

during the experiment. By far the most prevalent of these was the “gatherer” solution, an 

example of which is presented in Figure 5.25 on the preceding page. This strategy entailed 

a relatively straight-forward greedy approach to foraging. The animal would look in several 

directions to see if food was located nearby. If not, it would move in some direction not 

containing a rock obstacle. One common species defect was a mutation towards cyclic 

searching patterns. After clearing an area of the available food supply, the faulty animals 

would then meander repeatedly through the same locations in the world grid until eventually 

starving. The “gatherer” solution relied primarily upon a wide range of vision. A secondary 

trait was a fast movement rate, which allowed the animal to be the first to reach nearby food. 

Throughout most of the experiment, at least a few “gatherers” survived in the population.

Several times during the run, another variety of solution appeared. As its name implies, 

the “hunter” solution, an example of which is presented in Figure 5.26, relied upon a stable 

population of animals. Its solution strategy was primarily sound oriented - the “hunter” 

would move in any direction were an animal was overheard, as long as a rock was not in an
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( ( seas 1 ) ( hears 4 ) ( hunts 4 ) ( moves 1 )
( mind 

( cond 
(

C and ( not ( equal ( look 'right ) 'rock ) ) ( listen 'right ) ) 
( move 'right )

)
(

( and ( listen 'up ) ( not ( equal ( look 'up ) 'rock ) ) )
C move 'up )

)
(

C and ( not ( equal ( look 'down ) 'rock ) ) ( listen 'down ) )
( move 'down )

)
)

)
)

Figure 5.26: A “Hunter” Solution to Artificial Life Experiment

adjacent location blocking its movement. Although the “hunter” never explicitly searched 

for food, it often obtained some simply by maneuvering around rocks. Surprisingly, a slow 

movement rate was an asset to the “hunter” , since other animals would move into hearing

( ( sees 4 ) ( hears 1 ) ( hunts 1 ) ( moves 1 )
( mind

( cond
(

( equal ( look 'down ) 'rock ) 
( move 'left )

)
(

( not ( equal ( look 'down ) 'animal ) ) 
( move 'down )

)
)

)
)

Figure 5.27: A “Scavenger” Solution to Artificial Life Experiment
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range before it would have to act. Since two animals of equal strength could not prey upon 

each other, this solution tended to over-populate itself toward extinction.

Finally, Figure 5.27 shows one of the most interesting strategies discovered by the ex­

periment. The “scavenger” depended upon out-surviving other animals. Its solution was 

non-complex, and the animal therefore possessed a long food interval. The goal of the 

“scavenger” was to find an animal tha t was unable to move, and wait for it to die and 

change to food. By avoiding both rocks and animals in one direction, the “scavenger” was 

likely to keep moving and encounter other foods as well. By the end of the experiment, the 

majority of the population contained solutions sim i la r  to this one.

This experiment exemplifies the expressive prowess of the syntactic GA. Since the 

“mind” of each population member is a complex LISP statement, GERDS is capable of 

performing automatic programming tasks. As the Artificial Life problem encompasses a 

large search space and requires continuous adaptation, the syntactic GA has been shown to 

handle complex problems involving several solution strategies.
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Conclusion

6.1 Conclusions

The genetic algorithm (GA) is a robust search technique which has been theoretically and 

empirically proven to provide efficient search for a variety of problems. Due largely to the 

semantic and expressive limitations of adopting a bitstring representation, however, the 

traditional GA has not found wide acceptance in the Artificial Intelligence community. In 

addition, binary chromosomes can unevenly weight genetic search, reduce the effectiveness 

of recombination operators, make it difficult to solve problems whose solution schemata 

are of high order and defining length, and hinder new schema discovery in cases where 

chromosome-wide changes are required.

The research presented in this dissertation describes a grammar-based approach to ge­

netic algorithms. Under this new paradigm, all members of the population axe strings 

produced by a problem-specific grammar. Any structure which can be expressed in Backus- 

Naur Form can thus be manipulated by genetic operators. As such, a grammar-based GA 

strategy provides a consistent methodology for handling any population structure express-
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ible in terms of a context-free grammar.

In order to lend theoretical support to  the development of the syntactic GA, the concept 

of a trace schema - a similarity template for matching the derivation traces of grammar- 

defined rules - was introduced. An analysis of the manner in which a grammar-based GA 

operates yielded a Trace Schema Theorem for rule processing, which states that above- 

average trace schemata containing relatively few non-terminal productions are sampled 

with increasing frequency by syntactic genetic search. Schemata thus serve as the “building 

blocks” in the construction of the complex rule structures manipulated by syntactic GAs.

