
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

1996

A grammar-based technique for genetic search and optimization A grammar-based technique for genetic search and optimization

Clayton Matthew Johnson
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Johnson, Clayton Matthew, "A grammar-based technique for genetic search and optimization" (1996).
Dissertations, Theses, and Masters Projects. Paper 1539623893.
https://dx.doi.org/doi:10.21220/s2-v34k-vh36

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623893&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.wm.edu%2Fetd%2F1539623893&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-v34k-vh36
mailto:scholarworks@wm.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type o f computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A GRAMMAR-BASED TECHNIQUE

FOR GENETIC SEARCH AND OPTIMIZATION

A Dissertation

Presented to

The Faculty of the Department of Computer Science

The College of William and Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Doctor of Philosophy

by

Clayton Matthew Johnson

1996

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9722679

Copyright 1997 by Johnson, Clayton Matthew
All rights reserved.

UMI Microform 9722679
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Clayton 1£k Johnson

Approved, August 30, 1996

Stefan Feyock ^
Thesis Advisor

\ A n i k e y . ------
William Bynum *■

Phil Kearns

Rex Kincaid
Department of Mathematics

Departmeu^dT Physics

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In memory of my father,

Thomas H. Johnson

In memory of my sister,

Kimberly Marie Day

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

A cknow ledgm ents vii

List o f Figures viii

A bstract xii

1 Introduction 2

2 Background 5

2.1 The Genetic Algorithm ... 5

2.1.1 R eproduction... 8

2.1.2 C rossover... 10

2.1.3 M u ta t io n ... 11

2.2 Schema Processing .. 11

2.3 Development of Genetic A lgo rithm s.. 19

3 Rule Representation 22

3.1 Binary R epresentation.. 22

3.2 Rule R epresen tation ... 24

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.1 Grammar-Based Approach ... 25

3.2.2 Rule C rossover.. 30

3.2.3 Rule M u ta t io n .. 36

3.3 G E R D S .. 39

3.4 Related W o rk ... 44

3.4.1 C r a m e r .. 44

3.4.2 Bickel and B ickel... 46

3.4.3 Fujiki and Dickinson... 48

3.4.4 Grefenstette.. 50

3.4.5 K o za .. 55

4 Rule and Bitstring Comparison 62

4.1 Syntactic Representation of B its tr in g s ... 62

4.1.1 Syntactic Emulation of Binary Crossover .. 63

4.1.2 Syntactic Emulation of Binary M utation... 65

4.1.3 Syntactic Emulation of Binary R epro d u ctio n 67

4.1.4 Equivalence of Syntactic and Binary R epresentation 68

4.2 Binary O ptim ization.. 68

4.3 Trace Schem ata... 76

4.4 Equation Optim ization... 89

5 Machine Learning and Classification 96

5.1 Balance S c a le .. 96

5.2 LED C lassification... 103

5.3 Badge F unction ... 109

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Grammatical Induction .. 114

5.5 Artificial L i f e .. 119

6 Conclusion 130

6.1 Conclusions... 130

6.2 Future Research .. 131

6.2.1 Efficiency.. 131

6.2.2 Branch P ro d u ctio n s ... 132

6.2.3 Meta-Rule Discovery... 132

A GERDS Source Code 135

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

To my friends: James O’Hara, for his passion; Dennis Pattinson, for his acceptance; and

Dave Piller, for his wit. Thanks for the Humanities lessons.

To my fellow graduate students, especially: Tracy Camp, for never allowing me to think

too little of myself; Tracey Beauchat, for never allowing me think too much of myself,

either; Phil Auld, for good conversation and an outlet for play; Felipe Perrone, for long

hours contemplating the insignificant; A.B. Wakely, for keeping my head in working order;

Stamos Karamouzis, for the sibling rivalry; Ranee Necaise, for serving as foreman of the

moving and storage crew; Tin Siladin, for offering a safe harbor during the storm; and Nicky

Albanese for his continual efforts to distract me from my work.

To the faculty and staff of the Computer Science department at the College, who made

allowances for the non-traditional. Additional thanks to a top-notch dissertation committee:

Bill Bynum, Phil Kearns, Rex Kincaid, and Gene Tracy. Special thanks to my advisor,

Stefan Feyock, for his patience, breadth of knowledge, and subtle humor in directing my

research over the years.

To the Williamsburg Players, for the experience of Theater.

To my family, especially Leanne Cain and Rick Day. Loving thanks to my mother,

Nancy Johnson, for her emotional and financial support during the lean times.

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Figures

2.1 The Simple Genetic A lg o rith m .. 7

2.2 Sample GA Population.. 8

2.3 Roulette Wheel Selection ... 9

2.4 Crossover O perator.. 10

2.5 Mutation O perato r.. 11

2.6 Schemata Matching.. 12

2.7 Schema Order o(H) and Defining Length 6{H) .. 13

2.8 Schema Disruption due to C rossover.. 16

3.1 Schema for f x = x(x + 3) mod 3 2 ... 23

3.2 A Sample Rule Grammar for Tic-Tac-Toe... 25

3.3 Rule and Derivation Trace Creation ... 26

3.4 Derivation of a Sample Rule and Trace... 27

3.5 Sample Population of Tic-Tac-Toe R ules.. 28

3.6 Binary Encoding For Tic-Tac-Toe R u le s .. 29

3.7 Rule Crossover A lgorithm ... 30

3.8 The Selection of the Crossover Production L a b e l ... 31

3.9 Determination of Crossover S u b tra c e s ... 32

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.10 Crossover between Grammar-Based R o le s .. 34

3.11 Rule Mutation A lg o rith m .. 36

3.12 Selection of the Production Locus for M u ta tio n ... 37

3.13 Determination of the Mutation Sub trace ... 38

3.14 Mutation of a Grammar-Based R u l e ... 38

3.15 Overview of the GERDS algorithm .. 40

3.16 Global Parameters used by the GERDS a lg o r ith m ... 41

3.17 Sample Grammar File Processed by GERDS .. 42

3.18 Cramer’s JB Operator S e t .. 44

3.19 A Sample JB Program for Multiplication .. 45

3.20 The Inversion Operator in G E N E S .. 47

3.21 The Double Crossover Operator in G E N E S ... 48

3.22 Fujiki and Dickinson’s Grammar for the Prisoner’s Dilemma......................... 49

3.23 Sensors used by SAMUEL for the EM P ro b lem ... 51

3.24 SAMUEL’s specialization o p e ra to r .. 53

3.25 Crossover between tactical plans in SA M U EL.. 55

3.26 Examples of Genetic P ro g ram s... 56

3.27 Crossover Between Genetic Programs.. 57

3.28 The Mutation Operator in Koza’s Genetic Program m in g 58

3.29 The Permutation Operator in Koza’s Genetic Program m ing......................... 59

4.1 6-bit Binary String G ram m ar... 62

4.2 Possible Crossover Sites for Bitstring 0 0 1 1 0 1 .. 63

4.3 Possible Crossover Sites for Rule 001101... 64

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Possible Mutation Sites for Bitstring 001101 65

4.5 Possible Mutation Sites for Rule 001101... 66

4.6 Encoding for Binary Optimization of f x,y,z = x2 + y2 + z2 68

4.7 30-bit Binary String G ra m m a r .. 69

4.8 Population Size Effect on Binary Population.. 70

4.9 Population Size Effect on Syntactic P o p u la tio n .. 71

4.10 Crossover Rate Effect on Binary Population... 72

4.11 Crossover Rate Effect on Rule Popu la tion .. 73

4.12 Mutation Rate Effect on Binary P opu la tion ... 74

4.13 Mutation Rate Effect on Rule P o p u la tio n .. 75

4.14 Trace Schemata M atch ing .. 78

4.15 O Calculations for Sample Trace Schemata ... 80

4.16 Sample Subtrace S c h e m a ta ... 89

4.17 Grammar for Optimization of an Equation.. 90

4.18 Best Solution for Equation Optimizer .. 91

4.19 Binary Encoding of Equation Optimizer Terminal Symbols 92

4.20 Average Fitness of Equation Optim ization.. 93

5.1 Calculation of Balance C ondition.. 96

5.2 Training Data for Balance Scale Experiment.. 97

5.3 Grammar for Balance Scale E xperim ent... 98

5.4 Rule Generated from Balance Scale G ram m ar.. 101

5.5 Solution to Balance Scale E x p erim en t.. 102

5.6 Example LED configurations... 103

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.7 Training Data for LED E x p erim en t... 105

5.8 Distribution of LED Training D a ta .. 105

5.9 Grammar for Balance F u n c tio n .. 106

5.10 Rule Generated from LED G ram m ar.. 107

5.11 Solution to the LED Experim ent.. 108

5.12 Training Data for Badge Function Experiment ... 110

5.13 Grammar for Badge Function E xperim ent... I l l

5.14 Rule Generated from Badge Function G ram m ar.. 112

5.15 Badge Function Solution.. 114

5.16 Grammar for Grammatical Induction.. 115

5.17 Rule Generated for Grammatical In d u c tio n .. 116

5.18 Training Data for Grammatical In d u c tio n .. 117

5.19 Solution to ((a + b)(a + b))+ ... 118

5.20 Environment for Artificial Life Experiment ... 120

5.21 The look p r im itiv e ... 121

5.22 The listen primitive .. 122

5.23 Grammar for the Artificial Life E xperim en t... 124

5.24 Rule Generated from Artificial Life G ram m ar.. 125

5.25 A “Gatherer” Solution to Artificial Life Experiment 126

5.26 A “Hunter” Solution to Artificial Life Experiment 128

5.27 A “Scavenger” Solution to Artificial Life Experim ent.................................... 128

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

The genetic algorithm (GA) is a robust search technique which has been theoretically
and empirically proven to provide efficient search for a variety of problems. Due largely to
the semantic and expressive limitations of adopting a bitstring representation, however, the
traditional GA has not found wide acceptance in the Artificial Intelligence community. In
addition, binary chromosomes can unevenly weight genetic search, reduce the effectiveness
of recombination operators, make it difficult to solve problems whose solution schemata
are of high order and defining length, and hinder new schema discovery in cases where
chromosome-wide changes are required.

The research presented in this dissertation describes a grammar-based approach to ge­
netic algorithms. Under this new paradigm, all members of the population are strings
produced by a problem-specific grammar. Since any structure which can be expressed in
Backus-Naur Form can thus be manipulated by genetic operators, a grammar-based GA
strategy provides a consistent methodology for handling any population structure express­
ible in terms of a context-free grammar.

In order to lend theoretical support to the development of the syntactic GA, the concept
of a trace schema - a similarity template for matching the derivation traces of grammar-
defined rules - was introduced. An analysis of the manner in which a grammar-based GA
operates yielded a Trace Schema Theorem for rule processing, which states that above-
average trace schemata containing relatively few non-terminal productions are sampled
with increasing frequency by syntactic genetic search. Schemata thus serve as the “building
blocks” in the construction of the complex rule structures manipulated by syntactic GAs.

As part of the research presented in this dissertation, the GEnetic Rule Discovery System
(GERDS) implementation of the grammar-based GA was developed. A comparison between
the performance of GERDS and the traditional GA showed that .the class of problems
solvable by a syntactic GA is a superset of the class solvable by its binary counterpart,
and that the added expressiveness greatly facilitates the representation of GA problems.
To strengthen that conclusion, several experiments encompassing diverse domains were
performed with favorable results.

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A GRAMMAR-BASED TECHNIQUE
FOR GENETIC SEARCH AND

OPTIMIZATION

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

The evolutionary process is the only naturally occurring adaptive search algorithm known

to exist. In nature, every organism is uniquely defined by the structure of its DNA. If each

individual is considered to be a point within the search space of genetic organization, the

power of “evolutionary search” becomes readily apparent. For example, a single chromosome

in even the simplest vertebrate organism contains tens of thousands of genes, each of which

can take on one of four nucleotide base values. This corresponds to over lO6000 different

gene combinations. The extraordinary complexity of the biological structures discovered is

evidence of the system’s incredible search capabilities.

The manner in which genetic search operates was initially investigated by Charles

Darwin[51]. In his treatise, On the Origin of Species by Means of Natural Selection, Dar­

win introduced the concept of “survival of the fittest” . Each individual differs from other

organisms in a species by slight variations in genetic structure. These variations cause

physical and behavioral differences, and directly affect how the individual interacts with

its environment. If an organism is better suited to its environment, its chances of surviv­

ing and eventually reproducing are greater. In this manner nature continually attempts to

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 3

adaptively discover optimal genetic solutions.

John Holland[118, 119,120] was first to explore the computational nature of the evolu­

tionary process. In Adaptation in Natural and Artificial Systems, Holland developed a basic

methodology for viewing all adaptive systems. He also presented a procedure for solving

arbitrary search problems using natural selection as a model. This type of solution strategy

is known as a genetic algorithm .

In following the evolutionary paradigm, the genetic algorithm (GA) operates on a pop­

ulation of structures, each of which represents one potential solution to the stated problem.

The effectiveness of each individual is determined by performing an artificial “natural se­

lection”. Highly fit individuals are then mated and allowed to reproduce by combining

their structures to create offspring for the successive generation. This process is repeated

iteratively until the population converges toward a single set of solutions.

In the past two decades the genetic algorithm has been successfully applied to a wide

variety of problems in optimization, classification, and machine learning; however, GAs

have not yet made the breakthrough into mainstream Artificial Intelligence (AI). The main

reason for this discrepancy is that genetic algorithmists have typically adopted a fixed-

length binary string representation in their research. The larger AI community, on the

other hand, has relied heavily upon more expressive semantic representations describing

complex interrelationships between problem elements.

In the past few years there have been several proposals for modifying the representation

scheme of genetic algorithms. Research efforts by Smith[234] and Goldberg, Korb and

Deb[87] presented techniques for applying the genetic algorithm to variable length strings.

Fujiki and Dickinson[83] developed genetic operators for Lisp S-expressions. Bickel and

Bickel[24] and Koza[149, 152] devised similar operators for tree structures. Antonisse and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 4

Keller[8, 7] and Grefenstette[108,110] also presented methods for performing genetic search

on certain higher-level statements.

These efforts have provided useful extensions to the genetic algorithm paradigm; how­

ever, each focuses on adapting the GA to only one specific type of structure. None of this

work has presented a general-purpose strategy for performing genetic operations on an ar­

bitrary class of expressions. Since GAs are designed to be domain-independent procedures,

this lack of an underlying methodology has greatly reduced the applicability of genetic

algorithms to problems expressed in conventional AI terms.

The research presented in this dissertation describes a grammar-based approach to ge­

netic algorithms. With this technique, all structures in the GA population are strings

derivable from a problem-specific grammar. Any structure which can be expressed in

Backus-Naur Form (BNF), whether it be a fixed-length binary string or a complex computer

program, can therefore be manipulated by genetic operators. As such, a grammar-based GA

strategy provides a consistent methodology for handling arbitrary populations of structural

elements.

Chapter 2 of this dissertation provides an introduction to the genetic algorithm and

to schema theory. It also details the early development of the genetic paradigm. Chapter

3 presents the grammar-based genetic approach, and describes related work in GA rep­

resentation. The GEnetic Rule Discovery System (GERDS) for performing GA tasks

is also detailed. Chapter 4 develops a new schema theory for syntactic GAs, and applies

the grammar-based genetic algorithm to several optimization tasks. Chapters 5 presents

applications of GERDS to representative problems in classification and machine learning.

Finally, Chapter 6 explores the use of a grammar-based approach for the discovery of meta­

rule heuristic operators, and details directions for future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

2.1 The Genetic A lgorithm

The genetic algorithm (GA) is a powerful search strategy based on natural selection and

population genetics. In the past two decades it has been empirically and theoretically

proven to provide robust search for complex problems. Because it is modeled closely after

the evolutionary paradigm, however, the GA differs in many ways from more traditional

search techniques.

As does nature, the genetic algorithm conducts its investigation on the basis of a popu­

lation of individuals. Competition between members of this population drives the inductive

process. The GA is therefore unlike more familiar hill-climbing techniques which climb a

functional peak until a maximum value is encountered. The GA climbs many peaks in

parallel. As such, its chance of finding a local optimum for the best solution is greatly

reduced.

In keeping with the evolutionary metaphor, each individual in the GA population is

defined by its gene content. In nature, a gene is a structure holding one of four nucleotide

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 6

bases: adenine (A), cytosine (C), guanine (G) or thymine (T). In the genetic algorithm, a

gene is usually a structure holding a binary value. In both the natural and artificial cases,

the value of a particular gene is known as its allele. Groups of genes are in turn arranged

into long strands called chromosomes. For GAs, a chrom osom e is defined as a string of

genes (bits). The position of a gene within the chromosome is called its locus; genes are

numbered left-to-right starting with locus 1.

In nature, the entire collection of chromosomes defining an individual is its genotype.

The living organism itself is called a phenotype. In the genetic algorithm, a phenotype is

a parameter set representing one possible solution to a given problem. The genotype is

the same solution encoded into a chromosome. As a simple example of this distinction, if

we were interested in using a genetic algorithm to find the maximum range of the quadratic

function
f x = x2 — Zx + 6

for integers in the interval [0,63], we could use a 6-bit chromosome ranging in value from

000000 (zero) to 111111 (sixty-three) to represent the problem’s domain. One possible

member of the population has the genotype 101101 and the phenotype forty-five.

Every niche of the world ecology represents a different problem for the evolutionary pro­

cess. Through competition and natural selection, organisms are continually being adapted

to solve these problems. The algorithm behind natural search, however, remains the same for

each niche. In other words, the “survival of the fittest” mechanism is domain-independent.

It operates upon organisms in different niches without regard to genotypes or environment.

In much the same way, the genetic algorithm works directly on a population of chromosomes

without requiring additional information about the particular problem it is solving. It needs

only some method for determining the merit of each potential solution. As in population

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 7

genetics, this evaluation process is called a fitness function. Once developed, the same

GA can be applied to many different problems; only the fitness function is changed for each

application.

Figure 2.1 shows the operation of the simple genetic algorithm. An initial population

create Population
let Generation = 0
repeat

apply fitness function to each m ember of Population
let Generation = Generation + 1
perform REPRODUCTION on Population
perform CROSSOVER on Population
perform MUTATION on Population

until Generation = M ax__________________________________

Figure 2.1: The Simple Genetic Algorithm

of strings is arbitrarily created for the first generation. Then, after applying the fitness

function, the GA creates a new population of strings to replace the previous generation.

This closely parallels natural populations in which organisms are created and eventually

reproduce if they survive to maturity. After a predetermined number of generations, the

algorithm halts.

The creation of new organisms in nature depends heavily upon many inherently random

factors such as the choice of parents. Like other aspects of the genetic algorithm, the pro­

cedures REPRODUCTION, CROSSOVER and MUTATION follow the natural precedent

for an artificial population of strings. They axe each described in detail below. It is impor­

tant to note that, although the GA utilizes “random operators” for string manipulation, it

does not conduct a random walk through the search space. Instead, genetic search uses the

fitness function as its guide.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 8

2.1 .1 R e p ro d u c tio n

R eproduction is an artificial “survival of the fittest” mechanism by which strings (or

chromosomes) are copied according to their fitness. There are many techniques in the

literature for performing GA reproduction. The most widely used method is ro u le tte

w heel selection, which defines the probability of selecting a string Sj for reproduction as

*>i) = (2-1)
E /(*)

1 = 1

where / is some fitness function and N is the population size.

Turning once again to the quadratic maximization example, a genetic algorithm might

initially generate the population of four strings listed in Figure 2.2, together with their

string (chromosome) fitness function
genotype phenotype value
6-bit string integer x f(x) = x2- 3x + 6

[lOl 101 45 1896

[oo 1 0 1 1 11 94

(o 1 1 0 1 0 26 604

(1 1 0 1 00 52 2554

total fitness: 5148
Figure 2.2: Sample GA Population

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 9

associated fitness values. Note that in this case, the fitness function is the same as the

quadratic equation that is to be optimized. There is no better measure of string optimality

than the function value of each string. In many other GA applications, however, no such

objective function exists. In these cases a heuristic approximation is used instead.

Dividing the fitness of each individual string by the summation of all fitness values in the

population results in the selection probabilities depicted in Figure 2.3. A new population

string fitness function
(chromosome) value selection %

0 0 1 0 1 1

total fitness

Figure 2.3: Roulette Wheel Selection

would then be created by making four spins on the roulette wheel. Since the probability of

selecting 110100 is roughly fifty percent, about half of the individuals in the next generation

should be copies of this string. The low-performing string 001011, however, is unlikely to

survive into any successive populations. The reproduction operator enables the genetic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 10

algorithm to focus its search by emphasizing the best strings discovered.

2.1.2 Crossover

C rossover is a recombination operator for manipulating strings. After reproduction has

occurred and a new population is created, crossover proceeds in three steps:

• strings in the new population are arbitrarily paired

• a crossover locus is chosen uniformly along the length of the string

• two new strings are created by swapping all genes after the crossover locus

Figure 2.4 depicts the results of applying the crossover operator to the strings 101101 and

string 1 string 3

\KM/

Figure 2.4: Crossover Operator

011010 in the sample population. The “\ ” mark indicates that the selected crossover site

was between the third and fourth genes. Two new strings are then created by trading the

three genes after the crossover site. In this manner the crossover operator combines highly

fit population members in order to examine new points in the search space.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 11

2.1.3 M utation

Reproduction with crossover is an effective means of combining high-quality solutions. Oc­

casionally, however, these operators might become overzealous and lose an important allele

value. For example, every string in the population might have the allele 0 at the same locus,

whereas the optimal solution might require a 1 instead. With reproduction and crossover

alone, there would be no way to introduce the allele 1 into the population.

M u ta tio n acts as a safeguard against such an event by occasionally changing the value

of a gene after crossover. Figure 2.5 shows the mutation operator applied to the string

string 4

1[I]0 10 0

\ k

1 0 0 1 0 0

Figure 2.5: Mutation Operator

110100. The symbol shows that the second gene was the mutation site, and thus the

1 was mutated to a 0. Mutation plays only a secondary role in the genetic algorithm. As

in nature, the probably of mutation occurring is quite low.

2.2 Schema Processing

The mathematical development of the subsequent section is that of Holland[ll9].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 12

A schem a is a simple pattern-matching device for describing basic similarities between

strings. Since its introduction into the GA discipline, it has become the basis of all genetic

algorithm theory. Simply stated, a schema is a string over the ternary alphabet {0,1,*}.

The 0 and 1 symbols plays the same role in a schema as they do in a chromosome. The

additional symbol acts as a special “don’t care” marker and can take on either binary

value. It is important to emphasize at this point that is a meta-symbol used only to

make theoretical observations about groups of similar chromosomes. It is not used as an

allele value in actual genetic search.

A string is said to match a particular schema if one of the following:

• a 1 in the string matches a 1 in the schema

• a 0 in the string matches a 0 in the schema

• either a 0 or a 1 in the string matches a in the schema

holds at every position along the length of both. Two examples of schema for the quadratic

maximization example are presented in Figure 2.6. Schema A matches all strings beginning

strings

schema^ schemas0 0 1 0 1 1

1 1 0 1 0 0

Figure 2.6: Schemata Matching

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 13

with a 0 and having the substring 101 from locus 3 to locus 5. Therefore, 0*101* matches

only four different strings: the second and third strings of the sample population and the

strings 001010 and 011011. Schema B, on the other hand, is much less specific and requires

only that a 1 be present at locus 3. Since it is concerned with only one out of six possible

gene values, it represents 2̂ 6-1l = 32 different strings. A schema like 110100 matches only

one string, since it does not contain a “*” . The general schema ******, on the other hand,

matches every possible string in the population.

The o rd e r o(H) is the number of specific positions in schema H. In other words, it

is a count of all the non-“*” elements of H. The defining length 6(H) is the difference

between the first and last specific position in H. Figure 2.7 depicts o and 6 calculations

schema^
0 = 4

t t t t
0 * 1 0 1 *

5 = 5 - 1 = 4

schema C
0 = 6

1 1 1 11 t
1 1 0 1 0 0

5 = 6 - 1 = 5

schemaB
o = 1
t

♦ ♦ J ♦ ♦ ♦

U
5 = 3 - 3 = 0

schema D
o = 0

5 = undefined

Figure 2.7: Schema Order o(H) and Defining Length 6(H)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 14

for several representative schemata. Very specific schemata such as 110100 would have an

order equal to the string length /. The defining length of such strings is equal to I — 1. The

general schema ****** has order 0, since it does not contain any specific information. The

defining length of the general schema has no meaning, since no first or last positions exist.

Schemata are useful devices for analyzing the effects of genetic operators on a population

V of strings. To begin, the average fitness f (t) of V at generation t is defined as

 E / (* , 0
m = ^ — (2 .2)

where / is a fitness function, s,- is a string in V , and N is the population size.

The average fitness o f a schem a is the average fitness of all the strings in the popu­

lation matching schema H. Assuming m(H, t) represents the number of matches o iH 'm V

at generation t, schema average fitness can be defined as

£ /(* ,<)

The fitness ra tio o f a schem a is the ratio of the average fitness of a schema H to the

average fitness of V during generation t, and is expressed as

= (2.3)

Turning one more time to the quadratic maximization example, Figure 2.3 shows the

calculation for total population fitness as 1896 + 94 + 604 4- 2554 = 5148. Dividing the

total fitness by the size of the population yields f (t) = 5148/4 = 1287. Schema A in Figure

2.6 matches only string 001011 (with fitness 94) and string 011010 (with fitness 604). The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 15

schema average fitness of A would therefore be f(A ,t) = (94 + 604)/2 = 349. The fitness

ratio of schema A is then F (A ,t) = 349/1287 = 0.27.

As stated in Equation 2.1, reproduction with roulette wheel selection copies strings into

subsequent generations with probability

E / (*)«=i

Since each schema matches a subset of the strings in the population, it is copied from

generation t with probability

p(k ,«) = A M .

Z f Mi=l

After selecting N strings for the new generation t + 1, the expected number of instances of

H is

m (K ,t + 1) =
E /(* .- .«)t=i

Substituting /(f) from Equation 2.2 into the above expression results in

m(W,f + 1) = = m (H ,t)F('H ,t) (2.4)
J\})

where F(H, t) is the schema fitness ratio from Equation 2.3.

Equation 2.4 states that the growth of a schema H depends only upon whether strings

representing 7i have a greater fitness value on average than the population as a whole.

Schemata with a value above the population average will receive increasing trials in future

generations, whereas lower-than-average schemata will be sampled less frequently. At each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 16

generation, this process occurs simultaneously for every schema over V 1. Thus, many

schemata are effectively processed in parallel.

The effect of crossover on H depends upon the individual schema itself. The crossover

operator recombines strings by breaking them at an arbitrarily chosen position. A schema

H survives crossover only if each specific position in H remains unaltered. Thus, unless

the two strings are identical, crossover will disrupt some of the schemata over V. As an

example, schema E in Figure 2.8 can be destroyed by choosing any of the four sites between

schema E

4 possible breaks

schema F

* * * *

1 possible break

Figure 2.8: Schema Disruption due to Crossover

the 0 and the 1 as the crossover locus. Schema F can only be disrupted if the crossover

point is between the two adjacent 1 genes. Close observation reveals that the number of

disruptive crossover sites is the same as the defining length 6 of a schema.

For strings of length I there are / — 1 possible crossover sites. Therefore, the probability

Pd of picking a crossover locus which would disrupt TL is

v m = (2 .5 ,

Thus, the example schema E would be disrupted with a (5 — l)/(6 - 1) = 4/5 probability,

1A schema over V is a schema matching a member of "P

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 17

while schema F has only a (5 — 4)/5 = 1/5 chance of being disrupted by crossover.

By extending Equation 2.5, the probability pa of schema H surviving crossover would

be 1 - pd(W) or

Assuming crossover is performed with probability pc, schema survival is bounded by the

expression

Multiplying Equation 2.4 by Equation 2.6 results in the expression

6 (H)]m(H, t + 1) > m(H, t)
~ f i t) 1 - P c l - l

(2.7)

which describes the combined effects of reproduction and crossover on H. In words, Equa­

tion 2.7 states that schemata of short defining length and above-average fitness are increas­

ingly sampled in future generations.

A schema 7i survives mutation only if each specific position in H remains unaltered.

Since mutation operates by arbitrarily changing a gene with probability pm, the chance of

each position surviving its effect is 1 — pm. The order o(W) represents the number of fixed

positions in H . Therefore, the survival probability p, of H is

P .(W) = (l - P m) 0(K) (2.8)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND

For pm <C 1, Equation 2.8 can be closely approximated by the expression

18

ps(H) = 1 - o(H)pm (2.9)

The joint effect of all three operators is obtained by combing Equation 2.7 with 2.9 with

the result

ro(W, t + 1) > m (W , [l - P c j ^
m

Ignoring the small cross-product term

P c P m 0 i H) 6 (H)

l - l

the above equation can be rewritten as

m(7f, t 4-1) > m(H,
f{t)

(2.10)

Equation 2.10 is the expression of the Schem a T heorem , also called the F undam enta l

T h eo rem of G enetic A lgorithm s. It states that low-order, above-average schemata

with short defining lengths are sampled with increasing frequency by the genetic algorithm.

Schemata with such properties are given the name bu ild ing blocks because of their special

importance to the GA process.

The Fundamental Theorem clearly defines how each schema is simultaneously processed

by the genetic algorithm. It makes no statement, however, about the total number of

schemata over V. It is a simple matter to count the total number of possible schemata

for an arbitrary GA problem. Each position in a given schema can take on one of the

three values 0, 1 or For the example chromosomes of length 6, there would therefore

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 19

b e 3 * 3 * 3 * 3 * 3 * 3 = 36 = 729 different schemata. In general, for genes with k allele

values contained in chromosomes of length /, there are (k + I)* possible schemata. As stated

on page 12, during schema matching each gene is compared to the corresponding schema

position. It matches if the string and the schema have identical values (either a 1 or 0)

or the schema contains a symbol. Since each position of a string matches a schema

position in two ways, a string of length I would represent 2* different schemata. Therefore,

a population V of size N matches n different schemata at generation t as bounded by the

expression

2' < n(V ,t) < N 2l (2.11)

It can be seen from the above equation that the GA possesses the ability to create popula­

tions of strings in such a way as to simultaneously maximize a great number of schemata.

This property of im plic it parallelism is an important theoretical result, as it allows the

genetic algorithm to use combinatorial explosion to its advantage.

2.3 Developm ent o f Genetic A lgorithm s

In the early sixties a number of biologists such as Fraser[82] and Barricelli[16] were running

computer simulations of genetic systems in an attempt to better understand natural pro­

cesses. Fraser’s work even employed binary strings, a fitness function and a reproduction

operator. There was however no mention in these early works that natural search could be

applied to artificial problems.

A few years later, Holland[118] developed his adaptive system theory, describing in part

how the genetic process could be applied to arbitrary search problems. His early work

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 20

stressed the importance of selection as a “survival of the fittest” mechanism. He also

emphasized using a population of search points, and mentioned recombination operators

such as crossover and mutation.

Bagley[13] was the first to coin the phrase “genetic algorithm” . For his dissertation,

Bagley constructed a GA for finding an evaluation function for hexapawn, a game in which

two players start with three pawns apiece and attempt to cross a three by three chess board.

Bagley’s GA contained the three standard genetic operators of reproduction, crossover, and

mutation. However, these were applied to diploid chromosomes, which consist of two joined

strings. Each gene along a diploid chromosome takes on the value of the most dominant

allele at each locus.

Rosenberg’s[206] work involved the biological simulation of a population of single-celled

animals. As part of his research, he developed an adaptive crossover mechanism in which

linkage factors where carried along with allele values to mark the probability of crossover

occurring at each locus. His work was very similar to later optimization and root finding

tasks. At about this time, HoHand[119] was mathematically formulating the underlying

processing power of the genetic algorithm with his schema theory.

Hollstein[127] was the first to apply genetic algorithms to mathematical optimization

problems. His GA used crossover, mutation and other genetic operators, and was able to

find optima much more rapidly than the traditional hill-climbing techniques. Hollstein also

investigated five different selection methods and eight mating techniques borrowed from

horticulture and animal husbandry practices.

Frantz[81] studied the positional effect of genes on function optimization. Specifically, he

considered functions with a strong ep ista tic nature; that is, functions in which important

genes were separated by relatively large distances along the chromosome. Frantz used

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 21

roulette wheel selection, simple crossover and simple mutation, and was able to show that

tight linkage between genes (low epistasis) increased the rate of population improvement.

For his dissertation, DeJong[62] applied Holland’s schema theory to five problems in

function minimization ranging in scope from a smooth, unimodal function of two variables to

a function characterized by discontinuity, great multi-modality and high dimensionality. By

varying the population size, selection technique, and mutation and crossover probabilities,

he was able to quantify the performance of genetic algorithms in terms of both interim

operation and final convergence. His work demonstrated by experiment the robustness of

the GA across many optimization problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Rule Representation

3.1 Binary Representation

There are several difficulties inherent in the simple binary encoding schemes used by stan­

dard genetic algorithms. Since the number of chromosome interpretations is not always a

power of two, GAs often contain redundant information which may unevenly weight the

search process while at the same time reducing the effectiveness of recombination opera­

tors. As an example, let us turn again to the simple quadratic function from the previous

chapter. If we were interested in finding the maximum range of

f x = x 2 — 3x + 6

for integers in the extended interval [0,64], we would require a 7-bit chromosome to represent

the phenotypes 0000000 through 1000000. As can be seen, the sixty-three chromosomes

from 1000001 to 1111111 would not have a meaningful genotype interpretation. In other

words, almost half of the possible strings in the population would have no discernible fitness

value.

