597 research outputs found

    Multi-Target Prediction: A Unifying View on Problems and Methods

    Full text link
    Multi-target prediction (MTP) is concerned with the simultaneous prediction of multiple target variables of diverse type. Due to its enormous application potential, it has developed into an active and rapidly expanding research field that combines several subfields of machine learning, including multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. In this paper, we present a unifying view on MTP problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research

    Improved functional prediction of proteins by learning kernel combinations in multilabel settings

    Get PDF
    Background We develop a probabilistic model for combining kernel matrices to predict the function of proteins. It extends previous approaches in that it can handle multiple labels which naturally appear in the context of protein function. Results Explicit modeling of multilabels significantly improves the capability of learning protein function from multiple kernels. The performance and the interpretability of the inference model are further improved by simultaneously predicting the subcellular localization of proteins and by combining pairwise classifiers to consistent class membership estimates. Conclusion For the purpose of functional prediction of proteins, multilabels provide valuable information that should be included adequately in the training process of classifiers. Learning of functional categories gains from co-prediction of subcellular localization. Pairwise separation rules allow very detailed insights into the relevance of different measurements like sequence, structure, interaction data, or expression data. A preliminary version of the software can be downloaded from http://www.inf.ethz.ch/personal/vroth/KernelHMM/.ISSN:1471-210

    KFHE-HOMER: A multi-label ensemble classification algorithm exploiting sensor fusion properties of the Kalman filter

    Full text link
    Multi-label classification allows a datapoint to be labelled with more than one class at the same time. In spite of their success in multi-class classification problems, ensemble methods based on approaches other than bagging have not been widely explored for multi-label classification problems. The Kalman Filter-based Heuristic Ensemble (KFHE) is a recent ensemble method that exploits the sensor fusion properties of the Kalman filter to combine several classifier models, and that has been shown to be very effective. This article proposes KFHE-HOMER, an extension of the KFHE ensemble approach to the multi-label domain. KFHE-HOMER sequentially trains multiple HOMER multi-label classifiers and aggregates their outputs using the sensor fusion properties of the Kalman filter. Experiments described in this article show that KFHE-HOMER performs consistently better than existing multi-label methods including existing approaches based on ensembles.Comment: The paper is under consideration at Pattern Recognition Letters, Elsevie

    Learning Interpretable Rules for Multi-label Classification

    Full text link
    Multi-label classification (MLC) is a supervised learning problem in which, contrary to standard multiclass classification, an instance can be associated with several class labels simultaneously. In this chapter, we advocate a rule-based approach to multi-label classification. Rule learning algorithms are often employed when one is not only interested in accurate predictions, but also requires an interpretable theory that can be understood, analyzed, and qualitatively evaluated by domain experts. Ideally, by revealing patterns and regularities contained in the data, a rule-based theory yields new insights in the application domain. Recently, several authors have started to investigate how rule-based models can be used for modeling multi-label data. Discussing this task in detail, we highlight some of the problems that make rule learning considerably more challenging for MLC than for conventional classification. While mainly focusing on our own previous work, we also provide a short overview of related work in this area.Comment: Preprint version. To appear in: Explainable and Interpretable Models in Computer Vision and Machine Learning. The Springer Series on Challenges in Machine Learning. Springer (2018). See http://www.ke.tu-darmstadt.de/bibtex/publications/show/3077 for further informatio

    Feature Selection and Overlapping Clustering-Based Multilabel Classification Model

    Get PDF
    Multilabel classification (MLC) learning, which is widely applied in real-world applications, is a very important problem in machine learning. Some studies show that a clustering-based MLC framework performs effectively compared to a nonclustering framework. In this paper, we explore the clustering-based MLC problem. Multilabel feature selection also plays an important role in classification learning because many redundant and irrelevant features can degrade performance and a good feature selection algorithm can reduce computational complexity and improve classification accuracy. In this study, we consider feature dependence and feature interaction simultaneously, and we propose a multilabel feature selection algorithm as a preprocessing stage before MLC. Typically, existing cluster-based MLC frameworks employ a hard cluster method. In practice, the instances of multilabel datasets are distinguished in a single cluster by such frameworks; however, the overlapping nature of multilabel instances is such that, in real-life applications, instances may not belong to only a single class. Therefore, we propose a MLC model that combines feature selection with an overlapping clustering algorithm. Experimental results demonstrate that various clustering algorithms show different performance for MLC, and the proposed overlapping clustering-based MLC model may be more suitable

    Automation of motor dexterity assessment

    Get PDF
    Motor dexterity assessment is regularly performed in rehabilitation wards to establish patient status and automatization for such routinary task is sought. A system for automatizing the assessment of motor dexterity based on the Fugl-Meyer scale and with loose restrictions on sensing technologies is presented. The system consists of two main elements: 1) A data representation that abstracts the low level information obtained from a variety of sensors, into a highly separable low dimensionality encoding employing t-distributed Stochastic Neighbourhood Embedding, and, 2) central to this communication, a multi-label classifier that boosts classification rates by exploiting the fact that the classes corresponding to the individual exercises are naturally organized as a network. Depending on the targeted therapeutic movement class labels i.e. exercises scores, are highly correlated-patients who perform well in one, tends to perform well in related exercises-; and critically no node can be used as proxy of others - an exercise does not encode the information of other exercises. Over data from a cohort of 20 patients, the novel classifier outperforms classical Naive Bayes, random forest and variants of support vector machines (ANOVA: p <; 0.001). The novel multi-label classification strategy fulfills an automatic system for motor dexterity assessment, with implications for lessening therapist's workloads, reducing healthcare costs and providing support for home-based virtual rehabilitation and telerehabilitation alternatives
    corecore