As part of the research presented in this dissertation, the GERDS implementation of 

the grammar-based GA was developed. A comparison between the performance of GERDS 

and the traditional GA showed that the class of problems solvable by a syntactic GA is 

a superset of the class solvable by its binary counterpart. To strengthen that conclusion, 

several experiments encompassing diverse domains were performed with favorable results.

6.2 Future Research

6.2.1 Efficiency

Because traditional GAs typically operate on binary-coded chromosomes, they can quickly 

perform crossover, mutation and other recombinant operations. GERDS, on the other hand, 

requires additional processing time in order to discover syntactically proper rule subexpres­

sions. Although the list processing capabilities of LISP are well-suited to the Tna.nipnla.tinn 

of derivation traces, its selection as the programming language for GERDS was due largely 

to LISP’s pervasiveness in Artificial Intelligence. The language is not designed for speed or 

efficiency, however, and memory-intensive computation is often quite slow. Redeveloping
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GERDS using a language such as C ++ with a highly-optimized compiler would undoubtably 

improve running time. The syntactic GA is also adaptable to a parallelized implementation. 

An investigation of GERDS use on a different architecture is therefore in order.

6.2.2 Branch Productions

As described in Section 3.2.2, many of the grammars provided in this dissertation include 

branch productions such as

<gene> —► < a l le le  >
< a lle le >  —<■ 0 
< a lle le >  —► 1

which allow crossover and mutation to exchange alternative structures. Although concep­

tually straight-forward, these productions increase the length of derivation traces, and thus 

decrease the efficiency of GERDS. They can also act to obfuscate the basic structure of the 

grammar. One proposed remedy to this situation involves the use of attribute grammars 

to internally label productions of similar purpose.

6.2.3 M eta-Rule D iscovery

As evidenced by the Grammar Induction experiment of Section 5.4, GERDS is capable of 

learning transition rules describing a context-free language. Since the syntactic GA itself 

operates upon a problem-specific grammar, one very interesting avenue of future research, 

which calls for far greater computing resources than were available for the present project, 

is the development of a self-adapting genetic algorithm. It is hoped that such a system 

would be able to acquire both general-purpose and problem-specific methods for improving 

genetic search. One means of achieving this goal would be the the explicit creation and 

modification of m eta-ru les.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. CONCLUSION 133

Each meta-rule in the proposed system would represent a heuristic operator which the 

GA could use to create new rules in the population. These heuristics would serve as a 

supplement to the standard mutation and crossover operators. The integration of such 

meta-rules into the genetic algorithm can be accomplished by introducing a two-level ar­

chitecture. An application-level GA would contain rules describing potential solutions 

to the experiment at hand. A m eta-level G A  would also exist, consisting of a popula­

tion of heuristic operators which can be used to generate application-level rules in future 

generations.

The operators developed by the meta-level GA would manipulate derivation traces in 

order to produce new rules. Each heuristic would itself be derivable from a “meta-lever 

grammar and could be expressed as a simple IF-THEN rule. Since the meta-rules operate on 

derivation traces, the condition of these rules would require only basic list and comparison 

functions. The action of each heuristic would be a call to either the mutation or crossover 

routine. As an example, the phenotype of one heuristic might be

( if ( equal ( nth trace 4 ) 16 ) ( mutate 12 ) )

which would have the effect of mutating a rule at production 12 if the fifth locus in the 

derivation trace was 16.

After reproduction, rules from the application level would be sent to the meta-level for 

possible modification. Each derivation trace would be matched against each heuristic. The 

operator with the highest fitness would then be selected and applied. New meta-level rules 

would be created by the standard reproduction, mutation and crossover operations after 

many generations of the application-level population.

Each time a new rule is created by a heuristic, a link would be established connecting 

that rule to the meta-rule operator which created it. When the fitness function is applied
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to a rule, this link would be traversed, and a fraction of the calculated value a would be 

awarded to the meta-rule. The fitness of a meta-rule would therefore reflects the overall 

success of the rules which it has created.

If a rules fails to reproduce into a subsequent generation, the link joining it to a meta­

rule would be erased. The meta-rule would remain in the system, however, as long as its 

overall fitness remained high. Similarly, if a meta-rule is deleted from the GA, the links 

joining it to the rules it created would also be erased. The rules would then operate on 

their own without calculating an a  fraction.

Using an economic metaphor, each meta-rule in the proposed system can be seen as an 

investment firm periodically making business ventures by creating new rules. If some of 

these ventures prove successful, it is likely that the corporation will remain competitive. If 

most of the enterprises fail, however, the corporation will likely go bankrupt and be removed 

from the population.