Using binary-valued chromosomes can also make it difficult to solve problems whose

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 23

solution schemata are of high order and defining length. Consider, for example, the problem

of finding the maximum range value for the function

f x = x{x -f 3) mod 32

in the interval [0,63]. As shown in Figure 3.1, there are four optimal solutions to this

schema J

Figure 3.1: Schema for f x = x(x + 3) mod 32

problem, each of which matches the schema J. Since the defining length S(J) = 3 and there

are five possible crossover loci, there is a 3/5 = 0.60 probability of crossover breaking apart

the solution schema. Similarly, since the order o(J) = 4 and there are six total genes, there

is a 4/6 = 0.67 probability of mutation disrupting schema J. Since both recombination

operators are more likely to destroy the solution schema than to preserve it, it is unlikely

that schema J will be optimally represented in the population using genetic search.

Under the traditional genetic algorithm paradigm, mutation operates upon individual

bits within a chromosome. Since the probability pm of mutation occurring is typically

quite low, many chromosome-wide mutations are unlikely to occur. Turning again to the

quadratic maximization problem of page 22 for the interval [0,64], it is highly improbable

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 24

that the second best solution 0111111 could be mutated to the optimal 1000000. Point-by-

point mutation on binary genes does not foster new schema discovery in cases where several

allele values must be simultaneously altered.

Binary encoding also makes it impossible for genetic algorithms to use variables in the

traditional sense. Without semantic information to call upon, the GA cannot express com­

plex interdependencies between features in the environment, thereby making it difficult to

add built-in knowledge and world models. Machine learning applications requiring heuristic

discovery or explanation-based reasoning processes are therefore severely limited.

Finally, binary representation serves to isolate genetic algorithms from mainstream Ar­

tificial Intelligence. Most AI applications such as Expert Systems rely heavily upon more

expressive representations describing cognitive aspects of a particular domain. It is difficult

to abstract useful information from bit string chromosomes and then translate this into the

high-order representations prevalent in Artificial Intelligence research. It is even more dif­

ficult to effectively encode a semantic knowledge representation into binary chromosomes.

Genetic-based techniques are therefore commonly overlooked by the larger AI community.

3.2 Rule Representation

Using a higher level knowledge representation offers an easy solution to the above problems.

In the past, there have been several proposals for modifying the binary representation

scheme of genetic algorithms. Each of these efforts, however, has focused on adapting the

GA to one problem-specific structure.

The representation scheme presented in this dissertation provides a general-purpose

strategy for applying the GA to an arbitrary representation. This is made possible by

adopting a grammar-based approach to genetic search. Using this technique, all members

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 25

of the GA population are strings derivable from a problem-specific grammar. Therefore,

any structure which can be expressed in Backus-Naur Form (BNF) can be manipulated by

genetic operators. As such, a grammar-based GA strategy provides a consistent methodol­

ogy for handling any population structure that can be expressed in terms of a context-free

grammar. As will be shown in subsequent chapters, the class of such problems is large.

3 .2 .1 G ra m m a r-B a se d A p p ro ach

Figure 3.2 shows a sample grammar for generating simple if-then decision rules for playing

1: < ru le > — (if < co n d itio n > (p u t-X))
2: < co n d itio n > < statem ent>
3: < co n d itio n > -► (and < sta tem en t> <exp>)
4: < co n d itio n > -► (and < sta tem en t> <exp> <exp>)
5: < co n d itio n > -► (and < sta tem en t> <exp> <exp> <exp>)
6: < sta tem en t> -<• (is-em pty < square >)
7: <exp> -*■ (< p red ica te> < square>)
8: < p red ica te> < a ttr ib u te >
9: < a t t r ib u te > -► is-X

10: < a t t r ib u te > -+ is-O
11: < a t t r ib u te > -► is-em pty
12: < square> — < p o sitio n >
13: < p o s itio n > -*■ top-left
14: < p o s itio n > — ►top-cen ter
15: < p o s itio n > -*■ top-righ t
16: < p o s itio n > — m iddle-left
17: < p o s itio n > — m iddle-center
18: < p o s itio n > -*• m iddle-right
19: < p o s itio n > -* bottom -left
20: < p o s itio n > - f bottom -m iddle
21: < p o s itio n > -*■ bo ttom -righ t

Figure 3.2: A Sample Rule Grammar for Tic-Tac-Toe

the game of Tic-Tac-Toe. When generating rules from the above grammar, it is assumed

that the player is always X; therefore, P u t-X appears as the action of every rule. Each rule

states that if certain board conditions are encountered on the player’s turn, an X should be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 26

placed in the square tested by the first is -em p ty predicate.

For Figure 3.2 and all subsequent grammars, non-terminal symbols are shown in brack­

ets, while terminal symbols are in boldface. Each integer to the left of a rule is a p roduction

label which serves to uniquely identify each production in the grammar. Production 1 is

always assumed to be the start symbol expansion.

In order for the genetic algorithm to use a grammar effectively, each individual in the

population must be accompanied by a derivation trace:

Definition 3.1 A derivation trace X = xiX2..xn has the following syntax:

<derivation trace> —*•10
<derivation trace> —► 1 <subtrace series> 0

<subtrace series> —*■ <subtrace series> <derivation subtrace>
<subtrace series > —*• <derivation subtrace>

<derivation subtrace> —► <production label> 0
<derivation subtrace> —* <production label> <subtrace series> 0

<production label> —► positive integer

Each trace is therefore represented as a list of integers corresponding to the labels of the

productions which were used when generating a rule. This list is additionally annotated

by zeros to mark the completed expansion of each production during a leftmost derivation

through the grammar. Each production therefore contributes two pieces of information to

let Rule = left-hand side of production 1
let Trace = Rule
repeat

let L = left-most non-terminal in Rule
let P = arbitrarily selected label of a production with left-hand side L
let R = right-hand side of production P
let 5 = SiS2—sn be the non-terminals in R from left to right
let R ule = Rule with L replaced by R
let Trace = Trace with L replaced by the string P s is 2—sn0

until no non-terminals in Rule

Figure 3.3: Rule and Derivation Trace Creation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 27

the trace - a unique integer label marking its application and a zero marking its completion.

As will be seen, this zero-embedded representation allows the genetic operators to create

new, syntactically correct rules while preserving the “building block” nature of the GA

search.

rule derivation trace

<rule> <rule>
(if <condition>

(put-X)) 1 <condition> 0

(if(and <statement>
<expression>)

(put-X))
1 3 <statement> <expression> 0 0

(if (and (is-empty <square>)
<expression>

(put-X))
1 3 6 <square> 0 <expression> 0 0

(if (and (is-empty <position>)
<expression>)

(put-X))
13 612 <position> 0 0 <expression> 0 0

(if (and (is-empty middle-right)
<expression>)

(put-X))
1 3 6 1 2 1 8 0 0 0 <expression> 0 0

(if (and (is-empty middle-right)
(<predicate> <square>))

(put-X))
1 3 6 1 2 1 8 0 0 0 7 <predicate> <square> 0 0 0

(if (and (is-empty middle-right)
(<attribute> <square>))

(put-X))
1 3 6 1 2 1 8 0 0 0 7 <attribute> <square> 00 0

(if (and (is-empty middle-right)
(is-0 <square>))

(put-X))
1 3 6 1 2 1 8 0 0 0 7 8 1 0 0 0 <square> 0 0 0

(if (and (is-empty middle-right)
(is-0 <position>))

(put-X))
1 3 61218 0 0 0 7 810 0 012 <position> 0 0 0 0

(if (and (is-empty middle-right)
(is-0 middle-left))

(put-X))
1 3 6 1 2 1 8 0 0 0 7 8 1 0 0 0 1 2 1 6 0 0 0 0 0

Figure 3.4: Derivation of a Sample Rule and Trace

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 28

Every rule and its corresponding trace are initially constructed following the algorithm

presented in Figure 3.3. Each rule is initially set to the right-hand side of production 1.

The left-most non-terminal symbol L in the rule is then replaced by the right-hand side of

an arbitrarily selected production whose left-hand side matches L. This process continues

until all non-terminal symbols have been removed from the rule.

The corresponding derivation trace is constructed in a similar manner; however, each L

is replaced by a list containing only the non-terminal symbols contained in the expansion.

This list is additionally headed by the label of the selected production, and is delimited by

Chromosome
genotype phenotype

derivation trace production rule

1 4 6 12 16 0 0 0
7 8 9 0 0 1 2 15 0 0 0
7 8 10 0 0 12 19 0 0 0 0 0

(if (and (is-empty middle-left)
(is-X top-right)
(is-0 bottom-left))

(put-X))

1 2 6 12 17 0 0 0 0 0
(if (is-empty middle-center)

(put-X))

1 5 6 12 21 0 0 0
7 8 9 0 0 12 19 0 0 0
7 8 1 0 0 0 12 13 0 0 0
7 8 1 1 0 0 12 2 0 0 0 0 0 0

(if (and (is-empty bottom-right)
(is-X bottom-left)
(is-0 top-left)
(is-empty bottom-center))

(put-X))

1 3 6 12 18 0 0 0
7 8 1 0 0 0 12 16 0 0 0 0 0

(if (and (is-empty middle-right)
(is-0 middle-left))

(put-X))

Figure 3.5: Sample Population of Tic-Tac-Toe Rules

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 29

a zero expansion marker. Figure 3.4 illustrates the creation of an arbitrary rule from the

above grammar, as well as the construction of its corresponding derivation trace. Figure 3.5

shows one possible population of rules arbitrarily derived from the Tic-Tac-Toe grammar.

At first glance, the derivation of rules from a problem-specific grammar might seem

to place an added burden on the genetic algorithm. In effect, however, traditional GAs

must perform similar tasks in order to access valid population structures. The if-then

rules created by the Tic-Tac-Toe grammar directly correspond to population phenotypes.

Genotypes are the derivation traces describing how each phenotype was uniquely generated.

In other words, genotypes are obtained from phenotypes during rule creation.

Traditional genetic algorithms, on the other hand, use simple bit-strings as genotypes.

These strings must be decoded by a fitness function in order to access problem parameters.

In other words, phenotypes are obtained from genotypes during rule evaluation. In both

cases, translation between population phenotypes and genotypes is necessary. The only

difference lies in when and how this translation occurs.

For example, the rules derived from the Tic-Tac-Toe grammar of Figure 3.2 can also be

represented in binary. Figure 3.6 shows how an 18-bit string could be used as the genotype

top center middle left middle right bottom center

0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0T r r r r
top left top right middle center bottom left bottom right

00 ignore
01 empty
10 0
11 X

Figure 3.6: Binary Encoding For Tic-Tac-Toe Rules

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 30

for the first member of the rule population. Every board position is described by two bits

which state whether the square contains an X, a 0 or is empty. Ignore simply means that no

information about that square is required by the rule. A fitness function for such bit-strings

would be required to translate this genotype before game board evaluation. As will be

shown in Chapter 4.4, it is important to note that most grammar-derived rules cannot be

effectively represented in binary form.

3.2.2 R ule Crossover

As explained in Chapter 2, the standard crossover operator functions by exchanging genetic

material between two individuals. In traditional GAs, a position or locus is used to deter­

mine how much information each parent passes on to its offspring. The genes before this

locus in the first parent are combined with the genes after this locus in the second in order

to create a new population member.

As shown in Figure 3.7, a modified version of this operation is needed to perform

Crossover of Parents X and y to Produce Offspring X ' and y '

let X = derivation trace of first parent
let y = derivation trace of second parent
let Pc = arbitrarily selected member of I x y — TLSg
le t i = index of arbitrarily selected occurrence of Pc in X
let j = index of arbitrarily selected occurrence of Pc in 3̂
let S x — derivation subtrace headed by Pc a t index i
let S y = derivation subtrace headed by Pc a t index j
le t X = child of X w ith S x replaced by S y
le t y = child of y with Sy replaced by S x

Figure 3.7: Rule Crossover Algorithm

crossover on grammar-based rules. The first step in this process is to determine the in­

tersection of the parents’ derivation traces.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 31

D efinition 3.2 Given a derivation trace X , the p ro d uction label set L x is defined as

{y | 3z [X = xi..x{..xn and y = x,]}. The in te rsec tio n o f derivation traces X and y is

then equivalent to the set I x y = Lx n L y .

Since zero is only a marker and does not label any production, Ix y is equivalent to the set

of all non-zero elements common to both traces.

Set difference is then performed between I x y and a grammar-specific Terminal Label

Set.

D efinition 3.3 The Term inal Label S e t of a grammar G is the set TLSg of labels of

productions of the form Pt- —► siS2..sn, such that every s,- is a terminal symbol.

Rule 1

(if (and (is-empty middle-left)
(is-X top-right)
(is-0 bottom-left))

(put-X))

1 4 6 12 16 0 0 0
7 8 9 0 0 12 15 0 0 0
7 8 10 0 0 12 19 0 0 0 0 0

Rule 3 1 ,3 =
1 6 7 8 9 10 12 19

(if (and (is-empty bottom-right)
(is-X bottom-left)
(is-0 top-left)
(is-empty bottom-center))

(put-X))

1 5 6 12 21 0 0 0
7 8 9 0 0 12 19 0 0 0
7 8 10 0 0 12 13 0 0 0
78 11 0 0 12 20 0 0 0 0 0

Pc in Ii3- tls = 1 6 7 8 12

Figure 3.8: The Selection of the Crossover Production Label

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 32

The result of this operation is the set of all shared labels to productions whose expansions

contain at least one non-terminal symbol. The rationale behind the elimination of TLSq

productions is explained below. One member of I x y — TLSq is then chosen as the crossover

production label

D efinition 3.4 Given traces X and y with intersection Ix y , the crossover p roduction

label is an arbitrarily selected production label Pc E I x y — TLSg

Figure 3.8 shows the method by which the crossover production label is selected in greater

detail. Note tha t for non-trivial grammars Pc is guaranteed to be non-empty, since all

traces must contain the first production of the grammar.

In many cases, several instances of the label Pc can be found in a parent trace. For

derivation trace 1

1 4 6 12 16 0 0 0
- 7 8 9 0 0 12 15 0 0 0

7 8 10 0 0 12 19 0 0 0 0 0

1 2 3 2 1 2 3 2 1 0

:- > [7 8 9 0 0 12 15 0 0 0
subtrace for crossover

derivation trace 3

1 5 6 12 21 0 0 0
7 8 9 0 0 12 19 0 0 0

- 7 8 10 0 0 12 13 0 0 0
7 8 11 0 0 12 20 0 0 0 0 0

> 7 8 10 0 0 12 13 0 0 0
subtrace for crossover

Figure 3.9: Determination of Crossover Subtraces

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 33

example, the labels 7, 8 and 12 occur many times in the traces of both Rule 1 and Rule 3.

Therefore, it is necessary to determine the trace loci for crossover.

Definition 3.5 Given traces X = X\X2 - x n and y = yiy2"lfm with crossover production

label Pc, i and j are trace loci for crossover iff 1 < i < n and 1 < j < m and

Xi = Vj = Pc-

Unlike traditional crossover, the trace locus is not used to split rules apart in order to

exchange “before” and “after” pairs. Such a method would not ensure that syntactically

valid traces would be generated. Instead, the derivation traces of both rules are examined

in order to find derivation subtraces.

Definition 3.6 A derivation subtrace is a contiguous subsequence S = xqxc+i ~X[ndex-i

of X = x\X 2 ..xn, determined by the following algorithm:

let Parity = 0
let Index = locus C in X = i x i 2. . i n
repeat

if Ztndex > 0
let Parity = Parity + 1

else
let Parity = Parity — 1

let In d e x = Index + 1
until Parity = 0
let S = XcXc+l-XIndex-1

Beginning with locus C, the derivation trace is searched from left to right until the

number of zero and non-zero elements examined is equal. This section of the trace represents

a parsed subtree headed by the selected trace locus. Assuming label 7 was chosen as the

production locus, Figure 3.9 shows how the derivation subtraces for crossover can be found

by parity count.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 34

As depicted in Figure 3.10, crossover subtraces are then exchanged between the parents

(if (and (is-empty middle-left)
(is-X top-right)
(is-0 bottom-left))

(put-X))

R l l l C 1 (if (and (is-empty middle-left)
(is-0 top-left)
(is-0 bottom-left))

(put-X))

1 4 6 12 16 0 0 0
7 8 9 0 0 1 2 1 5 0 0 0
7 8 10 0 0 12 19 0 0 0 0 0

1 4 6 12 16 0 0 0
- > 7 8 1 0 0 0 1 2 1 3 0 0 0

7 8 10 0 0 12 19 0 0 0 0 0

r
1 5 6 12 21 0 0 0 A 1 5 6 12 21 0 0 0

7 8 9 0 0 12 19 0 0 0 / \ 7 8 9 0 0 12 19 0 0 0
7 8 1 0 0 0 1 2 1 3 0 0 0 J L- > 7 8 9 0 0 1 2 1 5 0 0 0
7 8 11 0 0 12 20 0 0 0 0 0 7 8 11 0 0 12 20 0 0 0 0 0i

(if (and (is-empty bottom-right)
(is-X bottom-left)
(is-0 top-left)
(is-empty bottom-center))

(put-X)) Rule 3

(if (and (is-empty bottom-right)
(is-X bottom-left)
(is-X top-right)
(is-empty bottom-center))

(put-X))

Figure 3.10: Crossover between Grammar-Based Rules

in order to form two new rules. Since this modified crossover process permits an exchange of

data only between subtrees with common root elements, syntactically valid rules will always

be generated. Although some computation time is required to find elements common to both

parents, new rules do not have to be parsed in the grammar. New traces are automatically

generated through the crossover operator, and it is then a simple matter to construct the

corresponding rule.

Since productions in TLSq contain only terminal symbols, the subtraces which they

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 35

head will always be of constant form. For example, every derivation subtrace headed by

production label 9 will be of the form 9 0. Crossover between members of set TLSg would

therefore lead to the non-productive exchange of identical subtrees.

It is for a similar reason that the Tic-Tac-Toe grammar contains such transition struc­

tures as

7: <exp> — (<predicate> <square>)
8: <predicate> -* <attribute>
9: < a ttr ib u te> is-X

10: < attr ib u te> -♦ is-O
11: < attr ib u te> -► is-em pty

At first glance, it might seem that production 8 above could eliminated, resulting in the

production set

7: <exp> — * (< attribute> <square>)
8: < a ttr ib u te> —► is-X
9: < a ttr ib u te> —► is-O

10: < a ttr ib u te> —► is-empty

The original production 8 is necessary, however, as it serves as a mechanism for choosing

between three different production labels. Without this intermediate step, the crossover

operator would be incapable of exchanging different < a t t r ib u te > values. For example,

two partial derivation subtraces from the revised grammar might be

7 8 0 <square> 0
7 9 0 <square> 0

In the above example, the subtraces 8 0 and 9 0 could not be exchanged through crossover,

since no common production locus exists. Crossover could only occur between entire sub­

traces, permanently linking all < a t t r ib u te > and <square> values in production 7.

Using the original production set, the corresponding partial subtraces would be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 36

7 8 9 0 0 <square> 0
7 8 10 0 0 <square> 0

In this case, production 8 could be selected as the locus for crossover, and the two subtraces

8 9 0 0 and 8 10 0 0 could be independently swapped. B ranch p ro d u c tio n s such as 8 are

commonplace in many of the grammars presented in this paper.

3.2.3 R ule M utation

The crossover operator described above is sufficiently able to exchange information between

existing rule structures in a grammar-based GA; crossover alone, however, cannot introduce

new material into the system. As is the case with traditional GAs, a mutation operator is

necessary to accomplish this task. Unlike these systems, though, occasionally miscopying

a gene is not enough. Caxe must be taken to mutate a rule and still produce syntactically

valid structures.

Figure 3.11 depicts the algorithm for performing mutation on grammar-derived rules.

Mutation of X to Produce X'

l e t X = d e r i v a t i o n t r a c e o f o r ig in a l r u l e

l e t Pm = a r b i t r a r i l y s e l e c t e d m e m b e r o f Lx — TLSq
l e t i = i n d e x o f a r b i t r a r i l y s e le c te d o c c u r r e n c e o f Pm i n X
l e t Sx = d e r i v a t i o n s u b t r a c e h e a d e d b y Pm a t i n d e x i
l e t Sm = a r b i t r a r i l y g e n e r a t e d d e r i v a t i o n s u b t r a c e h e a d e d b y Pm
l e t X' = m u t a t e d X w i t h Sx r e p l a c e d b y Sm

Figure 3.11: Rule Mutation Algorithm

First, the derivation trace is examined in order to find the trace’s production label set Lx-

As with crossover, set difference is then performed between L x and TISg - The result is the

set of all labels to productions in the rule’s derivation whose expansion contains at least

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 37

one non-terminal symbol. One member of L x — TLSg is then selected as the mutation

production label.

D efinition 3.7 Given trace X with production label set L x , the m u ta tio n p roduction

label is an arbitrarily selected production label Pm 6 L x — TLSg -

Figure 3.12 shows this calculation in greater detail for Rule 4 in the example population.

Rule 4

(if (and (is-empty middle-right)
(is-0 middle-left))

(put-X))

1 3 6 12 18 0 0 07 8 10 0 0 12 16 0 0 0 0 0

U =

PM in h r TLS0= l i 3 « 7 s 1 2)

Figure 3.12: Selection of the Production Locus for Mutation

As a final step, the trace locus for mutation must be determined for the rule which is to

be altered.

D efinition 3.8 Given trace X = XiX2 -.xn and mutation production label Pm, i is the trace

locus for m u ta tio n iff 1 < i < n and x,- = Pm-

The derivation subtrace for mutation can then be determined using the parity calculation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 38

derivation trace 4

1 3 6 1 2 1 8 0 0 0
7 8 1 0 0 0 1 2 1 6 0

11
0 0 0 0

1 2 1 0

— > 12 16 0 0
subtrace for mutation

Figure 3.13: Determination of the Mutation Subtrace

algorithm presented in Definition 3.6. One possible mutation subtrace is presented in Figure

3.13. In this example, label 12 serves as production locus.

Next, the mutation subexpression is removed from the trace. It is replaced by a new

(if (and (is-empty middle-right) Rulg 4 (if (and (is-empty middle-right)
(is-0 middle-left)) (is-0 bottom-middle))

(put-X)) (put-X))

1 3 6 12 18 0 0 0
7 8 10 0 0 12 1 6 0 0 0 0 0

1 3 6 12 18 0 0 0
7 8 10 0 0 12 2 0 0 0 0 0 0

mutation
rule trace

<square> «

<position> 12 * 0

bottom-middle 12 20 0 0

Figure 3.14: Mutation of a Grammar-Based Rule

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 39

subtrace arbitrarily created from the grammar using the mutation locus as the starting

production. Figure 3.14 shows the mutation of Rule 4 from the sample population. It is

important to note that mutation does not automatically guarantee that an alteration will be

made to an individual rule. Because the replacement subtrace is arbitrarily generated, it is

possible that all selected productions will be identical to those of the original subtrace. For

this reason, the rate at which this operator is applied to population members is generally

higher than that of its traditional counterpart. As with crossover, members of TLSg are

excluded from Pm selection because the subtraces they head are always a constant structure.

Therefore, a “random” derivation headed by a TLSg production would always be identical

to the pre-mutated subtrace.

3.3 GERDS

As part of the research presented in this dissertation, the GERDS (GEnetic Rule Discovery

System) package was developed to execute the grammar-based search process described in

the previous section. GERDS was implemented in modular form using Common Lisp[240].

A general overview of the GERDS algorithm is presented in Figure 3.15. As can be seen,

the design of the system is quite similar to that of the traditional genetic algorithm depicted

in Figure 2.1.

The first step undertaken by GERDS is to load a problem-specific E x p e r im e n t F ile

into the system. This file sets the values for global variables such as the crossover and

mutation rates. It also defines the location of the four other external files used by the

system. Figure 3.16 lists all GERDS variables and their default values. These values can

be redefined in the EXPERIMENT F ile using the Lisp setq command. For example, in order

to change the population size variable from its default value to 150, the line

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 40

GERDS

repeat
apply fitness function-^

Generation= Generation+1

until G enerations Max

reproduction

crossover

create-popuiation

create-genotype
statistics

mutation

process-grammar
read-grammar

create-phenotype

modify-grammar

parity-count

Fitness
File

Grammar
File

Experiment
File

Training
File

Output
File

Figure 3.15: Overview of the GERDS algorithm

(setq *population* 150)

should appear somewhere in the file.

Next, the read-training module loads a set of example cases from T r a in in g F i le . This

data is then stored internally in < t r a i n - l i s t > , which can be accessed by the fitness

function to test population members during classification and machine learning experiments.

In the default case that * tr a in - f i le * is n i l , the read-training module is not executed.

The process-grammar module then constructs an internal grammar for the experiment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 41

DESCRIPTION GLOBAL DEFAULT
the number of "fittest” individuals to display

to output file after each generation ♦best-display* 5

the percent chance of crossover taking
place between two individuals ♦crossover-rate* 0 .6

the name and path of the file where the function
"fitness” can be found ♦fitness-file* "fitness-function.o"

the total number of generations to evaluate
during the course of the experiment ♦generations* 100

the name and path of the file where the grammar
for creating population members can be found ♦grammar-file* "grammar.lsp"

the percent chance of mutation affecting
each allele of an individual ♦mutation-rate* 0.02

the name and path of the file where statistical
information on performance will be sent *output-file* "output.lsp"

the number of "fittest" individuals which automatically
survive into the next generation ♦overlap* 0

the total number of individuals contained
in the population for this experiment ♦population* 100

the name and p th of the file where example data
can be found (if required by the fitness function) ♦train-file* n il

Figure 3.16: Global Parameters used by the GERDS algorithm

It calls read-grammar, which inputs the set of productions listed in G ram m ar F i le . This

information is then passed to modify-grammar, which transforms these rules so that table

lookup can be used when referencing grammar symbols. Figure 3.17 shows an example

G ra m m a r F i l e describing the Tic-Tac-Toe grammar used in earlier examples. Each tran­

sition rule in this file is represented as a list whose first element is the left-hand side of the

production. For example,

(CONDITION (AND STATEMENT EXPRESSION))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 42

GRAMMAR FOB

(CROSSOVER RULE STATEMENT EXPRESSION PREDICATE ATTRIBUTE)
(MUTATE RULE STATEMENT EXPRESSION PREDICATE ATTRIBUTE)

(RULE (IF CONDITION (PUT-X)))
(CONDITION STATEMENT)
(CONDITION (AND STATEMENT EXPRESSION))
(CONDITION (AND STATEMENT EXPRESSION EXPRESSION))
(CONDITION (AND STATEMENT EXPRESSION EXPRESSION EXPRESSION))
(STATEMENT (IS-EMPTY SQUARE))
(EXPRESSION (PREDICATE SQUARE))
(PREDICATE ATTRIBUTE)
(ATTRIBUTE IS-X)
(ATTRIBUTE IS-O)
(ATTRIBUTE IS-EMPTY)
(SQUARE POSITION)
(POSITION TOP-LEFT)
(POSITION TOP-CENTER)
(POSITION TOP-RIGHT)
(POSITION MIDDLE-LEFT)
(POSITION MIDDLE-CENTER)
(POSITION MIDDLE-RIGHT)
(POSITION BOTTOM-LEFT)
(POSITION BOTTOM-CENTER)
(POSITION BOTTOM-RIGHT)

Figure 3.17: Sample Grammar File Processed by GERDS

corresponds to the production

<condition> —► (and <statem ent> < expression>)

The only exception to this interpretation of G ram m ar F ile entries occurs if either the word

CROSSOVER or MUTATE appears as the first element of a list. In this case, GERDS treats

the expression as a specification list defining the symbols allowed to serve as loci for the

operator in question. In other words, the list

(CROSSOVER RULE STATEMENT EXPRESSION PREDICATE ATTRIBUTE)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 43

would restrict crossover to accept as a locus only those productions whose left-hand sides

began with one of the five symbols RULE, STATEMENT, EXPRESSION, PREDICATE

or ATTRIBUTE. Specification lists are optional, and as will be seen in later chapters, are

used only rarely as a method of encapsulating rule subexpressions.

The next step of the algorithm is create-population, which uses the problem grammar to

generate new population members. It first makes a call to create-genotype, which arbitrarily

constructs a derivation trace beginning with a selected production locus. In the case of

create-popuiation, this locus is always 1. The create-phenotype module, in turn, constructs

the rule structure corresponding to this new trace.

GERDS then enters a relatively straight-forward execution loop which closely follows

the traditional GA paradigm. First, a fitness function is applied to the population in order

to determine individual rule merit. F itness F ile contains the code for the user-defined

function named “fitness” for each experiment. A default function is also provided, which

simply uses the Lisp eval statement in determining a phenotype’s value. The copy-population

module then saves this evaluated population, while statistics sends information about each

generation to the selected O u tp u t F ile .

Finally, the three basic genetic operators are applied to the population. The reproduction

module copies structures chosen by roulette wheel selection into the next generation. The

recombination operators crossover and mutation are then applied. Both operators make

use of parity-count, which returns the subtrace beginning with a selected production locus.

The mutation module also applies create-genotype and create-phenotype in order to generate

new mutated subrules. After Max generations have been created and evaluated, program

execution halts.

A complete listing of the GERDS package is presented in Appendix A to this dissertation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION

3.4 R elated Work

44

3.4.1 Cram er

Cramer’s[50] work marked an important turning point in the development of rule-based ge­

netic algorithms. Although still using a binary representation scheme, Cramer interpreted

these strings to be integers in a simple “number-string” language for generating short se­

quential computer functions. This technique was used successfully to produce two-input,

single-output multiplication functions.

JB, the language Cramer first devised, was a variation of the algorithmic language PL,

and consisted of the operator set shown in Figure 3.18. Programs in JB were simple lists

of integers, divided into statements of length three. Extra integers at the ends of :ZERO

and :INC statements were simply ignored during program execution. The first statement in

a JB program was defined as the main statement. Subsequent operations were known as

auxiliary statements. For example, Figure 3.19 depicts the phenotype for the JB function

to calculate v5 = v3 * u4.

Despite the fact that Cramer devised a way to encode arbitrary computer programs into

INDEX OPERATOR FUNCTION

0 (:BL0CK statement statement) performs first statement before second

1 (:L00P variable statement) performs statement variable times

2 (:SET variable variable) sets first variable to second variable

3 (:ZER0 variable) sets variable to zero

4 (:INC variable) adds one to variable

Figure 3.18: Cramer’s JB Operator Set

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 45

(0 0 1 3 5 8 1 3 2 1 4 3 4 5 9)

u PROGRAM

main statement (001) (:BL0CK sO s i)

auxiliary statement 0 (358) (2ER0v5)

auxiliary statement 1 (132) (:L00Pv3s2)

auxiliary statement 2 (143) (:LOOPv4s3)

auxiliary statement 3 (459) (:INCv5)

Figure 3.19: A Sample JB Program for Multiplication

a binary format, there were two major problems with the straight-forward use of the JB

language. First of all, since the semantic positioning of each integer was extremely sensitive

to change, mutation could easily destroy an entire program. Second, JB programs were

strongly epistatic in nature, and therefore not well-suited to crossover. In other words, the

standard genetic operators would not work on JB programs.

In order to overcome this obstacle, Cramer created TB , a modified version of the JB

language, in order to take advantage of the “implicit tree-like nature or JB programs”.

In TB, auxiliary statements were no longer used. Instead, when a statement was initially

generated, all other required statements were immediately created and recursively expanded.

The sample multiplication program from above would therefore have the form

(0 (3 5) (1 3 (1 4 (4 5))))

in TB.

Mutation in Cramer’s TB-language system was severely limited. Only statements lo­

cated at the leaves of program trees could be altered and still preserve TB structure.

Therefore, mutation was restricted to the :INC, :SET and :ZERO operators. Crossover

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 46

was similarly limited. Single statements could not be exchanged, as subtrees were treated

as indivisible units. Despite these limitations and the narrow applicability of the representa­

tion scheme, Cramer’s work with number-string programs was an important early attempt

at using the GA paradigm on higher-order structures such as computer programs.

3.4.2 Bickel and Bickel

As part of their investigation in using genetic techniques to create expert systems, Bickel

and Bickel[24] developed the GENES program. Each member of the GENES population

was an expert, a linear list of simple condition-action rules. The number and length of these

rules were randomly determined using several initializing parameters. One possible rule in

a GENES expert might be

(IF (NOT ((Cl = 2) AND (C4 < 3)) OR (C2 > 12)) THEN Al)

Mutation was performed on a single rule within each expert, and required the use of auxiliary

tables of information about operators, operands and conditions and actions. Via table

lookup, the relational operator OR could be mutated to an AND, the boolean operator >

could be changed to <, or an operand such as 32 could be changed to 212. The mutation

operator in GENES also allowed for the removal or addition of a rule from an individual

expert.