Although the method outlined above is intuitively sound, it is evident from the above 

discussion that processing demands make the system infeasible to implement at present. 

With future access to more powerful machines, however, a practical investigation of meta­

rules can be initiated.
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GERDS Source Code

******************************************************************************

*
A C0PY-P0PULATI0H *
w
* ARGUHEHTS:

W
*

* nil*
*

* GLOBALS: *
* <new-populat ion> - newly created and evaluated population array *
* ^population* - total number of population members in experiment *

£
* RETURHS: *
* nilA

*

* EFFECTS:
♦
*

* <old-population> - set to <new-population>, then sorted by fitness *
* <sum-of-fitness>
*

- total sum of all fitness values of individuals *

(defun copy-population ()

; Purpose: copies and sorts new to old population, calculates fitness sum 
; Returns: nil

(setq <new-population> (sort <new-population> ’> :key ’individual-fitness)) 
(setq <sum-of-fitness> 0 .0 )
(dotimes (index ^population*)

(setf (individual-phenotype (aref <old-popnlation> index))

135
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(individual-phenotype (aref <new-population> index))
)
(setf Cindividual-genotype (are! <old-popnlation> index)) 

(individual-genotype (are! <neu-population> index))
)
(setf (individnal-fitness (aref <old-popnlation> index)) 

(individual-fitness (aref <nes-population> index))
)
(setq <sum-of-fitness>

(+ (individnal-fitness (aref <old-population> index)) <sum-of-fitness>)
)

)
)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

CREATE-GEIOTYPE

ARGUMENTS:
production - production at vhich to start building a nee trace

GLOBALS:
<grammar>
<lookup>
<synbols>

array of grammar productions for building a rule 
list of all nonterminals and their productions 
list of nonterminal symbols in productions

RETURNS:
a new (sub)trace beginning at production

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defun create-genotype (production)

; Purpose: randomly constructs a subtrace beginning with production 
; Returns: new subtrace

(append
(list production)
(expand-trace (aref <grammar> production))
(list 0)

)
)

* i

(defun choose-production (symbol)

; Purpose: randomly selects one element from a list of productions 
; Returns: the selected production 
; Invoked: expand-trace
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(let ((production-list (cdr (assoc symbol <lookup>))))
(nth (random (length production-list)) prodnction-list)

)
)

(defun expand-trace (expansion)

; Purpose: randomly expands a subtrace beginning with expansion 
; Returns: new subtrace 
; Invoked: create-genotype, expand-trace

(cond
((member expansion <symbols>)

(create-genotype (choose-production expansion))
)
((and (listp expansion) (not (null expansion)))

(append (expand-trace (car expansion)) (expand-trace (cdr expansion)))
)

)
)

******************************************************************************
w-
*

*
CREATE-PHENOTYPE *

* ARGUMENTS:
W
*

* trace 
 ̂* - a derivation (sub)trace of the rule to be made *

w
* GLOBALS:

*
*

* <grammar> - the array of productions used to build a new rule *
* <productions> - a special stack used for faster rule expansion *
* <symbols>
*

- list of nonterminal symbols in all productions *
*

* RETURNS: *
* a new (sub)rule built from the trace *
* *♦ W 
******************************************************************************

(defun create-phenotype (trace)

; Purpose: constructs an rule (sub)expression by expanding (sub)trace 
; Returns: a (sub)expression

(setq <productions> (remove 0 trace))
(expand-rule (aref <grammar> (pop <productions>)))

)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A. GERDS SOURCE CODE

(defun expand-rule (rule)

; Purpose: transforms a subtrace into a subexpression using a stack 
; Returns: a subexpression 
; Invoked: create-phenotype, expand-rule

(cond
((null rule) 

nil
)
((member rule <symbols>)

(expand-rule (aref <grammar> (pop <productions>)))
)
((atom rule)

(list rule)
)
((and (listp rule) (listp (car rule)) (equal (list (car rule)) rule)) 

(list (expand-rule (car rule)))
)
(t

(let ((new-rule))
(dolist (this-rule rule new-rule)

(if (and
(listp this-rule)
(equal (list (car this-rule)) this-rule)

)
(setq

new-rule
(append new-rule (list (expand-rule (car this-rule))))

)
(setq new-rule (append new-rule (expand-rule this-rule)))

)
)

)
)

)
)

I*****************************************************************************
;*
;* CREATE-POPULATIOH

ARGUMENTS: 
nil

GLOBALS:
♦population* - the total size of the experiment population

CALLS:
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(create-genotype) - builds a production list used to construct rule 
(create-phenotype) - constructs a new rule from its derivation trace