Bickel and Bickel also used a simple inversion operator. It functioned by randomly

choosing two points along the length of an expert rule set. The list of rules between these

two points were then spliced out of the rule list, reversed, and finally re-inserted. Figure

3.20 shows the effect of the inversion operator on an arbitrary rule set. Since using inversion

changed the order of rule evaluation within a given expert, GENES was able to alter the

priority associated with each decision rule.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 47

rule F

rule Frule C

rule D

rule C

rule A rule D

rule D

rule A rule C

rule 6

rule 6

rule Brule E

rule E

rule B rule E

rule B

Figure 3.20: The Inversion Operator in GENES

In Bickel and Bickel’s system, crossover was allowed only at points between rules. Since

the length of the rule sets varied, one locus for crossover was selected by taking the modulus

of the shorter expert, and the other by taking the modulus of the longer. If both loci turned

out to be less than the length of the shorter expert, then a double crossover occurred. As

depicted in Figure 3.21, double crossover operated by exchanging the sublist of rules from

both experts found between these two loci, thereby allowing both experts to retain their

original size. If only one locus was less than the length of the shorter rule list, single

crossover exchanged only the tail end of the experts.

The GENES model was tested on a small scale with some success; however, the multi­

ple auxiliary tables required by GENES in order to perform mutation on individual rules

severely limited the generality of this approach. It also restricted the size and scope of prob-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 48

rule Frule C rule Drule B rule Erule A
Expert A

rule 3rule 1 rule 4 rule 5rule 2

Expert B

rule Frule 4 rule Erule A rule 2

Expert A’

rule Crule 1 rule B rule D rule 5

Expert B*

Figure 3.21: The Double Crossover Operator in GENES

lems which could be addressed by the system. In addition, the inability of the crossover

operator to exchange information between individual rules resulted in each complex rule

structure being treated as a simple gene in an “expert” chromosome.

3.4.3 Fujiki and Dickinson

Fujiki and Dickinson[83] explored the use of genetic algorithms for discovering Lisp source

code for solving the Prisoner’s Dilemma problem. The programs generated by their study

were based on sets of productions for generating Lisp cond expressions like the one shown

in Figure 3.22 Using this grammar, Fujiki and Dickinson’s system randomly created a

population of cond expressions. Productions were separated into two categories: those that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 49

index —* (cond (t action))
index —> (cond index-cond-term (t action))

index-cond-tenn —> (logical action)
index-cond-term —* (logical action) index-cond-term

action —> 1
action —> 2
logical —* (not logical)
logical —> (1-op logical logical)
logical —» (equal nround 1)
logical —> (equal nround 10)
logical —> (equal op-play action)
logical —> (equal op2-play action)
logical - > if-any

1-op —* and
1-op —> or

if-any —> past-def-op
if-any —> past-coop-op

Figure 3.22: Fujiki and Dickinson’s Grammar for the Prisoner’s Dilemma

had only terminal symbols on their right-hand side, and those that had one or more variable

symbols.

The length of the generated cond was controlled by a selection algorithm in which the

probability of choosing productions from the terminal symbol category was increased as the

length of the expression grew. Each condition-action pair in the cond was considered to

be one individual piece of information to be used by their GA. These were never examined

by recombination operators. Production sets were used only for the creation of the initial

population.

Fujiki and Dickinson’s crossover operator worked by dividing the parent cond expressions

at two random points between condition-action pairs. New conds were then created by

combining the first part of one expression with the second part of the other expression. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 50

order to ensure that the final condition-action pair at the end of the cond contained the

only condition in the expression to always evaluate true, the last member of the list could

not be exchanged.

The mutation operator worked by randomly removing one condition-action pair from

an expression and replacing it with a new pair created by a separate production set. As

with crossover, mutation of the final cond element was restricted. An inversion operator

was also used by Fujiki and Dickinson which reversed the order of every condition-action

pair in the expression excepting the last.

Although Fujiki and Dickinson applied a grammar to the task of genetic search, the

system offered very little overall structure to the generated rules. The size and shape of

the generated expressions were instead controlled by a problem-specific external selection

algorithm. In addition, the gram m ar was used only to generate complete condition-action

pairs. Rules were therefore treated by necessity as single genes. As a result, the applicability

of the crossover and mutation operators was severely curtailed.

3.4.4 G refenstette

Grefenstette[108, 110] and others investigated the use of genetic algorithms for solving

sequential decision tasks, processes in which a decision-making agent iteratively interacts

with a discrete-time dynamic system. Such a system moves from state to state as a result of

performing one of a finite number of actions. These actions are in turn selected by applying

the agent’s decision making rules.

For their research, Grefenstette, Ramsey and Schultz developed a specialized genetic

algorithm called SAMUEL and applied it to the sequential decision task known as the

Evasive Maneuvers (EM) problem. The tactical goal of the EM problem was to maneuver

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 51

a plane in such a way as to avoid its being hit by an approaching missile. The missile was

able to track the motion of the plane and steer toward its anticipated course. The speed of

the missile, however, decreased for each course correction undertaken. If the missile speed

dropped below a certain threshold, the plane escaped destruction.

Unlike traditional genetic algorithms, the SAMUEL system was designed to operate on

a high-level representation. Each rule in the system had the form

if (and ci C2 .. cn) then (and ai 02 .. a m)

where each c,- was a condition and each aj an action. Conditions for the EM problem were

based upon the states of six sensors which gathered information about the current tactical

situation. These sensors and the information they provided are listed in Figure 3.23. The

SENSOR MEANING RANGE UNIT TYPE
last-turn current turning

rate of plane -180 to 180 in linear
time tiae since detection

of Bissile 0 to 19 1 linear
range missile's current distance

from plane 0 to 1500 100 linear
bearing direction from plane

to missile 1 to 12 1 cyclic
heading missile's direction

relative to plane 0 to 350 10 cyclic
speed missile's current

speed 0 to 1000 50 linear
Figure 3.23: Sensors used by SAMUEL for the EM Problem

range column shows the extreme upper and lower sensor settings, while unit refers to the

separation between discrete values within each range. For example, the sensor last-turn

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 52

could take on any of the nine values in [—180, —135, —90, —45,0,45,90,135,180].

The form of each condition depended on the type of sensor it contained. Linear sensors

took on linearly ordered numeric values such as time. Conditions for this sensor type

specified legal upper and lower bounds for the sensor value. The condition

(speed 100 230)

would therefore match sensor values in which 100 < speed < 230. Cyclic sensors, on the

other hand, took on cyclicly ordered numeric values such as bearing. Since the next “higher”

value of bearing 12 was bearing 1, there were no absolute endpoints. Therefore, conditions

for cyclic sensors could take on any legal values. Thus, the condition

(heading 340 30)

would match any of the sensors values in [340,350,0,10,20,30].

Each action of an EM rule consisted of a single control variable turn, which ranged

in value from -180 to 180 in increments of 45. Its application led to adjustments in the

course of the airplane during the next time step or episode. An EM problem was divided

into twenty episodes that began when a missile was detected and prematurely ended when

either the plane was hit or the missile was evaded. The fitness function used by the EM

problem was

1000 if plane escapes
/ .

■ { lOOt if plane is hit at time t

The aim of the SAMUEL system was the discovery of a tactical plan, a complete set of

decision rules for the EM problem. For this reason, SAMUEL adopted a different approach

to genetic search, applying recombination operators at the level of the tactical plan rather

than the individual rule. Initially, each tactical plan in the population consisted of nine

maximally general rules in which every sensor condition contained both the extreme upper

and lower sensor values. A maximally general rule could therefore be interpreted as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 53

for any sensor settings, turn Y

where Y was one of the nine possible values for the turn control variable.

In order to create plausible new rules from these initial tactical plans, SAMUEL used

a genetic operator called specialize. It was invoked whenever a maximally general rule was

fired leading to a successful evasion, and there was still space in the tactical plan for an

additional rule. By applying specialize, a new rule was created in which every condition

was modified to cover only half the legal values for the sensor. The starting point to the

condition subrange was calculated by finding the midpoint between the sensor state and its

nearest extreme sensor value. Figure 3.24 shows the specialize operator in greater detail.

maximally general rule
i f {and (last-turn -180 180)

(time 0 19)
(range 0 1500)
(bearing 1 12)
(heading 0 350)
(speed 0 1000)) then (turn 90)

half distance from extreme interval start half start+ half

last-turn 90
time 4
range 600

bearing 3
heading 60
speed 700

(1 8 0 -9 0)/2=45 90+45=135 -180 135-180=-45
(4 -0) /2=2 0+2=2 10 2+10=12

(6 0 0 -0)/2=300 0+300=300 750 300+750=1050
(3 - 1) /2=1 1+1=2 6 2+6=8

(6 0 -0) /2=30 0+30=30 180 30+180=210
(1000-700)/2=150 1000-150=850 -500 850-500=350

rule after specialization
i f (and (last-turn -45 135)

(time 2 12)
(range 300 1050)
(bearing 2 8)
(heading 30 210)
(speed 350 850)) then (turn 90)

Figure 3.24: SAMUEL’s specialization operator

The sensor speed, for example, might have a value 700. The nearest extreme sensor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 54

value is the maximum of 1000. The halfway point between 1000 and 700 would therefore

be 850, which would serve as the maximum bound on the new specialized condition. The

minimum would be found by taking half of the speed sensor’s range (1000/2 = 500) and

subtracting it from the halfway point, yielding the new specialized condition

(speed 350 850)

Each specialized rule was assumed to be plausible, since its action was known to be successful

in at least one situation: the sensor states that triggered rule specialization.

Crossover in SAMUEL operated by assigning each rule from two parent tactical plans

to one of two offspring plans. SAMUEL was able to examine traces of the parents’ previous

performance when distributing rules to the children. Figure 3.25 shows two traces and the

new tactical plans created through crossover. A sequence of rules in a parent trace which led

to a successful missile evasion was treated as a unit whenever possible in order to increase

the likelihood that productive behavior would be inherited. The crossover operator was

restricted so that no plan received duplicate copies of a rule. In other words, if and

R2,9 were identical rules, crossover would ensure that they were each distributed to different

tactical plans.

SAMUEL’s final genetic operator, mutation, introduced a new rule to a tactical plan

by making a random change to an existing one. For example, mutation might alter the

condition (time 3 7) to (time 3 11) or it might change the action from (turn —90) to (turn

45). The new value produced by mutation was chosen from the set of legal values for each

sensor and control variable.

The SAMUEL program was highly adapted to problems involving discrete numeric

values of limited range. In addition, the unique crossover and specialization operators were

developed with the intent of “plan” discovery. Although it was successfully applied to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 55

— traces from tactical plan #1

HKi.sl (failure)

$ Ri,5 — —HRi . « N Ri,il (sucessi

Isucessl$ ^1,2 * ^1.3 ̂^1.9

* 1*1,7 1*1,4 1*1,3 —* 1*1,4 —* 1*1,5 (failure)

— traces from tactical plan #2

* 1*2,1 — f̂^2,g |— f̂^gm—Ĥ 2r71—N^mI (sucess)

(failure)' ^2,8 * 1*2,1

* 1*2,7 * 1*2,2 ̂ 1*2,9

 ̂1*2,3 * 1*2,9 * 1*2.5

(failure)

(sucess)

new tactical plan #1

1*1,5 1*1,4 1*1,8

1*1,1 1*2,3 ^ 2.9

^ 2,5 1*1,7 1*2,2

new tactical plan #2

1*1,2 1*1,3 1*1,

1*2,1 1*2,4 1*2,8

1*2,7 1*2,4 1*1,4

Figure 3.25: Crossover between tactical plans in SAMUEL

EM problem with 90% accuracy, the domain-specific nature of the overall system severely

limits the wide-spread application of the paradigm.

3.4.5 Koza

Koza’s[149, 152] work on genetic programming marked a significant advance in the applica­

tion of the genetic paradigm to higher representation schemes. In Koza’s work, each member

of the population was a “program” which corresponded to a simple Lisp S-expression. This

expression was constrained to contain only members of a set F oi functions. These functions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 56

in turn could operate only over members of a terminal set T of constants and variables.

The genetic programming methodology required that there be closure between the two sets

F and T; in other words, each function had to accept as an argument any value returned by

any other function or terminal. The S-expressions contained in the initial population were

randomly generated using members of F and T. The structure and size of these programs

were controlled by the system’s many variables and parameters.

Crossover, as well as the other recombination operators developed by Koza, functioned

by treating each S-expression program as a tree structure. The first step in performing

crossover was the selection of a random point within each of two parent programs. These

points were heads of the two subtrees to be exchanged through crossover. For example, the

S-expressions

(OR (NOT D l) (AND DO D l))
(OR (OR D1 (NOT DO)) (AND (NOT DO) (NOT Dl)))

PARENT 1 PARENT 2

OR

NOT AND

DO Dl

OR

OR AND

Dl NOT NOT NOT

© © ©
Figure 3.26: Examples of Genetic Programs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 57

could be represented by the two program trees shown in Figure 3.26, where the expressions

(NOT Dl) and (AND (NOT DO) (NOT Dl)) have been selected as the points for

CHILD 1 CHILD 2

OR

ANDAND

DO DlNOT NOT

@ @

OR

NOTOR

Dl NOT

Figure 3.27: Crossover Between Genetic Programs

crossover. As depicted in Figure 3.27, these two subtrees were then exchanged between

parent programs in order to produce the two new programs

(OR (AND (NOT DO) (NOT Dl)) (AND DO D l))
(OR (OR D l (NOT DO)) (NOT Dl))

Because all members of an S-expression were restricted to returning values of the same type,

crossover between trees always produced two legal genetic programs. As with the standard

GA, the crossover operator, in conjunction with reproduction, was the workhorse of the

search process.

Koza’s mutation operator functioned by arbitrarily selecting a random point in the S-

expression tree. The entire subtree beginning at this node was then removed and replaced

by a new subtree which was randomly generated using the same control parameters that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 58

AFTER MUTATIONBEFORE MUTATION

OROR

DO AND, DOAND

D l HOT DODO

Figure 3.28: The Mutation Operator in Koza’s Genetic Programming

guided the development of the initial population. Figure 3.28 depicts the mutation of the

program

(OR (AND Dl DO) DO)

where Dl has been selected as the mutation point. This node is removed and then replaced

by a new subtree (NOT Dl). Although the application of his mutation operator resulted

in valid new programs, Koza very rarely included it as part of an experiment. This was

because his crossover operator acting alone was capable of altering any node within the

“free-form” genetic program tree.

Koza’s work also included a permutation operator which served to shuffle the positions

of all children of a parent. As such, it shared a similar function to the inversion opera­

tors discussed earlier. For many genetic programs such as the boolean function example,

permutation of a tree would not result in a new program. However, for functions such as

division, the importance of parameter ordering becomes apparent. Figure 3.29 shows the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 59

BEFORE
PERMUTATION

AFTER
PERMUTATION

Figure 3.29: The Permutation Operator in Koza’s Genetic Programming

permutation of the program tree A * B / C, where the division operator has been chosen

as the permutation point. The position of the child nodes B and C are then rearranged,

resulting in the new program A * C / B.

Due to the unconstrained shape of genetic program trees, Koza’s work required the

application of an editing operator to simplify S-expressions. To perform editing, a set

of rules was recursively applied to a program tree. This rule set contained both domain-

independent and domain-specific simplification routines. Regardless of the domain to which

the genetic programming paradigm was applied, a function containing only constants as

subtrees could always be replaced by its functional evaluation. DeMorgan’s laws could be

applied to simplify S-expressions in boolean domains, whereas expressions such as A*1 could

be replaced by A in mathematical applications. The editing operator could be applied at

any time during genetic programming evolution.

Koza successfully applied his genetic programming methodology to a wide variety of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 60

applications such as sequence induction and multiple symbolic regression. There are many

domains, however, in which his paradigm would be unsuitable. The system was designed to

operate only upon functional programs in the form of Lisp S-expressions. As demonstrated

by the wide success of the traditional bitstring approach to GAs, not all structures well-

suited to genetic search are self-evaluating.

Furthermore, the closure property of Fand T required that all functions return the same

type of values. There are many problems, however, which cannot be adequately described

by only one data type. Special care had to be taken even when this was the case. For

example, functions such as division and logarithm had to be “protected” over the range of

integers so that the expressions A / 0 and log(—3) would return some integer value.

The non-structured form of the genetic program was another inherent source of difficulty.

Many problem domains have structures which follow rigid guidelines where positioning of

elements is important. In addition, genetic programming had an unfortunate tendency to

find large “ugly” solutions containing redundant information. Although the application of

the editing operator partially remedied this problem, it was extremely time-consuming and

had to be tailor-made for each domain.

Perhaps most importantly, crossover between genetic programs worked against pop­

ulation convergence. In the traditional GA approach, when crossover is applied to two

identical bitstrings, the resulting children are guaranteed to be copies of the parents. In this

manner, highly fit individuals propagate over the course of several generations. In genetic

programming, on the other hand, when two identical parents mated, two random subtrees

were exchanged. For example, if crossover is performed between identical S-expressions

(OR (N O T D l) (AND DO D l))
(OR (NOT D l) (AND DO D l))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. RULE REPRESENTATION 61

where (NOT D 1) and DO have been selected as crossover points, the two new S-expressions

(OR DO (AND DO Dl))
(OR (HOT D1) (AND (NOT Dl) Dl))

are created. Thus, unless the same nodes in both parents were selected as the locus,

crossover between duplicate parents in genetic programming would result in entirely new S-

expressions. The grammar-based methodology presented in this dissertation, on the other

hand, imposes an underlying structure to rules in the search space and thereby fosters

population convergence.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Rule and Bitstring Comparison

4.1 Syntactic R epresentation of Bitstrings

Throughout the previous discussions of Sections 2.1, 2.2 and 3.1, a 6-bit chromosome was

used to represent integers in the interval [0,63]. Intuitively, each of these binary strings is

a member of the language

£ = (l + 0)6

As previously stated, the syntactic genetic algorithm is capable of generating any set of

structures defined by an arbitrary language. As shown in Figure 4.1, it is therefore a

1 <bitstring> — A«shoV <locusl>
2 <locusl> — <gene> ACMCOsorHV

3 <locus2> — <gene> <locus3>
4 <locns3> —- <gene> <locus4>
5 <locus4> -* <gene> <locuaS>
6 <loeus5> — <gene>
7 <gene> -*■ <allele>
8 <allele> 0
9 <allele> — 1

Figure 4.1: 6-bit Binary String Grammar

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 63

relatively simple task to construct a grammar G describing members of B.

As an example of how G creates rules, consider S = 001101 6 B. Under the binary

representation, string S is equivalent to a chromosome with the genotype 001101 and the

phenotype thirteen. For the syntactic GA, string S corresponds to a rule with 001101 acting

as phenotype and the derivation trace

^ = 1 7 8 0 0 2 7 8 0 0 3 7 9 0 0 4 7 9
0 0 5 7 8 0 0 6 7 9 0 0 0 0 0 0 0 0

serving as genotype. The remaining 62 — 1 members of B can be generated from G in a

similar manner.

4.1.1 Syntactic Em ulation of B inary Crossover

Binary crossover operates by exchanging all genes occurring after an arbitrarily selected

crossover site in two parent strings. As stated in Section 2.2, for binary chromosomes of

length / there exist / — 1 different interchange sites. Figure 4.2 depicts the five possible

0 0 1 1 0 1 0 o\l 101

ooo 0 0 1 l\o 1 001 io\i
Figure 4.2: Possible Crossover Sites for Bitstring 001101

crossover loci (indicated by the “\ ” marks) for the 6-bit string 001101.

Rule crossover for the syntactic genetic algorithm, on the other hand, exchanges deriva­

tion subtraces headed by a “randomly” determined production common to both parents.

Since the derivation trace of every rule derived from G contains exactly 18 productions, only

six of which are members of the terminal label set TLSq of G, there exist twelve possible

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 64

crossover sites in each rule: 1, 2, 3, 4, 5, 6, and the six instances of 7. Thus, rule crossover

allows for a wider variety of genetic interchange than its binary counterpart. It is possible,

however, to restrict the application of syntactic crossover by using a specification list.

As detailed in Section 3.3, when a crossover specification list is associated with a gram-

© ©

pc= 3 HI
0 0 1 1 0 1 0 0\1 1 0 1

© © © ©
El © © 0 © ©

EJ © ©

0 0 1 U 0 1

0 ©

0 © ©
0 © ©

0 © ©
Pc = 6 s © ~ (S)

I I
0 00 0 1 1 0 \1

0

X = 1 7 8 0 0 2 7 8 0 0 3 7 9 0 0 4 7 9
0 0 5 7 8 0 0 6 7 9 0 0 0 0 0 0 0 0

Sc = { 2 3 4 5 6 }

Figure 4.3: Possible Crossover Sites for Rule 001101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 65

mar, the selection of a crossover production label Pc is limited to productions whose left-

hand side appear in that list. Thus, if

Lc = (CROSSOVER LOCUSl L0CUS2 L0CUS3 L0CUS4 L0CUS5)

is used as a crossover specification list for G , only members of the set

Sc = {2 3 4 5 6}

can be chosen as the crossover production label. Since all elements of Sc appear exactly once

in each derivation trace, five possible crossover subtraces exist for each rule. As illustrated

in Figure 4.3, there is a one-to-one correspondence between these derivation subtraces and

the five crossover loci for the binary operator. Thus, the syntactic crossover of rules in G

using specification list Lc is equivalent to binary crossover performed on 6-bit chromosomes.

4.1.2 Syntactic Em ulation o f Binary M utation

Binary mutation functions by changing the value of one or more genes along the length of the

chromosome. In effect, this amounts to taking the complement of every bit with probability

pm. Figure 4.4 depicts the six possible mutation loci (indicated by the surrounding

[0]0 1101 00110 1 ooCDioi

j oo i[Do i 001101 ooiiod

Figure 4.4: Possible Mutation Sites for Bitstring 001101

symbols) for the example chromosome 001101.

In contrast, syntactic mutation operates by first removing the derivation subtrace headed

by a mutation production label Pm , and then replacing it with a newly constructed deriva­

tion subtrace headed by that same production. Rule mutation is applied with probability

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 66

pm to every production in the derivation trace, with the exception of members of the ter­

minal label set. Since every rule in G has a derivation trace containing 18 productions, of

which only six are members of TLSgi uP to twelve different Pm may be mutated. As with

syntactic crossover, however, this selection can be limited by using a specification list.

0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 7 8 0 0 2 7 8 0 0 3 7 9 0 0 4 7 9
0 0 5 7 8 0 0 6 7 9 0 0 0 0 0 0 0 0
19 20 21 22 23 24 25 26

Pm =
27 28

7
29 30 31 32 33 34 35 36

Figure 4.5: Possible Mutation Sites for Rule 001101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 67

Thus, if the mutation specification list

Lm = (MUTATION GENE)

is associated with grammar G, only members of the singleton set

Sm = {7}

can be selected as a mutation production label. The derivation trace of every rule in G

contains six instances of 7, each of which heads one of the two mutation subtraces

7 8 0 0
7 9 0 0

corresponding to rule subexpressions 0 and 1, respectively. As depicted in Figure 4.5, there

is a direct relationship between these derivation subtraces and the six potential mutation

loci for the binary operator. Thus, the syntactic mutation of rules in G using specification

list Lm is equivalent to the binary mutation of 6-bit chromosomes.

4.1.3 Syntactic Em ulation o f B inary R eproduction

Under roulette wheel selection, a binary chromosome Sj is copied into the subsequent gen­

eration with probability

E /(*)t=i

where / is some fitness function and N is the population size. The syntactic representation

presented in the dissertation also uses roulete wheel selection, and therefore reproduces rule

rj with probability

P(ri) -
E / W
t=l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 68

4 .1 .4 E q u iv a len ce o f S y n ta c tic a n d B in a ry R e p re s e n ta tio n

The ability of the syntactic genetic algorithm to represent a 6-bit binary string can easily

be generalized to

O bservation 4.1 Any problem whose parameter set can be encoded by a binary GA into

chromosomes of length L can also be expressed in a syntactic GA by rules derivable from a

grammar G of the form

1: <bitstring> — <gene> <locusi>
2: <l0CUSi> <gene> <locus2>

L-l: <l0CUSL_2> _► <gene> <locusL_i>
L: <locusL_1> — <gene>
L+i: <gene> — <allele>
L+2: <allele> — ► 0
L+3: <allele> — 1

with a crossover specification list Gc = (CROSSOVER LOCUSi LOCUS2 .. LOCUSl)

and a mutation specification list GM = (MUTATE GENE).

4.2 Binary Optim ization

As a simple example of binary GA optimization, consider the task of finding the greatest

x = 324 z = 73

y = -319

x2 + y2 +Figure 4.6: Encoding for Binary Optimization of f x,y,z

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 69

functional value of the equation

fx,y,z = x 2 + y2 + z2

in the interval [—511,511] for the variables x, y and z. One possible binary encoding for this

problem is shown in Figure 4.6. Each independent variable in this example is represented

in sign-magnitude notation.

The syntactic GA presented in this dissertation can be used to construct corresponding

1 <bitstring> — <gene> <locusl>
2 <locusl> — ► <gene> <locus2>
3 <locus2> — ► <gene> <locus3>
4 <locus3> -* <gene> <locus4>
S <locus4> — <gene> <locus5>
6 <locus5> —► <gene> <locus6>
7 <locus6> — <gene> <locus7>
8 <locus7> — <gene> <locus8>
9 <locus8> — <gene> <locus9>
10 <locus9> -*• <gen.e> <locusl0>
11 <locuslO> — <gene> <locusll>
12 <locusll> -► <gene> <locusl2>
13 <locusl2> — <gene> <locusl3>
14 <locusl3> -» <gen«> <locusl4>
15 <locusl4> — ► <gene> <locusl5>
16 <locusl5> — ► <gene> <locusl6>
17 <locusl6> — <geno> <locusl7>
18 <locusl7> — <gene> <locusl8>
19 <locusl8> — <gene> <locusl9>
20 <locusl9> -► <gene> <locus20>
21 <locus20> -*■ <gene> <locus21>
22 <locus21> — <gene> <locus22>
23 <locus22> -+ <gene> <locus23>
24 <locus23> -*• <gene> <locus24>
25 <locus24> — ► <gene> <locus25>
26 <locus25> — *■ <gene> <locus26>
27 <locus26> -*• <gene> <locus27>
28 <locus27> — <gene> <locus28>
29
30

<locus28>
<locus29>

<gene>
<gene>

<locus29>

31
32
33

<gone>
<allele>
<allele>

-*
<allele>
0
1

Figure 4.7: 30-bit Binary String Grammar

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 70

“bitstring rules” which can utilize the same encoding mechanism. Figure 4.7 shows a gram­

mar for generating binary strings of length I = 30. As shown in Section 4.1, the specification

lists

Lc = (CROSSOVER LOCUSl LOCUS2 LOCUS3 . . . LOCUS29)
Lm = (MUTATE GENE)

must also be associated with this gram max in order to mimic binary GA performance.

B I N A R Y R E P R E S E N T A T I O N

Effects of Population Size
Crossover Rate = 0.50, Mutation Rate = 0.001

0.9

0.4
Generation1 50

Population = 256

Population = 128

Population = 64

Population = 32

Population = 16

Population = 8

Population = 4

Population = 2

Figure 4.8: Population Size Effect on Binary Population

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 71

Since it has been determined that a syntactic GA is capable of effectively representing a

30-bit chromosome encoding three independent binary variables in sign-magnitude notation,

the next logical step is a comparative study of on-line binary and syntactic GA performance

for the optimization of }x,y,z = x 2 + y2 + z2. Figure 4.8 shows the effect of population size

on the average fitness of the binary genetic algorithm over the course of 1000 trial runs. As

expected, larger populations have greater average fitness, as more points within the search

S Y N T A C T I C R E P R E S E N T A T I O N

Population = 256

Population = 128

Population = 64

Population = 32

Population = 16

Population = 8

Population = 4

Population = 2

Figure 4.9: Population Size Effect on Syntactic Population

Effects of Population Size
Crossover Rate = 0.50, Mutation Rate = 0.002

0.9

vs
«
03
03Vc
SI

0.4
Generation0 50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 72

space can be examined during each generation.

Figure 4.9 shows the equivalent effect of population size on the average fitness of a syn­

tactic GA operating on “bitstring rules” . The performance of both GAs for this experiment

is nearly identical. Note, however, tha t the mutation rate for the syntactic population is

double tha t of the binary GA. As stated in Section 3.2, the rule mutation operator does

not guarantee a new rule will always be produced, since a gene containing allele 1 may

B I N A R Y R E P R E S E N T A T I O N

Effects of Crossover Rate
Population Size = 64, Mutation Rate = 0.001

Crossovers 1.00

Crossover = 0.75

Crossover = 0.50

Crossover = 0.25

Crossover = 0.0

1 Generation 50

Figure 4.10: Crossover Rate Effect on Binary Population

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 73

be mutated to either 1 or 0. By doubling the rate at which the rule mutation operator is

applied, the effect of non-productive mutation is eliminated.

Figure 4.10 shows the outcome of applying various crossover rates to the binary GA

over the course of 1000 trial runs. The performance curves indicate that greater crossover

rates lead to greater average population fitness. In general, however, the optimal crossover

rate is highly problem-dependent, and results can vary significantly between individual trial

S Y N T A C T I C R E P R E S E N T A T I O N

Effects of Crossover Rate
Population Size = 64, Mutation Rate = 0.002

Crossover = 1.00

Crossover = 0.75

Crossover = 0.50

Crossover = 0.25

Crossover = 0.0

1 Generation 50

Figure 4.11: Crossover Rate Effect on Rule Population

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 74

runs.

Figure 4.11 depicts the effect of applying the same crossover rates to the syntactic

GA population. Once again, the performance curves indicate that higher crossover rates

generate higher average fitness values. As expected, crossover variance in this experiment

produces nearly identical results in both binary and syntactic GAs.

Finally, the effect of varying the mutation rate of the binary GA is presented in Figure

B I N A R Y R E P R E S E N T A T I O N

Effects of Mutation Rate
Population Size = 64, Crossover Rate = 0.50

0.9

0.3
Generation 50

Mutation = 0.0

Mutation = 0.001

Mutation = 0.005

Mutation = 0.01

Mutation = 0.05

Mutation = 0.1

Mutation = 0.5

Figure 4.12: Mutation Rate Effect on Binary Population

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 75

4.12. The graph illustrates that lower mutation rates lead to greater average population

fitness. Mutation is, however, only a secondary operator and is designed to act as a safeguard

against premature allele loss. Because of the relatively large number of genes examined in

the 1000 trial runs, the visible effect of the mutation operator is diminished. It is interesting

to note, however, that a mutation rate of 0.5 leads to a random, non-productive walk through

the search space.

S Y N T A C T I C R E P R E S E N T A T I O N

Effects of Mutation Rate
Population Size = 64, Crossover Rate = 0.50

0.9

0.3
Generation1 50

Mutation = 0.0

Mutation = 0.002

Mutation = 0.01

Mutation = 0.02

Mutation = 0.1

Mutation = 0.2

Mutation = 1.0

Figure 4.13: Mutation Rate Effect on Rule Population

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 76

Figure 4.13 shows the result of applying the same mutation rates to a population of

syntactic binary rules. As explained earlier, all mutation rates have been doubled in order

for the rule mutation operator to function at the same probability as its binary equivalent.

Once again, the outcome of this experiment for both the binary and syntactic GAs is

essentially identical.

The empirical evidence of the previous three experiments clearly shows that the syntactic

GA is able to emulate a binary GA operating on 30-bit chromosomes, and leads to the

general conclusion

O bservation 4.2 A binary GA with a population o f N chromosomes of length L, a crossover

rate Pc and a mutation rate PM is equivalent to a syntactic GA with crossover rate Pc and

mutation rate 2*PM, operating on a population o f N rules derived from a grammar G con­

taining L+3 productions, crossover specification list Gc and mutation specification list GM.

4.3 Trace Schem ata

As described in Section 2.2, a schema is a simple pattern matching device which serves

as the theoretical basis of genetic algorithm research. Under the binary representation, a

schema is a string over the ternary alphabet {0,1, *}, where the meta-symbol serves as

a special “don’t care” marker for matching both 0 and 1. An analysis of the method by

which schemata are processed by the genetic algorithm produced the result

m (H , t + 1) > [l - P c f^ - PmO(H)

which is known as the Schema Theorem or Fundamental Theorem of Genetic Algorithms. It

states that “building block” schemata of above-average fitness, low order and short defining

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 77

length are sampled with increasing frequency by the genetic algorithm.

Extending the binary schema to a grammar-based approach, a trace schema can be

defined as follows:

D efinition 4.1 A tra ce schem a T is a derivation trace V in which n > 0 derivation

subtraces o fV have been replaced by the meta-symbol “[]”.

Each trace schema can therefore be represented as a list consisting only of production labels,

the zero expansion delimiter, and the special meta-symbol “[]” . As with a derivation trace,

the number of production labels and zeroes must be equal.

In keeping with its binary counterpart, the trace schema functions as a similarity tem­

plate for matching the derivation traces of grammar-defined rules. The “[]” meta-symbol

serves as a special “don’t care” marker indicating that the trace schema produces a deriva­

tion subtrace.

D efinition 4.2 For an arbitrary grammar Q, let derivation trace V = d\d2 -.dn be a string

over E = P U {0}, where V = {p | p is a production label in Q}; similarly, let trace schema

T = t \ t i ..tm be a string over E U {[]}, where m < n. Then T ==> V (T produces V)

iff V is obtained from T by replacing each distinct instance o f “[]” i n T with any possible

subtrace o f V .

A trace schema match is then said to occur if the following holds:

D efinition 4 .3 Trace schema T = t i t 2 - tm is a tra c e schem a m atch of derivation trace

V = did2..dn i f f T = > V.

As a simple example of trace schema matching, Figure 4.14 depicts one possible trace

schema T which produces the derivation traces of a subset of rules for the 6-bit binary string

grammar presented in Figure 4.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 78

DERIVATION TRACE A

1 7 8 0 0 2 [7 9 0 0]3 7 8 0 0 4 7[9 0]0
5 7 9 0 0[6 7 9 0 0 0]0 0 0 0 0

TRACE SCHEMA T

17 8 0 0 2 [] 3 7 8 0 0 4 7 [] 0 5 7 9 0 0 [] 0 0 0 0 0
A A
i i
' DERIVATION TRACE B 'i i

1 7 8 0 0 2 [7 8 0 0]3 7 XO 0 4 7[9 0J0
5 7 9 0 0 [6 7 8 0 0 0] 0 0 0 0 0

Figure 4.14: Trace Schemata Matching

Derivation trace A matches trace schema T as

• the first elements 1 7 8 0 0 2 in the trace schema consecutively match derivation trace
elements 1 7 8 0 0 2

• the first “[]” in the trace schema produces the derivation subtrace 7 9 0 0

• the elements 3 7 8 0 0 4 7 in the trace schema consecutively match derivation trace
elements 3 7 8 0 0 4 7

• the second “[]” in the trace schema produces the derivation subtrace 9 0

• the elements 0 5 7 9 0 0 in the trace schema consecutively match derivation trace
elements 0 5 7 9 0 0

• the third “[]” in the trace schema produces the derivation subtrace 6 7 8 0 0 0

• the final elements 0 0 0 0 0 in the trace schema consecutively match derivation trace
elements 0 0 0 0 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 79

Trace schema T does not match derivation trace B , however, as the production label 9

at locus 13 in the derivation trace does not match the corresponding label 8 in the trace

schema.

With an understanding of trace schemata, it is now possible to begin deriving the Trace

Schema Theorem, a grammar-based equivalent to the Fundamental Theorem of Genetic

Algorithms. As will be seen, the development features several similarities to the latter

theorem, as well as a number of significant innovations. To begin, the order of a trace

schema is defined. This will later prove useful for analyzing the effects of the mutation and

crossover recombination operators on trace schemata.

The o rd e r o f a trace schem a 0 (T) is the number of production labels contained in

trace schema T which are not members of the grammar-specific terminal label set TLSg -

Figure 4.15 depicts the derivation trees of three representative trace schemata for the 6-bit

binary string grammar. Trace schema A contains eight production labels. Of these, two are

members of the grammar specific terminal label set TLSg as indicated by the surrounding

The order of trace schema A is therefore 0(A) = 8 — 2 = 6, the number of internal

nodes in a derivation tree of the trace schema. Very specific trace schemata such as trace

schema B match only one particular derivation trace, since its derivation tree contains no

“[]” meta-symbols. The order of trace schema B is therefore 0(B) = 18 — 6 = 12. General

trace schemata such as trace schema C, on the other hand, contain no production labels.

The order of trace schema C is thus 0 (C) = 0.

The average fitness /(f) of a rule population 1Z at generation t is defined as

N
E/fa,*)
i = i (4.1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 80

T R A C E S C H E M A BT R A C E S C H E M A A
1 7 9 0 0 2 7 8 0 0 3 7 9 0 0 4 7 8

0 0 5 7 8 0 0 6 7 9 0 0 0 0 0 0 0 01 7 [] 0 2 7 8 0 0 3 7 9 0 0 [] 0 0 0

T R A C E S C H E M A C

O = undefined

Figure 4.15: 0 Calculations for Sample Trace Schemata

where / is a fitness function, r,- is a member of 1Z, and N is the population size. The average

fitness o f a tra c e schem a T is then the average fitness of all rules whose derivation traces

match T. If M (T, t) represents the number of trace schema matches of T in R. at generation

t, the average fitness of a trace schema can be expressed as

E f (r i , t)
r i € T

M (T , t)

The fitness ra tio o f a tra c e schem a is the ratio of the average fitness of a trace schema

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 81

T to the average fitness of TZ during generation t, and can be expressed as

= (4.2)
V ' /(*)

As stated in Section 2.1, reproduction with roulette wheel selection copies population

members into subsequent generations with probability

K r j)Pfo) = -jf-----
E f (ri)
«'=l

Each trace schema T will therefore be copied from generation t with probability

r f T f l - / (T ^P(T . l) = -ft-----
E /(r«)t=i

After selecting N population members for the new generation t + 1, the expected number

of instances of T is

M (T , t + 1) = M (T, t) N - f ^ ~
E /(r,-,0i=i

Substituting f (t) from Equation 4.1 into the above equation gives

M (T , t + l) = M (T , t) ^ l (4.3)
J\})

which is the trace schema fitness ratio of T.

Equation 4.3 is the trace schema counterpart of the binary schema fitness ratio. It indi­

cates that the growth of trace schemata depends only upon whether rules whose derivation

traces match T have a greater fitness value on average than the population as a whole. Trace

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 82

schemata with a fitness ratio above the population average fitness will receive increasing

trials in future generations, whereas lower-than average trace schemata will be sampled less

frequently. At each generation, this process occurs simultaneously for every trace schema

over 1Z1. Thus, many trace schemata are processed in parallel.

The effect of rule crossover on T depends upon the individual trace schema itself. The

crossover operator for grammar-derived rules operates by exchanging two arbitrarily selected

derivation subtraces. Unless these subtraces are identical, rule crossover will disrupt some

trace schemata over 1Z. As an example, trace schema A in Figure 4.15 will survive crossover

if any production label in a derivation subtrace produced by “[]” in the trace schema is

selected as the trace locus for crossover. Such an exchange would have no effect on any

specified member of trace schema A. The selection of production label 1 would also keep

trace schema A intact, as the entire trace schema would be exchanged during crossover. As

stated in Chapter 3.2, members of the terminal label set TLSg are excluded as crossover

production labels; therefore, only crossover at the internal nodes of the derivation subtree

located below production label 1 would disrupt trace schema A.

Closer observation reveals that the number of disruptive trace loci for crossover is equiv­

alent to 0 { T) — 1. Every derivation trace contains an equal number of production labels

and zero delimiters. Thus, for a derivation trace of length I there axe 1/2 possible crossover

sites. The probability pd of picking a trace locus for crossover which would disrupt T is

therefore

(4.4)

A trace schema over 72 is a trace schema matching the derivation trace of a member of 72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 83

As shown in earlier figures, each rule derived from the 6-bit binary string grammar has a

corresponding derivation trace of length 36. Thus, trace schema A will be disrupted with

probability pd(A) = (6 — l)/(36 / 2) = 0.28.

By extending Equation 4.4, the probability p3 of a trace schema surviving crossover is

1 - p d O T

n m = 1 - ° ^ ' 1
Pa(̂ 1/2

A ssum ing crossover is performed with probability pc, trace schema survival is therefore

bounded by the expression

Ps > 1 - 2pc~^~y— ~ (4.5)

Multiplying Equation 4.3 by Equation 4.5 results in the expression

0(T) - 1
1 - 2 pc- l (4.6)

which describes the combined effects of rule reproduction and rule crossover on T. In

words, Equation 4.6 states that trace schemata of short order and above-average fitness are

increasingly sampled in future generations.

As with rule crossover, the effect of rule mutation on T depends upon the individual trace

schema. The mutation operator for grammar-based rules operates by arbitrary changing

a derivation subtrace. Unless the newly created derivation subtrace is equivalent to the

original, rule mutation will disrupt some trace schemata over 7Z. For example, trace schema

A will survive rule mutation if any production label in a derivation subtrace produced by

“[]” in the trace schema is selected as the trace locus for mutation. Any alteration occurring

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 84

in these derivation subtraces would have no effect on trace schema A; however, if any other

production label in the derivation trace except TLSg members were selected as the trace

locus for mutation, trace schema A might be destroyed.

The number of disruptive mutation loci in T is therefore 0{T) . Assuming pm is the

probability of mutation occurring at each production label in a derivation trace, the chance

of a production label remaining unaffected by the mutation operator is 1 — pm. As stated

earlier, mutation between grammar-derived rules does not necessarily mean that an alter­

ation will be made to schema T ; therefore, the mutation survival probability p, of T is

bounded by the expression

ps(T) > (l - p m) ° m (4.7)

For pm < 1, Equation 4.7 can be closely approximated by the expression

P s (T) > l - 0 (T) p m (4.8)

The joint effect of all three operators is obtained by combining Equation 4.6 with 4.8,

with the result

M { T , t + 1) > M (T , t 1
/(*)

Ignoring the small cross-product term

2pepm0 (T)^ >-~ 1}

I [1 — 0 (T)p m]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON

the above equation can be rewritten as

85

1 - 2 p OSD- . 1 - Pm0(T) (4.9)

Equation 4.9 is thus the trace schema equivalent of the Fundamental Theorem of Genetic

Algorithms. It states that above-average trace schemata containing relatively few non­

terminal productions are sampled with increasing frequency by syntactic genetic search.

As such, it serves as the T race Schem a T heorem for rule processing in search and

optimization.

In Section 2.2 it was shown that for binary chromosomes of length /, there exists 3*

different schemata. The number of trace schemata obtainable from Q, on the other hand,

is entirely dependent on the internal structure of the grammar itself. In order to make a

comparison between binary and syntactic GA performance, all possible trace schemata can

be calculated for the 6-bit binary string grammar presented earlier.

To begin, it is useful to observe that every rule obtained from the binary grammar has

a partial rule derivation

1 <gene> 2 <gene> 3 <gene> 4 <gene> 5 <gene> 6 <gene> 0 0 0 0 0 0

where <gene> is expanded by production 7 in the partial grammar

7: <gene>
8: <allele>
9: <allele>

<allele>
0
1

Since the “[]” marker can replace any derivation subtrace, every expansion of production 7

can be a member of a trace schema in any of the ways presented in

U= { [] 7 [] 0 7 8 0 0 7 9 0 0}

In order to determine the number of trace schemata containing L = {1 2 3 4 5 6}, the set

U can be substituted for <gene> in the partial derivation as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 86

1 U 2 U 3 U 4 U 5 U 6 U 0 0 0 0 0 0

Since |U | = 4 , there must therefore b e 4 * 4 * 4 * 4 * 4 * 4 = 46 different trace schemata

containing production labels in L.

Next, production label 6 can be removed from L by replacing the subtrace 6 U 0 with

“[]” in the partial derivation

1 U 2 U 3 U 4 U 5 U [] 0 0 0 0 0

resulting i n 4 * 4 * 4 * 4 * 4 = 45 different trace schemata containing L = {1 2 3 4 5}. This

process can be continued by iteratively eliminating productions labels 5 through 1 from C

as seen in

1 U 2 U 3 U 4 U [] 0 0 0 0 4 * 4 * 4 * 4 = 44
1 U 2 U 3 U [] 0 0 0 4 * 4 * 4 = 43

1 U2 U[] 0 0 4 * 4 = 42
1 U[] 0 4 = 41

[] 1 = 4°

Using the geometric series substitution

r n+1 - 1
r — 1

it can therefore be stated that
4<+1 - 1

3

different trace schemata exist for an arbitrary /-bit binary string grammar.

The number of trace schemata actually represented in population R can be determined

by once again examining the partial derivation of each binary rule. In this case, every

expansion of production 7 matches an arbitrary trace schema in any of the ways presented

in
{[] 7 [] 0 7 8 0 0} i/D ' =7 8 0 0
{[] 7 [] 0 7 9 0 0} if d" =7 9 0 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 87

Since | V | = 3 for both derivation subtraces D = 7 8 0 0 and d” = 7 9 0 0, the set V can be

substituted for each occurrence of <gene> in the partial rule derivation. Then, following

the previous counting methodology, the total number of trace schemata matched by a given

rule in % can be determined as

1 V 2 V 3 V 4 V 5 V 6 V 0 0 0 0 0 0 3 * 3 * 3 * 3 * 3 * 3 = 36
1 V 2 V 3 V 4 V 5 V [] 0 0 0 0 0 3 * 3 * 3 * 3 * 3 = 35

1 V 2 V 3 V 4 V [] 0 0 0 0 3 * 3 * 3 * 3 = 34
1 V 2 V 3 V [] 0 0 0 3 * 3 * 3 = 33

1 V 2 V [] 0 0 3 * 3 = 32
1 V [] 0 3 = 31

[] 1 = 3°

Thus, each /-bit binary rule in R matches

3*+1 - 1
2

of the possible trace schemata. A population R of size N therefore contains n trace

schemata as bound by the expression

3 ,+1 - 1 V + l - 1
- ■ < n(R, t) < N- ■ -

This compares favorably with Equation 2.11

2' < n(V, t) < N2l

which presents the same calculation for a population V of binary chromosomes. Syntactic

GAs therefore possess the same property of “implicit parallelism” inherent to the traditional

genetic algorithm, and are thus able to create populations of rules in such a way as to

simultaneously maximize a large number of trace schemata.

As presented in Figure 4.15, each trace schema T directly corresponds to a unique

derivation tree. This property was previously utilized to describe overall features of T such

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 88

as trace schema order 0 (T) . As with any tree structure, however, it is also possible to

examine an arbitrary subtree of T defined as a subtrace schema.

D efin ition 4.4 A su b trace schem a S is a derivation subtrace T>' o f V in which n > 0

derivation subtraces o f V ' have been replaced by the meta-symbol

Like the trace schema from which it is derived, each subtrace schema is represented as a

list consisting of production labels, the zero expansion delimiter, and the “[]” meta-symbol.

Since by Definition 3.6, each derivation trace V is also a derivation subtrace T>' of Z>, the

number of subtrace schemata is at least as great as the number of trace schemata for any

syntactic GA problem.

A subtrace schema match is said to occur if the following holds:

D efin ition 4.5 Subtrace schema S =SiS2 ..sm is a sub trace schem a m atch o f derivation

trace V = d\d 2 -.dn iff S => V ', where T>' is any derivation subtrace o f V .

Figure 4.16 depicts several representative subtrace schemata for the 6-bit binary grammar

used in earlier examples. Unlike the trace schema, it is quite possible for a subtrace schema

to match a derivation trace in more than one way. For example, subtrace schema Y could

match a binary string rule at any of the 6 possible “bit” positions, while subtrace schema

Z would match each of the 18 derivation subtraces in every rule.

The significance of the subtrace schema is not readily apparent in cases such as the

6-bit binary grammar, which is rigidly constrained by crossover and mutation specification

lists. As will be seen in later experiments, however, subtrace schemata frequently describe

the structure of partial rule expressions important in the overall solution to a syntactic

GA problem. During rule crossover, these expression are exchanged intact whenever the

corresponding subtrace schemata produce at least one of the crossover subtraces. Each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 89

SUBTRACE SCHEMA W SUBTRACE SCHEMA X

2 7 [] 0 3 7 9 0 0 [] 0 0 4 7 8 0 0 5 7 9 0 0 6 7 9 0 0 0 0 0

SUBTRACE SCHEMA Y SUBTRACE SCHEMA Z

7 8 0 0

Figure 4.16: Sample Subtrace Schemata

partial solution is then copied into subsequent generations based upon the fitness of each

rule whose derivation trace matches the subtrace schema in question. As such, subtrace

schemata serve as the “building blocks” in the construction of the complex rule structures

manipulated by syntactic GAs.

4.4 Equation O ptim ization

Genetic algorithms have traditionally been used as an optimization technique for isolat­

ing a near-maximal or near-minimal functional value for some set of equations. This method

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 90

requires the GA to encode all independent variables of the system into a fixed length binary

chromosome which can then be manipulated by genetic operators. As was shown in Section

4.1, the syntactic genetic algorithm can be applied successfully to this class of “parameter

tuning” problems.

In the following experiment, the concept of optimizing an equation is taken to its next

logical progression. Instead of “parameter tuning” the variables within an equation, the

1 <equation> —► (<operator> <expressionl> <expression l>)
2 <expressionl> -*• <operandl>
3 <operandl> —► <number>
4 <operandl> -+ (<operator> <expression2> <expression2>)
5 <expression2> — *■ <operand2>
6 <operand2> —*• <number>
7 <operand2> —► (<operator> <expression3> <expression3>)
8 <expression3> —*• <operand3>
9 <operand3> —+ <number>

10 <operand3> —*• (<operator> <expression4> <expression4>)
11 <expression4> —- <operand4>
12 <operand4> —1• <number>
13 <operand4> -*• (<operator> <number> <number>)
14 <operator> —- <sign>
15 <sign> — * +
16 <sign>
17 <sign> — *• *
18 <sign> - /
19 <number> — < d ig it>
20 < d ig i t > 0
21 < d ig i t > 1
22 < d ig i t > -h. 2
23 < d ig i t > -► 3
24 < d ig i t > 4
25 < d ig i t > — 5
26 < d ig i t > 6
27 < d ig i t > -*• 7
28 < d ig i t > 8
29 < d ig it> -h. 9

Figure 4.17: Grammar for Optimization of an Equation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 91

equation itself is treated as the parameter to be optimized. Figure 4.17 presents a grammar

for producing arithmetic expressions over the operator set {H— * /} and the operand set

{0 1 2 3 4 5 6 7 8 9}. Although this grammar appears relatively simple, it generates over

6.84 * 10so distinct rules, and therefore provides the syntactic GA with a relatively large

search space to examine.

The equation grammar produces a few obstacles in determining the fitness of individual

population members. Each instance of the “/ ” operator, for example, may have as its

divisor either 0 or an expression which evaluates to zero. In addition, many of the equations

calculate either negative values or zero; roulette wheel selection, on the other hand, requires

that all population members return a positive fitness value. For these reasons, the fitness

function

h = {
Ti + 1 if Ti > 0
2r* if Ti < 0
LPF if T{ undefined

is used, where r:- is a rule in population TZ and LPF is a constant set to the least positive

float. Figure 4.18 presents the best solution with optimal fitness value f x = 932 + 1.

In Section 4.1, it was shown that a binary chromosome of length I can be represented by

(* 9 9) (* 9 9)) (* (* 9 9) (* 9 9)))

(* 9 9) (* 9 9)) (* (* 9 9) (* 9 9)))

Figure 4.18: Best Solution for Equation Optimizer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRJNG COMPARISON 92

a syntactic GA as a “bitstring rule” derived from a grammar containing I + 3 productions.

In order to once again compare binary and syntactic genetic algorithms, the “best solution”

obtainable for the equation optimizer can be represented as a binary chromosome. A close

observation of the equation grammar reveals that there exist exactly 16 terminal symbols

which can be represented using the binary encoding scheme presented in Figure 4.19.

Binary Terminal
Encoding Symbol

0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7

Binary Terminal
Encoding Symbol

1 0 0 0 8
1 0 0 1 9
1 0 1 0 (
1 0 1 1)
1 1 0 0 +
1 1 0 1 -

1 1 1 0 *
1 1 1 1 /

Figure 4.19: Binary Encoding of Equation Optimizer Terminal Symbols

Since the “best solution” contains 125 terminal symbols, it can be represented in a

binary string of length I = 125 * 4 = 500 bits. This result is easily generalized to

O bservation 4.3 Any rule of length L derivable from a grammar G containing T distinct

terminal symbols can be encoded into a binary chromosome of length [log2 T]*L.

Since the goal of this experiment is the “parameter tuning” of the entire equation to produce

this 500-bit optimal result, the entire population of the binary GA must be composed of

500-bit chromosomes. The fitness function f x for syntactic equations is also sufficient for

binary chromosomes, as ill-formed expressions evaluate to LPS.

Figure 4.20 presents the average population fitness of both the syntactic and binary GAs

for a population of 100 individuals using a 0.60 crossover rate. As with earlier experiments,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRJNG COMPARISON 93

EQUATION O P T IM IZ A T IO N

Population Size = 100, Crossover Rate = 0.6

1.0

Generation0 200

Syntactic G A
Mutation Rate = 0.02

Binary GA
Mutation Rate = 0.01

Figure 4.20: Average Fitness of Equation Optimization

the 0.02 mutation rate of the syntactic GA is double that of its binary counterpart. The

resulting performance curves are the average of 10 trials.

As can be seen, the syntactic GA population converges upon near optimal solutions.

In fact, by generation 75 the “best solution" shown in Figure 4.18 was present in the

populations of each of the 10 trials. Since 75 generations of 100 equations represents only

750 of the 6.84 * 10so possible equations, the syntactic GA was able to discover the optimal

solution after examining only 750/6.84* lO50 = 1.09* 10-48 of the points in the search space.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 94

This result is due largely to the bottom-up propagation of important subtrace schemata.

For example, the subtrace schemata

19 29 0 0
14 15 0 0

corresponding to 9 and * respectively are quickly spread throughout the population. Even­

tually, the new subtrace schema

13 14 15 0 0 19 29 0 0 19 29 0 0 0

representing (* 9 9) is formed and in turn propagated into future generations. This “build­

ing block” process continues until the final optimal solution is constructed.

The binary genetic algorithm, on the other hand, has a near-zero average population

fitness throughout the course of the experiment. This is not surprising when it is considered

that a 500-bit binary chromosome has 2500 = 1.27 * lO150 possible interpretations of which

only 4.61 * 10so represent well-formed expressions. Thus, there is only the small probability

4.61*105O/1.27*1015O*100 = 1.41*10-130 of discovering an equation during each generation.

Even in the unlikely event that one of these valid points in the search space was isolated,

it is extremely doubtful that the encoded equation would survive the combined effects of

binary crossover and mutation. The inability of the binary GA to operate in this domain

of this experiment leads to the result

O bservation 4.4 Due to the inherent difficulties of binary encoding, the effect of gene

epistasis and the high order and defining length of typical solution schemata, a binary GA

is not equivalent to a syntactic GA for problems whose parameters are structured by a non­

trivial grammar G.

Combining Observation 4.2 with Observation 4.4 leads to the final conclusion

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. RULE AND BITSTRING COMPARISON 95

O bservation 4.5 Empirically, the class of problems B solvable by a binary GA is a subset

of S, the class o f problems solvable by a syntactic GA.

As explained in Section 3.2.3, the application of the syntactic mutation operator does

not ensure that a change will be made to the original rule. Since the replacement derivation

subtrace is arbitrarily constructed, it is possible that the newly selected productions will be

identical to those of the pre-mutated derivation subtrace. For gram m ar G, however, there

are only two possible mutation subtraces for Pm = 7; therefore, by doubling the rate pm at

which the rule mutation operator is applied, the affect of non-productive mutation can be

easily eliminated. Thus, the syntactic mutation of rales in G using specification list LM at

rate 2pm is equivalent to the binary mutation of 6-bit chromosomes performed at rate pm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Machine Learning and

Classification

5.1 Balance Scale

The data for this experiment was obtained from the University of California Irvine Machine

Learning Repository[130]. Based upon psychological experiments originally reported by

Siegler[228] in 1976, the data has since been used in a variety of forms by several different

studies[147,153,176, 216]. As depicted in Figure 5.1, the balance scale experiment involves

w-

2 x 4 = 1 x 8

Figure 5.1: Calculation of Balance Condition

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 97

the classic Physics problem of determining the proper fulcrum for two objects of weights W\

and W2 placed at distances d\ and d2 from a center point at opposite ends of a weightless

surface. As shown above, a balance condition can be satisfied by ensuring that the quantities

(wi*di) and (W2 * ^2) have equal values; if not, the “scales” will tilt to either the left or

the right, depending on which respective quantity is greater.

The balance scale is a typical classification problem. It serves as an excellent experiment

for the syntactic GA because it does not involve a simple boolean discrimination function.

Instead, three distinct classes must be distinguished - balanced, right-leaning and left-

leaning - based upon an unknown algebraic relationship between four variables. In other

words, three different equations must be simultaneously optimized. Drawing from the results

of Section 4.4, such a task would be exceedingly difficult for the binary GA to accomplish.

Figure 5.2 shows a representative sample of the training data used for this experiment.

(’to-right (3 2 3 3))
(’balanced (2 2 1 4))
(’to-right (1 2 3 4))
(’to-left (4 1 1 2))

(’to-left (5 4 2 3))
(’to-right (2 2 4 3))
(’balanced (1 4 1 4))
C ’balanced (3 2 2 3))

Figure 5.2: Training Data for Balance Scale Experiment

Each example gives the value of the variables w\, di, W2 and d2 , as well as the correct

classification, indicated by one of the LISP primitives ’to - r ig h t , ’balanced, or ’to - l e f t .

Every combination of integer values for the variables over the range [1..5] is presented to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 98

GA; therefore, 625 different items axe examined in total. The distribution of the ’t o - l e f t

and ' t o - r i g h t classes in the training data is equal at 46.08% apiece. The ’balanced

class, however, is represented by only 7.84% of the instances. This uneven distribution of

examples poses an interesting challenge for the syntactic GA. Care must be taken to ensure

that resources will be apportioned equally to all three target classes.

1: <rule> — (cond <condl> <cond2> <cond3>)
2: <condl> — (<equation> ’to-left)
3: <cond2> — (<equation> ’balanced)
4: <cond3> -*■ (<equation> ’to-right)
5: <equation> -* (<relational> < expressionl> <exprassionl>)
6: <expressio&l> —¥ <operandl>
7: <operandl> -* <term>
8: <operandl> —■ (<operator> <expression2> <expression2>)
9: <expression2> — <operand2>
10 <operand2> — <term>
11 <operand2> — (<operator> <expression3> <expression3>)
12 <expression3> -*• <operand3>
13 <operand3> — <tern>
14 <operand3> — (<operator> <expression4> <expression4>)
15 <expression4> —- <operand4>
16 <operand4> — <term>
17 <operand4> — (<operator> <term> <term>)
18 <relational> -*■ <boolean>
19 <boolean> — =
20 <boolean> —- <
21 <boolean> -» >
22 <boolean> -*• <=
23 <boolean> — >=
24 <boolean> <>
25 <operator> — <sign>
26 <sign> +
27 <sign> —► -
28 <sign> -► *
29 <sign> -*■ /
30 <term> —► <variable>
31 <variable> — left-weight
32 <variable> — right-weight
33 <variable> —► left-distance
34 <variable> — right-distance

Figure 5.3: Grammar for Balance Scale Experiment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 99

The grammar for the balance scale experiment is displayed in Figure 5.3 on the preceding

page. Since it is known that a solution to this problem involves discriminating between three

separate classes, the grammar is designed to produce LISP cond statements containing three

distinct elements. Productions 2, 3 and 4 generate conditional statements which return the

predicates ’t o - l e f t , ’balanced, and ’to - r ig h t, respectively. These predicates indicate

how each training instance was classified. In the event that none of the elements in the

cond are triggered, n i l is returned instead.

The problem statement specifies that each class can be stated as a relationship between

two mathematical quantities - the state of both sides of a fulcrum in terms of four variables.

The condition of each rule therefore consists of a boolean relational operator separating

two mathematical expressions. This design allows the three condition-action pairs to act as

independent boolean classifiers, and helps to alleviate any bias against the relatively infre­

quent occurrences of ’balanced examples. Each “scale rule” will thus divide its attention

equally between ail three alternatives.

One of six relational operators - “= ”, ”< ”, “> ”, ”< = ” , “> = ” or “< > ” - is assigned

to each element of the cond statement by means of productions 18 through 23. The re­

mainder of the grammar is allocated to the creation of mathematical expressions. Two

such expressions, in conjunction with a relational operator, can be seen as constituting a

single equation. For this reason, the expression structure initiated by production 7 in the

grammar is borrowed directly from the “Equation Optimizer” of the previous chapter.

Productions 8 through 17 therefore create mathematical expressions of various length.

The branching mechanism of the < express ion,-> non-terminals serves as a biasing mech­

anism which favors the creation of shorter conditional statements during “random” rule

generation and mutation. Each <expression,-> is expanded to either a variable or to an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 100

infix operation with equal probability. If an operation is chosen, there is again a 50% chance

that each term will be expanded by means of <expression,-+ l>. This effect is cumula­

tive, so there is only a 25% chance of generating <expression3> and a 12.5% chance of

creating <expression4>. Because of the added number of trace schemata caused by such

branching, a term which contains unnecessary calculations such as

(- le f t-w e ig h t (+ le f t-w e ig h t le ft-w e ig h t))

is likely to be simplified to le f t-w e ig h t during rule mutation and crossover.

Each operation can contain up to five levels of nested subexpressions. This cutoff point

was established by examining the opportunity cost of including additional productions in

the grammar. Increasing the size of the grammar impairs the performance of the mutation,

crossover and reproduction operators, as more production labels must be examined and

copied. Conversely, the likelihood of generating each successive subexpression decreases

exponentially with parse tree depth. Through experimentation, it was determined that a

maximum depth of five resulted in a favorable tradeoff between processing speed and rule

expressiveness.

In keeping with Section 4.4, only the four basic additive and multiplicative functions -

and “/ ” - could be used as mathematical operators. Productions 25 through

29 placed one of these at the beginning of each infix expression. Unlike the “Equation Op­

timizer” , however, these functions did not operate over the integers [0..9]. Since the three

balance equations needed to learn a relationship between two weights and two distances,

the operand set instead consisted of the four variable names le ft-w e ig h t, r ig h t-w eig h t,

le f t-d is ta n c e , and r ig h t-d is ta n c e . Each variable was assigned a value from a corre­

sponding entry in the training data, and were generated by the final five productions of the

grammar. Figure 5.4 shows the genotype and phenotype of an arbitrarily derived rule from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION

the experiment grammar.

101

G E N O T Y P E

2 5 18 23 0 0 6 7 30 31 0 0 0 0 6 7 30 32 0 0 0 0 0 0
3 5 18 19 0 0 6 7 30 31 0 0 0 0 6 8 25 28 0 0 9 11 25 26 0 0 12 13 30 32 0 0 0 0 12 13 30 34 0 0 0

0 0 0 9 11 25 28 0 0 12 14 25 26 0 0 15 16 30 31 0 0 0 0 15 16 30 32 0 0 0 0 0 0 12 14 25 28
0 0 15 16 30 33 0 0 0 0 15 17 25 27 0 0 30 32 0 0 30 33 0 0 0 0 0 0 0 0 0 0 0 0

4 5 18 22 0 0 6 8 25 26 0 0 9 10 30 31 0 0 0 0 9 11 25 29 0 0 12 13 30 32 0 0 0 0 12 13 30 31 0 0
0 0 0 0 0 0 6 8 25 27 0 0 9 10 30 33 0 0 0 0 9 11 25 29 0 0 12 13 30 32 0 0 0 0 12 13 30 33
0 0 0 0 0 0 0 0 0 0 0 0)

P H E N O T Y P E
C cond

(
(>“ le f t-w e ig h t r ig h t-w e ig h t)

’t o - l e f t
)
(

(*
le f t-w e ig h t
(*

(+ r ig h t-w e ig h t r ig h t-d is ta n c e)
(*

(+ le f t-w e ig h t r ig h t-w e ig h t)
(* le f t - d i s ta n c e (- rig h t-w e ig h t le f t - d is ta n c e))

)
)

)
'b a lan ced

)
(

(<-
(+ le f t-w e ig h t (/ rig h t-w e ig h t le f t-w e ig h t))
(- l e f t - d i s ta n c e (/ r ig h t-w e ig h t l e f t - d is ta n c e))

)
’to - r ig h t

)
)

Figure 5.4: Rule Generated from Balance Scale Grammar

Each rule A in the population is evaluated by the fitness function

0_ f C - I \ i C - I >
| 2 ĉ ~D otherwise

where C is the number of balance scales correctly classified and I is the number incorrectly

identified. The 2^c ~ ^ calculation ensures that the poorer the rule performs, the less its

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 102

fitness value will be. By this means, positive / a values are always produced, as required by

roulette wheel selection.

The syntactic GA performance for the scale balance problem was excellent. Using a

population of 200 rules, a 0.7 crossover rate and a 0.02 mutation rate over 50 experimental

runs, GERDS discovered an optimal solution within 200 generations in all but two cases.

In these exceptions, near optimal solutions in which two of the three classes were correctly

identified were present in the population. Figure 5.4 depicts one optimal solution to the

(cond
(

(< (* right-distance right-weight) (* left-w eight left-distance))
’to - le f t

)
(

(= (* right-distance right-weight) (* left-w eight left-distance))
'balanced

)
C

(> (* right-distance right-weight) (* left-w eight left-distance))
'to-right

)
)

Figure 5.5: Solution to Balance Scale Experiment

problem, although many variations in the mathematics occurred over the 50 runs.

The basis of the solution was the initial discovery of subtrace schemata such as

6 8 25 28 0 0 9 10 31 0 0 0 9 10 33 0 0 0 0 0
6 8 25 28 0 0 9 10 32 0 0 0 9 10 34 0 0 0 0 0

corresponding to the expressions

(* le ft-w e ig h t le ft-d is ta n c e)
(* right-w eight r ight-d istance)

which is necessary for all three conditional statements of an optimal “scale rule” . These

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 103

subtraces were then quickly propagated throughout the GA population, after which the

correct relational operators “> ” and “= ” were put into place.

Observation 4.5 concluded that the traditional genetic algorithm cannot emulate a syn­

tactic GA for non-trivial grammars. This was empirically evidenced by the vastly different

performance of the two paradigms with regard to the “Equation Optimizer” . Since the

balance scale experiment was structured as a 3-way equation optimization problem and

borrows heavily from the grammar of the previous experiment, it is logical to conclude that

a binary GA would be unable to effectively solve this problem.