RETURIS: 
nil

EFFECTS:
<new-population> - a new array of randomly created individuals
<old-population> - an array of ^population* with default values

****************************************************************************

(defun create-population ()

; Purpose: drives creation of initial population 
; Returns: nil

(creat e-populat ion-arrays)
(dotimes (index *population*)

(make-new-individual index)
)

)

(defun create-population-arrays ()

; Purpose: creates two population arrays of type individual 
; Returns: nil
; Invoked: create-population

(setq <old-population> (make-array ^population*))
(setq <new-population> (make-array *population*))
(dotimes (index *population*)

(setf (aref <old-population> index) (make-individual)) 
(setf (aref <new-population> index) (make-individual))

)

(defun make-new-individual (index)

; Purpose: creates a <new-population> member and stores it at index 
; Returns: new initialized defstruct 
; Invoked: create-population

(let ((child (aref <new-population> index)) (trace (create-genotype 1))) 
(setf (individual-genotype child) trace)
(setf (individual-phenotype child) (create-phenotype trace))
(setf (individual-fitness child) 0)
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)
)

*
*

*
CROSSOVER *

*
* ARGUHEHTS:
* nil

*
*

W
* GLOBALS:
* <crossover>
* *crossover-rate*
* <new-population>
* ^overlap*
* ^population*
*

*
- list of productions where crossover can occur *
- probability of performing crossover on traces *
- array of individuals chosen from <old-population> *
- number of top individuals to keep each generation *
- total number of individuals in current population *

*
* CALLS:
* (parity—count)
*

*
- determines subtrace end to splice for crossover *£

* RETURHS:
* nil

*
*

* EFFECTS:
* <new-population>
*

W
*

- new population of genotypes after crossover *
*

******************************************************************************

(defun cross-end (trace locus)

; Purpose: finds end of list being spliced 
; Returns: the end sublist 
; Invoked: svap-genes

(if (not (equal (length trace) locus))
(subseq trace locus)

)
)

* ; 

(defun cross-start (trace locus)

; Purpose: finds front of list being spliced 
; Returns: the front sublist 
; Invoked: svap-genes

(if (not (zerop locus))
(subseq trace 0 locus)

)
)
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(defun crossover ()

; Purpose: controls crossover of genotypes in <nes-population> 
; Returns: nil

(do
((index *overlap* (+ index 2)))
((>= (1+ index) ^population*))
(if (< (random 1 .0) *crossover-rate*)

(perform-splicing index (1+ index))
)

(defun locus-select (tracel trace2)

; Purpose: selects a locus for crossover 
; Returns: the production to be crossed 
; Invoked: perform-splicing

(let ((loci (trace-intersect tracel trace2)))
(let ((choice (trace-intersect loci <crossover>))) 

(nth (random (length choice)) choice)
)

)
)

(defun perform-splicing (indexl index2)

; Purpose: finds segments of rule traces and then does crossover 
; Returns: nil 
; Invoked: crossover

(let ((tracel (individual-genotype (aref <nev-population> indexl))) 
(trace2 (individual-genotype (aref <new-population> index2)))) 

(let ((production (locus-select tracel trace2)))
(let ((locusl (start-swap tracel production))

(locus2 (start-svap trace2 production)))
(let ((endl (parity-count tracel locusl))

(end2 (parity-count trace2 locus2)))
(setf (individual-genotype (aref <new-population> indexl)) 

(swap-genes tracel trace2 locusl locus2 endl end2)
)
(setf (individual-genotype (aref <nes-population> index2))
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(swap-genes trace2 tracel locus2 locusl end2 endl)
)

)
)

)
)

)

(defun start-swap (trace prodnction)

; Purpose: finds one of the indices of production in the trace 
; Returns: the index 
; Invoked: perform-splicing

(let ((locus trace))
(dotimes (i (1+ (random (count production trace))))

(setq locus (cdr (member production locus)))
)
(- (length trace) (length locus) 1)

)

(defun swap-genes (trace-1 trace-2  locus-1 locus-2  end-1 end-2)

; Purpose: performs crossover on one structure 
; Returns: a trace after crossover 
; Invoked: perform-splicing

(append
(cross-start trace-1 locus-1)
(subseq trace- 2  locus-2  end-2)
(cross-end trace-1 end-1)

)

(defun trace-intersect (listl list2)

; Purpose: performs intersection on two traces 
; Returns: the intersection list without duplicates or zero 
; Invoked: locus-select

(let ((intersect nil))
(dolist (item listl (remove 0 (remove-duplicates intersect))) 

(if (member item list2)
(setq intersect (append (list item) intersect))
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)