5.2 LED Classification

The data for this experiment was obtained from the University of California Irvine Machine

Learning Repository[130], and has been used in several machine learning studies[33, 245].

notsO

nots2

nots4

nots6

Figure 5.6: Example LED configurations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 104

A standard LED (Light Emitting Diode) display contains seven diodes, which may be lit in

certain combinations to produce an alphanumeric character. The purpose of this experiment

is to train a learning system to recognize the ten decimal digits. The task is made more

difficult by the introduction of noise into the environment. Each of the seven diodes has

a 10% chance of misfiring, thereby affecting the output of the overall display. Figure 5.6

presents an example of three LED outputs. The middle display does not correspond to any

decimal character, and so obviously contains at least one inversion - it is most probably a 4

with an inverted s6 diode. The left and right displays show the digits 8 and 6 respectively;

however, these may also be in error, as the two outputs differ by only one diode.

This experiment is interesting from a GA perspective for several reasons. Since the

problem entails the categorization of the digits 0 through 9, ten distinct classes must be

learned. The distinction between these classes is blurred by the presence of noise in the

data. Because the seven diodes for each display can be represented as boolean values, it is

possible for the traditional binary GA to encode this problem. A solution, however, would

require the decomposition of the problem into ten separate tasks.

Figure 5.7 presents a small sample of the 2000 training instances used for this experiment.

The digits represent the correct classification of each LED display, while the t and nil values

signify the states of the seven diodes (read from left to right as sO through s6). Each training

instance was created by using a simple program which randomly selected a correct solution

to one of the classes and then altered the status of each diode with a 10% probability.

Theoretically, the distribution of each class should be equal at 200; however, variation in

the data occurred for each run of the experiment. Figure 5.8 shows information regarding

the training instances used in the first run of the system. Note that some digits, especially

8 and 9, are likely to have a high percentage of incorrectly classified instances.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 105

c 1 (nil nil t t nil t nil))
(3 (t nil nil t nil t t))
(4 (nil t t t nil t nil))
(3 C t nil t t nil t t))

c 9 (t t t t nil nil t))
(1 (nil nil t nil nil t nil))
(6 (t t nil nil t t t))
(5 (t t t t nil t t))

Figure 5-7: Training Data for LED Experiment

The grammar used for the LED classifier is presented in Figure 5.9 on the following

page. Its design proceeds in a relatively straight-forward manner from the problem state­

ment. Like the balance scale experiment of the previous section, this problem requires

the simultaneous learning of multiple concepts with uneven distributions. In the case of

the former, a grammar was created to produce LISP cond statements with exactly three

LED
DIGIT

NUMBER OF
INSTANCES

ALL BARS
CORRECT

FALSE
POSITIVE

0 172 101 23
1 195 112 14
2 196 92 1
3 214 119 17
4 188 90 4
5 212 119 24
6 214 135 29
7 216 108 15
8 194 132 39
9 199 129 35

Figure 5.8: Distribution of LED Training Data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 106

1 <rule> (cond <cond0> <condl> <cond2> <cond3> <cond4> <cond5>
<cond6> <cond7> <cond8> <cond9>)

2 <condO> — (<bars> 0)
3 <condl> — » (<bars> 1)
4 <cond2> — » (<bars> 2)
5 <cond3> — ► (<bars> 3)
6 <cond4> — ► (<beurs> 4)
7 <cond5> — (<bar8> 5)
8 <cond6> — *• (<bars> 6)
9 <cond7> — (<bars> 7)
10 <cond8> — (<bars> 8)
11 <cond9> — (<bars> 9)
12 <bars> — ► (and <bar0> <barl> <bar2> <bar3> <bar4> <barS> <bar6>)
13 <bar0> — *• <choice0>
14 <choice0> — ► sO
IS <cboice0> — (not sO)
16 <barl> — ► <choicel>
17 <choicel> —* si
18 <choicel> — ► (not si)
19 <bar2> — ► <cboice2>
20 <cboice2> — ► s2
21 <choice2> — (not s2)
22 <bar3> — ► <cboice3>
23 <choice3> — ► s3
24 <choice3> — (not s3)
25 <bar4> -* <cboice4>
26 <choice4> — s4
27 <choice4> — (not s4)
28 <bar5> — <choice5>
29 <choice5> — s5
30 <choice5> — (not s5)
31 <bar6> — <cboic«6>
32 <choice6> — s6
33 <cboice6> — (not s6)

Figure 5.9: Grammar for Balance Function

condition-action pairs. As is evident from production 1, the grammar for this experiment

creates a cond containing exactly 10 conditional statements. Productions 2 through 11 are

then dedicated to the creation of boolean classifiers for the digits 0 through 9 respectively.

As evidenced by production 12, the condition of all ten statements consists of a LISP and

function followed by seven values generated by the < bart> non-terminals. When expanded,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 107

each produces the boolean state of the corresponding diode - either st- or (not s t-). Figure

5.10 shows the genotype and phonotype of one arbitarily created rule.

The crossover and mutation specification lists

(CROSSOVER CONDO CONDI . . . COND6 BARO BARI . . . BAR6)
(MUTATE BARS BARO BARI BAR2 . . . BAR6)

are also associated with the grammar in order to limit the scope of the recombination

operators. Under these restrictions, mutation may only change the value of one diode at a

time. This serves to prevent catastrophic changes to an entire rule. The crossover operator

may affect one diode as well, but it is also permitted to exchange an entire conditional

statement. By this means, the boolean classifiers within each rule remain isolated from

G E N O T Y P E
(l

2 12 13 15 0 0 16 17 0 0 19 21 0 0 22 23 0 0 25 26 0 0 28 29 0 0 31 32 0 0 0 0
3 12 13 15 0 0 16 17 0 0 19 20 0 0 22 24 0 0 25 26 0 0 28 30 0 0 31 33 0 0 0 0
4 12 13 14 0 0 16 17 0 0 19 20 0 0 22 23 0 0 25 26 0 0 28 30 0 0 31 32 0 0 0 0
5 12 13 15 0 0 16 18 0 0 19 21 0 0 22 24 0 0 25 26 0 0 28 29 0 0 31 32 0 0 0 0
6 12 13 15 0 0 16 18 0 0 19 21 0 0 22 23 0 0 25 27 0 0 28 30 0 0 31 32 0 0 0 0
7 12 13 14 0 0 16 18 0 0 19 20 0 0 22 23 0 0 25 27 0 0 28 30 0 0 31 33 0 0 0 0
8 12 13 14 0 0 16 17 0 0 19 20 0 0 22 23 0 0 25 27 0 0 28 29 0 0 31 33 0 0 0 0
9 12 13 14 0 0 16 17 0 0 19 20 0 0 22 23 0 0 25 27 0 0 28 30 0 0 31 32 0 0 0 0
10 12 13 15 0 0 16 17 0 0 19 21 0 0 22 23 0 0 25 27 0 0 28 29 0 0 31 33 0 0 0 0
11 12 13 15 0 0 16 17 0 0 19 20 0 0 22 23 0 0 25 26 0 0 28 30 0 0 31 33 0 0 0 0

0)___
_____________________________P H E N O T Y P E _________________________
(cond

(and (not sO) s i (n o t s2) s3 s4 s5 s6) 0)
(and (not sO) s i s2 (n o t s3) s4 (n o t sS;) (n o t s6)) 1)
(and sO s i s2 S3i s4 (n o t s5) s6) 2)
(and (not sO) (n o t s i) (not s2) (no t s3) s4 s5 s6) 3)
(and (not sO) (no t s i) C not s2) s3 (not s4) (not s5) s6
(and sO (n o t s i) s2 s3 (not s4) (n o t s5) (n o t s6)) 5)
(and sO s i s2 s3> (n o t s4) s5 (not s6)) 6)
(and sO s i s2 s3> (n o t s4) (not s5) s6) 7)
(and (not sO) s i (n o t s2) s3 (not s4) sS (n o t s6)) 8)
(and (not sO) s i s2 s3 s4 (not s5) (not s6)) 9)

)

Figure 5.10: Rule Generated from LED Grammar

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 108

one another. The syntactic GA therefore processes ten separate subpopulations of boolean

classifiers simultaneously.

Each rule A in the population is evaluated by the fitness function

_ f C - I i f C - / > 0
\ 2^c ~ ^ otherwise

where C is the number of LED displays correctly classified and I is the number of incorrect

instances. Once again, the 2^c ~^ calculation ensures that poorer performing rules receive

lower fitness values while ensuring that a positive result is always produced. This basic

mechanism was often found to be useful in the design of fitness functions.

The experiment was conducted using a crossover rate of 0.8, a mutation rate of 0.05,

and a population size of 200. For each of the 50 experimental run, GERDS was able to

isolate the optimal solution presented in Figure 5.11 within 150 generations. This solution

(cond
((and sO si s2 (not s3) s4 s5 s6) 0)
((and (not sO) (not si) s2 (not s3) (not s4) s5 (not s6)) 1)
((and sO (not si) s2 s3 s4 (not s5) s6) 2)
((and so (not si) s2 s3 (not s4) sS s6) 3)
((and C not sO) si s2 s3 (not s4) sS (not s6)) 4)
((and sO si (not s2) s3 (not s4) sS s6) 5)
C (and sO si (not s2) s3 s4 s5 s6) 6)
((and sO (not si) s2 (not s3) (not s4) s5 (not s6)) 7)
((and sO si s2 s3 s4 sS s6) 8)
((

)
and sO si s2 s3 (not s4) s4 s5 (not s6)) 9)

Figure 5.11: Solution to the LED Experiment

was obtained by first discovering a “near hit” to one or more of the ten classes. Since

noise in the training data created many different diode states for each digit, a “near hit”

was usually not difficult to find. Mutation and crossover would then gradually alter the

classifier for that digit until the correct conditions were encountered. These classifiers were

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 109

then propagated throughout the population until convergence was achieved.

As stated earlier, a binary GA would certainly be able to encode the states of the seven

diodes into binary chromosomes; however, solving the problem as presented in this section

would still present difficulties. The most obvious solution would entail the decomposition

of the experiment into ten separate binary GA problems. This however, would not pro­

duce a general classifier in the same sense as the syntactic GA does, and would require a

significantly larger overall population. In any event, the expressive advantages of using a

high-level language are clear.

5.3 Badge Function

Every person in attendance at the Eleventh International Conference on Machine Leaming[l]

and the Seventh ACM Conference on Computational Learning Theory[?] received a name

badge labeled with a “+ ” or This labeling was due to some function known only to

the person who generated the badges, and depended only upon the position of characters

in the attendee’s name. The purpose of the experiment is to identify the unknown func­

tion using Machine Learning techniques. Since a solution to this problem requires finding

a possibly complex interrelationship between characters in a string, a high-level semantic

representation is required. As such, the binary GA is not well-suited to this task. The

syntactic genetic algorithm offers a more viable solution strategy.

For this experiment, the syntactic GA was presented with 294 names, 210 of which were

classified as “+ ” and 84 of which were instances. Because of the limitations of LISP

string processing, each name was transformed into a list of exactly 24 characters, the length

of the longest name in the dataset. Figure 5.12 shows examples of the training data. The

tilde character represents NULL characters at the end of names whose length is less than

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 110

t N A □ K I _ A B E
n i l M Y R I A M _ A B R A M S 0 N

t D A V I D _ W i A H A '
t K A M A L _ M j A L 1 ■"

n i l E R I C _ A L L E N D E R
t D A N A _ A N 6 L U I N “

t T A K E F U M I Y A M A z A K I
t H □ L L Y _ Y A N C 0 — ~ —

t J □ H N _ M ! _ Z E L L E
n i l T H □ M A S _ Z E U G M A N N

t J E A N - D A N I E L _ Z U C K E R
t D A R K 0 _ Z U P A N I c

Figure 5.12: Training Data for Badge Function Experiment

the maximum. To simplify processing, several character-by-character substitutions were

also performed: the space characters between names were replaced by underscores; periods

located after initials were changed to exclamation points; and any apostrophes were changed

to the “96” character. Because the badge function was boolean, instances of the “+ ” class

were changed to t and became n i l .

In designing a grammar for this experiment, it was necessary to decide how each gener­

ated rule would examine the badge names. LISP, of course, provides a variety of functions

for handling lists. For reasons of generality, however, rules were limited to the basic nth

function, which returns the item found at a specified position within a sequence. Simple

equality was used to compare the nth item with one of the permissible characters in the

problem domain.

Figure 5.13 shows the grammar used for the badge function experiment. Each rule is

a simple IF-THEN statement whose condition is in disjunctive normal form. The action,

contained in production 1, simply returns the t LISP primitive to indicate classification as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION

1 <rule> — (if <condition> t)
2 <condition> (or <term> <tenn> <term> <term> <term>

<t«rm> <tarn> <tenn>)
3 <term> — <or-choica>
4 <or-clioice> — <and-expr«ssion>
5 <or-choice> — <•c
6 <and-expression> —¥ <exprassion>
7 <and-expression> — ► (and <expression> <and-choice2>)
8 <and-choice2> — ► <and2>
9 <and2> — <expression>
10 <and2> — ► <expression> <and-choice3>
11 <and-choice3> —» <and3>
12 <and3> -♦ <flxpr«8sion>
13 <and3> —<■ <expression> <and-choice4>
14 <and-cho ic«4> — <and4>
15 <and4> — <expressio&>
16 <and4> -♦ <expression> <and-choice5>
17 <and-choice5> —<• <and5>
18 <and5> — <expression>
19 <and5> -* <axpression> <and-choice6>
20 <and-choic«6> — <and6>
21 <and6> — <expression>
22 <and6> —» <expressio&> <and-choice7>
23 <and-choice7> -*■ <and7>
24 <and7> — <expres8ion>
25 <and7> — <expression> <expression>
26 <expression> —*• (equal <index> <letter>)
27 <index> — (nth <position> badge)
28 <letter> —»• <character>
29 <character> -*■ ’a
30 <character> — ’b
31 <charact«r> — ’c

54 <character> ’z
55 <character> -*• 1
56 <character> -►
57 <chaxacter> -*
58 <character> —
59 <cbaracter> —
60 <positioa> — <number>
61 <munber> — 0
62 <number> — 1

84: <number> — 23

Figure 5.13: Grammar for Badge Function Experiment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 112

a instance. The inclusion of

< or-cho ice> —► c

in the branch structure of productions 3 through 5 allows each < o r-ch o ice> to be expanded

by an epsilon transition. Thus, each of the eight instances of <term > in production 2

is optional. The condition of each “badge function” therefore contains between 0 and 8

alternatives. The choice of eight as a maximum length was arbitrary. Note that in LISP,

an or statement with no arguments evals to n i l .

If expanded, each term in the or function becomes either a nth test by means of pro­

duction 6 or an and statement conjoining up to eight tests if production 7 is selected. Once

again, the choice of eight as a cutoff point was arbitrary. The various <and-choice,-> non-

G E N O T Y P E

3 5 0 0
3 4 6 26 27 60 70 0 0 0 28 33 0 0 0 0 0 0
3 5 0 0
3 5 0 0
3 4 7 26 27 60 74 0 0 0 28 58 0 0 0 8 10 26 27 60 63 0 0 0 28 40 0 0 0 11 12 26 27 60 62

0 0 0 28 35 0 0 0 0 0 0 0 0 0 0
3 4 6 26 27 60 74 0 0 0 28 33 0 0 0 0 0 0
3 4 7 26 27 60 83 0 0 0 28 34 0 0 0 8 9 26 27 60 72 0 0 0 28 50 0 0 0 0 0 0 0 0
3 4 6 26 27 60 66 0 0 0 28 41 0 0 0 0 0 0 0 0_)_____________________________________

P H E N O T Y P E
C i f

(or
(equal (nth 9 badge) ’e)
(and

(equal (nth 13 badge) '%)
(equal (nth 2 badge) ’1)
(equal (nth 1 badge) ’g)

)
(equal (nth 13 badge) ’e)
(and (equal (nth 22 badge) ’f) (equal (nth 11 badge) ’▼))
(equal (nth 5 badge) ’■))

)
t

Figure 5.14: Rule Generated from Badge Function Grammar

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 113

terminals are similiar in affect to the branching structure presented in Section 5.1; thus,

productions 8 through 21 act to bias the generation of rules in favor of and statements of

lower complexity.

Production 27 creates the call to nth, where badge is set to each name in the training

data during rule evaluation. Because each name contains 24 characters, the indexes 0

through 23 are obtainable from productions 61 through 84 in the grammar. Production

26 generates the actual comparison of letters, with productions 28 through 59 providing

the choice of permissible characters. Figure 5.13 presents a sample rule which has been

“randomly” derived from the experiment grammar.

The fitness function for this experiment is identical to those of the previous two problems.

Each rule A in the population is evaluated by the function

_ j C - I if C — / > 0
A | otherwise

where C is the number of badges correctly identified and I is the number incorrectly

classified. As seen in Figure 5.15 below, the optimal solution to the problem was surprisingly

simple: members of the have a vowel as their second character.

Utilizing a population of 100 rules, a 0.6 crossover rate and a 0.03 mutation rate, the

syntactic GA was able to reach this solution within 150 generations in each of the 50

experimental runs. This success can in a large part be attributed to the relatively easy task

of isolating the trace schema

50 53 0 0

corresponding to position 1. Once discovered for at least one of the vowels, different letter

combinations at this location were gradually explored in subsequent generations until a

correct solution was achieved. A traditional GA approach, whose schemata depend upon the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 114

position of bits within the chromosome, would be unable to employ this strategy. Although

the solution to this experiment is not complex, the variable structure of the rules and the

semantic nature of the badge function problem make it unsuitable for traditional GAs.

5.4 Gram m atical Induction

Because the syntactic GA depends upon the construction of rules from a problem-specific

grammar, one interesting search problem involves the inductive learning of context-free

grammars from language examples. The following experiment can be easily generalized

to many applications in compiler construction, finite automata, programming languages

and computation theory. It also serves as the basis for the “meta-rule” discovery process

described in Chapter 6 of this dissertation.

Ail of the decisions regarding the design, structure and length of the production rules

created by this experiment were arbitrarily determined. Figure 5.16 presents a grammar for

generating a set of production rules over the non-terminal symbols AT = {S T U V W X Y Z}

(i f
(or

(equal
(equal
(equal
(equal
(equal

nth 1 badge) ’e)
nth 1 badge) ’u)
nth 1 badge) ’a)
nth 1 badge) 5o)
nth 1 badge) ’i)

Figure 5.15: Badge Function Solution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 115

1 < g ra m n a r> — (C s t a r t > < r n l e > < r n l e > < r u l e > C m l e > C r u le >
C m l e > cm le> < r o l e > < r u l « >)

2 < s t a r t > — (S —► C sy m b o l2 >)
3 < r u l e > — (< n o n te rm in a l- s y m b o l> —*■ c s y m b o l 1 >)
4 < r u l e > — f
5 C s y m b o ll> — C c h o ic e l>
6 < c h o i c e l > —*■ C te r m in a l- s y m b o l>
7 < c h o i c e l > — C te rm in a l- s y m b o l> C 3 y m b o l2 >
8 < s y m b o l2 > —►C c h o ic e 2 >
9 < c h o i c e 2 > -*■ C a n y -sy m b o l>

10 < c h o i c e 2 > — C a n y -s y m b o l> c s y m b o l3 >
11 < s y m b o l3 > -*■ C c b o ic e 3 >
12 < c h o i c e 3 > —► C a n y -sy m b o l>
13 < c h o ic « 3 > — C a n y -sy m b o l> C sy m b o l4 >
14 < s y m b o l4 > — C c h o ic e 4 >
IS < c h o ic ® 4 > -» C a n y -sy m b o l>
16 C c b o ic ® 4 > -*■ C a n y -sy m b o l> C sy m b o lS >
17 < s y m b o ls> — C c h o ic e 5 >
18 < c b o ic « 5 > — C a n y -sy m b o l>
19 < c h o i c e 5 > — C a n y -s y m b o l> C a n y -s y m b o l>
20 < a n y - s y m b o l> — C sym bo l>
21 < s y m b o l> —►C n o n te rm in a l-s y m b o l>
22 < s y m b o l> -► C te r m in a l- s y m b o l>
23 C n o n te r m in a l- s y m b o l> —<■ C n o n te r m in a l>
24 C n o n t e n n i n a l > -*■ T
25 C n o n ta r m in a l> -* U
26 C n o n te r m in a l> -+ V
27 C n o n te r m in a l> — W
28 C n o n te r m in a l> —►X
29 C n o n t e r m i n a l> —►Y
30 C n o n t e r m i n a l> — Z
31 C te r m in a l - s y m b o l> — C te r m in a l >
32 C t e r m i n a l > — a
33 C t e r m i n a l > — b

Figure 5.16: Grammar for Grammatical Inductioa

and the terminal symbols T = {a b}. The non-terminal S is treated as a unique start sym­

bol, and appears only once in each generated grammar as the left-hand side of the first

production. The expansion of S can contain symbols in the set j V u T . The seven non­

terminals T through Z can appear an arbitrary number of times in each grammar. If one

of these symbols appears on the left-hand side of a production, its expansion will contain

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 116

a non-terminal as the first symbol. Subsequent symbols can be members of either AT or T.

This grammar structure guarantees that parsing will not lead to infinite recursion, as the

expansion of each production must eliminate at least one terminal symbol in the example

string.

Production 1 in the grammar generates ten transition rules. The single instance of the

start symbol is created by production 2, while the remaining nine rules are derived from

the branch structure of productions 3 and 4. As described in Section 5.3, the use of

< ru le > -► e

allows the non-terminal symbol < ru le > to be expanded by an epsilon transition. Thus,

each of the nine instances of < ru le > in production 1 is optional. Since the < s ta r t> non­

terminal is always expanded, each population member will therefore contain between 1 and

10 productions.

G E N O T Y P E
(1 2 8 10 20 21 23 27 0 0 0 0 11 13 20 21 23 28 0 0 0 0 14 15 20 22 31 32 0 0 0 0 0 0 0 0 0 0 0

4 0
3 23 24 0 0 5 7 31 33 0 0 8 10 20 21 23 24 0 0 0 0 11 13 20 21 23 27 0 0 0 14 16 20 22 31 32

0 0 0 0 17 19 20 22 31 33 0 0 0 0 20 21 23 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0
4 0
4 0
3 23 24 0 0 5 7 31 32 0 0 8 10 20 21 23 26 0 0 0 0 11 12 20 22 31 33 0 0 0 0 0 0 0 0 0 0 0
4 0
3 23 26 0 0 4 6 31 32 0 0 0 0 0
4 0 0)

P H E N O T Y P E
(

(S -► WXa)
(T -> bTWabW)
(T —► aVb)
(V -► a)

)

Figure 5.17: Rule Generated for Grammatical Induction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTERS. MACHINE LEARNING AND CLASSIFICATION 117

The biasing branch structure of the < symbol,-> non-terminals in productions 5 through

19 has also been seen before in previous grammars. Each production < ru le > has a 50%

chance of expanding to one symbol, a 25% chance of expanding to two, a 12.5% chance of

expanding to three, a 6.25% chance of expanding to four, and a 3.125% chance of expanding

to either five or six symbols. The grammar depicted in Figure 6.8 is therefore capable of

generating over 3.72 * 1052 different “grammar rules” with varying degrees of probability in

accordance with the rules stated above. Productions 23 through 30 create members of set

M while 31 through 33 produce members of T. Finally, the branch structure of productions

20 through 22 generate symbols in AT U T. Figure 5.17 shows one possible rule derivable

from the grammar.

Figure 5.18 presents some of the 200 items used as training data for the inductive

(T (babaab))
(NIL (a))
(T C bbba))
(NIL (bbaab))

(T (abbaba))
(NIL (bbb))
(T (ab))
(NIL (babbb))

Figure 5.18: Training Data for Grammatical Induction

learning of a grammar for parsing strings in the

C = ((a + b)(a 4- b))+

language. The training file was evenly divided into 100 positive and 100 negative instances,

as indicated by the T and NIL classifications respectively. Note that since the language £

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 118

contains an infinite number of strings, it is impossible to create a training file containing

every positive instance.

Each “grammar rule” A in the population is evaluated by the fitness function

fA =
C - I + (l - §) i f C - / > 0
2lc ~l+w) otherwise

where C is the number of strings in in the training set correctly parsed by C as a member

of C, I is the number of strings incorrectly parsed as C members, and P is the number

of productions contained in A. The C — I evaluation in was presented in the previous

three experiments. The additional use of the term ^ serves as a secondary fitness measure

which rewards grammars containing fewer productions. This acts to eliminate unnecessary

or duplicate productions from the “grammar rules” during the course of the experiment.

This experiment was conducted over 25 experimental runs using a population of 300

rules, a 0.75 crossover rate and a 0.02 mutation rate. The maximum C — I value of 100 was

reached in all but one case by generation 120. A slow increase in fitness after this point

was obtained by minimizing grammar productions by means of the secondary yjj fitness

measure. Figure 5.10 presents the optimal grammar for the language £ discovered during

(
(S —► W W)
(w a)
(w -+ b)
(w aW W)
(w —► bW W)

)

Figure 5.19: Solution to ((a + 6)(a + 6))H

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 119

generation 46 of the first experimental trial.

In additional experiments, GERDS was able to discover other grammars expressing a

variety of formal languages. This success can largely be attributed to the high-level seman­

tic representation adopted by the syntactic GA, which allows the overall structure of the

solution to be adapted during grammar induction. The traditional GA, on the other hand,

must maintain one fixed-length structure for each problem. Its adaptive and expressive

capabilities are therefore limited to problems whose solutions can be easily expressed in a

constant format.

5.5 Artificial Life

The syntactic genetic algorithm closely mimics the evolutionary paradigm of natural selec­

tion. Operators exist which resemble the reproductive, selective and variative mechanisms

found in nature. It is therefore a logical progression to utilize the GA to study and model

evolutionary behavior by creating a population of artificial “animals” . This type of investi­

gation is frequently referred to as A rtificial Life in the literature[191, 232, 271]. Although

the binary genetic algorithm is capable of modeling artificial populations as well, it can not

efficiently handle the more complex structures used in this experiment.

The environment for this problem consists of a topologically toroidal 200 x 200 grid.

Each cell in the grid may contain one item: an animal, a rock, or a piece of food. The goal

for each animal is to move through the “world” in order to obtain food, which is necessary

for its survival. To accomplish this task, they must learn to maneuver around rock hazards

and to avoid stronger animals which might prey on them. Figure 5.20 shows a portion of

this environment. The “@” symbol represents the position of an animal, the “tP” character

is the location of a food stuff, and the “A” represents the position of a rock. Empty spaces

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 120

4» A A V A 4» 4» V • • • 4» t 4* 4* A * A 4* A - ft A

4» 4» 4» A *
4* A • 4» A 4» * ft A ft ft * A

ft 4* 4* A * A 4» A • • ft A 4»
4* A 4» A ft A * • 4* A • A • 4» A 4* * A * 4* *

4* ft
A 4* ft A ft ft • A 4* A ’ A * 4* A A 4* * ft A * * 4?

A A
4* 4» A 4» 4» * * 4» * * A V * ft A * * A 4» f t

f t A
4* 4* A A 4» • f t A
• A f t * A A * * 4* * * A 4» A * A 4» A Hf *P 4* 4» 4»

* 4* A 4» f t A A 4* f t A f t f t
f t A 4» 4» f t 4*

* ft 4» A 4» 4» 4» f t 4* * * A V A 4*
♦ V A 4» f t A V 4» A ♦ A 4» A * * f t A

A 4» f t A 4» A 4* A A 4» A 4* 4» 4» 4* 4*
A A A 4* f t A f t f t
* 4» A 4» 4» A A 4» A
* A 4» f t A • * * A f t * * A * 4» A A • 4» A 4* A * 4» •

f t
f y y A A 4> A * f t A 4» A A 4» A 4* 4»

4» 4» 4* 4» A 4* 4» 4*
A f t f t 4»
• f t 4* 4* 4» f t r 4* A * A 4* A f t A A 4» A

A

f t A 4» f t A A V f t A f t f t *
4* A 4*

A 4* * f t A A 4» f t A 4» A A 4» A A
4*

A 4» * 4» 4» 4* 4» A A 4* A A 4* * f t A ft A *
4» 4» 4»
A 4* f t 4* 4» 4* A 4* f t A * * A 4* f t A V f t A

f t A
4» 4* A 4* A 4* f t 4* A 4* 4* 4* * * 4* * V 4*

4» A A 4* A f t A 4* A 4» f t A

4» 4» 4* 4* A A 4» f t A 4* A ♦ 4* - A A A
ft ft

4* ft 4* 4» ♦ 4* ♦ ♦ A * 4* 4* 4* A • A 4* A V 4* A
A 4* * ft A

4* 4» 4»

Figure 5.20: Environment for Artificial Life Experiment

in the grid are depicted as a character. For each generation, 1000 animals, 2500 rocks

and 5000 pieces of food are arbitrarily placed in the world grid.

An animal may attempt to move into any of the four adjoining cells. A space containing

a rock may not be entered. If an item of food is encountered at the new location, the animal

consumes it and the cell is cleared of food. An animal is also allowed to move onto a space

containing a weaker animal. In this event, the stronger animal “survives” and the weaker

falls victim to predation. It is removed from the population as it is consumed. Movement

onto a space containing an animal of equal or greater strength is prohibited, where strength

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 121

(a)
4> A • A • 4* A * *
• • A . @ • • A *

4» 4» • • * • • •

• ‘ ®
• • • @-
• 'V • • • A • 4»

4» • • A • • •

A 4» * @ A .

A
(look ’right) — ► *P

4* b 'food

(e)

4» 4»

A 4»

(look 'left) — ► •
.« nil

(b)
4* A

vp

A V

(look 'up)

(d)

4» V

A 4>

(look ’down)
A b 'rock

Figure 5.21: The look primitive

is expressed as an integer between 1 and 4 indusive.

The animals obtain information about their surroundings by means of two “senses” -

sight and sound. Figure 4.21 graphically illustrates the operation of the vision primitive

look. Note that this ability is not passive. The animal “mind” must dedde to look and

spedfy a direction. Line of sight then extends from an adjacent cell in the stated direction

until an object is encountered or the maximum range of vision is exceeded. The primitive

then returns the type of object last examined. The vision range is spedfied by an integer

in the interval [1..4], For the preceding examples, it is assumed that this value is set to 3.

The l i s t e n primitive operates in a similar fashion. It also requires the animal to actively

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 122

(a)
4» A • A • 4» A - •
• • A • @ • • A •
4* 4* . ip .

. . „----> @
• • - &----- •
• 4» • •''-*A • 4'
4* • • A • * 4» •
A 4* • @ A • •

A

<b)
4> A

A 4*

(listen ’right) ----► nil (listen ’up)

(c) <d)
4* A ■ A • 4* A • -

• A * @ * * A •
• • •

 @
• • * p •

• • 4» \ A • 4»
• 4» • r A 5 - •
• A 4> * @ X • • •
A

(listen ’left) ► nil (listen ’down) ----* • nil

4* A • A • 4» A • •
• • A • @ • * A •
4> 4» * • • 4» • • •

<- • * • @<- — 9 • • 4» •
• 4* • A • 4*
4» • • A - • 4» •
A 4* • @ A • • •

A

Figure 5.22: The listen primitive

specify a direction. Unlike look, however, which operates only upon one row or column in

the world grid, l i s t e n examines three adjacent rows or columns simultaneously. As shown

in Figure 4.22, each is traversed until either an object is encountered or the maximum range

of hearing is exceeded. If an animal was discovered at any of these three positions, l i s t e n

evaluates to true. Hearing range is also an integer between 1 and 4 inclusive, and is assumed

to equal 3 in the examples.

During each discrete time step of the experiment, all animals are permitted to examine

their environment by means of the look and l i s t e n primitives and, as a result, possibly

move to an adjacent location. The timing of these activities depends upon the animal’s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 123

movement rate. This value is once again an integer in the interval [1..4], where 4 represents

the highest speed. All animals of the same movement rate perform their actions in an

arbitrary order.

Figure 5.23 presents the grammar for the artificial life experiment. From production

1, it can be seen that each generated rule consists of five parts. The first four of these

are integers: the < see> non-terminal defines the range of vision; <hear> creates the

equivalent value for the l i s t e n primitive; the <hunt> symbol generates the strength of

each animal used in determining predation; and <move> provides the rate of movement.

These are created by means of productions 2 through 5 respectively. The actual value of

these integers are then determined by the branch structure headed by production 44.

The <mind> non-terminal in production 6 is expanded to produce the final part of each

rule. It creates a LISP cond statement which acts as a driver program for the individual

animal. As suggested by production 7, this statement may contain between 1 and 6 separate

condition-action pairs, where 6 was arbitrarily chosen as the limit. Each condition contains

expressions such as

(equal (look ’right) ’rock)
(not C l i s t e n ’down))

designed to test the values returned by the two primitives. Each action, determined by

production 34, is simply a request to move in a specific direction. The expansion of the

<exp> term accounts for the first condition-action from 7. The remaining five may or

may not be present, depending on whether the epsilon transition is followed in the branch

structure of productions 8, 9 and 10.

Variations of productions 11 through 26 have been seen before in several experiments.

Together, they create and statements of increasing length with decreasing probability. Each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 124

1: <start> — (<see> <hear> <hunt> <speed> <oind>)
2: <see> — •(sees <range>)
3: <hear> (hears <range>)
4: <hunt> — (hunts <range>)
S: <speed> -* (moves <moves>)
6: <mind> -► (thinks <cond>)
7: <cond> — (cond <exp> <term> <tenn> <term> <term> <term>)
8: <term> — <expand>
9: <expand> — <axp>
10 <expand> — £
11 <exp> -*• (<and-condition> <action>)
12 <and-condition> -♦ <and-expression>
13 <and-expression> -+ <not-condition>
14 <and-expression> -► (and <and2>))
15 <and2> — <and2-expand>
16 <and2-expand> -► <not-condition> <not-condition>
17 <and2-expand> — <and3> <not-condition> <not-condition>
18 <and3> -♦ <and3-expand>
19 <and3-expand> -* <not-condition>
20 <and3-expand> — <and4> <not-condition>
21 <and4> — <and4-expand>
22 < and4-expand> -► <not-condition>
23 <and4-expand> —► <and5> <not-condition>
24 <and5> — <and5-expand>
25 <and5-expand> —► <not-condition>
26 < and5-expand> -* <not-condition> <not-condition>
27 <not-condition> — <not-expression>
28 <not-expression> — (not <test>)
29 <not-expression> -♦ <test>
30 <test> —► <sense>
31 <sense> — (equal <looks> <iten>)
32 <sense> •— (listen <direction>)
33 <looks> -» (look <direction>)
34 <action> — (move <direction>)
35 <item> -*• <obj ect-seen>
36 <obj ect-seen> ’animal
37 <obj ect-seen> — ’rock
38 <object-seen> — ’food
39 <direction> -► <vay>
40 <aay> ’left
41 <way> — ’right
42 <say> -*• ’up
43 <way> — ’down
44 <rang«> —+ <value>
45 <value> -*• 1
46 <value> -» 2
47 <value> — 3
48 <value> — 4

Figure 5.23: Grammar for the Artificial Life Experiment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 125

statement can contain up to 6 terms, as six was determined to provide a favorable tradeoff

between processing speed and rule expressiveness. Each term is then placed into a not

function with a 50% probability through the actions of the branch structure at productions

27, 28 and 29. Productions 30 through 32 are used to decide which of the sensory primitives

- either look or l i s t e n - are contained in each term. The remainder of the grammar is

used to choose the direction and object specifications required by these senses. Figure 5.24

shows one possible “animal" created by the grammar for this experiment.

In order to bias the system in favor of more efficient structures, a food interval was

G E N O T Y P E
(1 2 4 4 47 0 0 0 3 4 4 45 0 0 0 4 4 4 45 0 0 0 5 4 4 46 0 0 0

6 7 11 12 14 15 16 27 28 30 32 39 42 0 0 0 0 0 0 27 29 30 31 33 39 41 0 0 0 35 37
0 0 0 0 0 0 0 0 0 0 34 39 40 0 0 0 0 0 0

8 10 0 0
8 10 0 0
8 11 13 27 29 30 32 39 41 0 0 0 0 0 0 0 34 39 40 0 0 0 0 0
8 10 0 0
8 11 13 27 28 30 31 33 39 43 0 0 0 35 36 0 0 0 0 0 0 34 39 42 0 0 0 0 0 0)

P H E N O T Y P E
(

(sees 3) (hears 1) (hunts 1) (mores 2)
(thinks

(cond
(

(and (not (listen ’up)) (equal (look ’right) ’rock))
(move ’left)

)
(

(listen 'right)
C nove ’left)

)
(

(not (equal (look ’down) ’animal))
(move ’up)

)
)

)
)

Figure 5.24: Rule Generated from Artificial Life Grammar

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 126

calculated for each animal. This value determined the number of time steps an animal

could survive without finding food. If an animal exceeded this individual limit, it was

removed from the population and replaced by a piece of food in the world grid. For each

animal A , the food interval Ia was calculated as

IA = 40 - (VA + HA + SA + MA + flog, |GM)|1)

where Va is the vision range, Ha is the hearing range, Sa is the strength and Ma is the

movement rate of A , and G{A) is the genotype of the rule. Grammar 5.23 produces rules

whose derivation traces have a t least 62 and at most 786 elements; thus, I a ranged in value

from 14 to 30. By using the food interval mechanism, more complex animals had to exhibit

((sees 4) (hears 1) (hunts 1) (moves 4)
(mind

(cond
C

(equal (look 'left) 'food)
(move 'left)

C equal (look ’right) 'food)
(move 'right)

(equal C look 'up) 'food)
(move 'up)

(not (equal (look 'left) 'rock))
(move 'left)

(not (equal (look 'up) 'rock))
(move ’up)

)
)

Figure 5.25: A “Gatherer” Solution to Artificial Life Experiment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 127

more complex behavior in order to survive.

For each generation, the simulation was continued until the last animal exceeded its

food interval. Fitness was the calculated as

fA = LS(A)

where LS(A) was the life span of each animal. The simulation was initiated at time step 1, so

the resulting functional value was guaranteed to be positive even in the event of immediate

predation. The experiment was conducted over the course of 5000 generations utilizing a

0.4 crossover rate and a 0.01 mutation rate.

The open-ended nature of this problem precluded the convergence of the population

toward one single solution; instead, several “species” of animals thrived at different times

during the experiment. By far the most prevalent of these was the “gatherer” solution, an

example of which is presented in Figure 5.25 on the preceding page. This strategy entailed

a relatively straight-forward greedy approach to foraging. The animal would look in several

directions to see if food was located nearby. If not, it would move in some direction not

containing a rock obstacle. One common species defect was a mutation towards cyclic

searching patterns. After clearing an area of the available food supply, the faulty animals

would then meander repeatedly through the same locations in the world grid until eventually

starving. The “gatherer” solution relied primarily upon a wide range of vision. A secondary

trait was a fast movement rate, which allowed the animal to be the first to reach nearby food.

Throughout most of the experiment, at least a few “gatherers” survived in the population.

Several times during the run, another variety of solution appeared. As its name implies,

the “hunter” solution, an example of which is presented in Figure 5.26, relied upon a stable

population of animals. Its solution strategy was primarily sound oriented - the “hunter”

would move in any direction were an animal was overheard, as long as a rock was not in an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 128

((seas 1) (hears 4) (hunts 4) (moves 1)
(mind

(cond
(

C and (not (equal (look 'right) 'rock)) (listen 'right))
(move 'right)

)
(

(and (listen 'up) (not (equal (look 'up) 'rock)))
C move 'up)

)
(

C and (not (equal (look 'down) 'rock)) (listen 'down))
(move 'down)

)
)

)
)

Figure 5.26: A “Hunter” Solution to Artificial Life Experiment

adjacent location blocking its movement. Although the “hunter” never explicitly searched

for food, it often obtained some simply by maneuvering around rocks. Surprisingly, a slow

movement rate was an asset to the “hunter” , since other animals would move into hearing

((sees 4) (hears 1) (hunts 1) (moves 1)
(mind

(cond
(

(equal (look 'down) 'rock)
(move 'left)

)
(

(not (equal (look 'down) 'animal))
(move 'down)

)
)

)
)

Figure 5.27: A “Scavenger” Solution to Artificial Life Experiment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. MACHINE LEARNING AND CLASSIFICATION 129

range before it would have to act. Since two animals of equal strength could not prey upon

each other, this solution tended to over-populate itself toward extinction.

Finally, Figure 5.27 shows one of the most interesting strategies discovered by the ex­

periment. The “scavenger” depended upon out-surviving other animals. Its solution was

non-complex, and the animal therefore possessed a long food interval. The goal of the

“scavenger” was to find an animal tha t was unable to move, and wait for it to die and

change to food. By avoiding both rocks and animals in one direction, the “scavenger” was

likely to keep moving and encounter other foods as well. By the end of the experiment, the

majority of the population contained solutions sim i la r to this one.

This experiment exemplifies the expressive prowess of the syntactic GA. Since the

“mind” of each population member is a complex LISP statement, GERDS is capable of

performing automatic programming tasks. As the Artificial Life problem encompasses a

large search space and requires continuous adaptation, the syntactic GA has been shown to

handle complex problems involving several solution strategies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusion

6.1 Conclusions

The genetic algorithm (GA) is a robust search technique which has been theoretically and

empirically proven to provide efficient search for a variety of problems. Due largely to the

semantic and expressive limitations of adopting a bitstring representation, however, the

traditional GA has not found wide acceptance in the Artificial Intelligence community. In

addition, binary chromosomes can unevenly weight genetic search, reduce the effectiveness

of recombination operators, make it difficult to solve problems whose solution schemata

are of high order and defining length, and hinder new schema discovery in cases where

chromosome-wide changes are required.

The research presented in this dissertation describes a grammar-based approach to ge­

netic algorithms. Under this new paradigm, all members of the population axe strings

produced by a problem-specific grammar. Any structure which can be expressed in Backus-

Naur Form can thus be manipulated by genetic operators. As such, a grammar-based GA

strategy provides a consistent methodology for handling any population structure express-

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CONCLUSION 131

ible in terms of a context-free grammar.

In order to lend theoretical support to the development of the syntactic GA, the concept

of a trace schema - a similarity template for matching the derivation traces of grammar-

defined rules - was introduced. An analysis of the manner in which a grammar-based GA

operates yielded a Trace Schema Theorem for rule processing, which states that above-

average trace schemata containing relatively few non-terminal productions are sampled

with increasing frequency by syntactic genetic search. Schemata thus serve as the “building

blocks” in the construction of the complex rule structures manipulated by syntactic GAs.

As part of the research presented in this dissertation, the GERDS implementation of

the grammar-based GA was developed. A comparison between the performance of GERDS

and the traditional GA showed that the class of problems solvable by a syntactic GA is

a superset of the class solvable by its binary counterpart. To strengthen that conclusion,

several experiments encompassing diverse domains were performed with favorable results.

6.2 Future Research

6.2.1 Efficiency

Because traditional GAs typically operate on binary-coded chromosomes, they can quickly

perform crossover, mutation and other recombinant operations. GERDS, on the other hand,

requires additional processing time in order to discover syntactically proper rule subexpres­

sions. Although the list processing capabilities of LISP are well-suited to the Tna.nipnla.tinn

of derivation traces, its selection as the programming language for GERDS was due largely

to LISP’s pervasiveness in Artificial Intelligence. The language is not designed for speed or

efficiency, however, and memory-intensive computation is often quite slow. Redeveloping

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CONCLUSION 132

GERDS using a language such as C ++ with a highly-optimized compiler would undoubtably

improve running time. The syntactic GA is also adaptable to a parallelized implementation.

An investigation of GERDS use on a different architecture is therefore in order.

6.2.2 Branch Productions

As described in Section 3.2.2, many of the grammars provided in this dissertation include

branch productions such as

<gene> —► < a l le le >
< a lle le > —<■ 0
< a lle le > —► 1

which allow crossover and mutation to exchange alternative structures. Although concep­

tually straight-forward, these productions increase the length of derivation traces, and thus

decrease the efficiency of GERDS. They can also act to obfuscate the basic structure of the

grammar. One proposed remedy to this situation involves the use of attribute grammars

to internally label productions of similar purpose.

6.2.3 M eta-Rule D iscovery

As evidenced by the Grammar Induction experiment of Section 5.4, GERDS is capable of

learning transition rules describing a context-free language. Since the syntactic GA itself

operates upon a problem-specific grammar, one very interesting avenue of future research,

which calls for far greater computing resources than were available for the present project,

is the development of a self-adapting genetic algorithm. It is hoped that such a system

would be able to acquire both general-purpose and problem-specific methods for improving

genetic search. One means of achieving this goal would be the the explicit creation and

modification of m eta-ru les.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CONCLUSION 133

Each meta-rule in the proposed system would represent a heuristic operator which the

GA could use to create new rules in the population. These heuristics would serve as a

supplement to the standard mutation and crossover operators. The integration of such

meta-rules into the genetic algorithm can be accomplished by introducing a two-level ar­

chitecture. An application-level GA would contain rules describing potential solutions

to the experiment at hand. A m eta-level G A would also exist, consisting of a popula­

tion of heuristic operators which can be used to generate application-level rules in future

generations.

The operators developed by the meta-level GA would manipulate derivation traces in

order to produce new rules. Each heuristic would itself be derivable from a “meta-lever

grammar and could be expressed as a simple IF-THEN rule. Since the meta-rules operate on

derivation traces, the condition of these rules would require only basic list and comparison

functions. The action of each heuristic would be a call to either the mutation or crossover

routine. As an example, the phenotype of one heuristic might be

(if (equal (nth trace 4) 16) (mutate 12))

which would have the effect of mutating a rule at production 12 if the fifth locus in the

derivation trace was 16.

After reproduction, rules from the application level would be sent to the meta-level for

possible modification. Each derivation trace would be matched against each heuristic. The

operator with the highest fitness would then be selected and applied. New meta-level rules

would be created by the standard reproduction, mutation and crossover operations after

many generations of the application-level population.

Each time a new rule is created by a heuristic, a link would be established connecting

that rule to the meta-rule operator which created it. When the fitness function is applied

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CONCLUSION 134

to a rule, this link would be traversed, and a fraction of the calculated value a would be

awarded to the meta-rule. The fitness of a meta-rule would therefore reflects the overall

success of the rules which it has created.

If a rules fails to reproduce into a subsequent generation, the link joining it to a meta­

rule would be erased. The meta-rule would remain in the system, however, as long as its

overall fitness remained high. Similarly, if a meta-rule is deleted from the GA, the links

joining it to the rules it created would also be erased. The rules would then operate on

their own without calculating an a fraction.

Using an economic metaphor, each meta-rule in the proposed system can be seen as an

investment firm periodically making business ventures by creating new rules. If some of

these ventures prove successful, it is likely that the corporation will remain competitive. If

most of the enterprises fail, however, the corporation will likely go bankrupt and be removed

from the population.

Although the method outlined above is intuitively sound, it is evident from the above

discussion that processing demands make the system infeasible to implement at present.

With future access to more powerful machines, however, a practical investigation of meta­

rules can be initiated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

GERDS Source Code

**

*
A C0PY-P0PULATI0H *
w
* ARGUHEHTS:

W
*

* nil*
*

* GLOBALS: *
* <new-populat ion> - newly created and evaluated population array *
* ^population* - total number of population members in experiment *

£
* RETURHS: *
* nilA

*

* EFFECTS:
♦
*

* <old-population> - set to <new-population>, then sorted by fitness *
* <sum-of-fitness>
*

- total sum of all fitness values of individuals *

(defun copy-population ()

; Purpose: copies and sorts new to old population, calculates fitness sum
; Returns: nil

(setq <new-population> (sort <new-population> ’> :key ’individual-fitness))
(setq <sum-of-fitness> 0 .0)
(dotimes (index ^population*)

(setf (individual-phenotype (aref <old-popnlation> index))

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GERDS SOURCE CODE 136

(individual-phenotype (aref <new-population> index))
)
(setf Cindividual-genotype (are! <old-popnlation> index))

(individual-genotype (are! <neu-population> index))
)
(setf (individnal-fitness (aref <old-popnlation> index))

(individual-fitness (aref <nes-population> index))
)
(setq <sum-of-fitness>

(+ (individnal-fitness (aref <old-population> index)) <sum-of-fitness>)
)

)
)

* *

CREATE-GEIOTYPE

ARGUMENTS:
production - production at vhich to start building a nee trace

GLOBALS:
<grammar>
<lookup>
<synbols>

array of grammar productions for building a rule
list of all nonterminals and their productions
list of nonterminal symbols in productions

RETURNS:
a new (sub)trace beginning at production

* *

(defun create-genotype (production)

; Purpose: randomly constructs a subtrace beginning with production
; Returns: new subtrace

(append
(list production)
(expand-trace (aref <grammar> production))
(list 0)

)
)

* i

(defun choose-production (symbol)

; Purpose: randomly selects one element from a list of productions
; Returns: the selected production
; Invoked: expand-trace

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GERDS SOURCE CODE 13

(let ((production-list (cdr (assoc symbol <lookup>))))
(nth (random (length production-list)) prodnction-list)

)
)

(defun expand-trace (expansion)

; Purpose: randomly expands a subtrace beginning with expansion
; Returns: new subtrace
; Invoked: create-genotype, expand-trace

(cond
((member expansion <symbols>)

(create-genotype (choose-production expansion))
)
((and (listp expansion) (not (null expansion)))

(append (expand-trace (car expansion)) (expand-trace (cdr expansion)))
)

)
)

**
w-
*

*
CREATE-PHENOTYPE *

* ARGUMENTS:
W
*

* trace
 ̂* - a derivation (sub)trace of the rule to be made *

w
* GLOBALS:

*
*

* <grammar> - the array of productions used to build a new rule *
* <productions> - a special stack used for faster rule expansion *
* <symbols>
*

- list of nonterminal symbols in all productions *
*

* RETURNS: *
* a new (sub)rule built from the trace *
* *♦ W
**

(defun create-phenotype (trace)

; Purpose: constructs an rule (sub)expression by expanding (sub)trace
; Returns: a (sub)expression

(setq <productions> (remove 0 trace))
(expand-rule (aref <grammar> (pop <productions>)))

)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GERDS SOURCE CODE

(defun expand-rule (rule)

; Purpose: transforms a subtrace into a subexpression using a stack
; Returns: a subexpression
; Invoked: create-phenotype, expand-rule

(cond
((null rule)

nil
)
((member rule <symbols>)

(expand-rule (aref <grammar> (pop <productions>)))
)
((atom rule)

(list rule)
)
((and (listp rule) (listp (car rule)) (equal (list (car rule)) rule))

(list (expand-rule (car rule)))
)
(t

(let ((new-rule))
(dolist (this-rule rule new-rule)

(if (and
(listp this-rule)
(equal (list (car this-rule)) this-rule)

)
(setq

new-rule
(append new-rule (list (expand-rule (car this-rule))))

)
(setq new-rule (append new-rule (expand-rule this-rule)))

)
)

)
)

)
)

I***
;*
;* CREATE-POPULATIOH

ARGUMENTS:
nil

GLOBALS:
♦population* - the total size of the experiment population

CALLS:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GERDS SOURCE CODE 139

(create-genotype) - builds a production list used to construct rule
(create-phenotype) - constructs a new rule from its derivation trace

RETURIS:
nil

EFFECTS:
<new-population> - a new array of randomly created individuals
<old-population> - an array of ^population* with default values

**

(defun create-population ()

; Purpose: drives creation of initial population
; Returns: nil

(creat e-populat ion-arrays)
(dotimes (index *population*)

(make-new-individual index)
)

)

(defun create-population-arrays ()

; Purpose: creates two population arrays of type individual
; Returns: nil
; Invoked: create-population

(setq <old-population> (make-array ^population*))
(setq <new-population> (make-array *population*))
(dotimes (index *population*)

(setf (aref <old-population> index) (make-individual))
(setf (aref <new-population> index) (make-individual))

)

(defun make-new-individual (index)

; Purpose: creates a <new-population> member and stores it at index
; Returns: new initialized defstruct
; Invoked: create-population

(let ((child (aref <new-population> index)) (trace (create-genotype 1)))
(setf (individual-genotype child) trace)
(setf (individual-phenotype child) (create-phenotype trace))
(setf (individual-fitness child) 0)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GERDS SOURCE CODE 140

)
)

*
*

*
CROSSOVER *

*
* ARGUHEHTS:
* nil

*
*

W
* GLOBALS:
* <crossover>
* *crossover-rate*
* <new-population>
* ^overlap*
* ^population*
*

*
- list of productions where crossover can occur *
- probability of performing crossover on traces *
- array of individuals chosen from <old-population> *
- number of top individuals to keep each generation *
- total number of individuals in current population *

*
* CALLS:
* (parity—count)
*

*
- determines subtrace end to splice for crossover *£

* RETURHS:
* nil

*
*

* EFFECTS:
* <new-population>
*

W
*

- new population of genotypes after crossover *
*

**

(defun cross-end (trace locus)

; Purpose: finds end of list being spliced
; Returns: the end sublist
; Invoked: svap-genes

(if (not (equal (length trace) locus))
(subseq trace locus)

)
)

* ;

(defun cross-start (trace locus)

; Purpose: finds front of list being spliced
; Returns: the front sublist
; Invoked: svap-genes

(if (not (zerop locus))
(subseq trace 0 locus)

)
)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GERDS SOURCE CODE 141

(defun crossover ()

; Purpose: controls crossover of genotypes in <nes-population>
; Returns: nil

(do
((index *overlap* (+ index 2)))
((>= (1+ index) ^population*))
(if (< (random 1 .0) *crossover-rate*)

(perform-splicing index (1+ index))
)

(defun locus-select (tracel trace2)

; Purpose: selects a locus for crossover
; Returns: the production to be crossed
; Invoked: perform-splicing

(let ((loci (trace-intersect tracel trace2)))
(let ((choice (trace-intersect loci <crossover>)))

(nth (random (length choice)) choice)
)

)
)

(defun perform-splicing (indexl index2)

; Purpose: finds segments of rule traces and then does crossover
; Returns: nil
; Invoked: crossover

(let ((tracel (individual-genotype (aref <nev-population> indexl)))
(trace2 (individual-genotype (aref <new-population> index2))))

(let ((production (locus-select tracel trace2)))
(let ((locusl (start-swap tracel production))

(locus2 (start-svap trace2 production)))
(let ((endl (parity-count tracel locusl))

(end2 (parity-count trace2 locus2)))
(setf (individual-genotype (aref <new-population> indexl))

(swap-genes tracel trace2 locusl locus2 endl end2)
)
(setf (individual-genotype (aref <nes-population> index2))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GERDS SOURCE CODE 142

(swap-genes trace2 tracel locus2 locusl end2 endl)
)

)
)

)
)

)

(defun start-swap (trace prodnction)

; Purpose: finds one of the indices of production in the trace
; Returns: the index
; Invoked: perform-splicing

(let ((locus trace))
(dotimes (i (1+ (random (count production trace))))

(setq locus (cdr (member production locus)))
)
(- (length trace) (length locus) 1)

)

(defun swap-genes (trace-1 trace-2 locus-1 locus-2 end-1 end-2)

; Purpose: performs crossover on one structure
; Returns: a trace after crossover
; Invoked: perform-splicing

(append
(cross-start trace-1 locus-1)
(subseq trace- 2 locus-2 end-2)
(cross-end trace-1 end-1)

)

(defun trace-intersect (listl list2)

; Purpose: performs intersection on two traces
; Returns: the intersection list without duplicates or zero
; Invoked: locus-select

(let ((intersect nil))
(dolist (item listl (remove 0 (remove-duplicates intersect)))

(if (member item list2)
(setq intersect (append (list item) intersect))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GERDS SOURCE CODE 143

)

**

FITHESS-FOTCTIOI

ARGUMEITS:
nil

GLOBALS:
<new-population> - newly created individuals without fitness values
population - total size of the population for the experiment

RETURHS:
nil

EFFECTS:
<new-population> - new population with all fitness values calculated

* *

(defun fitness-function ()

; Purpose: Default fitness function in case one in not supplied
; Returns: nil

(dotimes (index *population*)
(setf

(individual-fitness (aref <new-population> index))
(eval (individual-phenotype (aref <new-population> index)))

)
)

**

GA

ARGUMEITS:
experiment-f ile

GLOBALS:
♦best-display*
<crossover>
♦crossover-rate*
fitness-file
♦generations*
<grammar>

name and path of file containing the experiment

number of best population members to show in output
list of productions where crossover can take place
probability of performing crssover on trace pairs
name and path of file containing fitness function
total number of successive population generations
array of grammar productions for building new rules

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GERDS SOURCE CODE 144

♦grammar-!ile*
<lookup>
<mutation>
♦mutation-rate*
<new-population>
<old-populat ion>
♦output-1ile*
<output-stream>
♦overlap*
♦population*
<productions>
<sum-ol-litness>
<symbols>
♦train-1ile*
<train-list>

CALLS:
copy-population
create-population
crossover
litness
mutation
process-grammar
read-grammar
read-training
reproduction
statistics

EFFECTS:
♦best-display*
<crossover>
♦crossover-rate*
♦litness-lile*
♦generations*
<grammar>
♦grammar-lile*
<lookup>
<mutation>
♦mutation-rate*
<new-population>
<old-population>
♦output-1ile*
<output-stream>
♦overlap*
♦population*
<productions>
<sum-ol-litness>
<symbols>
♦train-1ile*
<train-list>

name and path pi the lile containing grammar inlo
a list ol all nonterminals and their productions
list ol productions where mutation can take place
probability ol mutating each production in a trace
array ol individuals to evaluate in this generation
saved array ol individuals Irom previous generation
name and path ol the lile where results are output
stream lor sending inlormation to the *output-lile*
number ol top individuals to keep each generation
the number ol individuals in the current population
a special stack used lor laster rule expansion
total ol all litness lunctions values in population
list ol nonterminal symbols in grammar productions
path and name ol training data lile (il used by ga)
list where training data is stored (il used by ga)

copies <new-population> into <old-population>
handles the creation ol the initial population
controls crossover ol genotypes in <new-population>
location ol lunction is specilied in *litness-lile*
controls mutation ol genotypes in <new-population>
controls reading and proccessing ol problem grammar
controls the processing and storage ol the grammar
controls the creation ol the list ol training data
chooses individuals to place into <new-population>
displays stats lor generation via <output-stream>

given delault value il not lound in experiment-lile
internal global variable is created and set to nil
given delault value il not lound in experiment-lile
given delault value il not lound in experiment-lile
given delault value il not lound in experiment-lile
internal global variable is created and set to nil
given delault value il not lound in experiment-lile
internal global variable is created and set to nil
internal global variable is created and set to nil
given delault value il not lound in experiment-lile
internal global variable is created end set to nil
internal global variable is created and set to nil
given delault value il not lound in experiment-lile
internal global variable is created and set to nil
given delault value il not lound in experiment-lile
given delault value il not lound in experiment-lile
internal global variable is created and set to nil
internal global variable is created and set to nil
internal global variable is created and set to nil
given delault value il not lound in experiment-lile
internal global variable is created and set to nil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GERDS SOURCE CODE 145

* RETURHS: ♦
* nil, output ol genetic algorithm is printed to <output-stream> *
♦ *

The Structure 01 Each Member 01 The Population

(defstruct individual
genotype
phenotype
fitness

)

Default Values For Global Variables Which Can Be Set In Experiment-file

(defvar *best-display* 5)
(defvar *crossover-rate* 0 .6)
(defvar *fitness-file* "fitness-function.o")
(defvar ^generations* 100)
(defvar *grammar-file* "grammar.lsp")
(defvar *mutation-rate* 0 .02)
(defvar *output-file* "output.lsp")
(defvar *overlap* 0)
(defvar *population* 100)
(defvar *train-file* nil)

Internal Global Variables Are Initialized to Hil

(defvar <crossover> nil)
(defvar <graimar> nil)
(defvar <lookup> nil)
(defvar <mutation> nil)
(defvar <nev-population> nil)
(defvar <old-population> nil)
(defvar <output-stream> nil)
(defvar <productions> nil)
(defvar <sum-of-fitness> nil)
(defvar <symbols> nil)
(defvar <train-list> nil)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GERDS SOURCE CODE 146

Load All leaded Modules For Genetic Algorithm

(load "copy-population.o")
(load "create-genotype.o")
(load "create-phenotype.o")
(load "create-population.o")
(load "crossover.o")
(load "modify-grammar")
(load "mutation.o")
(load "parity-count.o")
(load "process-grammar.o")
(load "read-grammar.o")
(load "read-training.o")
(load "reproduction.o")
(load "statistics.o")

I — — — — — —— — _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ^

(defun ga (experiment-file)

; Purpose: conducts a genetic algorithm experimemt using rules instead of bits
; Returns: nil, output of ga experiment is printed to *output-stream*

(load experiment-file)
(load *fitness-file*)
(process-grammar)
(if *train-file* (read-training))
(creat e-populat ion)
(let ((<output-8tream> (open *output-file* :direction :output)))

(dotimes (generation *generations*)
(funcall 'fitness)
(copy-populat ion)
(statistics generation)
(reproduction)
(crossover)
(mutation)

)
(close <output-stream>)

)
)

;**;
;* * -

;* MODIFY-GRAMMAR *;
;* *•
;* ARGUMENTS: *;
;* grammar-list - a list of the unmodified grammar productions *;
: * * •

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GERDS SOURCE CODE 14

* GLOBALS: *
* <crossover> - list of specified crossover nonterminals or nil *
* <mutation>
*

- list of specified mutation nonterminals or nil *
£

* RETURIS: *
* a modified version of all grammar rules for easier rule construction *

£W
* EFFECTS: *
* <crossover> - list of all productions where crossover can occur *
* <lookup> - list of all nonterminals and their productions *
* <mutation> - list of all productions where mutation can occur *
* <symbols>
*

- list of all gensyms representing nonterminals *
7k

**

(defun build-nonterminal-associations (grammar-list)

; Purpose: creates a list associating each, nonterminal with its productions
; Returns: an association list between nonterminals and productions
; Invoked: modify-grammar

(let ((nonterm-assoc nil) (nonterms (mapcar 'car grammar-list)))
(dolist (nonterminal (remove-duplicates nonterms) nonterm-assoc)

(setq nonterm-assoc
(append

nonterm-assoc
(list (list nonterminal (find-positions nonterminal nonterms)))

)
)

)
)

)

(defun find-positions (key nonterminal-list)

; Purpose: finds all grammar rules whose left side is nonterminal key
; Returns: a list of production indices
; Invoked: build-nonterminal-associations

(let ((position-list nil) (from 0))
(dotimes (pos (count key nonterminal-list) position-list)

(setq from (1+ (position key nonterminal-list :start from)))
(setq position-list (append position-list (list from)))

)
)

)

■ ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GERDS SOURCE CODE 148

(defun flatten (a-list)

; Purpose: places all sublists into main list
; Returns: a flattened list
; Invoked: remove-terminals

(cond
((atom a-list)

(list a-list)
)
(t

(let ((flat-list))
(dolist (this-list a-list flat-list)

(setq flat-list (append flat-list (flatten this-list)))
)

)

(defun modify-grammar (grammar-list)

; Purpose: modifies list of productions for easier computation
; Returns: grammar list

(let ((grammar (mapcar 'cdr grammar-list)) (cross nil) (mutate nil))
(dolist (this-subst (build-nonterminal-associations grammar-list))

(let ((this-sym (gensym)))
(setq grammar (subst this-sym (car this-subst) grammar))
(setq <symbols> (cons this-sym <symbols>))
(setq <lookup>

(append <lookup>
(list (append (list this-sym) (cadr this-subst)))

)
)
(if (or (null <crossover>) (member (car this-subst) <crossover>))

(setq cross (append cross (cadr this-subst)))
)
(if (or (null <mutation>) (member (car this-subst) <mutation>))

(setq mutate (append mutate (cadr this-subst)))
)

)
)
(setq <crossover> (remove-terminals cross grammar))
(setq <mutation> (remove-terminals mutate grammar))
grammar

)
)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GERDS SOURCE CODE 149

I * " “ " —— — — “ "" “ »

(defun remove-terminals (production-list grammar-list)

; Purpose: remove terminal productions from list
; Returns: list with, only nonterminals
; Invoked: modify-grammar

(dotimes (index (length grammar-list) production-list)
(if (not (intersection <symbols> (flatten (nth index grammar-list))))

(setq production-list (remove (1-)- index) production-list))
)

)
)

**
m
* MUTATIOI *
w
* ARGUMEITS:

W
*

* nil *

* GLOBALS: *
* <mutation> - list of productions vhere mutation can take place *
* *mutation-rate - probability of mutating each production in trace *
* <nev-populat ion> - the array of individuals after crossover happens *
* ^overlap* - number of top individuals to keep each generation ♦
* ♦population*
*

- the number of individuals in current population *
*

* CALLS: *
* (create-phenotype) - builds new phenotype after mutating its genotype *
* (parity-count)
*

- determines subtrace end for splice in crossover *

* RETURIS:
W
*

* nil *
W
* EFFECTS:

*
*

* <neu-population>
*

- array of post-mutated individuals in population *
*

**

(defun mutation ()

; Purpose: controls mutation of genotypes in <nev-population>
; Returns: nil

(do
((index *overlap* (1+ index)))
((equal index ^population*))
(let ((mutation (perform-mutation

with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GERDS SOURCE CODE 150

(individual-genotype (aref <neu-population> index)))))
(setf (individual-genotype (aref <new-population> index)) natation)
(setf (individual-phenotype (aref <ne»-population> index))

(make-rule mutation)
)

(defun perform-mutation (trace)

Purpose: performs mutation on individual trace or subtrace
Returns: mutated or original trace
Invoked: mutation, perform-mutation

(let ((production (car trace)))
(cond

((null production)
nil

)
((and (member production <mutation>) (< (random 1.0) *mutation-rate*))

(append
(make-trace production)
(perform-mutation (mutate-end trace (parity-count trace 0)))

)
)
(t

(cons production (perform-mutation (cdr trace)))
)

)
)

)

(defun mutate-end (trace locus)

; Purpose: finds end of list being spliced
; Returns: the end sublist
; Invoked: perform-mutation

(if (not (equal (length trace) locus))
(subseq trace locus)

)
)

**
* *

* PARITY-COUHT *

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GERDS SOURCE CODE 151

ARGUMEITS:
trace - a rule trace or subtrace derived from the grammar
locus - the index of the first element in the subtrace

GLOBALS:
nil

RETURIS:
the index of last element of subtrace after parity count from locus

* *

(defun parity-count (trace locus)

; Purpose: conducts search for end of subtrace
; Returns: the index of the last element of the sublist

(seaxch-for-zero 1 (nthcdr (1+ locus) trace) (1+ locus))
)

(defun search-for-zero (parity subtrace index)

; Purpose: finds end of subtrace by doing parity count
; Returns: the index of the last element of the sublist
; Invoked: parity-count, search-for-zero

(cond
((zerop parity)

index
)
((zerop (car subtrace))

(search-for-zero (1- parity) (cdr subtrace) (1+ index))
)
(t

(search-for-zero (i+ parity) (cdr subtrace) (1+ index))
)

)

* *

PRQCESS-GRAMMAR

ARGUMEITS:
nil

GLOBALS:
♦grammar-file* - name and path of the file containing grammar info

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GERDS SOURCE CODE

*
* CALLS:

*
*

* (modify-grammar) - alters productions for more efficient computation *
* (read-grammar) - reads original grammar from *grammar-file* *

*
* RETURNS: *
* nil *

*
* EFFECTS: *
* <grammar>
*

- array of grammar productions for building rules *
*

**

(defun process-grammar ()

; Purpose: stores productions in array and creates helpful lookup variables
; Returns: nil

(let ((grammar-list (read-grammar)))
(let ((modified-list (modify-grammar grammar-list)))

(setq <grammar> (make-array (1+ (length modified-list))))
(dotimes (pos (length modified-list))

(setf (aref <grammar> (1+ pos)) (nth pos modified-list))
)

)
)

)
)

* *

* READ-GRAMMAR *
w

* ARGUMENTS:
* nil
A

♦

*

*

* GLOBALS:
* *grammar-file*
*

♦
*

- name and path of file containing the grammar *
*

* RETURNS: *

* a list of all productions read from *grammar-file* in order *

* a .