****************************************************************************

FITHESS-FOTCTIOI

ARGUMEITS:
nil

GLOBALS:
<new-population> - newly created individuals without fitness values
*population* - total size of the population for the experiment

RETURHS:
nil

EFFECTS:
<new-population> - new population with all fitness values calculated 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defun fitness-function ()

; Purpose: Default fitness function in case one in not supplied 
; Returns: nil

(dotimes (index *population*)
(setf

(individual-fitness (aref <new-population> index))
(eval (individual-phenotype (aref <new-population> index)))

)
)

****************************************************************************

GA

ARGUMEITS:
experiment-f ile

GLOBALS:
♦best-display*
<crossover>
♦crossover-rate*
*fitness-file*
♦generations*
<grammar>

name and path of file containing the experiment

number of best population members to show in output 
list of productions where crossover can take place 
probability of performing crssover on trace pairs 
name and path of file containing fitness function 
total number of successive population generations 
array of grammar productions for building new rules
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♦grammar-!ile*
<lookup>
<mutation>
♦mutation-rate*
<new-population>
<old-populat ion>
♦output-1ile*
<output-stream>
♦overlap*
♦population*
<productions>
<sum-ol-litness>
<symbols>
♦train-1ile* 
<train-list>

CALLS:
copy-population
create-population
crossover
litness
mutation
process-grammar
read-grammar
read-training
reproduction
statistics

EFFECTS:
♦best-display*
<crossover>
♦crossover-rate*
♦litness-lile*
♦generations*
<grammar>
♦grammar-lile*
<lookup>
<mutation>
♦mutation-rate*
<new-population>
<old-population>
♦output-1ile*
<output-stream>
♦overlap*
♦population*
<productions>
<sum-ol-litness>
<symbols>
♦train-1ile* 
<train-list>

name and path pi the lile containing grammar inlo 
a list ol all nonterminals and their productions 
list ol productions where mutation can take place 
probability ol mutating each production in a trace 
array ol individuals to evaluate in this generation 
saved array ol individuals Irom previous generation 
name and path ol the lile where results are output 
stream lor sending inlormation to the *output-lile* 
number ol top individuals to keep each generation 
the number ol individuals in the current population 
a special stack used lor laster rule expansion 
total ol all litness lunctions values in population 
list ol nonterminal symbols in grammar productions 
path and name ol training data lile (il used by ga) 
list where training data is stored (il used by ga)

copies <new-population> into <old-population> 
handles the creation ol the initial population 
controls crossover ol genotypes in <new-population> 
location ol lunction is specilied in *litness-lile* 
controls mutation ol genotypes in <new-population> 
controls reading and proccessing ol problem grammar 
controls the processing and storage ol the grammar 
controls the creation ol the list ol training data 
chooses individuals to place into <new-population> 
displays stats lor generation via <output-stream>

given delault value il not lound in experiment-lile 
internal global variable is created and set to nil 
given delault value il not lound in experiment-lile
given delault value il not lound in experiment-lile
given delault value il not lound in experiment-lile
internal global variable is created and set to nil 
given delault value il not lound in experiment-lile 
internal global variable is created and set to nil
internal global variable is created and set to nil
given delault value il not lound in experiment-lile 
internal global variable is created end set to nil
internal global variable is created and set to nil
given delault value il not lound in experiment-lile 
internal global variable is created and set to nil 
given delault value il not lound in experiment-lile
given delault value il not lound in experiment-lile
internal global variable is created and set to nil
internal global variable is created and set to nil
internal global variable is created and set to nil
given delault value il not lound in experiment-lile 
internal global variable is created and set to nil
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* RETURHS: ♦
* nil, output ol genetic algorithm is printed to <output-stream> *
♦ *

The Structure 01 Each Member 01 The Population

(defstruct individual 
genotype 
phenotype 
fitness

)

Default Values For Global Variables Which Can Be Set In Experiment-file

(defvar *best-display* 5)
(defvar *crossover-rate* 0 .6)
(defvar *fitness-file* "fitness-function.o") 
(defvar ^generations* 100)
(defvar *grammar-file* "grammar.lsp")
(defvar *mutation-rate* 0 .02)
(defvar *output-file* "output.lsp")
(defvar *overlap* 0)
(defvar *population* 100)
(defvar *train-file* nil)

Internal Global Variables Are Initialized to Hil

(defvar <crossover> nil) 
(defvar <graimar> nil) 
(defvar <lookup> nil)
(defvar <mutation> nil) 
(defvar <nev-population> nil) 
(defvar <old-population> nil) 
(defvar <output-stream> nil) 
(defvar <productions> nil) 
(defvar <sum-of-fitness> nil) 
(defvar <symbols> nil)
(defvar <train-list> nil)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A. GERDS SOURCE CODE 146

Load All leaded Modules For Genetic Algorithm

(load "copy-population.o")
(load "create-genotype.o")
(load "create-phenotype.o")
(load "create-population.o")
(load "crossover.o")
(load "modify-grammar")
(load "mutation.o")
(load "parity-count.o")
(load "process-grammar.o")
(load "read-grammar.o")
(load "read-training.o")
(load "reproduction.o")
(load "statistics.o")

I  — — — — — ——  — _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _  ^

(defun ga (experiment-file)

; Purpose: conducts a genetic algorithm experimemt using rules instead of bits 
; Returns: nil, output of ga experiment is printed to *output-stream*

(load experiment-file)
(load *fitness-file*)
(process-grammar)
(if *train-file* (read-training))
(creat e-populat ion)
(let ((<output-8tream> (open *output-file* :direction :output)))

(dotimes (generation *generations*)
(funcall 'fitness)
(copy-populat ion)
(statistics generation)
(reproduction)
(crossover)
(mutation)

)
(close <output-stream>)

)
)

;******************************************************************************; 
;* * -

;* MODIFY-GRAMMAR *;
;* *•
;* ARGUMENTS: *;
;* grammar-list - a list of the unmodified grammar productions *;
: *  * •
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* GLOBALS: *
* <crossover> - list of specified crossover nonterminals or nil *
* <mutation>
*

- list of specified mutation nonterminals or nil *
£

* RETURIS: *
* a modified version of all grammar rules for easier rule construction *

£W
* EFFECTS: *
* <crossover> - list of all productions where crossover can occur *
* <lookup> - list of all nonterminals and their productions *
* <mutation> - list of all productions where mutation can occur *
* <symbols>
*

- list of all gensyms representing nonterminals *
7k

******************************************************************************

(defun build-nonterminal-associations (grammar-list)

; Purpose: creates a list associating each, nonterminal with its productions 
; Returns: an association list between nonterminals and productions 
; Invoked: modify-grammar

(let ((nonterm-assoc nil) (nonterms (mapcar 'car grammar-list)))
(dolist (nonterminal (remove-duplicates nonterms) nonterm-assoc)

(setq nonterm-assoc 
(append

nonterm-assoc
(list (list nonterminal (find-positions nonterminal nonterms)))

)
)

)
)

)

(defun find-positions (key nonterminal-list)

; Purpose: finds all grammar rules whose left side is nonterminal key 
; Returns: a list of production indices 
; Invoked: build-nonterminal-associations

(let ((position-list nil) (from 0))
(dotimes (pos (count key nonterminal-list) position-list)

(setq from (1+ (position key nonterminal-list :start from)))
(setq position-list (append position-list (list from)))

)
)

)

■ ;
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(defun flatten (a-list)

; Purpose: places all sublists into main list 
; Returns: a flattened list 
; Invoked: remove-terminals

(cond
((atom a-list)

(list a-list)
)
(t

(let ((flat-list))
(dolist (this-list a-list flat-list)

(setq flat-list (append flat-list (flatten this-list)))
)

)

(defun modify-grammar (grammar-list)

; Purpose: modifies list of productions for easier computation 
; Returns: grammar list

(let ((grammar (mapcar 'cdr grammar-list)) (cross nil) (mutate nil)) 
(dolist (this-subst (build-nonterminal-associations grammar-list))

(let ((this-sym (gensym)))
(setq grammar (subst this-sym (car this-subst) grammar))
(setq <symbols> (cons this-sym <symbols>))
(setq <lookup>

(append <lookup>
(list (append (list this-sym) (cadr this-subst)))

)
)
(if (or (null <crossover>) (member (car this-subst) <crossover>)) 

(setq cross (append cross (cadr this-subst)))
)
(if (or (null <mutation>) (member (car this-subst) <mutation>)) 

(setq mutate (append mutate (cadr this-subst)))
)

)
)
(setq <crossover> (remove-terminals cross grammar))
(setq <mutation> (remove-terminals mutate grammar)) 
grammar

)
)
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I * " “ " —— —  — “ "" “ »

(defun remove-terminals (production-list grammar-list)

; Purpose: remove terminal productions from list 
; Returns: list with, only nonterminals 
; Invoked: modify-grammar

(dotimes (index (length grammar-list) production-list)
(if (not (intersection <symbols> (flatten (nth index grammar-list)))) 

(setq production-list (remove (1-)- index) production-list))
)

)
)