* EFFECTS:
* <crossover>
* <mutation>
*

*
- a list of nonterminals (if supplied) for crossover *
- a list of nonterminals (if supplied) for mutation *

**

(defun get-crossover-and-mutation (instream)

; Purpose: reads top lines of *grammar-file* for possible operator information

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GERDS SOURCE CODE

; Returns: the first grammar production, updates <crossover> and <mutation>
; Invoked: read-grammar

(do
((rule (read instream nil nil) (read instream nil nil)))
((not (or (equal (car rule) 'crossover) (equal (car rule) 'mutation)))

rule
)
(if (equal (car rule) 'crossover)

(setq <crossover> (append <crossover> (cdr rule)))
(setq <mutation> (append <mutation> (cdr rule)))

)
)

)

(defun read-grammar ()

; Purpose: reads in each line of *grammar-file* as an individual production
; Returns: a list of productions as they appear in *grammar-file*

(let ((instream (open *grammar-file*)) (grammar-list nil))
(do

((rule (get-crossover-and-mutation instream) (read instream nil nil)))
((null rule))
(setq grammar-list (append grammar-list (list rule)))

)
(close instream)
grammar-list

)
)

**
*
* READ-TRAIIIIG *

* ARGUMEHTS:
W
*

* nil*
*

* GLOBALS:
V
*

* *train-file* - path and file name where training data is found *
* <train-list>
41

- list where training data is kept to be processed *
*

* RETURHS: *
* nil*

*
W
* EFFECTS:

♦
*

* <train-list>
*

- all training data in *train-file* stored as a list *
**

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GERDS SOURCE CODE 154

(defun read-training ()

; Purpose: reads in each line of *train-file» as training example
; Returns: nil

(let ((instream (open *train-file*)))
(do

((example (read instream nil nil) (read instream nil nil)))
((noil example))
(setq <train-list> (append <train-list> (list example)))

)
(close instream)

)
)

**
*■
* REPRODUCTIOV *
w
* ARGUMEITS:

w
*

* nil *

* GLOBALS: *
* <old-population> - sorted array of individuals from last generation *
* *overlap* - number of top individuals to keep each generation *
* *population* - total number of individuals to reproduce in array *
* <sum-of-fitness> - total population fitness of <old-population> *

*
* RETURFS: *
* nil
*

*

* EFFECTS:
*
*

* <nes-populat ion>
*

- new array selected from <old-population> members *
*

**

(defun reproduction ()

; Purpose: chooses new individuals for <nev-population>
; Returns: nil

((index *overlap* (1+ index)))
((equal index *population*))
(let ((replace (aref <nev-population> index)) (selected (selection)))

(setf (individual-genotype replace) (individual-genotype selected))
(setf (individual-phenotype replace) (individual-phenotype selected))
(setf (individual-fitness replace) (individual-fitness selected))

)
)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GERDS SOURCE CODE 155

)

(defun selection ()

; Purpose: does random roulette wheel selection from <old-population>
; Returns: selected population member
; Invoked: reproduction

(let ((choice (random <sum-of-fitness>)) (partial 0.0))
(do

((index 0 (1+ index)))
((or (>= partial choice) (= index ^population*))

(aref <old-population> (1- index)))
(setq

partial
(+ partial (individual-fitness (aref <old-population> index)))

)
)

)
)

; *

;* STATISTICS
;*
;* ARGUMENTS:
;* generation
;*
;* GLOBALS:
; * *best-display*
;* <old-population>
; * <output-stream>
;* *population*
;* <sum-of-fitness>
;*
;* RETURNS:
;* nil, displays all information for generation to *standard-output*

(defun print-individual (index)

; Purpose: prints fitness value and phenotype of population member
; Returns: nil, outputs to stream
; Invoked: print-population

(format <output-stream>
"fitness value: 'S*'/,"
(individual-fitness (aref <old-population> index))

- number of successive generations already produced

- number of best population members to display
- an array of type individual sorted by fitness
- where to direct statistical information output
- number of individuals to be found in population
- total of litness function values in population

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GERDS SOURCE CODE 156

)
(format <output-stream>

"rule phenotype: "S'%"
(individual-phenotype (aref <old-population> index))

)

(defun print-population ()

; Purpose: prints out the *best-display* population members in generation
; Returns: nil, outputs to stream
; Invoked: print-report

(format <output-stream> "Population Report
(dotimes (index *best-display*)

(format <output-stream>
"■s-/."
(individual-phenotype (aref <o24fpopulation> index))

)
)

)

(defun print-report (generation)

; Purpose: prints out statistical information about population
; Returns: nil, prints population infomation to <output-stream>
; Invoked: statistics

(format <output-stream>

)
(format <output-stream> "Report for generation "S:"*/.‘7." generation)
(format <output-stream>

"Maximum fitness value: 'S'%"
(* 1.0 (individual-fitness (aref <old-population> 0)))

)
(format <output-stream>

"Average population fitness: “S'X"*/,"
(/ <sum-of-fitness> ^population*)

)

(defun statistics (generation)

; Purpose: displays statistics for generation via <output-stream>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. GERDS SOURCE CODE

; R e tu r n s : n i l

(p r i n t - r e p o r t g e n e r a t i o n)
(i l (> * b e s t - d i s p l a y * 0) (p r i n t - p o p u l a t i o n))

)

I *

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

in
[2]

[3] D.H. Ackley. A connectionist algorithm for genetic search. In Proceedings o f the
First International Conference on Genetic Algorithms and Their Applications, pages
121-135. Lawrence Erlbaum Associates, 1985.

[4] D.H. Ackley. An empirical study of bit vector function optimization. In L. Davis, ed­
itor, Genetic algorithms and simulated annealing, chapter 13, pages 170-204. Morgan
Kaufmann, 1987.

[5] David W. Aha. Relating relational learning algorithms. In Stephen Muggleton, editor,
Inductive Logic Programming, chapter 11, pages 233-254. Turing Institute Press, 1992.

[6] Akiko N. Aizawa and Benjamin Wah. Dynamic control of genetic algorithms in a
noisy environment. In Proceedings of the Fifth International Conference on Genetic
Algorithms, pages 48-55. Morgan Kaufmann, 1993.

[7] H.J. Antonisse. A new interpretation of schema notation that overturns the binary
encoding constraint. In Proceedings of the Third International Conference on Genetic
Algorithms, pages 86-91. Morgan Kaufmann, 1989.

[8] H.J. Antonisse and K.S. Keller. Genetic operators for high-level knowledge represen­
tations. In Proceedings of the Second International Conference on Genetic Algorithms,
pages 69-76. Lawrence Erlbaum Associates, 1987.

[9] R. Axelrod. The evolution of strategies in the iterated prisoner’s dilemma problem. In
L. Davis, editor, Genetic algorithms and simulated annealing, chapter 3, pages 32-41.
Morgan Kaufmann, 1987.

[10] Thomas Back and Frank Hoffmeister. Extended selection mechanisms in genetic algo­
rithms. In Proceedings of the Fourth International Conference on Genetic Algorithms,
pages 92-99. Morgan Kaufmann, 1991.

[11] Thomas Back, Frank Hoffmeister, and Hans-Paul Schwefel. A survey of evolution
strategies. In Proceedings o f the Fourth International Conference on Genetic Algo­
rithms, pages 2-9. Morgan Kaufmann, 1991.

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 159

[12] Sugato. Bagchi, Serdar Uckun, Yutaka Miyabe, and Kazuhiko Kawamura. Exploring
problem-specific recombination operators for job shop scheduling. In Proceedings of
the Fourth International Conference on Genetic Algorithms, pages 10-17. Morgan
Kaufmann, 1991.

[13] J.D. Bagley. The behavior o f adaptive systems which employ genetic and correlation
algorithms. PhD thesis, University of Michigan, 1967.

[14] James Edward Baker. Reducing bias and inefficiency in the deletion algorithm. In
Proceedings o f the Second International Conference on Genetic Algorithms, pages 14-
21. Lawrence Erlbaum Associates, 1987.

[15] J.E. Baker. Adaptive selection methods for genetic algorithms. In Proceedings of the
First International Conference on Genetic Algorithms and Their Applications, pages
101-111. Lawrence Erlbaum Associates, 1985.

[16] N.A. Barricelli. Numerical testing of evolution theories. ACTA Biotheoretica, 16:69—
126, 1962.

[17] David Beasley, David R. Bull, and Ralph R. Martin. Reducing epistasis in com­
binatorial problems by expansive coding. In Proceedings of the Fifth International
Conference on Genetic Algorithms, pages 400-407. Morgan Kaufmann, 1993.

[18] R.K. Belew. When both individuals and populations search: adding simple learning
to the genetic algorithm. In Proceedings of the Third International Conference on
Genetic Algorithms, pages 34-41. Morgan Kaufmann, 1989.

[19] R.K. Belew and M. Gherrity. Back propagation for the classifier system. In Proceedings
of the Third International Conference on Genetic Algorithms, pages 275-281. Morgan
Kaufmann, 1989.

[20] Kristen Bennett, Michael C. Ferris, and Yannis E. Ioannidis. A genetic algorithm for
database query optimization. In Proceedings o f the Fourth International Conference
on Genetic Algorithms, pages 400-407. Morgan Kaufmann, 1991.

[21] Hugues Bersini and Francisco J. Varela. The immune recruitment mechanism: a
selective evolutionary strategy. In Proceedings o f the Fourth International Conference
on Genetic Algorithms, pages 520-526. Morgan Kaufmann, 1991.

[22] Bir Bhanu, Sungkee Lee, and John Ming. Self-optimizing image segmentation system
using a genetic algorithm. In Proceedings of the Fourth International Conference on
Genetic Algorithms, pages 362-370. Morgan Kaufmann, 1991.

[23] Jay N. Bhuyan, Vijay V. Raghavan, and Venkatesh K. Elayavalli. Genetic algorithm
for clustering with an ordered representation. In Proceedings of the Fourth Interna­
tional Conference on Genetic Algorithms, pages 408-415. Morgan Kaufm ann, 1991.

[24] Arthur S. Bickel and Rita Wenig Bickel. Tree structured eules in genetic algorithms.
In Proceedings of the Second International Conference on Genetic Algorithms, pages
77-81. Lawrence Erlbaum Associates, 1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 160

[25] Pierre Bonelli and Alexandre Parodi. An efficient classifier system and its experimental
comparison with two representative learning methods on three medical domains. In
Proceedings of the Fourth International Conference on Genetic Algorithms, pages 288-
295. Morgan Kaufmann, 1991.

[26] L.B. Booker. Intelligent behavior as an adaptation to the task environment. PhD
thesis, University of Michigan, 1982.

[27] L.B. Booker. Improving the performance of genetic algorithms in classifier systems.
In Proceedings of the First International Conference on Genetic Algorithms and Their
Applications, pages 80-92. Lawrence Erlbaum Associates, 1985.

[28] L.B. Booker. Improving search in genetic algorithms. In L. Davis, editor, Genetic
algorithms and simulated annealing, chapter 5, pages 61-73. Morgan Kaufmann, 1987.

[29] L.B. Booker. Classifier systems that learn internal world models. Machine Learning,
3:161-192, 1988.

[30] L.B. Booker. Triggered rule discovery in classifier systems. In Proceedings o f the Third
International Conference on Genetic Algorithms, pages 265-274. Morgan Kaufmann,
1989.

[31] Mark F. Bramlette. Initialization, mutation and selection methods in genetic algo­
rithms for function optimization. In Proceedings of the Fourth International Confer­
ence on Genetic Algorithms, pages 100-107. Morgan Kaufmann, 1991.

[32] M.F. Bramlette and R. Cusic. A comparative evaluation of search methods applied
to parametric design of aircraft. In Proceedings of the Third International Conference
on Genetic Algorithms, pages 213-218. Morgan Kaufmann, 1989.

[33] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Regres­
sion Trees. Wadsworth International, 1984.

[34] Clayton L. Bridges and David E. Goldberg. An analysis of reproduction and crossover
in a binary-coded genetic algorithm. In Proceedings o f the Second International Con­
ference on Genetic Algorithms, pages 9-13. Lawrence Erlbaum Associates, 1987.

[35] D.E. Brown, C.L. Huntley, and A.R. Spillane. A parallel genetic heuristic for the
quadratic assignment problem. In Proceedings of the Third International Conference
on Genetic Algorithms, pages 406-415. Morgan Kaufmann, 1989.

[36] Craig Caldwell and Victor S. Johnston. Tracking a criminal suspect through “face-
space” with a genetic algorithm. In Proceedings of the Fourth International Conference
on Genetic Algorithms, pages 416-421. Morgan Kaufmann, 1991.

[37] David L. Calloway. Using a genetic algorithm to design binary phase-only filters for
pattern recognition. In Proceedings o f the Fourth International Conference on Genetic
Algorithms, pages 422-429. Morgan Kaufmann, 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 161

[38] Hugh M. Cartwright and Gregory F. Mott. Looking around: using clues from the data
space to guide genetic algorithm searches. In Proceedings o f the Fourth International
Conference on Genetic Algorithms, pages 108-114. Morgan Kaufmann, 1991.

[39] T.P. Caudell and C.P. Dolan. Parametric connectivity: training of constrained net­
works using genetic algorithms. In Proceedings o f the Third International Conference
on Genetic Algorithms, pages 370-374. Morgan Kaufmann, 1989.

[40] D.J. Cavicchio. Adaptive search using simulated evolution. PhD thesis, University of
Michigan, 1970.

[41] Rong-Jaye Chen, Robert R. Meyer, and Jonathan Yeckel. A genetic algorithm for
diversity minimization and its parallel implementation. In Proceedings of the Fifth
International Conference on Genetic Algorithms, pages 163-170. Morgan Kaufmann,
1993.

[42] P. Chi. Genetic search with proportion estimations. In Proceedings of the Third
International Conference on Genetic Algorithms, pages 92-97. Morgan Kaufmann,
1989.

[43] C.H. Chu. A genetic algorithm approach to the configuration of stack filters. In
Proceedings of the Third International Conference on Genetic Algorithms, pages 219-
224. Morgan Kaufmann, 1989.

[44] G.A. Cleveland and S.F. Smith. Using genetic algorithms to schedule flow shop re­
leases. In Proceedings of the Third International Conference on Genetic Algorithms,
pages 160-169. Morgan Kaufmann, 1989.

[45] J.P. Cohoon, S.U. Hegde, W.N. Martin, and D. Richards. Punctuated equilibria: a
parallel genetic algorithm. In Proceedings o f the Second International Conference on
Genetic Algorithms, pages 148-154. Lawrence Erlbaum Associates, 1987.

[46] J.P. Cohoon, W.N. Martin, and D.S. Richards. A multi-population genetic algorithm
for solving the k-partition problem on hyper-cubes. In Proceedings of the Fourth
International Conference on Genetic Algorithms, pages 244-248. Morgan Kaufmann,
1991.

[47] Robert J. Collins and David R. Jefferson. Selection in massively parallel genetic algo­
rithms. In Proceedings of the Fourth International Conference on Genetic Algorithms,
pages 249-256. Morgan Kaufmann, 1991.

[48] M. Compiani, D. Montanari, R. Serra, and P. Simonini. Asymptotic dynamics of
classifier systems. In Proceedings o f the Third International Conference on Genetic
Algorithms, pages 298-303. Morgan Kaufmann, 1989.

[49] Susan Coombs and Lawrence Davis. Genetic algorithms and communication link
speed design: constraints and operators. In Proceedings of the Second International
Conference on Genetic Algorithms, pages 257-260. Lawrence Erlbaum Associates,
1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 162

[50] N.L. Cramer. A representation for the adaptive generation of simple sequential pro­
grams. In Proceedings o f the First International Conference on Genetic Algorithms
and Their Applications, pages 183-187. Lawrence Erlbaum Associates, 1985.

[51] Charles Darwin. On the Origin of Species by Means o f Natural Selection. John Murray,
1859.

[52] Rajarshi Das and Darrell Whitley. The only challenging problems are deceptive:
global search by solving order-1 hyperplanes. In Proceedings o f the Fourth Interna­
tional Conference on Genetic Algorithms, pages 166-173. Morgan Kaufmann, 1991.

[53] Y. Davidor. Analogous crossover. In Proceedings o f the Third International Conference
on Genetic Algorithms, pages 98-103. Morgan Kaufmann, 1989.

[54] Yuval Davidor. A naturally occuring niche & species phenomenon: the model and first
results. In Proceedings o f the Fourth International Conference on Genetic Algorithms,
pages 257-263. Morgan Kaufmann, 1991.

[55] L. Davis. Job shop scheduling with genetic algorithms. In Proceedings of the First
International Conference on Genetic Algorithms and Their Applications, pages 136-
140. Lawrence Erlbaum Associates, 1985.

[56] L. Davis. Adapting operator probabilities in genetic algorithms. In Proceedings of the
Third International Conference on Genetic Algorithms, pages 61-69. Morgan Kauf­
mann, 1989.

[57] L. Davis. Mapping neural networks into classifier systems. In Proceedings of the Third
International Conference on Genetic Algorithms, pages 375-378. Morgan Kaufmann,
1989.

[58] L. Davis and M. Steenstrup. Genetic algorithms and simulated annealing: an
overview. In L. Davis, editor, Genetic algorithms and simulated annealing, chapter 1,
pages 1-11. Morgan Kaufmann, 1987.

[59] Lawrence Davis. Bit-climbing, representational bias and test suite design. In Pro­
ceedings of the Fourth International Conference on Genetic Algorithms, pages 18-23.
Morgan Kaufmann, 1991.

[60] Lawrence Davis and Susan Coombs. Genetic algorithms and communication link
speed design: theoretical considerations. In Proceedings of the Second International
Conference on Genetic Algorithms, pages 252-256. Lawrence Erlbaum Associates,
1987.

[61] Thomas E. Davis and Jose C. Principe. A simulated annealing like convergence
theory for the simple genetic algorithm. In Proceedings of the Fourth International
Conference on Genetic Algorithms, pages 174-181. Morgan Kaufmann, 1991.

[62] K.A. De Jong. An analysis of the behavior of a class of genetic adaptive systems. PhD
thesis, University of Michigan, 1975.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 163

[63] K.A. De Jong. Genetic algorithms: a 10 year perspective. In Proceedings of the
First International Conference on Genetic Algorithms and Their Applications, pages
169-177. Lawrence Erlbaum Associates, 1985.

[64] K.A. De Jong and W.M. Spears. Using genetic algorithms to solve np-complete prob­
lems. In Proceedings o f the Third International Conference on Genetic Algorithms,
pages 124-132. Morgan Kaufmann, 1989.

[65] Kenneth De Jong. On using genetic algorithms to search program spaces. In Proceed­
ings o f the Second International Conference on Genetic Algorithms, pages 210-216.
Lawrence Erlbaum Associates, 1987.

[66] M. de la Maza. A seagul visits the race track. In Proceedings of the Third International
Conference on Genetic Algorithms, pages 208-212. Morgan Kaufmann, 1989.

[67] Pedro S. de Souza, , and Sarosh N. Talukdar. Genetic algorithms in asynchronous
teams. In Proceedings of the Fourth International Conference on Genetic Algorithms,
pages 392-397. Morgan Kaufmann, 1991.

[68] K. Deb and D.E. Goldberg. An investigation of niche and species formation in ge­
netic function optimization. In Proceedings o f the Third International Conference on
Genetic Algorithms, pages 42-50. Morgan Kaufmann, 1989.

[69] Charles P. Dolan and Michael G. Dyer. Towards the evolution of symbols. In Proceed­
ings o f the Second International Conference on Genetic Algorithms, pages 123-131.
Lawrence Erlbaum Associates, 1987.

[70] Marco Dorigo and Enrico Sirtori. Alecsys: A parallel laboratory for learning classifier
systems. In Proceedings of the Fourth International Conference on Genetic Algo­
rithms, pages 296-302. Morgan Kaufmann, 1991.

[71] A.C. Englander. Machine learning of visual recognition using genetic algorithms. In
Proceedings of the First International Conference on Genetic Algorithms and Their
Applications, pages 197-201. Lawrence Erlbaum Associates, 1985.

[72] Larry J. Eshelman and J. David Schaffer, crossover’s niche. In Proceedings of the
Fifth International Conference on Genetic Algorithms, pages 9-14. Morgan Kauf­
mann, 1993.

[73] Larry J. Eshelman and J.David Schaffer. Preventing premature convergence in genetic
algorithms by preventing incest. In Proceedings o f the Fourth International Conference
on Genetic Algorithms, pages 115-122. Morgan Kaufmann, 1991.

[74] L.J. Eshelman, R.A. Caruana, and J.D. Schaffer. Bias in the crossover landscape.
In Proceedings of the Third International Conference on Genetic Algorithms, pages
10-19. Morgan Kaufmann, 1989.

[75] M.J. Fitzpatrick and J.J. Grefenstette. Genetic algorithms in noisy environments.
Machine Learning, 3:101-120,1988.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 164

[76] T.C. Fogarty. Varying the probabilities of mutation in the genetic algorithm. In
Proceedings of the Third International Conference on Genetic Algorithms, pages 104-
109. Morgan Kaufmann, 1989.

[77] Carlos M. Fonseca and Peter I. Fleming. Genetic algorithms for multiobjective op­
timization: formulation, discussion and generalization. In Proceedings o f the Fifth
International Conference on Genetic Algorithms, pages 416-423. Morgan Kaufmann,
1993.

[78] S. Forrest. Implementing semantic network structures using the classifier system. In
Proceedings of the First International Conference on Genetic Algorithms and Their
Applications, pages 24-44. Lawrence Erlbaum Associates, 1985.

[79] Stephanie Forrest and Melanie Mitchell. The performance of genetic algorithms on
walsh polynomials: some anomalous results and their explanations. In Proceedings of
the Fourth International Conference on Genetic Algorithms, pages 182-189. Morgan
Kaufmann, 1991.

[80] M.P. Fourman. Compaction of symbolic layout using genetic algorithms. In Proceed­
ings of the First International Conference on Genetic Algorithms and Their Applica­
tions, pages 141-153. Lawrence Erlbaum Associates, 1985.

[81] D.R. Frantz. Non-linearities in genetic adaptive search. PhD thesis, University of
Michigan, 1972.

[82] A.S. Fraser. Simulation of genetic systems. Journal o f Theoretical Biology, 2:329-346,
1962.

[83] Corey Fujiki and John Dickinson. Using the genetic algorithm to generate lisp source
code to solve the prisoner’s dilemma. In Proceedings of the Second International
Conference on Genetic Algorithms, pages 236-240. Lawrence Erlbaum Associates,
1987.

[84] Paula S. Gabbert, Donald E. Brown, Christopher L. Huntley, Bernard P. Markowicz,
and David E. Sappington. A system for learning routes and schedules with genetic
algorithms. In Proceedings o f the Fourth International Conference on Genetic Algo­
rithms, pages 430-436. Morgan Kaufmann, 1991.

[85] D.E. Glover. Solving a complex keyboard configuration problem through generalized
adaptive search. In L. Davis, editor, Genetic algorithms and simulated annealing,
chapter 2, pages 12-31. Morgan Kaufmann, 1987.

[86] David E. Goldberg, Kalyanmoy Deb, Hillol Kargupta, and Georges Harik. Rapid,
accurate optimization of difficult problems using fast messy genetic algorithms. In
Proceedings of the Fifth International Conference on Genetic Algorithms, pages 56-
64. Morgan Kaufmann, 1993.

[87] David E. Goldberg, Kalyanmoy Deb, and Bradley Korb. Don’t worry, be messy.
In Proceedings of the Fourth International Conference on Genetic Algorithms, pages
24-30. Morgan Kaufmann, 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 165

[88] David E.. Goldberg and Jon Richardson. Genetic algorithms with sharing for multi­
modal function optimization. In Proceedings o f the Second International Conference
on Genetic Algorithms, pages 41-49. Lawrence Erlbaum Associates, 1987.

[89] David E. Goldberg and Philip Segrest. Finite markov chain analysis of genetic algo­
rithms. In Proceedings o f the Second International Conference on Genetic Algorithms,
pages 1-8. Lawrence Erlbaum Associates, 1987.

[90] David E. Goldberg and Robert E. Smith. Nonstationary function optimization using
genetic algorithms with dominance and diploidy. In Proceedings o f the Second Interna­
tional Conference on Genetic Algorithms, pages 59-68. Lawrence Erlbaum Associates,
1987.

[91] D.E. Goldberg. Computer-aided gas pipeline operation using genetic algorithms and
machine learning. PhD thesis, University of Michigan, 1983.

[92] D.E. Goldberg. Genetic algorithms and rule learning in dynamic system control. In
Proceedings of the First International Conference on Genetic Algorithms and Their
Applications, pages 8-15. Lawrence Erlbaum Associates, 1985.

[93] D.E. Goldberg. Simple genetic algorithms and the minimal, deceptive problem. In
L. Davis, editor, Genetic algorithms and simulated annealing, chapter 6, pages 74-88.
Morgan Kaufmann, 1987.

[94] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, 1989.

[95] D.E. Goldberg. Sizing populations for serial and parallel genetic algorithms. In
Proceedings of the Third International Conference on Genetic Algorithms, pages 70-
79. Morgan Kaufma n n , 1989.

[96] D.E. Goldberg. Zen and the art of genetic algorithms. In Proceedings of the Third
International Conference on Genetic Algorithms, pages 80-85. Morgan Kaufmann,
1989.

[97] D.E. Goldberg. Probability matching, the magnitude of reinforcement, and classifier
system bidding. Machine Learning, 5(4):407-425,1990.

[98] V. Scott Gordon and Darrell Whitley. Serial and parallel genetic algorithms as func­
tion optimizers. In Proceedings o f the Fifth International Conference on Genetic
Algorithms, pages 177-183. Morgan Kaufmann, 1993.

[99] M. Gorges-Schleuter. Asparagos an asynchronous parallel genetic optimization strat­
egy. In Proceedings o f the Third International Conference on Genetic Algorithms,
pages 422-427. Morgan Kaufmann, 1989.

[100] David Perry Greene and Stephen F. Smith. A genetic system for learning models of
consumer choice. In Proceedings of the Second International Conference on Genetic
Algorithms, pages 217-223. Lawrence Erlbaum Associates, 1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 166

[101] J.J. Grefenstette. Incorporating problem specific information into genetic algorithms.
In L. Davis, editor, Genetic algorithms and simulated annealing, chapter 4, pages
42-60. Morgan Kaufmann, 1987.

[102] J.J. Grefenstette. Credit assignment in a rule discovery system based on genetic
algorithms. Machine Learning, 3:225-245,1988.

[103] J.J. Grefenstette. A system for learning control strategies with genetic algorithms.
In Proceedings o f the Third International Conference on Genetic Algorithms, pages
183-190. Morgan Kaufmann, 1989.

[104] J.J. Grefenstette. Optimization of control parameters for genetic algorithms. IEEE
Transactions on Systems, Man and Cybernetics, SMC-16(1), January-February 1986.

[105] J.J. Grefenstette and J.E. Baker. How genetic algorithms work: a critical look at
implicit parallelism. In Proceedings o f the Third International Conference on Genetic
Algorithms, pages 20-27. Morgan Kaufmann, 1989.

[106] J.J. Grefenstette and J.M. Fitzpatrick. Genetic search with approximate function
evaluations. In Proceedings of the First International Conference on Genetic Algo­
rithms and Their Applications, pages 112-120. Lawrence Erlbaum Associates, 1985.

[107] J.J. Grefenstette, R. Gopal, B. Rosmaita, and D. Van Gucht. Genetic algorithms for
the traveling salesman problem. In Proceedings of the First International Conference
on Genetic Algorithms and Their Applications, pages 160-168. Lawrence Erlbaum
Associates, 1985.

[108] J.J. Grefenstette, C.L. Ramsey, and A.C. Schultz. Learning sequential decision rules
using simulation models and competition. Machine Learning, 5(4):355-381,1990.

[109] John J. Grefenstette. Multilevel credit assignment in a genetic learning system. In
Proceedings o f the Second International Conference on Genetic Algorithms, pages
202-209. Lawrence Erlbaum Associates, 1987.

[110] John J. Grefenstette. Lamarckian learning in multi-agent environments. In Proceed­
ings of the Fourth International Conference on Genetic Algorithms, pages 303-310.
Morgan Kaufmann, 1991.

[111] Frederic Gruau. Genetic synthesis of modular neural networks. In Proceedings of
the Fifth International Conference on Genetic Algorithms, pages 318-325. Morgan
Kaufmann, 1993.

[112] Simon Handley. Automated learning of a detector for a-helices in protein sequences
via genetic programming. In Proceedings of the Fifth International Conference on
Genetic Algorithms, pages 271-278. Morgan Kaufmann, 1993.

[113] S.A. Harp, T. Samad, and A. Guha. Towards the genetic synthesis of neural networks.
In Proceedings o f the Third International Conference on Genetic Algorithms, pages
360-369. Morgan Kaufmann, 1989.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 167

[114] William E. Hart and Richard K. Belew. Optimizing an arbitrary function is hard
for the genetic algorithm. In Proceedings o f the Fourth International Conference on
Genetic Algorithms, pages 190-195. Morgan Kaufmann, 1991.

[115] J. Hesser, R. Maenner, and O. Stucky. Optimization of steiner trees using genetic algo­
rithms. In Proceedings of the Third International Conference on Genetic Algorithms,
pages 231-236. Morgan Kaufmann, 1989.

[116] M.R. Hilliard, G.E. Liepins, M. Palmer, M. Morrow, and J. Richardson. A classifier-
based system for discovering scheduling heuristics. In Proceedings of the Second In­
ternational Conference on Genetic Algorithms, pages 231-235. Lawrence Erlbaum
Associates, 1987.

[117] K.J. Hintz. Procedure learning using a variable-dimension solution space. In Proceed­
ings of the Third International Conference on Genetic Algorithms, pages 237-242.
Morgan Kaufmann, 1989.

[118] J.H. Holland. Outline for a logical theory of adaptive systems. Journal o f the Asso­
ciation for Computing Machinery, 3:297-314, 1962.

[119] J.H. Holland. Processing and processors of schemata. In E.L. Jacks, editor, Associate
information processing, pages 127-146. American Elsevier, 1971.

[120] J.H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, 1975.

[121] J.H. Holland. Properties of the bucket brigade. In Proceedings of the First Interna­
tional Conference on Genetic Algorithms and Their Applications, pages 1-7. Lawrence
Erlbaum Associates, 1985.

[122] J.H. Holland. Escaping brittleness: the possibilities of general-purpose learning al­
gorithms applied to parallel rule-based systems. In R.S. Michalski, J.G. Carbonell,
and T.M. Mitchell, editors, Genetic algorithms and simulated annealing, volume 2.
Morgan Kaufmann, 1986.

[123] J.H. Holland, K.J. Holyoak, R.E. Nisbett, and P.R. Thagard. Induction. The MIT
Press, 1986.

[124] J.H. Holland, K.J. Holyoak, R.E. Nisbett, and P.R. Thagard. Classifier systems,
q-morphisms, and induction. In L. Davis, editor, Genetic algorithms and simulated
annealing, chapter 9, pages 116-128. Morgan Kaufmann, 1987.

[125] J.H. Holland and J.S. Reitman. Cognitive systems based on adaptive algorithms. In
D.A. Waterman and F. Hayes-Roth, editors, Pattern directed inference systems, pages
313-329. Academic Press, 1978.

[126] John H. Holland. Genetic algorithms and classifier systems: foundations and future
directions. In Proceedings o f the Second International Conference on Genetic Algo­
rithms, pages 82-89. Lawrence Erlbaum Associates, 1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 168

[127] R.B. Hollstein. Artificial genetic adaptation in computer control systems. PhD thesis.
University of Michigan, 1971.

[128] Hbdollah Homaifar, Xiaoyun Qi, and John Fost. Analysis and design of a general ga
deceptive problem. In Proceedings o f the Fourth International Conference on Genetic
Algorithms, pages 196-203. Morgan Kaufmann, 1991.