******************************************************************************
m
* MUTATIOI *
w
* ARGUMEITS:

W
*

* nil *

* GLOBALS: *
* <mutation> - list of productions vhere mutation can take place *
* *mutation-rate - probability of mutating each production in trace *
* <nev-populat ion> - the array of individuals after crossover happens *
* ^overlap* - number of top individuals to keep each generation ♦
* ♦population*
*

- the number of individuals in current population *
*

* CALLS: *
* (create-phenotype) - builds new phenotype after mutating its genotype *
* (parity-count)
*

- determines subtrace end for splice in crossover *

* RETURIS:
W
*

* nil *
W
* EFFECTS:

*
*

* <neu-population>
*

- array of post-mutated individuals in population *
*

******************************************************************************

(defun mutation ()

; Purpose: controls mutation of genotypes in <nev-population> 
; Returns: nil

(do
((index *overlap* (1+ index)))
((equal index ^population*))
(let ((mutation (perform-mutation
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(individual-genotype (aref <neu-population> index))))) 
(setf (individual-genotype (aref <new-population> index)) natation) 
(setf (individual-phenotype (aref <ne»-population> index))

(make-rule mutation)
)

(defun perform-mutation (trace)

Purpose: performs mutation on individual trace or subtrace 
Returns: mutated or original trace 
Invoked: mutation, perform-mutation

(let ((production (car trace)))
(cond

((null production) 
nil

)
((and (member production <mutation>) (< (random 1.0) *mutation-rate*)) 

(append
(make-trace production)
(perform-mutation (mutate-end trace (parity-count trace 0)))

)
)
(t

(cons production (perform-mutation (cdr trace)))
)

)
)

)

(defun mutate-end (trace locus)

; Purpose: finds end of list being spliced 
; Returns: the end sublist 
; Invoked: perform-mutation

(if (not (equal (length trace) locus))
(subseq trace locus)

)
)

****************************************************************************** 
*  *

* PARITY-COUHT *
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ARGUMEITS:
trace - a rule trace or subtrace derived from the grammar
locus - the index of the first element in the subtrace

GLOBALS: 
nil

RETURIS:
the index of last element of subtrace after parity count from locus 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defun parity-count (trace locus)

; Purpose: conducts search for end of subtrace 
; Returns: the index of the last element of the sublist

(seaxch-for-zero 1 (nthcdr (1+ locus) trace) (1+ locus))
)

(defun search-for-zero (parity subtrace index)

; Purpose: finds end of subtrace by doing parity count 
; Returns: the index of the last element of the sublist 
; Invoked: parity-count, search-for-zero

(cond
((zerop parity) 

index
)
((zerop (car subtrace))

(search-for-zero (1- parity) (cdr subtrace) (1+ index))
)
(t

(search-for-zero (i+ parity) (cdr subtrace) (1+ index))
)

)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

PRQCESS-GRAMMAR

ARGUMEITS:
nil

GLOBALS:
♦grammar-file* - name and path of the file containing grammar info
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*
* CALLS:

*
*

* (modify-grammar) - alters productions for more efficient computation *
* (read-grammar) - reads original grammar from *grammar-file* *

*
* RETURNS: *
* nil *

*
* EFFECTS: *
* <grammar>
*

- array of grammar productions for building rules *
*

******************************************************************************

(defun process-grammar ()

; Purpose: stores productions in array and creates helpful lookup variables 
; Returns: nil

(let ( (grammar-list (read-grammar)))
(let ((modified-list (modify-grammar grammar-list)))

(setq <grammar> (make-array (1+ (length modified-list))))
(dotimes (pos (length modified-list))

(setf (aref <grammar> (1+ pos)) (nth pos modified-list))
)

)
)

)
)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* READ-GRAMMAR *
w

* ARGUMENTS:
*  nil
A

♦

*

*

* GLOBALS:
*  *grammar-file*
*

♦
*

-  name and path of file containing the grammar *
*

*  RETURNS: *

*  a list of all productions read from *grammar-file* in order *

*  a .

*  EFFECTS:
*  <crossover>
*  <mutation>
*

*
- a list of nonterminals (if supplied) for crossover *
- a list of nonterminals (if supplied) for mutation *

******************************************************************************

(defun get-crossover-and-mutation (instream)

; Purpose: reads top lines of *grammar-file* for possible operator information
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; Returns: the first grammar production, updates <crossover> and <mutation>
; Invoked: read-grammar

(do
((rule (read instream nil nil) (read instream nil nil)))
((not (or (equal (car rule) 'crossover) (equal (car rule) 'mutation))) 

rule
)
(if (equal (car rule) 'crossover)

(setq <crossover> (append <crossover> (cdr rule)))
(setq <mutation> (append <mutation> (cdr rule)))