[129] Andrew Horner and David E. Goldberg. Genetic algorithms and computer-assisted
music composition. In Proceedings o f the Fourth International Conference on Genetic
Algorithms, pages 437-441. Morgan Kaufmann, 1991.

[130] h tpp ://www.ics.uci.edu/mleam/MLRepository.html. University of California irvine
machine learning repository, 1996.

[131] D. Huang. The context-array bucket brigade algorithm: an enhanced approach to
credit-apportionment in classifier systems. In Proceedings of the Third International
Conference on Genetic Algorithms, pages 311-316. Morgan Kaufmann, 1989.

[132] Martin Hulin. Analysis of schema distributions. In Proceedings of the Fourth In­
ternational Conference on Genetic Algorithms, pages 204-209. Morgan Kaufmann,
1991.

Philip Husbands and Frank Mill. Simulated co-evolution as the mechanism for emer­
gent planning and scheduling. In Proceedings o f the Fourth International Conference
on Genetic Algorithms, pages 264-270. Morgan Kaufmann, 1991.

M.A. Huynen and P. Hogeweg. Genetic algorithms and information accumulation
during the evolution of gene regulation. In Proceedings of the Third International
Conference on Genetic Algorithms, pages 225-230. Morgan Kaufmann, 1989.

Hitoshi Iba, Takio Kurita, Hugo de Garis, and Taisuke Sato. System identification
using structured genetic algorithms. In Proceedings of the Fifth International Confer­
ence on Genetic Algorithms, pages 279-286. Morgan Kaufmann, 1993.

Cezary Z. Janikow and Zbigniew Michalewicz. An experimental comparison of binary
and floating point representations in genetic algorithms. In Proceedings of the Fourth
International Conference on Genetic Algorithms, pages 31-36. Morgan Kaufmann,
1991.

[137] P. Jog, J.Y. Suh, and D. Van Gucht. The effects of population size, heuristic crossover
and local improvement on a genetic algorithm for the traveling salesman problem. In
Proceedings o f the Third International Conference on Genetic Algorithms, pages 110—
115. Morgan Kaufmann, 1989.

[138] Prasanna Jog and Dirkj Van Gucht. Parallelisation of probabilistic sequential search
algorithms. In Proceedings o f the Second International Conference on Genetic Algo­
rithms, pages 170-176. Lawrence Erlbaum Associates, 1987.

[133]

[134]

[135]

[136]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ics.uci.edu/mleam/MLRepository.html

BIBLIOGRAPHY 169

[139] Clayton M. Johnson and Stefan Feyock. A genetics-based approach to the automated
acquisition of expert system rule bases. In Proceedings of the IEEE/AC M Inter­
national Conference on Developing and Managing Expert System Programs. IEEE
Computer Society Press, 1991.

[140] Donald R. Jones and Mark A. Beltramo. Solving partitioning problems with genetic
algorithms. In Proceedings o f the Fourth International Conference on Genetic Algo­
rithms, pages 442-449. Morgan Kaufmann, 1991.

[141] Kate Juliff. A multi-chromosome genetic algorithm for pallet loading. In Proceedings
of the Fifth International Conference on Genetic Algorithms, pages 467-473. Morgan
Kaufmann, 1993.

[142] Hillol Kargupta and R.E. Smith. System identification with evolving polynomial net­
works. In Proceedings of the Fourth International Conference on Genetic Algorithms,
pages 370-376. Morgan Kaufmann, 1991.

[143] Charles L. Karr. Design of an adaptive fuzzy logic controller using a genetic algorithm.
In Proceedings o f the Fourth International Conference on Genetic Algorithms, pages
450-457. Morgan Kaufmann, 1991.

[144] James D. Kelly, Jr. and Lawrence Davis. Hybridizing the genetic algorithm and the k
nearest neighbors classification algorithm. In Proceedings o f the Fourth International
Conference on Genetic Algorithms, pages 377-383. Morgan Kaufmann, 1991.

[145] Kenneth E. Kinnear, Jr. Generality and difficulty in genetic programming: evolving
a sort. In Proceedings of the Fifth International Conference on Genetic Algorithms,
pages 287-294. Morgan Kaufmann, 1993.

[146] Hiroaki Kitano, Stephen F. Smith, and Tetsuya Higuchi. Ga-1: a parallel associa­
tive memory processor for rule learning with genetic algorithms. In Proceedings of
the Fourth International Conference on Genetic Algorithms, pages 311-317. Morgan
Kaufmann, 1991.

[147] D. Klahr and R.S. Siegler. The representation of children’s knowledge. In H.W. Reese
and L.P. Lipsitt, editors, Advances in child development and behavior, pages 61-116.
Academic Press, 1978.

[148] Corey Kosak, Joe Marks, and Stuart Shieber. A parallel genetic algorithm for network-
diagram layout. In Proceedings o f the Fourth International Conference on Genetic
Algorithms, pages 458-465. Morgan Kaufmann, 1991.

[149] John R. Koza. Evolving a computer program to generate random numbers using the
genetic programming paradigm. In Proceedings of the Fourth International Conference
on Genetic Algorithms, pages 37-44. Morgan Kaufmann, 1991.

[150] John R. Koza. Simultaneous discovery of reusable detectors and subroutines using
genetic programming. In Proceedings of the Fifth International Conference on Genetic
Algorithms, pages 295-302. Morgan Kaufmann, 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 170

[151] J.R. Koza. Hierarchical genetic algorithms operating on populations of computer
programs. In Proceedings o f the Eleventh International Joint Conference on Artificial
Intelligence, pages 768-774. Morgan Kaufmann, 1989.

[152] J.R. Koza. Genetic Programming: On the Programming o f Computers by means of
Natural Selection. MIT Press, 1992.

[153] P. Langley. A general theory of discrimination learning. In D. Klahr, P. Langley, and
R. Neches, editors, Production system models for learning and development, pages
99-161. MIT Press, 1987.

[154] In Lee, Riyaz Sikora, and Michael J. Shaw. Joint lot sizing and sequencing with
genetic algorithms for scheduling: evolving the chromosome structure. In Proceedings
of the Fifth International Conference on Genetic Algorithms, pages 383-390. Morgan
Kaufmann, 1993.

[155] Michael A. Lee and Hideyuki Takagi. Dymanic control of genetic algorithms using
fuzzy logic techniques. In Proceedings of the Fifth International Conference on Genetic
Algorithms, pages 76-83. Morgan Kaufmann, 1993.

[156] James R. Levenick. Inserting introns improves genetic algorithm success rate: taking
a cue from biology. In Proceedings of the Fourth International Conference on Genetic
Algorithms, pages 123-127. Morgan Kaufmann, 1991.

[157] David M. Levine. A genetic algorithm for the set partitioning problem. In Proceedings
of the Fifth International Conference on Genetic Algorithms, pages 481-487. Morgan
Kaufmann, 1993.

[158] G.E. Liepins, M.R. Hilliard, Mark Palmer, and Michael Morrow. Greedy genetics.
In Proceedings o f the Second International Conference on Genetic Algorithms, pages
90-99. Lawrence Erlbaum Associates, 1987.

[159] Gunar E. Liepins and Lori A. Wang. Classifier system learning of boolean concepts.
In Proceedings of the Fourth International Conference on Genetic Algorithms, pages
318-323. Morgan Kaufmann, 1991.

[160] Marc Lipsitch. Adaptation on rugged landscapes generated by iterated local interac­
tions on neighboring genes. In Proceedings o f the Fourth International Conference on
Genetic Algorithms, pages 128-135. Morgan Kaufmann, 1991.

[161] M.L. Littman and D.H. Ackley. Adaptation in constant utility non-stationary environ­
ments. In Proceedings of the Fourth International Conference on Genetic Algorithms,
pages 136-142. Morgan Kaufmann, 1991.

[162] Sushil J. Louis and Gregory J.E . Rawlins. Designer genetic algorithms: genetic algo­
rithms in structure design. In Proceedings o f the Fourth International Conference on
Genetic Algorithms, pages 53-60. Morgan Kaufmann, 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 171

[163] C.B. Lucasius and G. Kateman. Application of genetic algorithms in chemometrics.
In Proceedings of the Third International Conference on Genetic Algorithms, pages
170-176. Morgan Kaufmann, 1989.

[164] B. Manderick and P. Spiessens. Fine-grained parallel genetic algorithms. In Proceed­
ings of the Third International Conference on Genetic Algorithms, pages 428-433.
Morgan Kaufmann, 1989.

[165] Bernard Manderick, Mark de Weger, and Piet Spiessens. The genetic algorithm and
the structure of the fitness landscape. In Proceedings of the Fourth International
Conference on Genetic Algorithms, pages 143-150. Morgan Kaufmann, 1991.

[166] Nashat Mansour and Geoffrey C. Fox. A hybrid genetic algorithm for task allocation
in multicomputers. In Proceedings of the Fourth International Conference on Genetic
Algorithms, pages 466-473. Morgan Kaufmann, 1991.

[167] R.E. Marks. Breeding hybrid strategies: optimal behavior for oligopolists. In Pro­
ceedings of the Third International Conference on Genetic Algorithms, pages 198-207.
Morgan Kaufmann, 1989.

[168] Andrew J. Mason. Partition coefficients, static deception and deceptive problems
for non-binary alphabets. In Proceedings of the Fourth International Conference on
Genetic Algorithms, pages 210-214. Morgan Kaufmann, 1991.

[169] Zbigniew Michalewicz and Cezary Z. Janikow. Handling constraints in genetic algo­
rithms. In Proceedings o f the Fourth International Conference on Genetic Algorithms,
pages 151-157. Morgan Kaufmann, 1991.

[170] G.E. Miller, P.M. Todd, and S.U. Hegde. Designing neural networks using genetic
algorithms. In Proceedings of the Third International Conference on Genetic Algo­
rithms, pages 379-384. Morgan Kaufmann, 1989.

[171] J.H. Miller and S. Forrest. The dynamic behavior of classifier systems. In Proceedings
of the Third International Conference on Genetic Algorithms, pages 304-310. Morgan
Kaufmann, 1989.

[172] D.J. Montana. Empirical learning using rule threshold optimization for detection of
events in synthetic images. Machine Learning, 5(4):427-450,1990.

[173] H. Muhlenbein. Parallel genetic algorithms, population genetics and combinatorial
optimization. In Proceedings of the Third International Conference on Genetic Algo­
rithms, pages 416-421. Morgan Kaufmann, 1989.

[174] H. Muhlenbein, M. Schomisch, and J. Bom. The parallel genetic algorithm as func­
tion optimizer. In Proceedings of the Fourth International Conference on Genetic
Algorithms, pages 271-278. Morgan Kaufmann, 1991.

[175] Ryohei Nakano and Takeshi Yamada. Conventional genetic algorithms for job shop
problems. In Proceedings of the Fourth International Conference on Genetic Algo­
rithms, pages 474-479. Morgan Kaufmann, 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 172

[176] A. Newell. Unified Theories o f Cognition. Harvard University Press, 1990.

[177] Jean-Pierre Nordvik and Jean-Michel Renders. Genetic algorithms and their potential
for use in process control: a case study. In Proceedings o f the Fourth International
Conference on Genetic Algorithms, pages 480-486. Morgan Kaufmann, 1991.

[178] M.O. Odetayo and D.R. McGregor. Genetic algorithm for inducing control rules for
a dynamic system. In Proceedings of the Third International Conference on Genetic
Algorithms, pages 177-182. Morgan Kaufmann, 1989.

[179] I.M. Oliver, D.J. Smith, and J.R.C. Holland. A study of permutation crossover oper­
ators on the traveling salesman problem. In Proceedings of the Second International
Conference on Genetic Algorithms, pages 224-230. Lawrence Erlbaum Associates,
1987.

[180] Jim Oliver. Discovering individual decision rules: an application of genetic algorithms.
In Proceedings of the Fifth International Conference on Genetic Algorithms, pages
216-222. Morgan Kaufmann, 1993.

[181] Deon G. Oosthuizen. Supergran: a connectionist approach to learning, integrating
genetic algorithms and graph induction. In Proceedings of the Second International
Conference on Genetic Algorithms, pages 132-139. Lawrence Erlbaum Associates,
1987.

[182] D.G. Oosthuizen. Machine learning: a mathematical framework for neural network,
symbolic and genetics-based learning. In Proceedings o f the Third International Con­
ference on Genetic Algorithms, pages 385-390. Morgan Kaufmann, 1989.

[183] C.B. Pettey and M.R. Leuze. A theoretical investigation of a parallel genetic algo­
rithm. In Proceedings of the Third International Conference on Genetic Algorithms,
pages 398-405. Morgan Kaufmann, 1989.

[184] Chrisila .B. Pettey, Michael R. Leuze, and John J. Grefenstette. A parallel genetic
algorithm. In Proceedings of the Second International Conference on Genetic Algo­
rithms, pages 155-161. Lawrence Erlbaum Associates, 1987.

[185] D.J. Powell, S.S. Tong, and M.M. Skolnick. Engeneous domain independent, machine
learning for design optimization. In Proceedings of the Third International Conference
on Genetic Algorithms, pages 151-159. Morgan Kaufmann, 1989.

[186] Xiaofeng Qi and Francesco Palmieri. The diversification role of crossover in the ge­
netic algorithms. In Proceedings o f the Fifth International Conference on Genetic
Algorithms, pages 132-137. Morgan Kaufmann, 1993.

[187] Yuri Rabinovich and Avi Wigderson. An analysis of a simple genetic algorithm.
In Proceedings of the Fourth International Conference on Genetic Algorithms, pages
215-221. Morgan Kaufmann, 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 173

[188] Nicholas J. Radcliffe. Forma analysis and random respectful recombination. In Pro­
ceedings o f the Fourth International Conference on Genetic Algorithms, pages 222-
229. Morgan Kaufmann, 1991.

[189] Vijay V. Raghavan and Brijesh Agarwal. Optimal determination. In Proceedings of
the Second International Conference on Genetic Algorithms, pages 241-246. Lawrence
Erlbaum Associates, 1987.

[190] Connie Loggia Ramsey and John J. Grefenstette. Case-based initialization of ge­
netic algorithms. In Proceedings of the Fifth International Conference on Genetic
Algorithms, pages 84-91. Morgan Kaufmann, 1993.

[191] Thomas S. Ray. Is it alive or is it ga? In Proceedings o f the Fourth International
Conference on Genetic Algorithms, pages 527-534. Morgan Kaufmann, 1991.

[192] Colin R. Reeves. Using genetic algorithms with small populations. In Proceedings
of the Fifth International Conference on Genetic Algorithms, pages 92-99. Morgan
Kaufmann, 1993.

[193] L. Rendell. Genetic plans and the probabilistic learning system: synthesis and results.
In Proceedings o f the First International Conference on Genetic Algorithms and Their
Applications, pages 60-73. Lawrence Erlbaum Associates, 1985.

[194] J.T. Richardson, M.R. Palmer, G.E. Liepins, and M. Hilliard. Some guidelines for
genetic algorithms with penalty functions. In Proceedings o f the Third International
Conference on Genetic Algorithms, pages 191-197. Morgan Kaufmann, 1989.

[195] Rick L. Riolo. Bucket brigade performance: I. long sequences of classifiers. In Proceed­
ings of the Second International Conference on Genetic Algorithms, pages 184-195.
lawrence erlbaum associates, 1987.

[196] Rick L. Riolo. Bucket brigade performance: Ii. default hierarchies. In Proceedings of
the Second International Conference on Genetic Algorithms, pages 196-201. lawrence
erlbaum associates, 1987.

[197] Rick L. Riolo. Modeling simple human category learning with a classifier system.
In Proceedings of the Fourth International Conference on Genetic Algorithms, pages
324-333. Morgan Kaufmann, 1991.

[198] R.L. Riolo. The emergence of coupled sequences of classifiers. In Proceedings of
the Third International Conference on Genetic Algorithms, pages 256-264. Morgan
Kaufmann, 1989.

[199] R.L. Riolo. The emergence of default hierarchies in learning classifier systems. In
Proceedings o f the Third International Conference on Genetic Algorithms, pages 322-
327. Morgan Kaufmann, 1989.

[200] G. Roberts. A rational reconstruction of wilson’s animat and holland’s cs-1. In
Proceedings o f the Third International Conference on Genetic Algorithms, pages 317-
321. Morgan Kaufmann, 1989.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 174

[201] George G. Robertson. Parallel implementation of genetic algorithms in a classifier
system. In L. Davis, editor, Genetic algorithms and simulated annealing, chapter 10,
pages 129-140. Morgan Kaufmann, 1987.

[202] George G. Robertson. Parallel implementation of genetic algorithms in a classifier
system. In Proceedings o f the Second International Conference on Genetic Algorithms,
pages 140-147. Lawrence Erlbaum Associates, 1987.

[203] David Rogers. G/splines: a hybrid of friedman’s multivariate adaptive regression
splines (mars) algorithm with holland’s genetic algorithm. In Proceedings o f the Fourth
International Conference on Genetic Algorithms, pages 384-391. Morgan Kaufmann,
1991.

[204] Steve G. Romaniuk. Evolutionary growth perceptrons. In Proceedings o f the Fifth
International Conference on Genetic Algorithms, pages 334-341. Morgan Kaufmann,
1993.

[205] H. Ros. Some results on boolean concept learning by genetic algorithms. In Pro­
ceedings of the Third International Conference on Genetic Algorithms, pages 28-33.
Morgan Kaufmann, 1989.

[206] R.S. Rosenberg. Simulation o f genetic populations with biochemical properties. PhD
thesis, University of Michigan, 1967.

[207] Gerhard Roth and Martin D. Levine. A genetic algorithm for primitive extraction.
In Proceedings of the Fourth International Conference on Genetic Algorithms, pages
487-494. Morgan Kaufmann, 1991.

[208] A.L. Samuel. Some studies in machine learning using the game of checkers. IBM
Journal on Research and Development, 3(3):210-229,1959.

[209] Adrian V. Sannier II and Erik D. Goodman. Genetic learning procedures in dis­
tributed environments. In Proceedings of the Second International Conference on
Genetic Algorithms, pages 162-169. Lawrence Erlbaum Associates, 1987.

[210] J. David Schaffer and Larry J . Eshelman. On crossover as an evolutionarily viable
strategy. In Proceedings of the Fourth International Conference on Genetic Algo­
rithms, pages 61-68. Morgan Kaufmann, 1991.

[211] J.D. Schaffer. Learning multiple pattern discrimination. In Proceedings o f the First
International Conference on Genetic Algorithms and Their Applications, pages 74-79.
Lawrence Erlbaum Associates, 1985.

[212] J.D. Schaffer. Multiple objective optimization with vector evaluated genetic algo­
rithms. In Proceedings o f the First International Conference on Genetic Algorithms
and Their Applications, pages 93-100. Lawrence Erlbaum Associates, 1985.

[213] J.D. Schaffer. Some effects of selection procedures on hyperplane sampling by genetic
algorithms. In L. Davis, editor, Genetic algorithms and simulated annealing, chapter 7,
pages 89-103. Morgan Kaufmann, 1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 175

[214] J.David Schaffer, R.A. Caruana, L.J. Eshelman, and R. Das. A study of control pa­
rameters affecting online performance of genetic algorithms. In Proceedings of the
Third International Conference on Genetic Algorithms, pages 51-60. Morgan Kauf­
mann, 1989.

[215] J.David Schaffer and Amy Morishima. An adaptive crossover distribution mechanism
for genetic algorithms. In Proceedings o f the Second International Conference on
Genetic Algorithms, pages 36-40. Lawrence Erlbaum Associates, 1987.

[216] Alan C. Schultz. Adapting the evaluation space to improve global learning. In Proceed­
ings of the Fourth International Conference on Genetic Algorithms, pages 158-164.
Morgan Kaufmann, 1991.

[217] T. Schultz, D. Mareschal, and W. Schmidt. Modeling cognitive development on bal­
ance scale phenomena. Machine Learning, 16:59-88,1994.

[218] D. Schuurmans and J. Schaeffer. Representational difficulties with classifier systems.
In Proceedings o f the Third International Conference on Genetic Algorithms, pages
328-333. Morgan Kaufmann, 1989.

[219] Tod A. Sedbrook, Haviland Wright, and Richard Wright. Application of a genetic
classifier for patient triage. In Proceedings of the Fourth International Conference on
Genetic Algorithms, pages 334-338. Morgan Kaufmann, 1991.

[220] B. Selman and G. Hirst. Parsing as an energy minimization problem. In L. Davis, ed­
itor, Genetic algorithms and simulated annealing, chapter 11, pages 141-154. Morgan
Kaufmann, 1987.

[221] C.G. Shaefer. Directed tree method for fitting a potential function. In Proceedings
of the First International Conference on Genetic Algorithms and Their Applications,
pages 208-226. Lawrence Erlbaum Associates, 1985.

[222] Craig G. Shaefer. The argot strategy: adaptive representation genetic optimizer tech­
nique. In Proceedings of the Second International Conference on Genetic Algorithms,
pages 50-58. Lawrence Erlbaum Associates, 1987.

[223] R. Shonkwiler. Parallel genetic algorithms. In Proceedings of the Fifth International
Conference on Genetic Algorithms, pages 199-205. Morgan Kaufmann, 1993.

[224] R. Shonkwiler, F. Mendivil, and A. Deliu. Genetic algorithms for the 1-d fractal
inverse problem. In Proceedings of the Fourth International Conference on Genetic
Algorithms, pages 495-501. Morgan Kaufmann, 1991.

[225] L. Shu and J. Schaeffer. Vcs: variable classifier system. In Proceedings o f the Third
International Conference on Genetic Algorithms, pages 334-339. Morgan Kaufmann,
1989.

[226] Lingyan Shu and Jonathan Schaeffer. Hcs: adding hierarchies to classifier systems.
In Proceedings of the Fourth International Conference on Genetic Algorithms, pages
339-345. Morgan Kaufmann, 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 176

[227] W. Siedlecki and J. Sklansky. Constrained genetic optimization via dynamic reward-
penalty balancing and its use in pattern recognition. In Proceedings of the Third
International Conference on Genetic Algorithms, pages 141-150. Morgan Kaufmann,
1989.

[228] R.S. Siegler. Three aspects of cognitive development. Cognitive Psychology, 8:481-520,
1976.

[229] David J. Sirag and Paul T. Weisser. Toward a unified thermodynamic genetic oper­
ator. In Proceedings o f the Second International Conference on Genetic Algorithms,
pages 116-122. Lawrence Erlbaum Associates, 1987.

[230] Alice Smith and David M. Tate. Genetic optimization using a penalty function. In
Proceedings of the Fifth International Conference on Genetic Algorithms, pages 499-
505. Morgan Kaufmann, 1993.

[231] D. Smith. Bin packing with adaptive search. In Proceedings of the First International
Conference on Genetic Algorithms and Their Applications, pages 202-206. Lawrence
Erlbaum Associates, 1985.

[232] Joshua R. Smith. Designing biomorpbs with an interactive genetic algorithm. In
Proceedings of the Fourth International Conference on Genetic Algorithms, pages 535-
538. Morgan Kaufmann, 1991.

[233] R.E. Smith and M. Valenzuela-Rendon. A study of rule set development in a learning
classifier system. In Proceedings of the Third International Conference on Genetic
Algorithms, pages 340-346. Morgan Kaufmann, 1989.

[234] S.F. Smith. A learning system based on genetic adaptive algorithms. PhD thesis.
University of Pittsburgh, 1980.

[235] S.J. Smith and S.W. Wilson. Rosetta: toward a model of learning problems. In
Proceedings o f the Third International Conference on Genetic Algorithms, pages 347-
350. Morgan Kaufmann, 1989.

[236] William M. Spears and Kenneth A. De Jong. On the virtues of parameterized uni­
form crossover. In Proceedings of the Fourth International Conference on Genetic
Algorithms, pages 230-236. Morgan Kaufmann, 1991.

[237] Piet Spiessens and Bernard Manderick. A massively parallel genetic algorithm: im­
plementation and first analysis. In Proceedings of the Fourth International Conference
on Genetic Algorithms, pages 279-286. Morgan Kaufmann, 1991.

[238] Irene Stadnyk. Schema recombination in a pattern recognition problem. In Proceedings
of the Second International Conference on Genetic Algorithms, pages 27-35. Lawrence
Erlbaum Associates, 1987.

[239] T. Starkweather, S. McDaniel, K. Mathias, D. Whitley, and C. Whitley. A comparison
of genetic sequencing operators. In Proceedings of the Fourth International Conference
on Genetic Algorithms, pages 69-76. Morgan Kaufmann, 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 177

[240] Guy L. Steele, Jr. Common Lisp: The Language. Digital Press, 2 edition. 1990.

[241] Jung Y. Suh and Dirk Van Gucht. Incorporating heuristic information into genetic
search. In Proceedings of the Second International Conference on Genetic Algorithms.
pages 100-107. Lawrence Erlbaum Associates, 1987.

[242] Keiji Suzuki and Yukinori Kakazu. An approach to the analysis of the basins of the
associative memory model using genetic algorithms. In Proceedings of the Fourth
International Conference on Genetic Algorithms, pages 539-546. Morgan Kaufmann,
1991.

[243] G. Syswerda. Uniform crossover in genetic algorithms. In Proceedings of the Third
International Conference on Genetic Algorithms, pages 2-9. Morgan Kaufmann, 1989.

[244] Gilbert Syswerda and Jeff Palmucci. The application of genetic algorithms to re­
source scheduling. In Proceedings of the Fourth International Conference on Genetic
Algorithms, pages 502-508. Morgan Kaufmann, 1991.

[245] M. Tan and L. Eschelman. Using weighted networks to represent classification knowl­
edge in noisy domains. In Proceedings of the Fifth International Conference on Ma­
chine Learning, pages 121-134. Morgan Kaufmann, 1988.

[246] R. Tanese. Distributed genetic algorithms. In Proceedings o f the Third International
Conference on Genetic Algorithms, pages 434-439. Morgan Kaufmann, 1989.

[247] Reiko Tanese. Parallel genetic algorithm for a hypercube. In Proceedings o f the Second
International Conference on Genetic Algorithms, pages 177-183. Lawrence Erlbaum
Associates, 1987.

[248] David M. Tate and Alice E. Smith. Expected allele coverage and the role of mutation
in genetic algorithms. In Proceedings of the Fifth International Conference on Genetic
Algorithms, pages 31-37. Morgan Kaufmann, 1993.

[249] Philip Thrift. Fuzzy logic synthesis with genetic algorithms. In Proceedings of
the Fourth International Conference on Genetic Algorithms, pages 509-513. Morgan
Kaufmann, 1991.

[250] Peter M. Todd and Geoffrey F. Miller. On the sympatric origin of species: mercurial
mating in the quicksilver model. In Proceedings o f the Fourth International Conference
on Genetic Algorithms, pages 547-554. Morgan Kaufmann, 1991.

[251] Jan Torreele. Temporal processing with recurrent networks: an evolutionary approach.
In Proceedings o f the Fourth International Conference on Genetic Algorithms, pages
555-561. Morgan Kaufmann, 1991.

[252] D.S. Touretzky and G.E. Hinton. Pattern matching and variable binding in a stochas­
tic neural network. In L. Davis, editor, Genetic algorithms and simulated annealing,
chapter 12, pages 155-169. Morgan Kaufmann, 1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 178

[253] M. Valenzuela-Rendon. Boolean analysis of classifier sets. In Proceedings o f the Third
International Conference on Genetic Algorithms, pages 351-358. Morgan Kaufmann,
1989.

[254] Manuel Valenzuela-Rendon. The fuzzy classifier system: a classifier system for con­
tinuously varying variables. In Proceedings of the Fourth International Conference on
Genetic Algorithms, pages 346-353. Morgan Kaufmann, 1991.

[255] Gregor von Laszewski. Intelligent structural operators for the k-way graph parti­
tioning problem. In Proceedings o f the Fourth International Conference on Genetic
Algorithms, pages 45-52. Morgan Kaufmann, 1991.

[256] Michael D. Vose and Gunar E. Liepins. Schema disruption. In Proceedings of
the Fourth International Conference on Genetic Algorithms, pages 237-242. Morgan
Kaufmann, 1991.

[257] D.A. Waterman. Generalization learning techniques for automating the learning of
heuristics. Artificial Intelligence, 1:121-170,1970.

[258] T.H. Westerdale. The bucket brigade is not genetic. In Proceedings o f the First
International Conference on Genetic Algorithms and Their Applications, pages 45-
59. Lawrence Erlbaum Associates, 1985.

[259] T.H. Westerdale. A defense of the bucket brigade. In Proceedings of the Third In­
ternational Conference on Genetic Algorithms, pages 282-290. Morgan Kaufmann,
1989.

[260] T.H. Westerdale. Redundant classifiers and prokaryote genomes. In Proceedings of
the Fourth International Conference on Genetic Algorithms, pages 354-360. Morgan
Kaufmann, 1991.

[261] Thomas H. Westerdale. Altruism in the bucket brigade. In Proceedings of the Second
International Conference on Genetic Algorithms, pages 22-26. Lawrence Erlbaum
Associates, 1987.

[262] D. Whitley. The genitor algorithm and selection pressure: why rank-based allocation
of reproductive trials is best. In Proceedings of the Third International Conference on
Genetic Algorithms, pages 116-121. Morgan Kaufmann, 1989.

[263] D. Whitley and T. Hanson. Optimizing neural networks using faster, more accu­
rate genetic search. In Proceedings of the Third International Conference on Genetic
Algorithms, pages 391-396. Morgan Kaufmann, 1989.

[264] D. Whitley, K. Mathias, and P. Fitzhom. Delta coding: an iterative search stategy for
genetic algorithms. In Proceedings o f the Fourth International Conference on Genetic
Algorithms, pages 77-84. Morgan Kaufmann, 1991.

[265] D. Whitley, T. Starkweather, and D. Fuquay. Scheduling problems and traveling
salesmen: the genetic edge recombination operator. In Proceedings of the Third In­
ternational Conference on Genetic Algorithms, pages 133-140. Morgan Ka.nfma.nn,
1989.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 179

[266] Darrell Whitley. Using reproductive evaluation to improve genetic search and heuris­
tic discovery. In Proceedings o f the Second International Conference on Genetic Al­
gorithms, pages 108-115. Lawrence Erlbaum Associates, 1987.

[267] Darrell Whitley, Stephen Dominic, and Rajarshi Das. Genetic reinforcement learning
with multilayer neural networks. In Proceedings of the Fourth International Confer­
ence on Genetic Algorithms, pages 562-569. Morgan Kaufmann, 1991.

[268] Stewart W. Wilson. The genetic algorithm and biological development. In Proceed­
ings of the Second International Conference on Genetic Algorithms, pages 247-251.
Lawrence Erlbaum Associates, 1987.

[269] Stewart W. Wilson. Ga-easy does not imply steepest-ascent optimizable. In Pro­
ceedings of the Fourth International Conference on Genetic Algorithms, pages 85-89.
Morgan Kaufmann, 1991.

[270] S.W. Wilson. Adaptive “cortical” pattern recognition. In Proceedings o f the First
International Conference on Genetic Algorithms and Their Applications, pages 188-
193. Lawrence Erlbaum Associates, 1985.

[271] S.W. Wilson. Knowledge growth in an artificial animal. In Proceedings of the First
International Conference on Genetic Algorithms and Their Applications, pages 16-23.
Lawrence Erlbaum Associates, 1985.

[272] S.W. Wilson. Classifier systems and the animat problem. Machine Learning, 2:199—
228, 1987.

[273] S.W. Wilson. Hierarchical credit allocation in a classifier system. In L. Davis, edi­
tor, Genetic algorithms and simulated annealing, chapter 8, pages 104-115. Morgan
Kaufmann, 1987.

[274] S.W. Wilson and D.E. Goldberg. A critical review of classifier systems. In Proceedings
of the Third International Conference on Genetic Algorithms, pages 244-255. Morgan
Kaufmann, 1989.

[275] Peter Wyard. Context free grammar induction using genetic algorithms. In Proceed­
ings of the Fourth International Conference on Genetic Algorithms, pages 514-518.
Morgan Kaufmann, 1991.

[276] H.H. Zhou. CSM: a genetic classifier system with memory for learning by analogy.
PhD thesis, Vanderbilt University, 1987.

[277] H.H. Zhou. Csm: a computational model of learning. Machine Learning, 5(4):383-406,
1990.

[278] H.H. Zhou and J.J. Grefenstette. Learning by analogy in genetic classifier systems.
In Proceedings of the Third International Conference on Genetic Algorithms, pages
291-297. Morgan Kaufmann, 1989.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 180

[279] Raed Abu Zitar and Mohammad H. Hassoun. Regulator control via genetic search as­
sisted reinforcement. In Proceedings o f the Fifth International Conference on Genetic
Algorithms, pages 254-262. Morgan Kaufmann, 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

Clayton. Matthew Johnson was born in Peoria, Illinois, on December 22,1964, and graduated

from Covington Latin High School in Covington, Kentucky, in 1982. He earned a B.S. in

Computer Science and a B.A. in International Affairs from Xavier University in Cincinnati,

Ohio, completing many of the requirements for these degrees at the Universit”at Salzburg in

Salzburg, Austria. The author received an M.S. in Computer Science from Michigan State

University in East Lansing, Michigan, in 1988, before entering the College of William and

Mary as a research assistant in the department of Computer Science. In addition to work

in government and industry, he has held the rank of assistant professor at Indianola College

in Indianola, Iowa, and at Virginia Commonwealth University in Richmond, Virginia.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	A grammar-based technique for genetic search and optimization
	Recommended Citation

	tmp.1539750766.pdf.6POId