)
)

)

(defun read-grammar ()

; Purpose: reads in each line of *grammar-file* as an individual production 
; Returns: a list of productions as they appear in *grammar-file*

(let ((instream (open *grammar-file*)) (grammar-list nil))
(do

((rule (get-crossover-and-mutation instream) (read instream nil nil))) 
((null rule))
(setq grammar-list (append grammar-list (list rule)))

)
(close instream) 
grammar-list

)
)

******************************************************************************
*
* READ-TRAIIIIG *

* ARGUMEHTS:
W
*

* nil*
*

* GLOBALS:
V
*

* *train-file* - path and file name where training data is found *
* <train-list>
41

- list where training data is kept to be processed *
*

* RETURHS: *
* nil*

*
W
* EFFECTS:

♦
*

* <train-list>
*

- all training data in *train-file* stored as a list *
******************************************************************************
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(defun read-training ()

; Purpose: reads in each line of *train-file» as training example 
; Returns: nil

(let ((instream (open *train-file*)))
(do

((example (read instream nil nil) (read instream nil nil))) 
((noil example))
(setq <train-list> (append <train-list> (list example)))

)
(close instream)

)
)

******************************************************************************
*■
* REPRODUCTIOV *
w
* ARGUMEITS:

w
*

* nil *

* GLOBALS: *
* <old-population> - sorted array of individuals from last generation *
* *overlap* - number of top individuals to keep each generation *
* *population* - total number of individuals to reproduce in array *
* <sum-of-fitness> - total population fitness of <old-population> *

*
* RETURFS: *
* nil
*

*

* EFFECTS:
*
*

* <nes-populat ion>
*

- new array selected from <old-population> members *
*

******************************************************************************

(defun reproduction ()

; Purpose: chooses new individuals for <nev-population> 
; Returns: nil

((index *overlap* (1+ index)))
((equal index *population*))
(let ((replace (aref <nev-population> index)) (selected (selection))) 

(setf (individual-genotype replace) (individual-genotype selected)) 
(setf (individual-phenotype replace) (individual-phenotype selected)) 
(setf (individual-fitness replace) (individual-fitness selected))

)
)
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)

(defun selection ()

; Purpose: does random roulette wheel selection from <old-population>
; Returns: selected population member 
; Invoked: reproduction

(let ((choice (random <sum-of-fitness>)) (partial 0.0))
(do

((index 0 (1+ index)))
((or (>= partial choice) (= index ^population*))

(aref <old-population> (1- index)))
(setq

partial
(+ partial (individual-fitness (aref <old-population> index)))

)
)

)
)

; * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;* STATISTICS
;*
;* ARGUMENTS:
;* generation
;*
;* GLOBALS:
; * *best-display*
;* <old-population>
; * <output-stream>
;* *population*
;* <sum-of-fitness>
;*
;* RETURNS:
;* nil, displays all information for generation to *standard-output*

(defun print-individual (index)

; Purpose: prints fitness value and phenotype of population member 
; Returns: nil, outputs to stream 
; Invoked: print-population

(format <output-stream>
"fitness value: 'S*'/,"
(individual-fitness (aref <old-population> index))

- number of successive generations already produced

- number of best population members to display
- an array of type individual sorted by fitness
- where to direct statistical information output
- number of individuals to be found in population
- total of litness function values in population
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)
(format <output-stream>

"rule phenotype: "S'%"
(individual-phenotype (aref <old-population> index))

)

(defun print-population ()

; Purpose: prints out the *best-display* population members in generation 
; Returns: nil, outputs to stream 
; Invoked: print-report

(format <output-stream> "Population Report 
(dotimes (index *best-display*)

(format <output-stream>
"■s-/."
(individual-phenotype (aref <o24fpopulation> index))

)
)

)

(defun print-report (generation)

; Purpose: prints out statistical information about population 
; Returns: nil, prints population infomation to <output-stream> 
; Invoked: statistics

(format <output-stream>

)
(format <output-stream> "Report for generation "S:"*/.‘7." generation) 
(format <output-stream>

"Maximum fitness value: 'S'%"
(* 1.0 (individual-fitness (aref <old-population> 0)))

)
(format <output-stream>

"Average population fitness: “S'X"*/,"
(/ <sum-of-fitness> ^population*)

)

(defun statistics (generation)

; Purpose: displays statistics for generation via <output-stream>
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; R e tu r n s :  n i l

( p r i n t - r e p o r t  g e n e r a t i o n )
( i l  (>  * b e s t - d i s p l a y *  0 )  ( p r i n t - p o p u l a t i o n ) )

)

I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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